
This preprint has not undergone peer review or any
post-submission improvements or corrections. The Version
of Record of this contribution is published in Lecture
Notes in Computer Science, and is available online at
https://doi.org/10.1007/978-3-031-66146-4.



Towards the Online Reconfiguration of a
Dependable Distributed On-board Computer

Glen te Hofsté∗, Andreas Lund∗, Marco Ottavi‡, Daniel Lüdtke†
∗ Institute for Software Technology, German Aerospace Center (DLR), Weßling, Germany

{glen.hofste,andreas.lund}@dlr.de
†Institute for Software Technology, German Aerospace Center (DLR), Braunschweig, Germany

daniel.luedtke@dlr.de
‡University of Twente (UT), Enschede, The Netherlands

University of Rome Tor Vergata, Italy
m.ottavi@utwente.nl

Abstract—On-board Computers (OBC) are at the centre of
space-faring systems. They provide computational performance
to the system with high availability and dependability. However,
these systems typically consist of expensive, slow, fault-tolerant
hardware to cope with errors or failures during a mission.
Commercial-off-the-shelf (COTS) components offer higher per-
formance but do not provide the fault-tolerance mechanisms. The
ScOSA (Scalable On-board Computing for Space Avionics) archi-
tecture uses COTS and rad-hard components as a distributed
system, with the advantage of providing more computing perfor-
mance than current OBCs while maintaining the dependability
properties.

ScOSA uses a middleware to manage the COTS components
as a distributed system of nodes, which, in the event of a
node failure, mitigates the effects by reconfiguring the system
to a configuration that excludes the failed node using a pre-
determined configuration. These configurations are computed
offline and have an exponentially growing memory usage de-
pending on the number of nodes in the system, which limits the
system’s scalability. This paper presents an online reconfiguration
algorithm as a solution to this scalability problem. Upon the
occurrence of a node failure event, the online algorithm makes
scheduling decisions at run-time, eliminating the need for pre-
determined configurations. A novel online scheduling mechanism,
consisting of six phases, which includes a combination of fault-
tolerance, parallelism, and the use of the real-time state of the
system, is a step towards higher dependability in distributed
on-board computing. The online reconfiguration is evaluated by
comparing it to the offline reconfiguration in terms of time and
network traffic, showing that it is not only capable of generating
configurations dynamically but also provides a solution to the
scalability problem.

Index Terms—Fault-Tolerance, On-board Computers, Embed-
ded Systems, Reconfiguration, Middleware, Distributed Systems,
Dependability, Self-Configuration, Self-Healing

I. INTRODUCTION

Wildfire detection, autonomous missions on celestial bodies,
and encrypted global communications are just a few examples
of today’s applications for space systems. They all have in
common that they require a certain level of computational per-
formance to provide their service or fulfill their mission, and
these performance requirements continue to increase. Typical
on-board computer (OBC) architectures currently consist of a
single, radiation-hardened, custom processing unit, such as the

RAD750 [1] or the LEON5 processor [2]. These architectures
are often unable to deliver the desired performance. For this
reason, there is a trend towards using more Commercial-off-
the-shelf (COTS) components in space systems. This saves
cost, reduces time-to-fly, and simplifies application develop-
ment. However, these components cannot withstand radiation
the same way as radiation-hardened parts [3], [4]. This leads
to a trade-off between a high-performance but radiation-
intolerant OBC and a radiation-tolerant but low-performance
OBC.

To meet the increased performance requirements, NASA has
developed a hybrid architecture [5]. Using an Ethernet com-
munication medium, the Dependable Multiprocessors integrate
dependable processors together with COTS processors. Other,
more recent, solutions include the Xilinx Zynq Ultrascale+
System-on-Chip (SoC) as a high-performance processing unit,
monitored by rad-hard components [6]–[8]. Similar to these
architectures, the German Aerospace Center (DLR) is working
to overcome the aforementioned trade-off with the Scalable
On-Board Computing for Space Avionics (ScOSA).

