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Abstract
The simulation of crack patterns, crack velocities, and dissipated energies is
a challenging task. Peridynamics (PD) has been proven to be a powerful tool
addressing all these problems, including crack propagation, crack branching, its
velocity and delamination, and so forth. It is a nonlocal theory, where material
points interact with other points (these interactions are called bonds) within
a continuous neighborhood in a specific range, called horizon. Typically, for
complex problems PD is solved numerically. Its implementations require a high
spatial resolution for adequate representation of the damaged material behavior,
which is related to the high computational costs. Additionally, because of the
nonlocal nature of PD there are difficulties in applying the classical local initial
and boundary conditions. This leads to the idea of coupling relatively expensive
PD with a finite element method to reduce the computational efforts and also
try to solve the boundary condition problem. If the whole domain can be divided
into two subdomains, the area where the fracture is expected should be modeled
with the PD and the rest with finite elements. The present work proposes a com-
parison of three coupling strategies in terms of damage-free dynamic problems
with high-frequency excitement. Additionally the investigation of the influence
of wave propagation on the fracture process, as well as on crack patterns is
presented.

1 INTRODUCTION

The field of damage mechanics deals with understanding and predicting the fracture behavior of materials and structures
under various loading conditions. It plays a crucial role in engineering, as it helps design safe and reliable structures,
machines, and components. The main task is identifying potential failure mechanisms and understanding how damage
initiates and propagates within a material or structure. Classical damage theory cannot predict crack initiation as well as
crack branching phenomena, somany non-classical damage theories have been developed. Among them are: the cohesive
zone model [1], the molecular dynamics [2], the phase-field methods [3], the damage gradient approach [4] and so forth.
Nevertheless, the majority of theories often struggle to capture long-range effects and ignore the nonlocal character of
damage processes, or they have a significant number of constitutive parameters that demand experimental identification.
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Peridynamics (PD), on the contrary, is a nonlocal theory with an easy damage concept implemented in the governing
equation. The internal forces are described by nonlocal interactions occurring between pairs of material points distributed
throughout a continuous body. To take advances from the formulation, typically, it is implemented in a mesh-free form.
In that case, separating interactions between different material points is easy. However, a relatively high resolution is
required to describe continuous deformation functions. While PD demands less computational effort than some damage
theories, which give similar accuracy regarding fracture, the processing time is still less efficient compared to classical
computational methods. Besides, these classical approaches, such as the finite elementmethod (FEM), can be categorized
as local ones in the sense that a material point interacts just with its direct neighbors.
Consequently, a coupling of PD and FEMmay have a great prospect in solving dynamic fracture problems also overcom-

ing calculation inefficiency. If a general model has a localized zone where the damage is predicted or already exists, it can
be modeled with PD, and the damage-free domain can be discretized with finite elements. Many approaches have been
proposed for a couple of local and nonlocal domains. Among them are the Optimization-Based Method [5], the Schwarz
coupling [6], the Arlequin method [7, 8], the Quasi nonlocal [9] procedures, force-based Morphing [10] and Blending
[11] approaches, the Splice method [12] and many others. In the following paper, we analyze three coupling approaches
(Schwarz, Arlequin, and Splice) regarding the possibility of transferring information from one domain to an another. After
that, we investigate the influence of the coupling zone on brittle damage behavior.

2 THEORETICAL BACKGROUND

2.1 FEM

FEM is the most popular method to solve numerically partial differential equations. Convert the strong formulation of a
mechanical problem into a weak one, we get:

− ∫
ΩFE

[
𝜌𝛿𝐮𝑇𝐮̈ + 𝛿𝜺𝑇𝝈

]
dΩ + ∫

ΩFE

𝛿𝐮𝑇𝐟𝑉 dΩ+ ∫
𝜕ΩFE

𝛿𝐮𝑇𝐟𝜕Ω d(𝜕Ω) +

𝑛∑
𝑖 = 1

𝛿𝐮𝑇
𝑖
𝐟𝑖 = 0 , (1)

with the mass density 𝜌, the displacement 𝐮, the acceleration field 𝐮̈, the stress tensor 𝝈, the strain tensor 𝜺, and 𝐟Ω, 𝐟𝜕Ω,
and 𝐟𝑖 as volume, surface and nodal forces, respectively.
In the finite element approach, the entire body is divided into a finite number of elements and the displacement behav-

ior on each element is predicted using shape functions: 𝐮(𝐱) = 𝐍𝑢(𝐱)𝐮N . A similar approximation of the mechanical
strain, using the derivatives of the shape functions results in: 𝜺(𝐱) = 𝐁𝑢(𝐱)𝐮N. If the approximation of the mechanical
displacements equation and the strains equation is substituted in Equation (1) the equations are obtained as:

𝛿𝐮𝑇
N∫

ΩFE

𝐍𝑇
𝑢𝜌𝐍𝑢dΩ 𝐮̈N + 𝛿𝐮𝑇

N∫
ΩFE

𝐁𝑇
𝑢𝐂𝐸𝐁dV

𝑢 𝐮NdΩ = 𝛿𝐮𝑇
N∫

ΩFE

𝐍𝑇
𝑢𝐅ΩdΩ + 𝛿𝐮𝑇

N ∫
𝜕ΩFE

𝐍𝑇
𝑢𝐅𝜕ΩdS(𝜕Ω) + 𝛿𝐮𝑇

N𝐍𝑇
𝑢𝐅𝑃. (2)

The equation is valid for any variation 𝛿𝐮, so that it can be brought into the following form:

𝐌𝐮̈N + 𝐊𝐮N = 𝐅ext. (3)

with mass matrix𝐌, stiffness matrix𝐊 and external force vector 𝐅ext, each of them can be calculated for every element:

𝐌 = ∫
ΩFE

𝐍𝑇
𝑢𝐍𝑢 dΩ; 𝐊 = ∫

ΩFE

𝐁𝑇
𝑢𝐂𝐁𝑢 dΩ;

2.2 PD

In the current section bond-based PD is considered, that was presented by Silling [13]. Let two particle in a body are called
as 𝐱 and 𝐱′, than the relative position of these two particles is called a bond 𝝃 = 𝐱′ − 𝐱. Under the external load each
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material point 𝐱 in the body gets the displacement 𝐝. The relative displacement can be found as 𝜼 = 𝐝′ − 𝐝. The sum
𝝃 + 𝜼 represents the current relative position. In bond-based PD the interaction between particles occurs not just with
direct neighbors but with all particles inside the nonlocal neighborhood. The radius of this neighborhood is called horizon
𝛿 and defines the grad of non-locality. Let the material be microelastic, so that the pairwise force function has a form:

𝐟 (𝝃 , 𝜼) =
𝜕w(𝝃 , 𝜼)

𝜕𝜼
=

𝑐(𝝃 )𝑠2|𝝃 |
2

, (4)

where w is a micro-potential, that defines the energy in a single bond, 𝑐 is the micro-modulus and 𝑠 is the bond stretch:

𝑠 =
|𝝃 + 𝜼| − |𝝃 |

𝝃
. (5)

The general equation of motion than looks as follow:

𝜌 𝐝̈(𝐱, 𝑡) = ∫
ΩPD

𝐟 (𝐝′ − 𝐝, 𝐱′ − 𝐱, 𝑡)𝜇(𝝃 , 𝑡)dV𝐱′ + 𝐛(𝐱, 𝑡), (6)

where 𝜇(𝝃 , 𝑡) is a time dependent function, that shows whether the bond is broken. It can take on values of either 1, if
the current bond stretch is smaller, than its critical value 𝑠0, or 0, in any other cases. The critical stretch value 𝑠0 can be
derived from the consideration of the equality of the strain energy density in classical mechanics and PD theories, and it
can be expressed as follows:

𝑠0 =

√
5𝐺0

9𝑘𝛿
, (7)

with 𝐺0 as energy release rate and 𝑘 as bulk modulus.

