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Abstract: Surrogate-based algorithms are indispensable in the aerospace engineering field for reduc-
ing the computational cost of optimization and uncertainty quantification analyses, particularly those
involving computationally intensive solvers. This paper presents a novel approach for enhancing the
efficiency of surrogate-based algorithms through a new multi-fidelity sampling technique. Unlike
existing multi-fidelity methods which are based on a single multiplicative acquisition function, the
proposed technique decouples the identification of the new infill sample from the selection of the
fidelity level. The location of the infill sample is determined by leveraging the highest fidelity surro-
gate model, while the fidelity level used for its performance evaluation is chosen as the cheapest one
within the “accurate enough” models at the infill location. Moreover, the methodology introduces
the application of the Jensen–Shannon divergence to quantify the accuracy of the different fidelity
levels. Overall, the resulting technique eliminates some of the drawbacks of existing multiplicative
acquisition functions such as the risk of continuous sampling from lower and cheaper fidelity levels.
Experimental validation conducted in surrogate-based optimization and uncertainty quantification
scenarios demonstrates the efficacy of the proposed approach. In an aerodynamic shape optimization
task focused on maximizing the lift-to-drag ratio, the multi-fidelity strategy achieved comparable
results to standard single-fidelity sampling but with approximately a five-fold improvement in
computational efficiency. Likewise, a similar reduction in computational costs was observed in the
uncertainty quantification problem, with the resulting statistical values aligning closely with those
obtained using traditional single-fidelity sampling.

Keywords: multi-fidelity sampling; surrogate-based optimization; uncertainty quantification;
computational fluid dynamics

1. Introduction

Numerical simulations are one of the backbones of modern day aerospace engineer-
ing, spanning across structural and aerodynamic analyses. The level of accuracy that
can be achieved, often referred to as level of fidelity, and its affordability have signifi-
cantly increased over the years thanks to remarkable advances in software and hardware
capabilities. For example, in the field of computational fluid dynamics (CFD), Reynolds-
averaged Navier-Stokes (RANS) or even large eddy simulations are nowadays feasible
also for complex configurations, whereas two decades ago, only Euler simulations were
affordable for the same geometrical complexity. Hence, engineers frequently encounter
situations where data from different fidelity levels are available. Traditionally, one would
substitute lower-fidelity data with higher-fidelity, more accurate solutions as they are avail-
able. Alternatively, efforts may be directed towards improving lower-fidelity solutions
through a correction scheme. A notable example is enhancing panel methods with CFD so-
lutions for more accurate flutter predictions. Another option is to leverage multi-fidelity or
variable-fidelity techniques to create continuous models that contain as much information
as possible.
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Multi-fidelity approaches describe methods that facilitate the integration of scalar
quantities from different fidelity levels, such as lift coefficient values for varying angles of
attack from different numerical simulations or even experimental measurements. Several
methods have been proposed for this task, including bridge functions [1,2], co-Kriging [3–7],
and hierarchical Kriging [8]. Even though all such models enable combining data from
different levels of fidelity, their underlying formulations vary. Bridge functions necessitate
the preprocessing of data to compute deltas between different fidelity levels, subsequently
described by the variable-fidelity model. These differences can be accounted for through
additive or multiplicative terms. Co-Kriging models take a slightly different path and can
be viewed as a general extension of single-fidelity Kriging to a method that is assisted
by auxiliary variables or secondary information, typically employing an autoregressive
formulation [4]. Finally, hierarchical Kriging models use lower-fidelity data models as trend
functions for the next higher level [8]. Lately, also neural networks have been employed
to combine data from different fidelity levels [9,10]. Each modeling approach offers the
capability to combine data from different levels of fidelity, with minor advantages and
disadvantages when compared. Hence, there is no clear superior candidate, and the choice
of a specific modeling type depends more on availability and the individual use case
at hand.

Especially for tasks that require a significant amount of function evaluations, e.g.,
optimization or uncertainty quantification (UQ), relying on the highest available fidelity
often remains unfeasible. Different approaches have been proposed and actively employed
to tackle multi-query scenarios. The most simplistic one is to reduce the fidelity level that
is investigated, i.e., simplify the governing equations that are solved or reduce the spatial
and temporal resolutions of the simulation until the scenario becomes feasible. A more
sophisticated approach uses surrogate models that treat the numerical simulation as a black
box and emulate the input-to-output relation within certain bounds. Such models can then
be employed during multi-query scenarios instead of the numerical simulation itself and
lead to so-called surrogate-based or surrogate-assisted approaches that are the de facto state
of the art for the optimization of cost-extensive black-box functions [3] as well as uncertainty
propagation [11]. To ensure that models meet the accuracy requirements, it is common to
iteratively refine them through adaptive sampling sometimes also labeled as infill or active
learning. Various criteria are available, and the interested reader is referred to the literature
for a more in-depth introduction [12–14]. Accounting for all levels of fidelity at hand during
the adaptive sampling stage should result in reduced overall computational cost necessary
to perform a certain investigation, as the available information is used efficiently.

Even though both aforementioned fields, variable-fidelity modeling as well surrogate-
based techniques, are well established, the intersection between them has only become a
research focus recently. Nevertheless, a few approaches have already been proposed. A
straightforward approach is to collect data from all fidelity levels during the design-of-
experiment (DoE) phase while restricting the adaptive sampling stage to only the highest
fidelity level available [3,15]. In the last decade, some multi-fidelity sampling techniques
have been proposed in the context of surrogate-based optimization [16–19]. The methods
proposed by Huang in [16] and later extended by Di Fiore in [18] are based on a multiplica-
tive acquisition function, where the expected improvement metric [20] is multiplied by
other factors in order to take into consideration the evaluation cost and the accuracy of the
different fidelity levels. Shu [17] introduces an alternative aggregate acquisition function.
Here, the acquisition function is divided into two components based on whether the highest
or lowest fidelity level is being considered, and the evaluation cost is taken into considera-
tion as a multiplicative factor. Foumani in [19] proposes a similar approach, wherein the
two components of the acquisition function serve two distinct objectives: exploration and
exploitation. Specifically, the exploration and exploitation parts are active when either the
low or the high fidelity level is under consideration, respectively. All these multi-fidelity
sampling techniques identify the next infill sample and fidelity level by maximizing their
acquisition function through the solution of a single-objective mixed-integer optimization
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problem. In particular, all the aggregate acquisition functions (either sum or multiplication)
are characterized by a strong coupling between the effectiveness of the infill point as well as
the accuracy and evaluation cost of different fidelity levels. As a result, the algorithm may
persistently sample at lower fidelity levels, especially in scenarios where a fidelity level
is significantly less expensive than the higher-fidelity counterpart at the price of a limited
reduction in prediction accuracy. The two-step multi-fidelity sampling criterion presented
in this manuscript is expected to address this limitation by decoupling the identification of
the next infill point from the selection of the fidelity level.

In this paper, we introduce a novel multi-fidelity infill criterion that can be combined
with all single fidelity criteria, either for optimization or uncertainty quantification tasks.
In particular, the selection of the fidelity level acts as a second step after the next sampling
location has been computed and it relies on the Jensen–Shannon divergence. The efficacy of
the proposed multi-fidelity sampling technique is successfully demonstrated on an aerody-
namics application, addressing both optimization and uncertainty quantification challenges.
Specifically, the application problem uses four aerodynamics solvers of increasing fidelity:
a panel code, an Euler solver, and a RANS solver applied to two computational meshes
of different sizes. The results show how the multi-fidelity sampling technique achieves
results comparable to its the single-fidelity counterpart, albeit at a significant reduction in
computational cost.

The manuscript is organized as follow: the two-step sampling methodology and its
integration in optimization and uncertainty quantification schemes is described in Section 2.
Section 3 presents the analysis and results of the application of the resulting algorithms on
the aerodynamics problem. Finally, the conclusion section, Section 4, summarizes the key
findings of the results and outlines potential future extensions of the presented algorithm.