A. ScOSA - The Scalable On-Board Computer Architecture
for Space Avionics

ScOSA combines reliable, radiation-hardened components
with COTS components to form a distributed OBC. This
creates an architecture that brings both worlds together. The
reliable computing nodes (RCNs) execute the critical subsys-
tems and act as a fallback for the high-performance nodes
(HPNs). All nodes are interconnected via SpaceWire or Eth-
ernet. By using a middleware [9] that runs on all processors,
the distributed complexity is abstracted for the application
developer, facilitating the development process. This middle-
ware also allows that if a node fails, the applications of
that node are automatically migrated to other available nodes.
This makes the system reconfigurable and dependable. The
middleware is implemented using a layered approach. The
lowest layer is called SpaceWireIPC, a protocol that enables
reliable communication over SpaceWire and Ethernet. On top
of this is the Network Dispatcher, the intermediate layer
that organises the messages to and from other nodes and



forwards them to the corresponding applications or services,
i.e., the next higher layer. This next layer contains the System
Management Services [9], which implement the fault tolerance
mechanisms, and the applications, which are implemented
using the Distributed Tasking Framework. In these layers, the
nodes in the system are also given roles, which can either
be the role of coordinator, observer, or worker. At any time,
there is only one coordinator and several observer nodes. The
observer nodes monitor the "health" of the coordinator.

B. Reconfiguration Services

The Monitoring Service of the coordinator monitors the state
of other nodes through periodic heartbeat messages. If a node
stops responding to heartbeat or to other messages, the service
notifies the Reconfiguration Manager about the detected node
failure. The Reconfiguration Service and Reconfiguration Man-
ager Service allow the middleware to respond to node failures.
To do this, upon an incoming event, the middleware looks
up the current scenario, i.e., which nodes are still available
and which are not in a tree structure. The configuration to be
executed, i.e., the mapping of tasks to nodes, is stored there.
The Reconfiguration Manager of the coordinator node then
initiates the Reconfiguration Service on all available nodes
to reconfigure by first stopping all tasks on all nodes and
then (re)starting the tasks based on the new configuration.
Finally, the Reintegration Services is used by starting or
recovering nodes. It will request the Reconfiguration Manager
to reintegrate it into the system. The node itself becomes the
coordinator if no response is received within a timeout period.

Reconfiguration is implemented as an offline algorithm.
This means that the responses to the possible failure scenarios,
a.k.a. configurations, are pre-determined during the design
phase. This means that all configurations must be stored on
the nodes of the OBC. Problem is that as the system scales up,
the number of configurations grows exponentially [10]. This
consumes significant memory that is not available to the ap-
plications. In addition, the offline reconfiguration cannot react
appropriately to unforeseen failure scenarios, instead, forcing
the OBC to switch to a safe mode and wait for instructions
from the ground. To address these issues, we present an online
algorithm for the reconfiguration of the ScOSA OBC in this
paper. The online algorithm can use information that is present
during run-time, as for example resources, suitability of a task
or network traffic, to determine the next configuration. This
enables the self-x properties of self-configuration and self-
healing for the task-to-node mapping of the system.

II. RELATED WORK

Online scheduling algorithms for distributed systems are not
a new phenomenon. Research on cloud scheduling [11], [12]
proposes several path-searching algorithms, while the priority-
based scheduling techniques [13]–[16] show how ranking
functions can be applied. Multi-objective scheduling [17], [18]
can be used to optimise for a set of objectives instead of
one, increasing the balance in the system in terms of load
and network usage, while other types of scheduling methods

[19]–[22] show that several other scheduling approaches can
also be feasible while being just as good, if not better, in some
aspects. Because of the focus on dependability, the research
on fault-tolerant systems [23], [24] is particularly interesting,
as it resembles the scheduling problem of ScOSA the most,
while providing important insights into on the convergence of
an algorithm for its dependability.

The literature indicates the diversity of heterogeneous dis-
tributed systems and their solutions. The field stretches from
loosely coupled cloud systems to tightly coupled fault-tolerant
systems. No solution exists, however, that combines fault-
tolerance, parallelism and the ability to integrate multiple-
objective scheduling in one solution. The fault-tolerant works
in particular do not include features such as parallelism or
multi-objective scheduling. Even though multiple-objective
scheduling falls outside the scope of this paper, a novel
solution is needed that has the ability to integrate these features
into one algorithm, while taking full advantage of the features
unique to ScOSA. Therefore, this paper proposes a unique
solution that combines the ScOSA middleware with the best
of several scheduling techniques, resulting in the following
contributions:

• A novel online scheduling algorithm design for reconfig-
uring dependable distributed OBCs is described.

