Predicting airborne SARS-CoV-2 Infection Risk with CFD

PRESENTER:

Florian Webner German Aerospace Center GANDALF graduate school

BACKGROUND

- Did your contacts today pose infection risks?
- Where are **transmission hotspots**?
- How effective are potential **counter measures**?

Infection risk models help to answer these questions in the upcoming pandemic.

METHODS

Step 1: Estimating inhaled dose:

$$D_{in} = \frac{R}{\dot{P}} fs C_B p_{in} t$$

• **Step 2:** Estimating Infection risk via Doseresponse relationship

RESULTS: INFECTION RISK (reference case in aircraft cabin)

Our infection risk model can predict your chance of catching **COVID-19** on the flight home.

FREE FULL PAPER (JAN 2024) FLORIAN WEBNER, ANDREI SHISHKIN, DANIEL SCHMELING, CLAUS WAGNER

ADDITIONAL DATA

PARTICLE TRANSPORT (CFD):

Boundary Conditions:

- Mixed ventilation (MV)
- 70 passengers
- 73 W per manikin
- 700 l/s, 16°C fresh air

Simulation Parameters:

- 50 Mio. cells: 0.5–20mm
- k-ω SST turb.- model
- Adiabatic walls
- 800k particles

REFERENCE CASE (SARS-CoV-2):

Ŕ	f	L	p_{in}	t	CB
$500 \frac{\text{RNA}}{\text{s}}$	$10^{-4} \frac{\text{TCID}_{50}}{\text{RNA}}$	$0.6 \frac{\%}{\min}$	$6 \frac{I}{min}$	2 h	$x \frac{\text{particles}}{\text{m}^3}$
Literature			Free choice CFD		

EXPECTED INFECTIONS:

