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Abstract. In structural health monitoring with guided ultrasonic waves, probability 

reconstruction algorithms are a method to locate a damage. They work by calculating 

the probability for each actuator-sensor-path on whether there is a damage on the path 

or not. By superposition of each path and its damage probability, a damage 

localisation is done. The disadvantage of this is, that the damage localization 

resolution is limited by the number of paths crossing each other.  

To overcome this, the hypothesis of this investigation is that the information of a path 

can not only be used to determine whether a damage is present, but that additional 

information about the location within the path can be calculated as well. This way a 

localization resolution can be higher than by only relying on the path density.  

To verify this assumption, an experimental setup was chosen in which the path lengths 

always remain the same while the distance between damage and the direct path varies. 

This is implemented by a moving ultrasonic microphone simulating the sensor.  The 

varying distance is the local information, which is determined in this study using the 

information of a single path. For this purpose, a prediction is calculated using 

regularised multilinear regression. The input features are characteristic values of five 

sections of the sensor signal in the time domain. The sections are manually chosen 

based on arriving wave events. 

The result confirms the hypothesis. Therefore, it is plausible to increase the detection 

resolution of probability reconstruction algorithms by calculating damage location 

estimations for each path. 
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Introduction  

Multiple damage localisation methods can be found in the literature for guided wave based 

Structural Health Monitoring (SHM). The triangulation method, for example, locates damage 

accurately but is prone to failure in complex structures, due to the variety and interference of 

reflections [1]. The delay and sum algorithm, another localisation method, achieves 

satisfactory results with few sensors but in-depth knowledge of the structure, such as the 

waves group velocity, is crucial for an accurate damage localisation [2]. Thus, this method is 
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problematic in complex structures as well [3]. Probability reconstruction algorithms have 

been used for damage localisation based on guided waves as well. This method needs a higher 

density transducer network, but is applicable in complex structures,  [4]. It also does not need 

information about the structure, which widens the operation possibilities [5]. Because of the 

wide application cases this study takes a closer look at probability reconstruction algorithms.  

The probability reconstruction algorithm uses damage indices such as the correlation 

coefficient ([6]) to determine whether a damage is on the path between the actuator and the 

sensor or not. To map this information onto a geometry the probability reconstruction 

algorithm uses an ellipse around the actuator and sensor, stating, that there is a probability of 

a damage in this area. To pinpoint the location of a damage multiple overlapping paths are 

necessary. [5] As single damage indices show a low sensitivity to damages, which locate 

offside the direct actuator-sensor-path, the damage sensitive area of one path is narrow and 

a high areal transducer density is needed.  

With the goal to reduce the number of piezoelectric transducers per area and to improve the 

accuracy of the damage localisation, this work focuses on achieving an offside path damage 

sensitivity, while gaining additional local information from on paths signal. The goal consists 

in predicting the distance between the actuator-sensor-path and the damage. To obtain the 

location prediction, multiple features are calculated for several parts of the paths time signal 

and are used in a regularised multilinear regression process.  

1. Experimental Setup 

The goal of this survey is to investigate and develop the ability to predict the distance between 

the actuator-sensor-path and a damage (Fig. 1, a). Therefore, an experimental setup was used, 

in which multiple signal paths with varying distance to a damage are recorded: a plate with 

the dimensions of 500 x 500 mm is used for this purpose (carbon fibre-reinforced plastic; 2.1 

mm thickness; quasi-isotropic: [0 90/ +45/ -45/ 0 90/ +45/ -45/ 0 90] with 0 90 being a woven 

layer and ±45° being unidirectional layers). In the middle of it a piezoelectric transducer 

(DuraAct) is bonded to the structure and used to generate ultrasonic waves. To record the 

ultrasonic waves an air coupled ultrasonic scanner is used (Hillger NDT GmbH, Fig. 1,c). 

This was chosen as the system is capable of recording a signal with a spatial resolution of 2 

mm on both axes, therefore creating a larger database than it would be possible with bonded 

piezoelectric transducers as sensors. The sensor used is a DeltaTron Free-field ¼’’ 

Microphone Type 4954A and recorded with a sampling frequency of 10 MHz for a time of 

300 µs. 

The observed damages are induced by a mobile impact gun (Ingenieurtechnische 

Dienstleistungen Gallus Lindner) in four different energy settings of 5 J, 7.5 J, 10 J and  

2.5 J. The damages are located equidistant from the actuator and the plate edge, as shown in 

Fig. 1, b. 