• The extendable algorithm provides a unique combination
of fault-tolerance mechanisms, extendability, caching,
parallelism, self-x, and the usage of the real-time system
state.

• The online scheduling algorithm is presented as a solu-
tion to the shortcomings of the offline algorithm based
on an evaluation of its temporal, network and memory
behaviour.

The algorithm design is presented in Section III and evaluated
in Section IV. The results are presented and discussed in
Section V, followed by a conclusion of the work in Section
VI.

III. DESIGN OF THE ONLINE ALGORITHM

This work presents an online algorithm that was designed
specifically for ScOSA. Although related work exists, a gap
was identified where fault tolerance, parallelism, and multi-
objective scheduling are combined into one solution. On the
way towards implementing such an online algorithm, a solu-
tion is presented that focuses on fault tolerance and parallelism
while providing extendability to implement multi-objective
scheduling in future work. The algorithm is implemented in
the ScOSA middleware as a part of its System Management
Services to evaluate its feasibility and scalability in a real non-
deterministic system environment.

The temporal behaviour of the algorithm is evaluated by
separating the time it takes to decide whereto schedule a task
t, and the time it takes to apply these decisions by a single
reconfiguration. A decision can either be that a task can be
successfully scheduled or that no task mapping was found
within a bounded period, resulting in a switch to safe mode,
where it waits for instructions from the ground. The decision



making time in which it schedules a task to a node, in terms
of clock c ∈ R≥0 is defined as: decisiontc ∈ R≥0.

When all scheduling decisions are made, they are applied
by reconfiguring the system. The reconfiguration time in terms
of clock c is defined as: reconfigurationc ∈ R≥0.

The total reconfiguration time (trt) during which the system
is in a "state of reconfiguration" is then determined by the sum
of the decision-making times decisiontc to schedule a set of
tasks tset and the reconfiguration time reconfigurationc as:

trt =
∑

tset∈T
t∈tset

decisiontc + reconfigurationc (1)

A reconfiguration is triggered in the Reconfiguration Man-
ager on the arrival of four types of events. The New Task Event
is generated when a new, previously unscheduled task needs
to be scheduled. This task can, for example, be dynamically
loaded during operation. The Scheduling Failure Event is gen-
erated when a task is unsuccessfully assigned to a node e.g.,
due to a severed communication. The task can be rescheduled
to another node or, if this is not possible, graceful degradation
can take place or a switch to safe mode. The Node Recovery
Event is called when a node requests reintegration into the
system. If a node has been in the system before, the system
can recover to a state where the node was included or, as
suggested for future work, the system can be optimised by
rebalancing the tasks across its nodes. When a node failure
is detected, the Node Failure Event is invoked. When a node
fails, the running tasks are rescheduled to other nodes. The
system is made aware of the failure so other nodes no longer
attempt to engage with it.

A. Scheduling

The online algorithm’s scheduling procedure starts when
an event arrives. The algorithm’s input is a data structure
containing a set of tasks to schedule and a set of healthy nodes.
The algorithm can be seen in Algorithm 1 as pseudo code and
consists of six phases, starting at Phase 1.

In Phase 1 the Coordinator, Observer 1, Observer 2, and
worker roles are assigned to the healthy nodes in the system.
If there is no coordinator in the system, one will be selected
based on the lowest node id. If not already present, the (two)
observer nodes are also assigned. All remaining nodes are then
assigned the Worker role. If the coordinator or observer node
roles change, an update is sent to all nodes in the system via
a partial reconfiguration.

In Phase 2, the algorithm checks for a cache entry, which
can provide a quick response if a scheduling situation has al-
ready occurred before. However, there is a limit to the number
of cache entries that can be stored due to the limited memory
and to improve the response time. A simplified version has
been implemented that stores and locks all the scheduling
decisions until it is filled. This allows the performance of a
cache load to be evaluated in terms of the time taken to handle
an event.

