
Journal of Urban Mobility 5 (2024) 100078

Available online 7 June 2024
2667-0917/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A MATSim model methodology to generate cycling-focused transport 
scenarios in England 

David Alvarez Castro a,*, Alistair Ford a, Philip James a, Roberto Palacín a, Dominik Ziemke b 

a Newcastle University, United Kingdom 
b Technische Universität Dresden, Germany   

A R T I C L E  I N F O   

Keywords: 
Agent-based modelling 
Simulation 
MATSim 
Sustainable transport 
Cycling  

Climate change is considered the most pressing environmental challenge of our time, being transport one of the 
major contributors. Consequently, transport models are required to test different urban mobility policies that can 
shift travel to more sustainable transport modes (e.g., active modes). This paper focuses on the development of a 
validated agent-based model (MATSim) applying a novel open-source methodology to generate the main input 
datasets, easily transferrable to any region in England. Required input datasets (synthetic population and 
network) are described with a high level of detail, identifying the datasets and tools used to develop them, with 
special interest in the simulation of cycling routes. A new attribute (quietness) ranking roads for cycling 
depending on their built-environment characteristics was incorporated into the MATSim bicycle extension. The 
results obtained in this paper show the baseline transport model of the Tyne and Wear region (England), where 
discrepancies up to 3.5% in transport mode shares and minimal differences in vehicle counts in urban areas were 
obtained, and a realistic representation of the routes chosen by the agents using bicycles is obtained. This 
provides the basis for the development of similar MATSim implementation in other UK regions.   

1. Introduction 

Given that transport is a major contributor to greenhouse gas emis-
sions, many cities around the globe are introducing sustainable trans-
port legislation to meet the 2015 Paris Agreement of limiting global 
warming to 2 ◦C and aiming for 1.5 ◦C. To achieve this, policies are 
sought that can change mobility patterns to reduce emissions rapidly. 
This could involve a portfolio of measures where a combination of 
changes to the built environment, human behaviours and financial in-
centives or penalties are considered to enable a shift of travel to more 
sustainable modes (e.g., active travel). 

Before their implementation, urban mobility policies need to be 
tested to understand their effectiveness and estimate their success or 
failure. Traditionally, this procedure has consisted of the development of 
a model, which has been defined by Bandini et al. (2009) as ‘an abstract 
and simplified representation of a given reality, either already existing 
or just planned to study and explain observed phenomena or to foresee 
future phenomena’. Models are powerful tools to assess change, as they 
provide an abstraction of a system that can increase the pace of change 
by demonstrating feasible and possible options, allowing experimenta-
tion with policy alternatives and conversations with stakeholders, and 
providing an endogenous perspective (Ghaffarzadegan et al., 2011; Ford 

et al., 2018). 
Over time, transport modelling has developed from statistically- 

based numerical modelling (Tyrinopoulos & Antoniou, 2013) to more 
activity-oriented and complex modelling techniques such as 
Agent-Based Models (ABMs) (Krajzewicz et al., 2012; Zia et al., 2013; 
Maggi et al., 2016; Martinez et al., 2017; Cardinot et al., 2019). ABMs 
are computer simulations of simulated autonomous agents (individuals) 
in a simulated space and time (El-sayed et al., 2012). These models allow 
a detailed representation of the interactions of multiple agents in a 
realistic synthetic environment where the intent is to recreate the 
appearance of a complex phenomenon (Martinez et al., 2017). 

Some of the advantages of transport ABMs are the possibility to 
consider the individual interactions between the agents and the envi-
ronment, providing a new perspective in transport modelling that could 
not be obtained from previous models (e.g., four-step models). Firstly, 
the interactions of the agents in space and time allow them to adapt and 
learn from what others do. Examples were highlighted by Bazzan et al. 
(2014), where they describe that agents’ interactions allow their adap-
tation and learning capacity to simulate realistic and optimised behav-
iours. Secondly, agents’ interactions with the environment give an 
insight into how the built environment could affect agents’ daily rou-
tines. Characteristics, such as the road gradient and type, the existence 
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of cycle paths, land-use type and pavement conditions, could be 
considered when agents decide how (i.e., transport mode and route) and 
where to go (e.g., destination). The choices made by agents based on the 
built-environment characteristics are encapsulated within the ‘spatial 
cognition’ concept, which describes the effect of environmental factors 
on mobility (Manley et al., 2018; Gr et al., 2019, Manley et al., 2021). 
Additionally, Heppenstall et al. (2016) suggest that one of the most 
appealing aspects of ABMs is their ability to represent human behaviour 
and, through simulation, understand how these behaviours play out 
over space and time. 

The use of ABMs in the transportation sector has increased in the last 
decade. Maggi et al. (2016) highlight that ABMs present important ad-
vantages for analysing urban transport and its sustainability, as well as 
testing urban mobility decarbonisation policies. From a policy 
perspective, Ghorbani et al. (2014) underline the importance of ABMs in 
the study of policy problems, considering them as one of the most 
instrumental tools for policy analysis. Furthermore, such models offer 
tools to move forward urban mobility conversations between 
policy-makers, transport users, and urban populations (Ford et al., 
2018). Bastarianto et al. (2023) reviewed the use of transport ABMs 
from 2006 to 2022 and identified an exponential increase in the number 
of publications since 2015. The reasons given to explain this increase are 
two: the significant improvement in computing performance and the use 
of fully open-source tools. 

The use of transport ABMs combined with public policies to reduce 
GHG emissions is an incipient topic in the literature, where policies to 
reduce the use of more carbon-intensive modes (i.e., push policies) and 
to incentivise the use of alternative and more sustainable modes (i.e., 
pull policies) have been considered. Examples of the former were ana-
lysed by Zheng et al. (2012), where a dynamic cordon pricing scheme in 
Zurich (Switzerland) was simulated. Results show a reduction in travel 
times and that congestion within the area was alleviated. Another sce-
nario developed by Zheng et al. (2014) analysed the impact of a 
time-dependent pricing scheme in Sioux Falls (USA), considering the 
level of congestion in time and the user’s adaptation to the toll cost. 
Results show effective congestions reductions in the area of study and a 
modal shift to public transport modes. 

Examples of the pull policies are found in Park et al. (2018), who 
simulated active modes in New York City (USA) to support investment 
decisions and evaluate the impact of infrastructure changes for walking 
and cycling. Their results show that the improvement in sidewalk and 
cycle path conditions could positively increase the number of people 
using them. Hitge et al. (2023) developed a model to estimate a potential 
cycling demand in Cape Town (South Africa). Their model showed that 
32 % of agents would benefit from cycling, although the percentage was 
reduced by 8 % when socio-demographic characteristics (e.g., age, 
gender, household income, household composition and dwelling type) 
were considered. The combination of both approaches (i.e., pull and 
push) can also be found. Schlenther et al. (2022) investigate scenarios to 
reduce the number of motorised vehicles on the road in Hamburg 
(Germany) combining policies in favour of more sustainable modes and 
penalising the use of private cars. Results show that better results are 
achieved when push policies (e.g., car use penalty) are applied than 
when improving the attractiveness of other modes (e.g., public trans-
port), and these studies also demonstrate the effectiveness of the use of 
ABMs in testing potential policy interventions. 

Additionally, the models can be classified into two main groups 
depending on how the efficiency of policies are analysed. The first 
computes the variations of emissions directly (e.g., differences in NOx, 
C02 emissions), where policies are applied and compared against an 
initial base scenario. The second provides the agents with the use of new 
transport (e.g., car sharing, micro-mobility) or sustainable modes (e.g., 
walking, cycling) to reduce the use of private motor cars and therefore, 
reduce emissions. For the first case, Minh Duc et al. (2020) proposes a 
model that simulates the traffic and air quality in Hoan Kiem district 
(Vietnam) that can be used as a decision support tool for local 

authorities when implementing new policies. Kilani et al. (2022) 
developed a passenger transport model for the North of France to 
analyse the impacts of policies focusing on the limitations of emissions 
and congestion. Gurram et al. (2019) developed an exposure-modelling 
framework that integrates agent-based activity and travel simulation 
with air pollution modelling for Tampa (Florida), estimating the mean 
daily population exposure concentration of NOx of different subgroups 
of the population living in the area of study. 

For the latter case, Müller et al. (2022) presents a model applied in 
Vienna considering different transport modes including car sharing for 
different groups in society based on socio-demographic attributes. 
Leblond (2020) presented a new agent-based simulation software to 
simulate e-scooters in the city of Rennes that can be used as a decision 
support tool for designing mobility services. Ziemke et al. (2019b) 
developed a MATSim contribution to model bicycle traffic from a more 
realistic perspective, considering characteristics such as presence of 
cycling infrastructure, road surfaces and gradients. 

Several ABM platforms dedicated to transport mobility have been 
developed, such as MATSim (Horni et al., 2016), SUMO (Krajzewicz 
et al., 2012), TRANSIMS (Smith et al., 1995) and SimMobility (Adnan et 
al., 2016), which have been applied to different cities and regions 
including Berlin (Ziemke et al. 2019a), Zurich (Rieser-Schüssler, 2016), 
Singapore (Erath et al., 2016), Munich (Kickhofer, 2016) and London 
(Serras et al., 2016). Currently, the use of mesoscopic ABMs (e.g., 
MATSim) to simulate mixed interactions of micro-mobility modes (e.g., 
walking, bicycles, e-bikes, e-scooters) is in discussion, as spatial in-
teractions that occur at the micro-level (e.g., traffic safety, intersections, 
road lane changes) between themselves and other vehicles (e.g., cars, 
buses) could be missed. Tzouras et al. (2023) highlight this aspect 
focusing on the simulation of e-scooters, where a dilemma between 
modelling their behaviour and interactions at a link level and predicting 
long-term travel behaviour using microscopic models (TRANSIMS, 
SimMobility) is identified. The former could simplify the interactions, 
while the latter currently does not have the required capacities to model 
bicycle or pedestrian traffic or is not capable to simulate large-scale 
networks. Their conclusion considers the development of a hybrid 
model that could combine the analysis in network and link levels. 

From a MATSim perspective, different upgrades have been incor-
porated to simulate more realistic mobility patterns for those modes. 
This is the case of filtering behaviour (Agarwal et al., 2016), which al-
lows cyclists to overtake faster vehicles when stopped in congestion, and 
the aforementioned bicycle extension (Ziemke et al., 2019b) that allows 
to simulate this mode in a more detailed way and considering infra-
structure and built-environmental characteristics when choosing the 
route. Additionally, another step forward in the use of MATSim with 
micro-mobility modes is the research made by Becker et al. (2020), who 
developed a model combining three types of shared mobility (car--
sharing, bike-sharing and ride-hailing) for a city scale transport system. 

Transport ABMs require the development of two main input datasets: 
synthetic population (or demand) and network (or supply). The first is a 
digital representation of the individuals living in the study area (e.g., 
socio-demographic attributes and activity plans). The second is a digital 
geospatial representation of the road and public transport network used 
by the individuals. While the latter is easily generated using open access 
data (e.g., Open Street Map) and open-source tools in the majority of the 
cases (e.g., PT2MATSim for MATSim models and netGenerate for 
SUMO), the former depends on the availability of socio-demographic 
data and detailed travel surveys from the study area, besides the possi-
bility to use and/or adapt existing tools to generate it. 

In the British context, despite the existence of official datasets to 
generate a synthetic population, there is no methodology to integrate 
these data and include the necessary number of socio-demographic at-
tributes. Although SPENSER (Lomax et al., 2022) allows the definition of 
a synthetic population for any region in the UK, the number and di-
versity of individual attributes is scarce (i.e., age, sex, household loca-
tion and ethnic group). This is an important drawback for synthetic 
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populations applied into ABMs, as limited differences between agents 
can be identified, and thus the diversity of travel behaviours will be 
limited. This is relevant as research has identified different mobility 
patterns depending on the socio-demographic characteristics of the in-
dividuals (Mwale et al., 2022). Research studies have found that single 
individuals spend more time in leisure time (Lee et al., 2004) and their 
physical activity is greater (Puciato et al., 2021) than married people, 
while the presence of children in the family makes changes in the use of 
time, work situation and composition and size of social networks 
(Zwerts et al., 2007), encourages the use of the car (McCarthy et al., 
2017) and affects more women’s travel patterns than men (McGuckin 
et al., 2005; Ng et al., 2018). 

Economic spending power is another factor that influences the 
behaviour of individuals, which is derived from their economic activity 
and occupation type. Close (2020) conducted a survey in 2019 of adults 
living in the Tyne and Wear region (UK) to identify their willingness to 
use shared and emerging mobility services. Outcomes show that only 
specific groups in the society are interested in those modes, principally 
younger residents aged under 40 and those with household incomes of 
over £60,000. Additionally, those with higher levels of education think 
more actively about environmental concerns and use more diverse 
transport modes than other groups in the society, especially the youn-
gest. In 2019, the UK Government released a report about inequalities in 
mobility and access in the transport system, showing that lower income 
households travel less overall in the UK, making nearly 20 % fewer trips 
and travel 40 % less distances than the average household (Lucas et al., 
2019). 

Lastly, the access to different transport modes also defines and 
conditions human travel behaviour. The possibility to access a car brings 
the possibility to go anywhere and whenever, while its lack conditions 
their movements and possibilities if other transport modes are not an 
alternative, which could generate barriers to employment, education 
and healthcare, besides producing social isolation (Lucas et al., 2019). 
Socio-demographic attributes also affect the use of cars, as highlighted 
by Tiikkaja et al. (2021), where it is stated that women have less access to 
the household car than men. Linked to the use of a car is the possession 
of a driving licence, which depends on socio-demographic attributes 
such as age and sex, among others (Department for Transport, 2023; 
National Travel Survey, 2023b). Based on the UK National Travel Survey 
(2023 a), the ownership of a bicycle differs on age, with young in-
dividuals (aged 5 to 10) being more likely to have access to bicycles (83 
%) than any other individuals in different range of ages, although a peak 
between those aged 40 to 49 is observed (50 %). 

These challenges present the need for a comprehensive and diverse 
set of data inputs for both demand (e.g. synthetic population) and supply 
(e.g. active travel networks) in the transport system. To facilitate this, 
this paper describes the development of a validated MATSim model of 
the Tyne and Wear region (England) that is representative of a normal 
transport working day. The novelty proposed in this paper is the 
development and application of a new, and open-source methodology to 
generate a detailed and heterogeneous synthetic population with 11 
socio-demographic attributes that can be applied to any region in En-
gland. Additionally, a new network attribute (i.e., quietness) was 
developed to simulate more realistic cycling routes, taking into account 
several built-environment characteristics at once. Therefore, the MAT-
Sim bicycle extension developed by Ziemke et al. (2019b) was updated 
to take into account this new attribute. It is expected that the updated 
extension described in this paper could contribute to simulate more 
realistic cyclists’ movements, in line with previously cited research. 

The paper is organised as follows: Section 2 explains the proposed 
methodology to develop and validate the model. Section 3 explains how 
input datasets were generated applying the novel open-source meth-
odology in the Tyne and Wear region (England). Section 4 describes the 
model calibration and validation stages to achieve a simulation model of 
the area of study representative of a regular working day. Section 5 
discusses the findings and key aspects obtained from the validated 

MATSim model. Section 6 identifies and describes potential future 
works to improve the model. Sections 7 highlights the conclusions 
achieved. 

2. Methodology 

The methodology proposed to validate a MATSim model consists of 
the development of a synthetic population (blue box) and road network 
(green box). Once these two main components are generated, they can 
be imported into MATSim (grey box), where simulations (yellow box) 
are calibrated and validated (orange box), showing a realistic geospatial 
and temporal baseline representation of the transport mobility during a 
regular day in the study area. Fig. 1 summarises the methodology 
employed. 

The foundation of a mobility ABM is a synthetic population (de-
mand) of agents that represents the transport demand in the model re-
gion. Therefore, a synthetic population of the North East of England (the 
main region where people interacting with the Tyne and Wear area live) 
was created. A synthetic population constitutes a simplified digital twin 
of the real population, with individual socio-demographic characteris-
tics (e.g., age, sex, economic activity, etc.) of all of the citizens in the 
geographic area of the study. Each individual in the synthetic population 
is also assigned an activity plan that represents the activities performed 
(e.g., star-end time and location, purpose of the trip and transport mode) 
on a normal working weekday, depending on their own socio- 
demographic characteristics. The development of a synthetic popula-
tion is a key input to most agent-based simulations (Borysov et al., 
2019), so its accuracy is crucial for a realistic representation of the 
population and their urban mobility interactions. 

The second objective is the development of the network (supply) 
used by the individuals to move between activities by the diverse range 
of transport modes. It consists of a digital geospatial representation of 
the road network in the area of study, where the type of road, allowed 
modes and flow capacities are considered along with other attributes. 
The public transport network is incorporated within the network, 
considering the stops, routes and timetables of buses, trains and light 
rail, and the elevation and road characteristics for cycling. 

Once demand and supply datasets are developed, they can be im-
ported into an ABM platform to simulate different scenarios where 
agents interact in space and time. For this project, MATSim (Horni et al., 
2016) was selected as the simulation platform. MATSim is an 
open-source framework that allows the implementation of large-scale 
agent-based transport simulations (MATSIM, 2023), which has been 
widely used by academics and industry for more than 15 years. This 
iterative model uses demand and supply datasets to simulate the in-
teractions of agents in space and time. During each iteration, each agent 
receives a score (scoring phase – see Section 4) depending on their 
mobility performance (e.g., arriving late at destination reduces the 
score). Before starting a new iteration, a percentage of the population 
implements some changes in their activity plans (e.g., starting times, 
transport modes and routes chosen) (re-planning phase). After several 
iterations, the simulation achieves a relaxed state and simulation results 
can be analysed. The initial baseline scenario needs to be calibrated until 
results reflect a business-as-usual case in the area of study, validating the 
results against other sources of data (e.g., origin-destination matrices, 
sensor and statistical data). 

3. Input datasets 

The following sections describe the development and application of a 
novel methodology to generate a very detailed synthetic population and 
a cycling-focused network in the Tyne and Wear region. 

3.1. Synthetic population (Demand) 

As described in Section 1, the lack of a specific and detailed synthetic 
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population methodology for an English context makes the generation of 
a detailed representation of the individuals from a specific region 
challenging. Therefore, a novel methodology combining SPENSER 
(Lomax et al., 2022) with a new Python tool (Alvarez Castro, 2022) were 
considered in this research and used in MATSim for the first time. 

First, a synthetic population (households and individuals) was 
generated using SPENSER (Lomax et al., 2022), a tool developed by the 
University of Leeds that integrates UK 2011 census data and projects it 
into the future, based on survival probability and local authorities 
constraints (e.g., the development of new housing, new jobs, or trans-
port infrastructure). The synthetic population generated represents the 
North East region of England for the year 2019 (the latest regular year 
before the Covid pandemic) and contains information about households 
(circa 1.2 million) and individuals (circa 2.6 million). For each house-
hold, there is information about the type of household, tenure, number 
of people, car access and census Output Area (OA) (the lowest level of 
geographical area for census statistics, made up of between 40 and 250 
households (Office for National Statistics, 2023)) where it is located, 
among other attributes. Unfortunately, the number of attributes for the 
individuals is scarce, being limited to the age, sex, ethnic group and 
household ID to which they belong, making the outcome too simple and 
homogeneous to be used in transport ABMs. 

In order to generate a more heterogeneous synthetic population, the 
inclusion of new attributes that allow the agents to be more diverse was 
required. Therefore, using the code-based method described by Alvarez 
Castro (2022), eight extra attributes where added based on open access 
UK 2011 census data projected to 2019 using Office of National Statistics 
(ONS) and National Travel Survey (NTS) datasets. These are marital 
status [married, couple or single], children dependency [true, false], 
driving license [true, false], car access [true, false], bicycle access [true, 
false], economic activity [employed, unemployed, inactive], occupation 
[nine categories for employed and unemployed; five for inactive] and 
annual gross income [numeric value]. The underlying methods are open 
access and can be applied to any region of England. The results obtained 
were internally validated against statistical 2019 ONS data. For all 
variables, the difference between synthetic and observed values grouped 
by sex were in the range 1–5 %. 

Activity plans were assigned to the synthetic individuals using NTS 
travel diaries (Department for Transport, 2022a), the primary source of 
data on personal travel patterns by residents of England within Great 
Britain. The survey collects information on how, why, when and where 
people travel as well as factors affecting travel and individual 
socio-demographic characteristics, from 2002 to 2022 at Local 

Authority level (ibid). Individuals from the synthetic population were 
matched with NTS individuals based on similar socio-demographic 
characteristics (e.g., age range, marital status, dependents, economic 
activity, income, driving licence, car access, bicycle access), assuming 
that individuals with similar characteristics have similar mobility 
patterns. 