The signals acquired in a specific circular section (sensing points cluster) behind the damage 

have been chosen for this analysis. The signal path length is 170 ±3 mm. The maximum 

distance between a direct actuator-sensor-path and the damage location is 65 mm. This is 

chosen such that the effect of the neighbouring damages are less dominant than the 

investigated damage. With the spatial resolution of 2 mm and a chosen pathlength accuracy 

of ±3 mm 1114 paths are investigated. The investigated points are depicted in the blues 

clusters in Fig. 1, b. 

For a baseline signal a pristine plate was evaluated in the same way.  
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Fig. 1. a) Schematical view of the distance prediction between damage and direct actuator-sensor-path,  

b) schematical view of the specimen, c) experimental setup of the data acquisition 

In the following the scanning points, which shall represent the placement of a sensor in that 

position, are referred to as sensors.  

The excitation signal is a 5 cyclic square burst with a centre frequency of 80 kHz. The 

recorded signal is filtered with a digital bandpass filter 12. order with the lower and upper 

limit of 60 kHz and 100 kHz respectively. 

2. Distance Prediction Methodology 

The goal is to evaluate the capability to predict the distance of a damage based on the 

information of one single actuator-sensor-path. The signal that is available for this is a time 

signal at the sensor position in a pristine structure state and a second on after a damaged was 

induced. In the signal processing several features are computed for each of five time 

windows. With these features a regularized multiple linear regression machine learning 

approach is carried out. The dataset is split into 80% trainings and 20% test data. 

2.1 Features 

In the signal processing features are calculated based on the pristine plates time signal (𝑆𝑃) 

and the damaged plates time signal (𝑆𝐷). The calculated features are grouped into three 

categories, based on whether and if so, how the signals interact with each other.  

In first group there are standalone features, which are only considering one signal. In the 

second group (comparing features), features are calculated by the ratio of a characteristic of 

the two signals and in the third group the two time signals interact directly with each other. 

The definition of each feature studied is listed in the following (formula 1 – 10). 
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Standalone features: 

• Energy of single signal: 𝐸𝑆𝑆𝑆𝑃 = ∑ 𝑆𝑃2𝑛
𝑖=1  (1) 

• Maximal value: 𝑀𝐴𝑋𝑆𝑃 = 𝑚𝑎𝑥(|𝑆𝑃|) (2) 

• Index and value of maximum value: PxTSP = 𝑖𝑀𝐴𝑋_𝑆𝑃 ∙ 𝑀𝐴𝑋_𝑆𝑃 (3) 

• Standard deviation of the Hilbert transformed signal: 𝑆𝑡𝐷𝑒𝑆𝑃 = √
∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
 (4) 

• Skewness of the Hilbert transformed signal: 𝑆𝑘𝑆𝑃 =
𝑛 𝛴

𝑖−1
𝑛 (𝑥𝑖−�̅�)3

(𝑛−1)(𝑛−2)(√
1

𝑛−1
𝛴𝑖−1

𝑛 (𝑥𝑖−�̅�)2)

3 (5) 

• Kurtosis of the Hilbert transformed signal: 𝐾𝑢𝑟𝑡𝑆𝑃 = 

1

𝑛
∑ (𝑥𝑖−�̅�)4𝑛

𝑖=1

(
1

𝑛
∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1 )
2 (6) 

With 𝑖𝑀𝐴𝑋_𝑆𝑃 being the index of the maximal value, 𝑥𝑖 value of the  ith point in the time signal, 

�̅� the mean value of the time signal and 𝑛 the number of data points in the time signal. 

The standalone features are calculated for the pristine state (𝑆𝑃) as well as the damaged state 

(𝑆𝐷).  

Comparing features: 

The comparing features are calculated for each standalone feature by taking the ration of the 

pristine and the damaged state features twice: once dividing the pristine standalone feature 

by its damaged state counterpart and once dividing the smaller value standalone feature by 

its higher value counterpart.  