With no cache entry to load, in Phase 3, the tasks to
schedule are prioritised to determine in which order they are

Algorithm 1 Scheduling procedure
Require: N ▷ Set of healthy nodes n in the system
Require: T ▷ Set of tasks t to schedule

1: Phase 1: Assign node roles
2: if N does not contain a coordinator node then
3: Assign new coordinator n in N
4: if isCoordinator == True then
5: if N contains a node n without a role then
6: Assign a role to n
7: Move to Phase 2
8: Phase 2: Check cache
9: if A cache entry exists for system N then

10: Schedule tasks according to the cache entry
11: Move to Phase 6
12: else
13: toSchedule← T ▷ Set list of unscheduled tasks
14: Move to Phase 3
15: Phase 3: Prioritise tasks
16: if length(toSchedule) > 0 then
17: Calculate priority value of toSchedule tasks
18: priorityTask ← highest priority task id
19: Move to Phase 4
20: else
21: Move to Phase 6
22: Phase 4: Prioritise nodes
23: Advertise highest priority task to all nodes in N
24: The nodes return a calculated normalised priority

value
25: Node responses are appended to nodePriorities
26: Sort nodePriorities in descending order
27: Move to Phase 5
28: Phase 5: Schedule task
29: i← 0 ▷ Node priority index
30: Schedule the priorityTask to nodePriorities[i]
31: if isSchedulingSuccessful == False then
32: Attempt to schedule to lower priority nodes
33: if Attempt successful then
34: Remove priorityTask from toSchedule
35: else
36: Remove priorityTask from toSchedule
37: Move to Phase 3
38: Phase 6: Finish reconfiguration
39: Nodes affected by scheduling stop executing
40: Scheduling changes are applied on the affected nodes
41: The nodes start executing and reconfiguration finishes



to be scheduled. The prioritisation focuses on keeping as many
tasks available in the system as possible. As the Tasking
Framework does not currently provide mixed criticality or
time-related parameters such as arrival time, execution time,
finish time, and deadlines for tasks, they are prioritised based
on the number of successor tasks. If multiple tasks end up
having the same priority, then tasks with a lower task id are
currently prioritised.

In Phase 4, nodes are prioritised based on their ability to ex-
ecute the highest priority task. The ability of a node to execute
a task is calculated by each node in the system individually.
The coordinator "advertises" the highest priority task to all
healthy nodes over the network, which will individually and
in parallel calculate a normalised priority value. Similar to
the artificial hormone system in [22], the priority calculation
is determined by factors such as:

• The availability of resources on a node (e.g., CPU utili-
sation, memory usage, temperature)

• The ability to execute a specific task, which may be
different due to heterogeneous hardware in the system

• The impact on the network by generating increased traffic
• The locality to predecessor and successor tasks.

The priority calculation is currently based on the availability
of resources and the ability of a node to execute a specific
task due to limitations in the SpaceWireIPC layer. This will
be addressed in future work. Each node returns its result to the
coordinator. The coordinator creates a sorted priority list of the
responses, limited by a timeout. If multiple nodes calculate the
same priority, then nodes with a lower node id are prioritised.

In Phase 5, the highest priority task is scheduled to the
highest priority node. This involves a single partial reconfig-
uration directed to the highest priority node with a request
to execute this task. Using a dynamic configuration, the node
stores the task change before applying it in Phase 6. When
the coordinator receives the acknowledgement of the partial
reconfiguration, the online algorithm removes the task from
the set of tasks that need to be scheduled and goes back to
Phase 3 to schedule any remaining tasks. If there are no more
tasks to schedule, the algorithm moves to Phase 6 to finalise
the changes. If a partial reconfiguration cannot be applied due
to a scheduling failure, the task should not be removed from
the set. Instead, in future work, the Scheduling Failure event
will be called, which will attempt to schedule the task to the
second highest priority node.

Finally, in Phase 6, applying the scheduling changes will
complete the reconfiguration. In this phase, the affected nodes
will temporarily stop execution to reconfigure to the dynamic
configuration, as created by the partial reconfigurations. Once
applied, the nodes send the coordinator a "reconfiguration
successful" message. The coordinator waits for all the suc-
cessful reconfiguration messages from the nodes, after which it
will finish the reconfiguration, sending a reconfiguration finish
message to all nodes, notifying them of the changes that were
made. At this point, the nodes start executing tasks again,
resulting in the system being fully available again.

IV. EVALUATION

Two test setups are used to evaluate the online reconfig-
uration algorithm, a time setup on the target hardware and
a simulated network setup on a Linux server. Both setups
use four tasks, consisting of three receiver tasks receiving the
output of one sender task. Three test programs are compiled
for each test setup:

• Test program 1: Offline reconfiguration
• Test program 2: Online reconfiguration with caching
• Test program 3: Online reconfiguration without caching

The two online reconfiguration programs are used to deter-
mine the impact of caching on time and traffic. The offline
reconfiguration program is used as a benchmark to compare
with the online reconfiguration.