2.3 Schwarz method

The Schwarz domain decomposition is one of the oldest domain decomposition methods. It was invented by Hermann
Amandus Schwarz in 1869. Since then, various extensions and adaptations of this technique have emerged. In the paper
at hand, our primary focus is on the Schwarz Alternating Method.
If the whole domain Ω ⊂ 𝐑1 can be divided into two sub-domains: ΩFE and ΩPD, the intersection of these domains

can be labeled as: Ω𝑜 = ΩFE ∩ ΩPD. The advantage of the method is, that both regions communicate and exchange
information just through the common boundaries. For the transition region only Dirichlet boundary conditions are con-
sidered, meaning that only the displacement is to be transferred from one subdomain to another. Define the interfaces
Γ1 = 𝜕ΩFE ∩ ΩPD and Γ2 = 𝜕ΩPD ∩ ΩFE, where 𝜕Ω stands for the external boundary of the corresponding region. The
whole procedure is shown as follows:

∙ For the time step 𝑛 set an initial displacement 𝐮Γ1 on the boundary and solve for the wholeΩFE:𝐌𝐮̈𝑛(𝐱) + 𝐊𝐮𝑛(𝐱) =

𝐅𝑛, ∀(𝐱) ∈ ΩFE.
∙ The condition for the region’s transition: 𝐮𝑛(𝐱) ⇒ 𝐝𝑛(𝐱), ∀ 𝐱 ∈ Γ2.
∙ (*) With obtained 𝐝𝑛 on the boundary solve for ΩPD: 𝜌𝐝̈𝑛(𝐱) =

∑
PD𝐟 (𝐝′, 𝐝, 𝐱′, 𝐱)𝜇𝑛𝑉x′ + 𝐛𝑛, ∀ 𝐱 ∈ ΩPD ∉ Γ2.

∙ Find the displacement value on Γ1 and pass it to the another subdomain: 𝐝𝑛(𝐱) ⇒ 𝐮𝑛(𝐱), ∀ 𝐱 ∈ Γ1.
∙ Again find the solution just for the domain ΩFE.
∙ If the convergence is reached with the predefined parameter 𝜀: 𝐮𝑛(𝐱) − 𝐝𝑛(𝐱) ≤ 𝜀, ∀ 𝐱 ∈ Γ1, than go to the next time
step 𝑛 = 𝑛 + 1, if not—go to the step (*).
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2.4 Splice

The coupling strategy is based on the idea of dividing the whole domain into two subdomains belonging to FEM and PD
subregions, but there is no region where the nodes of both types are present. To formulate the mass and stiffness matrices,
the following should apply: FEM nodes acting only on other FEM nodes, besides PD points can “see” FEM nodes and
thus act on them. In other words, the FEM node is treated in the same way as in classical theory, but the PD node will
create bonds to the FEM nodes, which are embedded in its horizon, thus creating non-diagonal stiffness values in the
global stiffness matrix. The transition region is represented by elements, half of which are FEM nodes and half of which
are PD nodes. For the sake of simplicity, the uniform grid spacing is used, meaning that for each FEM node, there is a
corresponding PD node with the same grid spacing. Consequently, the global stiffness matrix is non-symmetric since the
number of non-diagonal terms for PD nodes is greater than for FEM nodes.
To formulate the mass matrix, the same amount of mass is allocated to the FEM and PD nodes to ensure mass consis-

tency, but it does not fully match the calculation of the PD node mass from theory. During the simulations, it was found
that this particular issue did not affect the results, but it is still a valid point of discussion for us. The reader is referred to
ref. [12] and also to the works of ref. [14] and ref. [15], where this coupling procedure is described in more detail.