Once the activity plans were assigned to each of the agents in the 
synthetic population, the purpose (16 types (home, work, education 
((0–15), (16–18), (18+)), shop, supermarket, leisure, leisure sport, 
medical, eating out, other, accompanying education, accompanying 
work, accompanying leisure and accompanying other)); the start-end 
time (hh:mm); the distance travelled (kilometres); and the transport 
mode used (seven types (car, car passenger, bus, railway, light rail, 
walking and cycling)) were obtained for each of the activities. The only 
information missing was the location of the origin and destination for 
each trip, as the spatial granularity of the NTS dataset is at Local Au-
thority level. Within the use of ABMs, there is the need-to-know specific 
locations (x, y coordinates), where the agents go to their activities. To 
identify the activity locations, OpenStreetMap (OSM) buildings (Geo-
fabrik, 2023) were classified in eleven categories (work, education 
(0–15), (16–18), (18+), shop, supermarket, leisure, leisure sport, med-
ical, eating out and other), using OSMOX (Arup, 2023) (Fig. 2). 

Then, locations to activity plans were assigned depending on the 
activity purpose:  

• Workplace: these activities were assigned using UK census origin- 
destination matrices (Office for National Statistics, 2011) and the 
distances travelled from the activity plan. Origin and destination 
matrices count the number of people moving between Middle layer 
Super Output Areas (MSOA) (level of geographical area comprising 
between 2000 and 6000 households (Office for National Statistics, 
2023)). Once the destination of the workplace was identified at 
MSOA level, a building within the area dedicated to work purposes 
was assigned based on the building’s capacity. This capacity value 
was calculated based on the volume of the building (floor area and 
number of floors derived from OSM) and the employment building 
density (UK Homes & Community Agency, 2015)), a UK guideline 
that defines an average number of square meters that an employee 
requires depending on the workplace type (e.g., retail, office, food 
store).  

• Schools for children under 16 years old were assigned based on the 
distances travel from home (information from the activity plan 
assigned before) and the number of pupils each school has (Spooner 

Fig. 1. Flow diagram of the methodology. A synthetic population with daily routines (blue box) alongside the network (green) are used as inputs into the ABM 
platform (grey). Simulations (yellow box) are calibrated and validated (orange box). 
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et al., 2021). This information was obtained from an open access 
dataset from the UK Government (2023).  

• Accompanying activities: when an activity is shared with other 
member from the same household (i.e., when activity purpose is 
accompanying someone to work, education, or leisure), the location 
assigned was the same as the one visited by the other household 
member. In the case that another member of the household with the 
possibility to share the activity with is not found, the ‘accompanying’ 
activity is changed to ‘leisure’ or ‘other’ activity, randomly.  

• Remaining activities (education for those older than 15 years, shop, 
supermarket, leisure, leisure sport, medical, eating out, other): these 
activities were located based on the distances provided in the activity 
plan, applying Spatial Interaction Modelling (SIM) techniques. 
Characteristics such as the competitiveness (e.g., number of all 
amenity types), attractiveness (e.g., number of amenities of the trip 
purpose in the area) and accessibility (inverse of the distance to the 
area and inverse of the distance to home) are considered. A measure 
combining these factors is calculated first for the surrounding OA or 
MSOA zones (OA when distance is below 10 km and MSOA in the rest 
of the cases) that can be reached within the distance from the activity 
plan. Based on a probability value, an OA or MSOA zone is selected. 
Then, a similar measure is calculated for the buildings located within 
the selected zone that are designed for the purpose of the activity, 
and one of them is selected. 

Internal validation was performed comparing obtained results 
against NTS from 2019 and North East region in 2019 (Fig. 3). All graphs 
show similar patterns, with small discrepancies: differences are always 
below 5 % in trips duration (top) and 10 % in trip purposes and transport 
mode (middle and bottom). These differences may be due the small 
amount of household surveys done in 2019 (around 14.000) and North 
East specific surveys (around 900) when compared against the 1.2 
million households from the synthetic population. Fig. 3 shows the 

results, where the percentage of trips by duration (top), by purpose 
(middle) and transport mode (bottom) are compared. Blue bars repre-
sent results obtained from the synthetic population, purple bars repre-
sent survey data of individuals from 2019, while pink bars represent 
those from the North East of England in 2019 only. 

A population file (population.xml) containing all individuals of the 
synthetic population, their socio-demographic and their activity plans 
was generated in MATSim format, using PAM (Arup, 2020). 

3.2. Network (Supply) 

A road network dataset was created using OSM data from the North 
East of England (Geofabrik, 2023). Public transport information was 
obtained using General Transit Feed Specification (GTFS) data from two 
open access sources Department for Transport (DfT) (2023) and Rail 
Delivery Group (2023), which were merged using UK2GTFS tool (Uni-
versity of Leeds, 2022). 

Both datasets, roads and GTFS, were merged and simplified using 
PUMA (Arup, 2022) and GeNet (Kozlowska et al., 2023), tools devel-
oped by Arup to create road networks for MATSim. The latter was also 
used to add elevation data to nodes and gradients to links by using a 
10-metre resolution Digital Elevation Model (DEM) from DEFRA 
(Department for Environment Food & Rural Affairs, 2023) and view-
finderpanorama (de Ferranti et al., 2023). Additionally, roads were 
classified based on their characteristics for cycling, using Cyclestreets 
(2022) data. This attribute, named ‘quietness’, ranks roads as a score 
depending on their characteristics (e.g. road type, length, width, quality, 
surface, the existence of segregated cycle paths barriers, kerbs, crossing 
and junctions), ranging them from 0.0 (very poor) to 1.0 (excellent). 
This information was transferred into the network generated previously, 
by matching links with the same OSM identifier. To the best of the au-
thors’ knowledge, the use of this attribute is a novel implementation 
within MATSim models, which could allow simulating more realistic 

Fig. 2. Map showing the activity locations of the agents, based on the type of activity classified using OSMOX tool. Data obtained from Open Street Maps (OSM). 
OSM background map.(openstreetmap.org/copyright). 
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cycling routes, as more and diverse characteristics of the 
built-environment are considered when cyclists choose their routes. 