1) Test Setup 1: Time Analysis: The first test setup is
used to analyse the scheduling procedure time in terms of
reconfigurationc and decisiontc . The test programs are run
on the target hardware, consisting of a network of three HPN
nodes connected via Ethernet.

The reconfigurationc parameter tracks how long it takes
for the system to reconfigure and apply a new configuration.
In addition to reconfigurationc , the online algorithm requires
additional time for decision-making. The parameter decisiontc
keeps track of how long it takes the coordinator to decide and
schedule a set of tasks to a node. Due to the dependency on
the network during the decision-making process, the network
delay is also part of the overall decision-making time. Finally,
reconfigurationc and decisiontc are used to calculate the total
reconfiguration time trt (1) in milliseconds. An execution time
of 5 hours was chosen for each time analysis test to collect
enough data points for statistical analysis.

2) Test Setup 2: Network Analysis: The second test setup
is used to analyse the network traffic regarding the number of
bytes generated by a scheduling procedure. The network anal-
ysis tests are performed on a "worst case" node failure with a
failing coordinator node, as the coordinator selection combined
with the task scheduling results in the largest amount of
traffic. The tests are conducted on a server with an x86_64
desktop processor, utilising internal loop-back routing for
network traffic, allowing for the operation of more than three
virtual nodes. As the dependency on memory for an offline
reconfiguration changed to a dependency on the network, it is
essential to determine how the network traffic scales. With the
ability to increase the number of virtual nodes, the network
traffic of an online reconfiguration could be tested for a system
with a higher number of nodes. Systems consisting of 3, 4, 5,
6, 7, 8, 9, 16, 32, 48, 64, 80 and 96 nodes are tested 25 times
each. The accumulated reconfiguration traffic in bytes is then
used to analyse the different test cases.

V. RESULTS AND DISCUSSION

A. Timing Analysis

The timing analysis is performed on the results from test
setup 1. The reconfiguration times of the three test programs
can be seen in Table I. The results of test programs 2 and 3



are combined, as caching only impacts decisiontc , and not
reconfigurationc . The difference in the standard deviation
between the offline and online cases can be seen in the
distribution of Fig. 1, where a bimodal distribution can be
seen. The two modes are caused by network delays and the
handling of Node Failure and Node Recovery events. When a
node reintegrates into the system, it must be initialised. The
initial reconfiguration of this node after a boot-up is time-
consuming. Since the coordinator node has to wait for the
reintegrating node to finish reconfiguring, there is an increased
reconfiguration time, resulting in the second mode. The first
mode is caused by a reconfiguration after a node failure where
no initialisation is required. This, therefore, results in a lower
reconfiguration time, similar to an offline reconfiguration.

TABLE I
RECONFIGURATION TIME (MS)

Statistic Reconfigs Mean Std Dev Min Max
Offline 779 80.38 16.61 34 119
Online 2327 139.04 90.33 11 333

Kernel density estimation with Gaussian kernel
Smoothing bandwidth = 1, with independent function normalisation

Fig. 1. Reconfiguration time online vs. offline density plot

The decisiontc of test programs 2 and 3 with cache enabled
and disabled can be found in Table II. Note that these results
also contain reconfigurations where only a node role was
changed. In such a case, in Phase 3 of the algorithm, the size
of the list of unscheduled tasks will be zero. This results in a
direct transition to Phase 6 to finish the reconfiguration and a
very low decision making time.

The two cases appear very similar, as supported by the
distribution in Fig. 2, suggesting that caching does not have a
noticeable effect. When cached decisions are separated from
non-cached ones in Table III, caching appears to result in
different decision times. For cached decisions, the average

TABLE II
DECISION TIME WITH CACHE ENABLED / DISABLED

Statistic Reconfigs Mean Std Dev Min Max
Cache disabled 563 85.34 140.23 3 930
Cache enabled 570 84.92 155.91 3 950

is about half that of a non-cached decision. However, the
number of cached decisions is only about a fifth of the total
decisions. This is caused by the number of cache entries
being fixed, therefore limiting the number of decisions it
can store and load. The deviation of the cached decision is
also smaller, with fewer outliers and a smaller max value.
Rather than performing a full scheduling procedure for a
situation that has already occurred, a quick load from the
cache results in a reduced decisiontc . If more cache loads can
be achieved during scheduling, it is expected that the overall
mean decisiontc will decrease, resulting in a better trt .