2.5 Arlequin method

The ArlequinMethod is an energy-based coupling approach that allows a smooth transition between two sub-domains by
weighting themodel properties and characteristics through the overlap area [8]. The details of Arlequin coupling FEM-PD
can be found in ref. [7] as the Lagrange-based approach and in ref. [16] as the Penalty-based one. Let the total Hamiltonian
be written as below:

ℍ(𝐮, 𝐮̇, 𝐝, 𝐮̇) = 𝛼(𝐱)ℍFE(𝐮, 𝐮̇) + (1 − 𝛼(𝐱))ℍPD(𝐝, 𝐝̇), (8)

with the weighting function 𝛼(𝐱), that satisfy the following conditions:

𝛼(𝐱) =

⎧⎪⎨⎪⎩
∀𝐱 ∈ ΩFE ∩ Ω𝑜,

∀𝐱 ∈ ΩPD ∩ Ω𝑜,

𝛼(𝐱0) ∀𝐱 ∈ Ω𝑜.

(9)

The sum of energies in both theories is written as follows:

ℍ = kin +  int − ext, (10)

The equation of motion is derived by taking the derivative of equation (10) by the displacement. Moreover, the additional
constraints in the overlapping zone should be included. These constraints can be included using the Penalty Method. For
this purpose, the functional Ψ should be constructed and demanded to reach a minimum value [17].

Ψ = (𝐱, 𝐮, 𝑡) +
1

2
𝜅 ∫

Ω𝑜

𝐳𝑇 𝐳𝑑 Ω𝑜 → Min, (11)

where  is Lagrangian of the dynamic system, 𝐳 = 𝐳0 + 𝐙𝐮 are the constrains in a general form and 𝜅 is the penalty
number. By minimizing the functional, the coupling terms with constrains are taking the form:

𝐊𝑧 = 𝜅𝐙𝑇𝐙; 𝐟𝑧 = 𝜅𝐙𝑇𝐳0. (12)

Thus, the equation of motion of the coupled system in discretized form looks as follows:[ 𝛼

𝑉el
𝐌FE

(1 − 𝛼)𝜌PD

][
𝐮̈

𝐝̈

]
+

[ 𝛼

𝑉el
𝐊FE

(1 − 𝛼)𝐟PD

][
𝐮

𝐝

]
+ 𝐊𝑧

[
𝐝𝑜

𝐮𝑜

]
=

[ 𝛼

𝑉el
𝐅FE

(1 − 𝛼)𝐛PD

]
(13)
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F IGURE 1 Wave propagation in a 1D bar, solved by the Schwarz coupling method at 𝑡 = 10−3 s, 𝑡 = 1.5 ⋅ 10−3 and 𝑡 = 2 ⋅ 10−3 s.

Here 𝑉el is a volume of the current finite element. Some terms of the system here should be divided by 𝑉el to match the
dimensions between the theories.

3 RESULTS AND DISCUSSION

3.1 Wave propagation on 1D bar

To beginwith, let us consider the 1D case: a bar of length 1m is fixed on the left side. TheGaussian-type displacement func-

tion is applied on the right side: 𝑢 = 𝑎 𝑒
−

(𝑡−𝛽)
2

2𝑐2 , with the selected constants 𝑎 = 10−5 m, 𝛽 = 10−4 s, and 𝑐 = 210−6s.
The material is assumed to be isotropic and elastic with parameters: 𝐸 = 109Pa, 𝜈 = 0.25, 𝜌 = 7800 kg∕m2. The bar
is divided into two pieces at the center, and every part is discretized either with finite elements or PD points with grid
spacing (except for Schwarz coupling): ΔxFE = ΔxPD = 5.5 ⋅ 10−4 m. The other numerical parameter are 𝛿 = 3.015Δx,
Δ𝑡 = 1.5 ⋅ 10−7 s and 𝑡tot = 2 ⋅ 10−3 s.
First, the dynamic test is solved using the Schwarz Method. For this purpose, the mesh density parameter is proposed

to stabilize the couple solution: md =
ΔxPD

ΔxFE
= 25, consequently one finite element and 25 PD points are used in the

overlapping area. The results from Figure 1 give the wave propagation information on 𝑡 = 10−3 s, 𝑡 = 1.5 ⋅ 10−3, and
𝑡 = 2 ⋅ 10−3 s. It is to notice that a reflected wave with an amplitude 𝐴 ≊ 1 ⋅ 10−4 m and also a magnitude jump of the
main wave occurs after it has passed the coupling region.
The Splice method shows a smooth transition of the displacement wave through the coupled region (Figure 3). Here,