In addition to this the Signal Amplitude Peak Squared Percentage Differences is calculated 

with: 

𝑆𝐴𝑃𝑆 = 1 − (
𝑀𝐴𝑋𝑆𝑃 − 𝑀𝐴𝑋𝑆𝐷

𝑀𝐴𝑋𝑆𝑃
)

2

. (7) 

Directly comparing features: 

• Pearson Correlation Coefficient:  

𝐶𝐶 =  
∑ (𝑆𝑃 ∙ 𝑆𝐷)𝑛

𝑖=1 − ∑ 𝑆𝑃𝑛
𝑖=1 ∙ ∑ 𝑆𝐷𝑛

𝑖=1

√∑ (𝑆𝑃2)𝑛
𝑖=1 − (∑ (𝑆𝑃2)𝑛

𝑖=1 )2 ∙ √∑ (𝑆𝐷2)𝑛
𝑖=1 − (∑ 𝑆𝐷𝑛

𝑖=1 )2
 (8) 

• Signal Sum of Squared Differences:  

𝑆𝑆𝑆𝐷 = 1 −
∑ (𝑆𝑃 − 𝑆𝐷)2𝑛

𝑖=1

∑ 𝑆𝑃2𝑛
𝑖=1

 (9) 

• Ratio of Covariance Matrix Eigenvalues: the ratio of the Eigen values (𝜆) of the 

covariance matrix (2x2 by definition) between the pristine and the damaged state 

signal:  

𝑅𝐶𝑀𝐸 = 1 −
𝜆𝑆𝐷

𝜆𝑆𝑃
. (10) 

Each feature is calculated for different time windows, aimed to cover one wave interaction 

event each. Additionally, the whole signal is also defined as a time window. The time 

windows are the same for every signal. The time windows are described in the Table 1. The 

different wave interaction events are shown in Fig. 2. 

 
Table 1. Overview of the arriving wave package interactions 

Time window Description of wave package 

1 Arrival of S0 directly from piezo 

2 Arrival of A0 from the mode conversion at the damage 
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3 Arrival of A0 directly from piezo 

4 Arrival of A0 scattering at the damage 

5 Whole signal 

 

 
Fig. 2. Sketch of time window events 

2.2 Multiple Linear Regression 

The machine learning algorithm multiple linear regression is used, to weight all features to 

predict the shortest distance between the direct actuator-sensor-path and the centre of the 

damage. It is trained on 80% of the experimental data and 20% is used to validate the 

prediction process. The order of the dataset is randomised before it is split; the features are 

normalised.  

The regularised training is done according to formula 11, with 𝜃 being the features 

coefficients, 𝑋 a matrix of all features and 𝑦 the minimal distance to the direct path. The two 

datasets are the training and test dataset (𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑋𝑡𝑒𝑠𝑡, and 𝑦𝑡𝑒𝑠𝑡). 

𝑦 = 𝜃0 + 𝜃𝐹1
∙ 𝑥𝐹1

+ 𝜃𝐹2
∙ 𝑥𝐹2

+ ⋯ +  +𝜃𝐹𝑛
∙ 𝑥𝐹𝑛

= 𝜃 ∙ 𝑋 (11) 

The features coefficients (𝜃) are calculated analytically via normal equation (formula 12). 𝜆 

is the regularization term and chosen as 0.1. 

𝜃 = (𝑋𝑡𝑟𝑎𝑖𝑛
𝑇 ∙ 𝑋𝑡𝑟𝑎𝑖𝑛 + 𝜆 ⋅ 𝐸)−1 ⋅ 𝑋𝑡𝑟𝑎𝑖𝑛

𝑇 ⋅ 𝑦𝑡𝑟𝑎𝑖𝑛 (12) 

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 is the predicted minimal distance to the direct path based on the trained features 

coefficients and the test feature dataset (formula 13). 𝑒𝑟𝑟𝑜𝑟 (formula 14) describes how far 

the prediction of the minimal distance is off of the actual minimal distance 𝑦𝑡𝑒𝑠𝑡 and will be 

used to evaluate the prediction. 

𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝜃 ∙ 𝑋𝑡𝑒𝑠𝑡 

 

(13) 

𝑒𝑟𝑟𝑜𝑟 = 𝑦𝑡𝑒𝑠𝑡 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 (14) 

3. Results: Distance Prediction Capabilities 

In order to evaluate the capability of this process in predicting the distance between a damage 

and the direct actuator-sensor-path, this section will showcase the results of the described 

process and compare it to the established way of using one feature, which represents a 

damage in an elliptic area around the actuator-sensor-path [6–8].  

1. Arrival of 
S0 directly 

from piezo: 

2. Arrival of 

A0 from the 
mode 

conversion at 
the damage: 

3. Arrival of 

A0 directly 
from piezo: 

4. Arrival of 

A0 scattering 

at the 
damage: 

Damage Sensor Actuator 

S0 A0 

A0  , Legend: S0 
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3.1 Established Method: Damage Index 

To display the information obtained by this established method the value, called damage 

index (DI), of one feature is displayed at its sensor’s positions. The chosen feature is defined 

in such a way, that a value of one or close to one represents that there is a high probability of 

a pristine plate state. A value of less than one represents an increasing probability of a 

damage. The lowest possible value is zero.  