These attributes (i.e., gradient and quietness) are fundamental fac-
tors to consider when cycling, as physical efforts are required when 
riding, in opposition to other vehicle types (e.g., cars, public transports). 
Research has found that characteristics such as slopes (Menghini et al., 
2010; Hood et al., 2011; Li et al., 2012), pavement surface conditions 
and smoothness (Landis et al., 1997; Hölzel et al., 2012; Milakis et al., 
2014), and the existence of continuous cycle paths (Sener et al., 2009; Li 
et al., 2012) are important factors that influence the use of bicycles. 
Therefore, their consideration in transport simulations are essential to 
simulate realistic scenarios where cycling is a predominant objective to 
be achieved. 

The obtained result is a set of files containing a detailed network with 
cycling rating and gradient values (network.xml), public transport 
schedules (schedules.xml) and public transport vehicles information 
(vehicles.xml). 

4. Model calibration and validation 

Once the demand and supply datasets were generated, a MATSim 
scenario with a 20 % sample population (circa 200,000 agents) using 
Qsim controller was set up. 

Seven different transport modes were defined (car driver, car pas-
senger, bus, railway, light rail, bicycle and walk), where the use of car as 

a driver was restricted to only those agents with car access, based on 
their sociodemographic attributes. Public transport modes were simu-
lated based on their schedules (i.e., deterministic), allowing walking 
access and egress to all transit stops, and also cycling to railway stations. 

The replanning phase was defined with three different strategies, 
allowing 10 % of the agents to change the route, another 10 % to change 
the transport mode and another 10 % to modify the starting time of 
activities. The remaining 70 % of the agents choose an activity plan from 
previous iterations. 

The scoring function used in the model to compute the satisfaction of 
each agent’s plan when interacting in space and time with other agents 
and the environment was calculated using the Charypar-Nagel Utility 
Function, which is computed as (Charypar et al., 2005; Nagel et al., 
2016) (Eq. (1)): 

Splan =
∑N− 1

q=0
Sact,q +

∑N− 1

q=0
Strav, mode(q) (1) 

Eq. (1) Definition of the scoring function applied in the model 
Where Sact,q is the utility (satisfaction) that the agent obtains when 

performing activity q (normally positive), while Strav, mode(q) is the (dis) 
utility that the agent obtains when travelling between activities (nor-
mally negative). N is the total number of activities performed by the 
agent. 

Additionally, MATSim’s bicycle extension (Ziemke et al., 2019 b) 

Fig. 3. Internal validation results. Percentage of trips by duration (top), by purpose (middle) and transport mode (bottom).  
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was enabled and updated in order to consider the ‘quietness’ value 
included in the road network. The reasons of using this attribute instead 
of the default attributes of comfort and type of road included in the 
bicycle extension are mainly two. Firstly, the former is a better-defined 
value, based on good local knowledge. Secondly, the quietness attribute 
was obtained for almost the whole area of study, while the OSM comfort 
attribute was not exhaustively available in the input data for the study 
region. 

A new marginal utility of ‘quietness’ (βquietness (a)) was included in 
the code, similarly as those generated for the comfort and infrastructure 
attributes in the original code. The effectively used marginal utility of 
‘quietness’ for a link a is computed as follows (Eq. (2)): 

βquietness (a) = βmaxquietness (a) ∗ (1 − quietness(a)) (2) 

Eq. (2) Definition of the marginal utility of quietness 
Where βmaxquietness (a) is always 1.0 and quietness(a) is the quietness 

value of each link. This functionality has included in MATSim since 
version 15.0. 

Table 1 summarises the main parameters and values used to set up 
the model for calibration and validation. 

The model was validated against official statistics identifying trans-
port modes when commuting to work (Department for Transport, 
2022b) and official datasets that count the number of vehicles passing 
through specific roads per hour (Gateshead Council, 2023). Results show 
minimal differences (up to 3.5 %) in the percentage of commuting trips 
made by each transport mode (living in the area of study (orange bars) 
and working in the area of study (green)) (Fig. 4). 

The number of vehicle counts per hour in different zones of the study 
area show some discrepancies depending on the type of road. Motor-
ways were found to have less vehicles during off peak times, as freight 
and trips from other regions passing through the area of study were not 

considered. In the case of urban areas, very similar numbers of vehicles 
per hour were obtained when compared with real data. Fig. 5 shows the 
results achieved from several locations, distinguishing motorways (1, 2) 
and urban areas (3, 4). In all cases, red bars represent real data while 
blue simulated results. Fig. 6 shows the full day results from each sta-
tion, where it can be observed a close representation of the number of 
vehicles simulated (y-axis) and in the real world (x-axis), with some 
discrepancies principally located in motorways, as discussed before. 

Also, an analysis of the cycling routes was performed, in order to 
identify if cyclists behave as expected based on the parameters used in 
the updated MATSim bicycle extension (i.e., gradient and quietness at-
tributes). Fig. 7 shows the results of a cyclist when the bicycle contri-
bution is disabled (top) and enabled (bottom). Cycle paths are 
represented as green lines, while the followed route is in black. Addi-
tionally, a route profile generated by Google Maps (Google, 2024) is 
attached to each route (top right), showing elevation variations in each 
case. 