the uniformmesh is chosen for both domains, and no additional coupling parameters are considered. No noise is noticed
by the naked eye. However, a small reflected wave with magnitude 𝐴 ≊ 6 ⋅ 10−7 m can be detected by the fast Fourier
transform (FFT) method. The approach works quite well for wave propagation tests.
For the solution with the Arlequin method, the penalty parameter 𝜅 with the value 107 Pa∕m is found as optimal and

the cubic 𝛼-function was chosen. The bar is discretized with uniform constant mesh, and one overlapping FE and PD
point is used. The results in Figure 2 show again the reflected wave on the last time step. However, the method gives more
accuracy in comparison to the Schwarz approach.
To summarize, the Splice method gave the most accurate results. Using the Arlequin approach, a quite noticeable sec-

ondary wave appeared. However, the Schwarz algorithm responded with numerical errors and gave the worst solution in
comparison to the previous methods. Altogether, even in the simplest 1D cases of coupling FEM and PD, the secondary
wave is detected by high-velocity problems.Hence, it cannot be avoided entirely, though it is necessary to examinewhether
it influences the damage behavior of the system.

3.2 Damage behavior in 2D plate

The rectangular plate 0.3 × 0.8m2 has an initial diagonal crack in the center. On the top and bottomedges, displacement is
prescribed as a linear increasing function, dependent on time: ū = 0.009Δ𝑡. FEMzones are equal rectangles 0.3 × 1.5m2,
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F IGURE 2 Wave propagation in a 1D bar, solved by the Arlequin coupling method at 𝑡 = 10−3 s, 𝑡 = 1.5 ⋅ 10−3 and 𝑡 = 2 ⋅ 10−3 s.

F IGURE 3 Wave propagation in a 1D bar, solved by the Splice coupling method at 𝑡 = 10−3 s, 𝑡 = 1.5 ⋅ 10−3 and 𝑡 = 2 ⋅ 10−3 s.

F IGURE 4 Fracture behavior in a 2D plate with diagonal initial crack at 𝑡 = 5.85 ⋅ 10−5 s and 𝑡 = 6.8 ⋅ 10−4 s.

located on the top and bottom of the plate. The remaining area is a PD domain. The material constants are taken from the
previous tests, except 𝜈 = 0.33, the energy release rate𝐺0 = 3.8 J∕m2, The numerical parameters are: 𝜅 = 𝐸 ⋅ 104 Pa∕m,
Δ𝑡 = 2.5 ⋅ 10−7 s, 𝑡tot = 6.8 ⋅ 10−4 s, ΔxFE = ΔxPD = 0.004 m. As a reference solution the pure PD case is used. The
damage picture for both three cases on time 𝑡 = 5.85 ⋅ 10−5s are displayed on Figure 4. The crack starts to grow fromboth
crack tips in a pure PD test, while in the Splice case, the crack does not move at this time. As we can notice, in Arlequin’s
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PERNATII et al. 7 of 8

case, the crack has started to propagate earlier; the time difference is≊ 2 ⋅ 10−5 s. The last three plots illustrate the crack
pattern in the last time step. Unexpectedly, the initial crack started to bifurcate, and a few small cracks appeared in the
Splice case. On the contrary, the Arlequin result does not have such numerical artifacts and is in good agreement with a
reference solution.

4 CONCLUSION AND OUTLOOK

The article presents three FEM-PD coupling approaches; among them are the Schwarz, the Arlequin, and the Splice
methods. These routines were implemented, and the behavior under high-velocity dynamic load was tested. Even though
the Splice gave the most accurate result in 1D analysis, the extension to 2D depicts the problems to simulate precisely
a damage behavior. A detailed analysis of the reasons and guidelines for improvement is a topic for future work. The
Arlequin method is a promising approach that gave relatively good results regarding the crack patterns. The different
loading cases, as well as the investigation of the influence of distance between the FEM domain and the damage zone in
the PD area, will be shown in detail in future research.
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