Kernel density estimation with Gaussian kernel
Smoothing bandwidth = 0.75

With independent function normalisation

Fig. 2. Decision making time caching influence density plot

TABLE III
DECISION MAKING TIMES (MS) WHEN LOADED FROM CACHE VS. NOT

LOADED FROM CACHE

Statistic Reconfigs Mean Std Dev Min Max
From cache 108 44.94 74.19 5 475
Not from cache 462 93.89 168.13 3 950

The trt outliers around max were found to be present only
during the initial boot of the system. This happens when a
(re-)starting node must completely set the system up from
scratch. A changing system topology due to nodes failing
or reintegrating can be handled quickly, but starting a (large)
distributed system from scratch was found to take a long time.



One way to reduce the startup decision time is to increase
the number of cache loads by implementing cache preloading.
Like the offline algorithm, common system states can be pre-
determined and preloaded into the cache. The system can
quickly load an optimised configuration for common situa-
tions, such as the nominal state when all nodes are healthy.
This can make cache loads more frequent, resulting in a lower
trt and increased availability.

The large standard deviation of the decision-making time
(both with and without cache enabled) was found to be caused
by the combination of reconfigurations with only a node role
was changed, and the reconfigurations were also tasks were
scheduled. This caused the results to be multi-modal, resulting
in a large standard deviation.

B. Network Analysis

The test outputs from test setup 2 are used for the network
analysis. Test programs 1 and 2 are used to compare the online
and offline reconfigurations on a one-to-one basis for a three-
node setup. The results are shown in Table IV. Here, we can
see an increase of the average network traffic of about 3.3
times compared to the offline reconfiguration, which is well
within the limits of the network.

TABLE IV
OFFLINE / ONLINE NETWORK TRAFFIC (BYTES)

Statistic Count Mean Std Dev Min Max
Offline 23 491.43 33.67 436 511
Online 17 1592.94 41.80 1549 1680

Another important parameter is to see how the network
traffic for the online algorithm scales as the number of nodes
in the network increases. Fig. 3 shows the network traffic for
an increasing number of nodes, both with caching enabled and
disabled.

In both test programs 2 and 3, the network traffic increases
linearly with a confidence interval of 95%, with the caching-
enabled version requiring slightly less traffic. The largest
system with 96 nodes had a worst-case network traffic of
139626 bytes, which is a large increase compared to the
situation with three nodes but still within the acceptable limits
of the network.

C. Memory analysis

When scaling up the number of nodes in the system
using the network setup, the memory usage of test program
2, which uses the online algorithm, is analysed. The
offline reconfiguration has been shown [10] to have
memory consumption that scales exponentially. The online
reconfiguration should solve this problem in particular. As
nodes using the online reconfiguration node have to keep track
of where tasks are running in the system, they are expected
to consume more memory when the system size increases.
After running a memory profiler on test program 2, it was
discovered that the stack usage increases linearly with the
number of nodes in the system, regardless of the node’s role.

Linear regression estimation function
Confidence interval = 95%

Fig. 3. Scaling network traffic with caching enabled / disabled

In fact, when the number of nodes doubles, the stack usage
doubles as well, with the heap usage remaining stable for all
system sizes. When the number of nodes increased from 3 to
96 (a 32 times increase), there is only a 28-29 times increase
in stack usage. This shows the online reconfiguration’s
ability to solve the scaling problem, which is in contrast to
the offline algorithm’s exponentially increasing memory usage.

The results demonstrate that online reconfiguration is an
effective solution to the scalability problem associated with
offline reconfiguration. Although runtime and network traffic
increase, these do not increase exponentially, and remain
within the system’s limits. The online algorithm provides a
solution to the inability of offline reconfiguration to support
systems with many nodes. Online reconfiguration, therefore,
allows larger system to utilise a distributed avionics middle-
ware such as ScOSA.