In order to not list all of the possible damage indices one correlation-based index is chosen 

(Correlation Coefficient (CC)) and one based on the energy arriving at the sensor position 

(Energy Ratio (ER)). These are displayed for two time windows (TW). Firstly, the time 

window of the A0 mode wave package directly arriving from the actuator and secondly the 

time window of the A0 mode arriving from the initial A0 mode scattering at the damage. The 

direct A0 mode is chosen to showcase the damage recognition sensitivity. For the Correlation 

Coefficient (CC) (Fig. 3, a) there is a small sensitivity directly in the shadow of the damages, 

but as expected almost none next to the damages, as this is in a time window of the direct 

arrival of this wave package. The Energy Ratio (ER) (Fig. 3, b) has a similar behaviour, but 

with a higher sensitivity and less “no damage” detections directly in the shadow of the 

damage. 

 
Fig. 3. Single Damage Index damage sensitivity of the arriving A0 wave package coming directly from the 

actuator, using a) the Correlation Coefficient (CC) and b) the Energy Ration (ER) 

Fig. 4 display the results of the two features in the time window of the A0 mode arriving 

from the initial A0 mode scattering at the damage. It is noticeable, that there is neither linear 

correlation between the distance of the damage to the direct actuator-sensor-path, nor, that 

there is a clear tendency of any kind between the location of the sensor and the feature values.   

 
Fig. 4. Single Damage Index damage sensitivity of the arriving A0 wave package scattering at the damage, 

using a) the Correlation Coefficient (CC) and b) the Energy Ration (ER) 

a) b) 

a) b) 
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3.2 Distance to Damage Predicting Process  

In the distance to damage prediction process multiple information of one time signal are taken 

into account to achieve a sensitivity besides the direct path and therefore being able to 

perform the prediction. For this the time signal is separated into several time windows 

representing different wave events arriving at the sensor. For each of these time windows 

various characteristics are calculated to serve as features for a machine learning operation.  

To now compare the capabilities of this distance prediction process to the established way of 

using one feature, the prediction accuracy is calculated. For this, the whole dataset was 

randomly divided into a training and a test dataset. The size of the 20% test set is data of 222 

actuator-sensor-paths represented by the described features. The evaluation is based on the 

prediction error, which is calculated by subtracting the actual distance from the predicted one 

(formula 14). 

The standard deviation of the error shall be used as the quality criterion of the process. The 

smaller the standard deviation of the error of the test set, the more accurate the prediction and 

therefore the better the developed process. As the test dataset only consists of 222 paths the 

standard deviation will fluctuate depending on which paths were randomly chosen to be used 

as the training dataset and which ones to predict. Therefore, the number of predictions is 

increased by randomly defining the training and test dataset multiple times and keeping track 

of the errors on every repetition. This way it is possible to calculate a value for the accuracy 

of the system which is decoupled from a single random dataset drawing. In the Fig. 5 the 

result of 500000 predictions shows how accurately the process predicts the distance from a 

damage to the direct actuator sensor path, based on of a single paths signal. 

 

 
Fig. 5. Distance to damage prediction accuracy of 500000 predictions 
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4. Conclusion 

The results described in this paper showcase the capabilities of the proposed method of 

predicting the distance of a damage to the direct actuator-sensor-path as well as an established 

way of using the time signal of a single path to locate damages.  

In the established method of using a single feature to predict a damage in the region of the 

actuator-sensor-path, it is observed that no reliable sensibility of a single feature outside of 

the damage shadow is possible. In contrast, it could be shown, that a feature-based distance 

estimation is indeed possible. A standard deviation of under 7 mm in predicting the damages 

distance, shows that a single path can give a geometric information of the location of the 

damage. Thinking about the combination of multiple paths in a structural health monitoring 

network this offside path distance prediction shows a promising step into an accurate damage 

localisation with probability reconstruction algorithms. 

Also, the prediction process provides a tool to evaluate the quality of parameters in structural 

health monitoring. One can study different features and can evaluate those based on the 

standard deviation of the error. It is the same with other process parameters like the 

regularisation or the time windows. 

Furthermore, it has to be discussed, what effects the double use of information has (referring 

to the comparing features as well as using the whole window on top of the wave event-based 

windows). A more in-depth study of this and the features relevance is needed.  
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