2. Methodology

All surrogate-based techniques have the same iterative architecture in common which
can be summarized in three phases: fit the surrogate models based on the available data,
identify the next sample (or samples in case of batch-sampling techniques) via an infill
criterion, and evaluate the resulting design by means of the selected analysis tools as shown
in Figure 1. The process is repeated until a prescribed convergence criterion is reached,
or the whole computational budget is consumed. Even though there might be some
differences in the implementation of the iterative algorithm, the choice and definition of the
infill criterion are the main distinctive characteristics of each surrogate-based technique [3].
In particular, the infill criteria specifically designed for multi-fidelity sampling are able
to determine not only the next infill sample but also the fidelity level to consider for the
design evaluation.

Consider a generic multi-fidelity sampling problem with a set of nl fidelity levels
L = {l0, . . . , lnl} (with l0 and lnl as the highest and lowest fidelity levels, respectively). At
a generic iteration i, the identification of the infill sample location and fidelity level for
iteration i + 1 can be formalized as:

x(i+1), l(i+1) = arg max
x,l

A(x, l) (1a)

xLB,k ≤ xk ≤ xUB,k (1b)

l ∈ L (1c)

where x is the vector of the design variables, A is the acquisition function of the selected
infill criterion, and xLB, xUB are the lower and upper bounds, respectively, that define
the design space. Given that the fidelity level is represented by the integer variable l,
Equations (1a)–(1c) is a mixed integer optimization problem (even though it is simple), and
it requires specific techniques to be efficiently solved.
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Figure 1. Generic multi-fidelity surrogate-based architecture.

Some important notes for the reader: henceforth, the term “multi-fidelity” is omitted
before “surrogate model” unless explicitly necessary. Hence, any mention of “surrogate
model” in the following text should be understood to refer to a multi-fidelity surrogate
model. For instance, the term “highest fidelity surrogate model” denotes the multi-fidelity
surrogate model trained by utilizing all available data from every fidelity level. In addition,
the surrogate models are assumed to be statistical models, i.e., models that, when queried,
return a statistical distribution representing the output uncertainty given the training data
and the selected model functional form. Furthermore, different infill criteria may require
either the minimization of the maximization of their respective acquisition functions.
Without loss of generality, the acquisition function is assumed to be maximized in the
remaining part of this manuscript.

2.1. Two-Step Multi-Fidelity Sampling

The multi-fidelity sampling technique presented in this manuscript is derived from the
general formulation in Equations (1a)–(1c) and it is designed as an extension of any existing
single-fidelity infill criterion. Specifically, the selection of the fidelity level is decoupled
from the identification of the next sample, which is completed by optimizing the single-
fidelity acquisition function on the highest fidelity surrogate model. The fidelity level
is then chosen as the most cost-efficient one for which the associated surrogate model is
judged “sufficiently accurate” at the previously identified infill location. Every iteration of
the proposed surrogate-based multi-fidelity sampling scheme consists of the following:

1. Determining the location of the next infill sample by the maximization of the acquisi-
tion function over the highest fidelity surrogate model:

x(i+1) = arg max A(x)|SM0
(2)

where SM0 is the multi-fidelity surrogate model of the highest fidelity, i.e., level 0.
2. Identifying the set of “accurate enough” fidelity levels at the next infill location by

means of the selected accuracy metric:

Lacc|x(i+1) = {l ∈ L | l is accurate with respect to the accuracy metric at x(i+1)} (3)

3. Selecting the fidelity level to use for the evaluation of the next infill sample as the
fastest one within the “accurate enough” list:

li+1 = arg min
j

([
teval,j

])
for j ∈ Lacc|x(i+1) (4)

where teval is the fidelity level evaluation time.