The differences between the two variants are clear, as in the first case 
only the travel time is considered and the shortest route is chosen, while 
in the second case, characteristics of the environment (i.e., gradient) and 
built-environment (i.e., quietness) are taken into account besides the 
travel time, being clearly visible the use of cycle paths (green lines). 
Terrain profiles (on the top right corner of each route) show a steeper 
route in the first case, while the second achieves a smoother route, 
especially when crossing the river. When the bicycle extension is 
disabled, the cyclist decided to choose the shortest trip, which made the 
cyclist to cross the river using a low bridge. Contrary, when the bicycle 
extension is enabled, the cyclist decided to use a higher bridge to avoid 
descending to the river and ascending again in the other side. In 
aggregated terms, the first case requires to ascend and descend 37 and 
32 metres, respectively, while in the second only 28 and 27 metres. 

5. Discussion 

The application of the new open-source methodology to generate a 
synthetic population in the Tyne and Wear region achieved a hetero-
geneous result with 11 socio-demographic attributes (e.g., household 
location, age, sex, marital status, children dependency, driving license, 
car access, bicycle access, economic activity, occupation and annual 
gross income), and an activity plan (purpose of trip, transport mode, 
start-end time and geospatial locations (projected point locations)) 
based on their characteristics. The socio-demographic attributes ob-
tained differences between 1 and 5 % when validated with official UK 
datasets, while the activity plans shown differences up to 5 % in trip 
durations and 10 % in trip purposes and transport modes. 

This implemented methodology allows the generation of a very 
detailed and heterogeneous digital representation of the individuals in 
the study area, as activity plans assigned to each agent were based on a 
great variety of socio-demographic attributes, implying a great diversity 
of activity plans during the simulation stage. As discussed previously, 
scientific research have found that age, gender, income, work status and 
family size are some of the factors that influencing travel demand 
(Mwale et al., 2022). As such, this approach provides new tools for 
Agent-Based transport modellers in the UK context. 

The development of the network has also been updated with the 
inclusion of a new parameter (i.e., quietness), which ranks roads for 
cycling based on their built-environment characteristics. This attribute, 
calculated by Cyclestreets (2022), can be considered more accurate than 
the standard attributes used in the MATSim bicycle extension (i.e., road 
type and comfort), as the former is a better-defined value based on local 
knowledge, while the latter are not exhaustively available for the whole 
study region. Consequently, the MATSim bicycle extension was updated 
to take into account this new attribute, similarly as former attributes 
were coded, being available for any researcher from version 15.0. The 
validation shows that this updated extension could contribute to simu-
late more realistic journeys by bicycle users. 

Table 1 
Definition of main parameters and values used to calibrate and validate the 
model.  

Parameter Value, constraint and assumptions 

Population 
sample 

20 % of those agents interacting with the Tyne and Wear region 
within the North-East of England 

Number of 
iterations 

1500 

Controller Qsim 
Transport modes car, car passenger, bike, walk, pt (bus, rail, subway, ferry) 
Cars Only those agents with access to car in their socio-demographic 

attributes (car_Access = True) were allowed to use the car in the 
simulation (considerCarAvailability (true)). 
Cars were allowed to overtake bicycles (linkDynamics =
PassingQ) 

Public transport Simulated as deterministic (modules SBBPT and 
SwissRailRaptor). 
Maximum vehicle capacity was not considered 
(useCapacityConstraints = false), 
Economic cost was not considered 
Access and egress to public stops allowed on foot and by bicycle. 

Bicycle Updated bicycle extension enabled where road gradient and 
quietness attributes are considered when choosing a route. 
Marginal utility of gradient (− 0.02) and quietness (− 0.035) 
values. 

Walking Simulated as teleported mode. 
Strategies Reroute (0.1) 

TimeAllocatorMutator (0.1) 
SubtourModeChoice (0.1) 
ChangeExpBeta (0.7) 

Strategy criteria 80 % of all iteration 
Transport ASC car: − 0.37 

car passenger: − 1.7 
bike: − 1.1 
walk: 0.0 
bus: − 7.2 
rail: − 0.001 
subway: − 0.001 
ferry: − 0.001  
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Results obtained from the validated MATSim model represents a 
reasonable facsimile of a normal working day in the area of study. The 
model was validated against official datasets of the area of study until 
differences in the percentage of commuting trips by transport mode 
were below 3.5 %-points and vehicle counts in urban areas reflect a real 

pattern per hour, although differences were observed between motor-
ways and urban zones. In the case of motorways, fewer vehicles during 
off-peak periods were observed due principally to the lack of freight and 
other journeys passing through the study area starting and/or ending 
outside of it. In the case of urban zones, accurate and precise results were 

Fig. 4. Validation results of the percentage of commuting trips per transport mode  

Fig. 5. Vehicle counts at different periods of the day in some motorway areas (1 and 2) and urban zones (3 and 4).  
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obtained during the complete simulated day. 
Despite the lack of freight and other trips passing through the study 

area could be considered as a limitation of the generated model, this 
could be assumed in case the validated model is used predominately to 
test policies to reduce the use of cars only in urban areas. Those policies 
could be focussed on shifting car users to more sustainable modes, such 
as active modes. In that case, the main trips to shift would come from 
short trip distances, principally from urban areas, where the global 
traffic flow in space and time is analogous to the normal mobility in a 
regular day. 