VI. CONCLUSIONS

Dependability in spacecraft on-board computers remains a
significant challenge. In this paper, we present a distributed
system with the ability to self-configure based on the real-
time state of the system. The novel online reconfiguration
mechanism overcomes the scalability issues of offline recon-
figuration by eliminating the need for pre-determined con-
figurations. By implementing online reconfiguration in the
ScOSA middleware, the dynamic creation of configurations
was evaluated in terms of time, network traffic and memory
usage. The online reconfiguration mechanism can schedule
tasks to nodes at the cost of increasing the total reconfiguration
time and network traffic. However, as the number of nodes
in the system scales, the network traffic and memory usage
increases linearly, compared to an exponential increase in



memory usage for the offline reconfiguration mechanism.
From a maintainability perspective, changes to the scheduling
phases can be easily made to further extend and optimise the
decision-making process, paving the road for multi-objective
scheduling in the future.

Enhanced with this online reconfiguration, ScOSA can be
easily developed into a dynamic but dependable OBC architec-
ture. This opens up new possibilities: from a power-aware sys-
tem that adapts to the available power to spacecraft-spanning
systems, i.e., constellations that dynamically distribute tasks
among themselves.

As a first step, ScOSA will be demonstrated together with
some typical space applications as part of a CubeSat mission
in 2025 [25]. This will initially include offline reconfiguration,
but will be followed by an update to demonstrate online
reconfiguration under operational conditions.

REFERENCES

[1] “Bae systems: Rad750 radiation-hardened powerpc microprocessor,”
accessed: 03-02-2023. [Online]. Available: https://www.baesystems.
com/en-media/uploadFile/20210404045936/1434555668211.pdf

[2] “Frontgrade Gaisler: Leon5 processor,” accessed: 03-02-2023. [Online].
Available: https://www.gaisler.com/index.php/products/processors/leon5

[3] A. N. Nikicio, W.-T. Loke, H. Kamdar, and C.-H. Goh, “Radiation
analysis and mitigation framework for leo small satellites,” in 2017 IEEE
International Conference on Communication, Networks and Satellite
(Comnetsat), 2017, pp. 59–66.

[4] C. Wilson and A. George, “CSP hybrid space computing,” Journal of
Aerospace Information Systems, vol. 15, no. 4, pp. 215–227, 2018.
[Online]. Available: https://doi.org/10.2514/1.I010572

[5] J. Samson, J.R., E. Grobelny, S. Driesse-Bunn, M. Clark, and
S. Van Portfliet, “Post-TRL6 dependable multiprocessor technology
developments,” in Aerospace Conference, IEEE, 2010.

[6] A. Pawlitzki and F. Steinmetz, “multiMIND–high performance process-
ing system for robust newspace payloads,” in 2nd European Workshop
on On-Board Data Processing (OBDP2021), 2021.

[7] R. Costa Amorim, R. Martins, P. Harikrishnan, M. Ghiglione, and
T. Helfers, “Dependable MPSoC framework for mixed criticality ap-
plications,” in 2nd European Workshop on On-Board Data Processing
(OBDP2021), 2021.

[8] P. Kuligowski, G. Gajoch, M. Nowak, and W. Sładek, “System-level
hardening techniques used in the COTS-based data processing unit,” in
2nd European Workshop on On-Board Data Processing (OBDP2021),
2021.

[9] A. Lund, Z. A. H. Hammadeh, P. Kenny, V. Bensal, A. Kovalov,
H. Watolla, A. Gerndt, and D. Lüdtke, “ScOSA system software: The
reliable and scalable middleware for a heterogeneous and distributed
on-board computer architecture,” CEAS Space Journal, Mai 2021.

[10] A. Kovalov, T. Franz, H. Watolla, V. Vishav, A. Gerndt, and D. Lüdtke,
“Model-based reconfiguration planning for a distributed on-board com-
puter,” in 12th System Analysis and Modelling (SAM) Conference -
Languages, Methods and Tools for AI-based Systems, co-located with
MODELS 2020, Virtual Event, Oct. 19-20, 2020. Association for
Computing Machinery (ACM), October 2020, pp. 55–62.

[11] L. Zohrati, M. Abadeh, and E. Kazemi, “Flexible approach to schedule
tasks in cloud-computing environments,” Iet Software, 2018.

[12] K. Karmakar, R. K. Das, and S. Khatua, “Resource scheduling for
tasks of a workflow in cloud environment,” Lecture Notes in Computer
Science, 2020.