Obviously, this is a generic description of the two-step multi-fidelity sampling scheme
that has to be integrated in the specific surrogate-based implementation, e.g., surrogate-
based optimization (SBO) in Section 2.4 and surrogate-based uncertainty quantification
(SBUQ) in Section 2.5.

The sample location x(i+1) resulting from the solution of Equation (2) has a couple
of important properties. First of all, it is determined by leveraging the highest fidelity
surrogate model, in other words, a surrogate model that is trained using all the available
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data. This sample is, by the definition of a surrogate-based sampling scheme, the most
effective location in the domain with respect to the infill metric. Moreover, the choice of
the evaluation fidelity level (which occurs in the second step) does not affect the location
of the next sample, unlike in other multi-fidelity schemes [16,18]. This characteristic of
the sampling scheme is based on the assumption that, if the location of the next sample
is determined by the most accurate surrogate model, there is no rationale for altering it
depending on the evaluation fidelity level, and thus the evaluation cost and accuracy.

The design performance of the infill sample is then evaluated by using the fastest
fidelity level (Equation (4)), for which the associated surrogate model is judged “sufficiently
accurate” at the infill location with respect to an accuracy metric. In contrast to other
multi-fidelity sampling techniques where the accuracy metric (or a function depending on
it) is directly multiplied by the acquisition function [16,18], the proposed two-step approach
uses the accuracy metric to perform a binary classification of the fidelity levels in “accurate”
and “inaccurate” (Equation (3)). A popular approach to assess the expected accuracy of a
generic fidelity level l at a given location x is by evaluating the surrogate model of level l
at x and comparing the returned probability distribution with the one obtained from the
evaluation of the surrogate model of the highest fidelity level (i.e., level 0). Several metrics
have been proposed to compare the two distributions, with popular examples being the
correlation factor and the Kullback–Leibler divergence (KLD or KL-divergence). However,
both metrics have limitations. The correlation factor estimates the correlation between
two sets of observation data rather than the distance and similarity of two probability
distributions, like the KL-divergence. While the KL-divergence is a proper statistical
distance, it is not symmetric and does not have an upper bound. The first limitation can
be addressed by always computing the KL-divergence between the highest and the lower
fidelity (and not vice versa), but the lack of an upper bound poses challenges in defining
a threshold below which the considered fidelity level is considered “accurate”. For these
reasons, the Jensen–Shannon divergence (JSD or JS-divergence), a symmetric statistical
distance bounded between 0 and 1, is adopted in this study to assess the accuracy of
the multi-fidelity surrogate models as described in the next section (Section 2.2). While
the need to specify the accuracy metric threshold (Equation (3)) may initially seem like a
drawback of the method, it also provides users with the flexibility to adjust the algorithm’s
behavior according to their preferences. For example, the threshold might be actively
reduced towards the end of the optimization in order to ensure that the majority of samples
are evaluated at the highest fidelity. This adaptability allows users to tailor the algorithm
to the specific application.

2.2. Jensen–Shannon Divergence as Accuracy Metric

The choice of the accuracy metric is crucial for the behavior of the multi-fidelity
sampling schemes (Equation (3)). However, both of the previously mentioned options
have some limitations: the correlation factor is not formally a distance metric between two
distributions, and the KL-divergence is not symmetric (i.e., KLD(A, B) ̸= KLD(B, A)), a
property that is relevant for the assessment of the prediction accuracy between two models.
For this reason, the multi-fidelity sampling technique presented in this manuscript adopts
the JS-divergence as an accuracy metric.