Additionally, the validated model showed the behaviour of cyclists 
when choosing their routes based on the network attributes (i.e., 
gradient and quietness). It was achieved a realistic simulation of the 
routes followed by cycling agents, choosing flat routes and the use of 
cycle paths, when available, assuming a normal cyclists’ behaviour 
when compared with several real cyclist cases in the study area. 

The whole methodology used in this study can be easily transferable 
to any other region in England by adapting the input data to the desired 
area. All datasets used are open access except the NTS travel diaries 
(Department for Transport, 2022a), which requires a special license 
from the UK Data Service. All tools used are open access except PUMA, 
but a similar outcome can be achieved using the open access 
PT2MATSim tool (PT2MATSim, 2020) within MATSim. 

6. Future work 

The steps described above represent the baseline scenario of the 
regular transport mobility of the study region using a new and trans-
ferrable methodology to MATSim scenarios in England. It shows, in 
space and time, the normal behaviour of the agents when performing 
their daily routines, a valuable source of information that can be used to 
analyse the current status of daily transport mobility. 

The model could be improved by incorporating more socio-economic 
attributes to the synthetic population. Characteristics such as the health 
status (e.g., very good, good, bad, very bad) could identify and represent 
different mobility realities within the society, and therefore, simulate 
more realistic and integrated scenarios, where vulnerable and/or 
disabled individuals are taken into account. 

On the supply side, additional network characteristics alongside 
quietness, such as street lighting, urban greenspace, or noise levels, 
could be included to further enrich the representation of road infra-
structure for active travel and thus route choices made by cycle users. 
Data on such factors is limited, so additional data collection would be 
necessary. 

Additionally, the model can be used to test the efficiency of different 
urban mobility policies to identify an effective combinations of infra-
structure interventions and human behaviour changes to reduce private 
and polluting vehicles in urban areas in favour of active modes. Several 
push or pull policies could be defined and implemented by modifying 
the input datasets of the model. Some examples could be the imple-
mentation of Low Traffic Neighbourhoods (LTNs) or road user charging 
schemes. The heterogeneous synthetic population of agents, and the 
inclusion of the new quietness attribute, allow a more realistic simula-
tion of such policies within the supply and demand datasets input to 
MATSim. 

7. Conclusion 

This paper has shown the application of a new methodology to 
generate the main MATSim input datasets and to develop a baseline 
scenario for any region of England with a special interest in cycling, 
applying open-source tools and open access datasets, when possible. 

A very detailed synthetic population with 11 socio-demographic 
attributes and activity plan (based on their socio-demographic 

Fig. 6. Daily traffic volumes comparisons between real counting stations (x-axis) and simulated results (y-axis).  
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characteristics) for each individual in the study area was generated. The 
level of heterogeneity achieved allows simulating a great variety of 
different mobility patterns during the simulation stage, which implies a 
more realistic representation of the normal mobility in the study area. 

Besides, a cycling-focused network was generated, as a new attribute 
ranking the roads for cycling depending on their built-environment 
characteristics was included. This attribute brings the possibility to 
simulate more realistic cycling routes, as more attributes of the roads are 
taken into account. The updated bicycle extension considers it and can 
be calibrated using the gradient and quietness attributes instead of the 
former road type and comfort. 

The validated MATSim model generated is representative of the 
normal mobility in the study area, as a consequence of the input datasets 
generated using the novel methodology proposed in this paper. Mini-
mum differences in the share modes were obtained as well as vehicle 

counts in urban areas. 
Such a tool could provide a basis for decision-making on active travel 

policies in urban areas of England. 

Data access statement 

Data access statement The tools, documentation and data collection 
support required to generate a detailed synthetic travel demand for any 
region in England are available at:  

- SPENSER: https://hub.docker.com/r/nismod/spenser  
- synthetic_population_dev: https://github.com/DACNC/syntheti 

c_population_dev  
- activity_plans_dev: https://github.com/DACNC/activity_plans_dev  
- PAM: https://github.com/arup-group/pam 

Fig. 7. Comparison of the cycling route followed by an agent when the updated bicycle contribution was disabled (top) and enabled (bottom). OSM background map. 
(openstreetmap.org/copyright). 
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Due to ethical concerns, the required dataset to generate the activity 
plans (National Travel Survey, 2002-2022: Special Licence Access) 
cannot be made openly available. Further information about the data 
and condition of access are available at: http://doi.org/10.5255 
/UKDA-SN-7553-11 The tools and documentation to generate the 
transport network are available at:  

- OSMOX: https://github.com/arup-group/osmox  
- GeNET: https://doi.org/10.5281/zenodo.8274051 

Due to privacy reasons, PUMA tool is not open access. Alternatively, 
open access PT2MATSim tool is available at: https://github.com/m 
atsim-org/pt2matsim OpenStreetMap (OSM) dataset to generate the 
network is available at: https://download.geofabrik.de/ GTFS datasets 
to obtain information about public transport services in England are 
available at  

- Rail Delivery Group: https://data.atoc.org/ (information about 
trains only)  

- Traveline: https://www.travelinedata.org.uk/travelineopen-data/ 
traveline-national-dataset/ 

(other public transport modes) Open access cycleability rating (‘quiet-
ness’) dataset is available at: https://bikedata.cyclestreets.net/cycle-
ability/Open access Digital Elevation Model (DEM) datasets are 
available at:  

- Department for Environment Food and Rural Affairs (DEFRA): htt 
ps://environment.data.gov.uk/survey  

- Viewfinderpanorama: http://viewfinderpanoramas.org/dem3.html 

MATSim tool is available at: https://github.com/matsim-org 
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