[13] W. Zheng, Z. Chen, R. Sakellariou, L. Tang, and J. Chen, “Evaluating
DAG scheduling algorithms for maximum parallelism,” 2020 IEEE Intl
Conf on Parallel & Distributed Processing with Applications, Big Data
& Cloud Computing, Sustainable Computing & Communications, Social
Computing & Networking, 2020.

[14] L. Liu, G. Xie, L. Yang, and R. Li, “Schedule dynamic multiple parallel
jobs with precedence-constrained tasks on heterogeneous distributed
computing systems,” in 2015 14th International Symposium on Parallel
and Distributed Computing, 2015, pp. 130–137.

[15] R. M. Sahoo and S. K. Padhy, “A novel algorithm for priority-
based task scheduling on a multiprocessor heterogeneous system,”
Microprocessors and Microsystems, vol. 95, 2022. [Online]. Available:
https://doi.org/10.1016/j.micpro.2022.104685

[16] B. Hu, Z. Cao, and L. Zhou, “Adaptive real-time scheduling of dynamic
multiple-criticality applications on heterogeneous distributed computing
systems,” in 2019 IEEE 15th International Conference on Automation
Science and Engineering (CASE), 2019, pp. 897–903.

[17] M. N. Krishnan and R. Thiyagarajan, “Multi-objective task scheduling
in fog computing using improved gaining sharing knowledge based
algorithm,” Concurrency and Computation: Practice and Experience,
2022.

[18] M. Chatterjee and S. K. Setua, “A multi-objective deadline-constrained
task scheduling algorithm with guaranteed performance in load balanc-
ing on heterogeneous networks,” SN computer science, 2021.

[19] L. Xu, J. Qiao, S. Lin, and W. Zhang, “Dynamic task scheduling
algorithm with deadline constraint in heterogeneous volunteer computing
platforms,” Future Internet, 2019.

[20] L. Eskandari, J. Mair, Z. Huang, and D. Eyers, “I-Scheduler: Iterative
scheduling for distributed stream processing systems,” Future Genera-
tion Computer Systems, 2021.

[21] S. Ahmad, C. S. Liew, E. U. Munir, T. F. Ang, and S. U. Khan,
“A hybrid genetic algorithm for optimization of scheduling workflow
applications in heterogeneous computing systems,” Journal of Parallel
and Distributed Computing, 2016.

[22] A. von Renteln, U. Brinkschulte, and M. Pacher, “The artificial
hormone system—an organic middleware for self-organising real-
time task allocation,” Organic Computing—A Paradigm Shift for
Complex Systems, pp. 369–384, 2011. [Online]. Available: https:
//doi.org/10.1007/978-3-0348-0130-0_24

[23] J. Mei, K. Li, X. Zhou, and K. Li, “Fault-tolerant dynamic rescheduling
for heterogeneous computing systems,” Journal of Grid Computing,
2015.

[24] D. Feng, B. Liu, and J. Gong, “An on-board task scheduling method
based on evolutionary optimization algorithm,” Journal of Circuits,
Systems and Computers, 2022.

[25] D. Lüdtke, T. Firchau, C. G. Cortes, A. Lund, A. M. Nepal, M. M. Elbar-
rawy, Z. H. Hammadeh, J.-G. Meß, P. Kenny, F. Brömer, M. Mirzaagha,
G. Saleip, H. Kirstein, C. Kirchhefer, and A. Gerndt, “Scosa on the way
to orbit: Reconfigurable high-performance computing for spacecraft,” in
2023 IEEE Space Computing Conference (SCC), 2023, pp. 34–44.

https://www.baesystems.com/en-media/uploadFile/20210404045936/1434555668211.pdf
https://www.baesystems.com/en-media/uploadFile/20210404045936/1434555668211.pdf
https://www.gaisler.com/index.php/products/processors/leon5
https://doi.org/10.2514/1.I010572
https://doi.org/10.1016/j.micpro.2022.104685
https://doi.org/10.1007/978-3-0348-0130-0_24
https://doi.org/10.1007/978-3-0348-0130-0_24

	Introduction
	ScOSA - The Scalable On-Board Computer Architecture for Space Avionics
	Reconfiguration Services

	Related work
	Design of the Online Algorithm
	Scheduling

	Evaluation
	Test Setup 1: Time Analysis
	Test Setup 2: Network Analysis


	Results and Discussion
	Timing Analysis
	Network Analysis
	Memory analysis

	Conclusions
	References