The Jensen–Shannon divergence between two probability distributions A and B is
a symmetric and smoothed version of the KL-divergence, and it is bounded between 0
(identical distributions) and 1 (infinitely different distributions):

JSD(A||B) = 1
2

KLD(A||M) +
1
2

KLD(B||M) (5)

0 ≤ JSD(A||B) ≤ 1 (6)

where M is a mixture distribution of P and Q (the upper bound in Equation (6) depends
on the logarithm bases used in the evaluation of KLD in Equation (5)). Depending on
the formulation of the mixture distribution, it is possible to derive the closed form of the
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JSD for some probability distribution families [21]. However, a discrete approximation of
the JSD is a valid and fast alternative to the closed form for the purposes of multi-fidelity
sampling (Section 2.6). Combining Equation (3) with Equation (5), the list of expected
accurate fidelity levels at the next infill sample x(i+1) is:

Lacc =
{

l ∈ L | JSD
(

P(SMl)||P(SMl0)
)∣∣

x(i+1) < JSDlim
}

(7)

where P(SMl) is the probability distribution returned by a query of the surrogate model of
fidelity level l at x(i+1), and JSDlim is the maximum acceptable JSD value to consider the
fidelity level l “accurate enough”.

The value of JSDlim is a parameter that has to be set by the user and that controls the
minimum accuracy requirement for a fidelity level to be considered “accurate enough” for
the next sampling iteration. Lower values JSDlim make the accuracy requirement more
strict, therefore reducing the probability that the algorithm selects a lower fidelity level
for the next sampling iteration. Even though the JSDlim is a user-defined parameter, the
property of JS-divergence of being bounded between 0 and 1 helps to identify some target
values that are “empirically” meaningful and that are valid irrespective of the magnitude
of the probability distributions that are compared. For instance, the JS-divergence between
two normal distributions, each sharing the same standard deviation and with mean values
differing by two times the standard deviation (Figure 2), approximates 0.7 regardless of the
particular values assigned to the mean and standard deviation:

JSD(PA||PB) ≈ 0.7 with PA = N(µa, σ), PB = N(µa + 2σ, σ) (8)

Figure 2. Normal distributions used to determine the JSD in Equation (8).

2.3. Comparison with Multiplicative Sampling Schemes

The decoupling between the identification of the next infill sample and the selection
of the fidelity level distinguishes the proposed two-level approach from other methods
based on the multiplicative multi-fidelity expected improvement [16,18]. In these sampling
schemes, both the location and fidelity level of the next sample are determined simultane-
ously by maximizing a single acquisition function that is the multiplication of the single
fidelity acquisition function and other factors that take into consideration the accuracy
and evaluation cost of the fidelity levels. Therefore, the location and fidelity level of the
next sample result from the solution of a single-objective optimization problem obtained
from the multiplication of three distinct and conflicting objectives, i.e., the maximization
of the single-fidelity acquisition function, the maximization of the accuracy between the
selected and the highest fidelity levels, and the minimization of the evaluation time of the
selected fidelity level. As a consequence, this approach shares the primary drawback of
the “weighted sum” technique applied to solve a multi-objective optimization problem as
a single-objective problem: if the multiplicative factors lack appropriate scaling, the effect
of one factor may be dominant and drive the whole optimization. For instance, consider a
multi-fidelity sampling scenario where a mid-fidelity level has a decent prediction accuracy
and significantly lower evaluation costs compared to the highest fidelity level. In such a
case, the multiplicative algorithm may consistently favor the lower-fidelity solver because
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the multiplicative acquisition function tends to offset the penalty associated with the re-
duced accuracy with the benefit of decreased computational cost. This limitation is critical
in a surrogate-based optimization application because a sample is considered optimal only
if it is evaluated at the highest fidelity level. If no sample is evaluated at the highest fidelity
level, it is impossible to update the knowledge about the current optimum.

The proposed two-level multi-fidelity sampling effectively addresses such a limitation
of multiplicative techniques. The difference in magnitude of the infill metric, accuracy
metric, and evaluation cost is irrelevant in the proposed criterion because these metrics
are considered in different stages of the infill sample and fidelity level selection phase,
therefore removing any risk of interaction. Consequently, the two-step sampling scheme is
safeguarded against always selecting the same fidelity level as observed in multiplicative
approaches [16,18].

2.4. Surrogate-Based Optimization

The popularity of surrogate-based optimization techniques has resulted in the develop-
ment of numerous acquisition functions. Popular examples are probability of improvement
(PI) [22], knowledge gradient (KG) [23], and expected improvement (EI) [24]. Out of these,
expected improvement is arguably the most popular given its elegant and simple formula-
tion, and for this reason, it is adopted in the SBO analyses presented in this manuscript.
Even though a complete derivation of the expected improvement is out of the scope of this
article (the whole derivation is available in [24]), a brief description is provided in the follow-
ing paragraph. At a generic iteration i, the goal of the expected improvement technique is to
identify the location in the domain that maximizes the expected reduction in the objective
function value with respect to the current minimum, i.e., the expected improvement:

EI(x) = E(max( fmin − Y, 0)) (9)

where fmin is the current minimum and Y is the probability distribution returned by a query
of the surrogate model at location x. Under the assumption that Y is a normal distribution
(Y = N(µ, σ)), the closed form of Equation (9) is [24]:

EI(x) = ( fmin − µ)Φ
(

fmin − µ

σ

)
+ σϕ

(
fmin − µ

σ

)
(10)

where Φ(·) and ϕ(·) represent the cumulative distribution and probability density functions
or the standard normal distribution, respectively. Equation (10) is the acquisition function
that is maximized at each optimization iteration in order to identify the location of the next
infill point as described in Section 2, Equation (2).

Usually, real design optimization problems are characterized by several constraints
that are introduced to guarantee a certain level of feasibility in the design space. Sev-
eral techniques are available to handle constraints within surrogate-based optimization
schemes [25,26], and popular choices are the penalty function and the probability of feasibil-
ity. The former is straightforward to implement, but its effectiveness is strongly dependent
on the user-defined penalty values, which may artificially restrict the design space beyond
what is necessary. For this reason, the constraints are handled in this manuscripts by
means of the probability of feasibility [27]. Assuming that the problem has ng constraints
defined as:

gi(x) ≤ 0 with i = 1 . . . ng (11)

and a surrogate model is built for each of them, the probability of the feasibility of a generic
design x with respect to all the constraints is computed as:

PoF(x) =
ng

∏
i=1

P(gi(x) ≤ 0) (12)



Aerospace 2024, 11, 448 8 of 20

where P(gi(x) ≤ 0) is easily computed from the probability distribution returned by the
evaluation of the constraint surrogate model. The resulting acquisition function based on ex-
pected improvement and probability of feasibility is obtained by multiplying Equation (10)
and Equation (12):

A(x) = EI(x)PoF(x) (13)

and represents the acquisition function that is used to obtain all optimization results
presented in this manuscript.

Another important aspect to consider in multi-fidelity surrogate-based optimization
is the potential presence of objective and constraint functions with a different number of
fidelity levels. This scenario is quite common, especially in cases where multiple disci-
plines (e.g., aerodynamics and structures) are involved in the optimization process. It is
important to remember that the two-step approach described in Section 2 independently
selects the fidelity level for each function within the problem. Consequently, the correct
implementation of a multi-fidelity surrogate-based optimization requires the definition of a
logic to determine which fidelity level to use in situations where the selected fidelity levels
are not identical. In a single-objective multi-fidelity problem, the minimum is obviously
obtained by comparing only the feasible data obtained at the highest fidelity. Therefore,
it is imperative that whenever the objective function is evaluated at the highest fidelity,
all the constraints are also assessed at the highest fidelity. In contrast, when the objective
function is not evaluated at the highest fidelity level, constraints can be evaluated at the
fidelity level selected by the scheme presented in Section 2 Equation (4). Denoting with lo
and lgi the selected fidelity level for the objective and constraint functions, respectively, the
combined logic for the selection of the constraint fidelity level can be formalized as:

lgi =

{
0 if l0 = 0
lgi otherwise

(14)

2.5. Surrogate-Based Uncertainty Quantification

Similar to SBO for optimization, surrogate-based uncertainty quantification (SBUQ)
aims to transfer the uncertainties present in the inputs effectively to the Quantity of Interest
(QoI), and subsequently, to accurately determine the relevant statistics of QoI [28]. Instead
of employing the Monte Carlo method, which involves direct computation using complex
and resource-intensive black-box functions, this approach applies the method to a more
straightforward and computationally inexpensive surrogate model that approximates the
behavior of the original function. In the present work, this is achieved by constructing a
Kriging surrogate model, which is formulated based on an initial Design of Experiments
(DoE) in the stochastic domain, coupled with its black-box solutions. To improve the
accuracy of the surrogate, an active infill criterion based on the (approximated) statistics is
adopted. Here, the infill criterion focuses on the mean value of the QoI, seeking to achieve
high global accuracy of the surrogate model.

To ensure a balanced space filling in the stochastic space, the infill criterion uses the
prediction mean square error ŝ(ξ) at any given point ξ in the Kriging surrogate. At every
infill iteration, the surrogate model is (re)constructed at the new location ξ∗ where the
product of the joint probability distribution function of the input uncertainties PDFξ and
the error estimate is maximized:

ξ∗ = arg min
ξ

{−PDFξ(ξ) ŝ(ξ) } (15)

The PDFξ component ensures sampling from the regions of high probability in the
stochastic space, and the error term ŝ(ξ) exploits regions where the surrogate model is
inaccurate. We use differential evolution to search for the optimal location in the surrogate.
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The statistic of the QoI is then approximated using a large number of Quasi Monte Carlo
sample evaluations of the surrogate model.

2.6. Practical Implementation Details

The presented multi-fidelity surrogate-based sampling architecture is implemented in
the Surrogate Modeling for AeRo-data Toolbox in python (SMARTy) [29] that is continually
developed at the German Aerospace Center (DLR). While the implementation of the two-
step multi-fidelity sampling technique is straightforward and it can be readily adapted
to existing surrogate-based algorithms, there are a couple of specific aspects that should
be highlighted.

As described in Section 2.1, the JS-divergence has a closed form for some families
of probability density distributions [21] (e.g., normal distributions). However, the closed
forms might be tedious to implement, therefore increasing the risk of coding errors. For this
reason, the JS-divergence is numerically computed in this manuscript using the ready-to-
use spatial.distance.jensenshannon method of Scipy python library [30]. The method
accepts two probability vectors as input, representing the two probability distribution, for
which JS-divergence is to be computed. In particular, if the two distributions are normal
distribution (PA = N(µA, σA) and PB = N(µB, σB)), the probability vectors are defined by
evaluating the probability density function of the two probability distributions at linearly
spaced locations in a range defined as:

LB = min([µA − 3σA, µB − 3σB]) (16)

UB = min([µA + 3σA, µB + 3σB]) (17)

The second aspect to specify is the algorithm adopted for the optimization of the
acquisition function Equation (2). As described in Section 2, the two-step multi-fidelity
sampling approach decouples the identification of the next infill point from the selection of
the fidelity level, and the former results in the solution of a single objective global optimiza-
tion problem. In all the applications presented in this manuscript, the acquisition function
is optimized by means of a differential evolution algorithm. This choice is guided by the
multi-modal nature of the optimization problem and the computationally inexpensive
evaluation of the acquisition function, thus suggesting the utilization of a stochastic global
algorithm for its optimization.

3. Application

The following sections showcase the newly proposed multi-fidelity sampling tech-
niques for two aerodynamic challenges, namely, optimizing the aerodynamic performance
of a configuration within a given design space and propagating known uncertainties within
inputs through an aerodynamic analysis. The results are presented using four different
fidelity levels ranging from potential flow up to RANS solutions. In particular, the CFD
solver for the RANS simulations utilizes a Spalart–Allmaras turbulence model, a central
scheme with scalar artificial dissipation for the inviscid fluxes discretization, and the Green–
Gauss approach for the computation of the exact gradient of viscous and source terms. The
simulations are considered converged once the density residual is below 1 · 10−7.

3.1. Test Case

The supercritical RAE2822 airfoil serves as a baseline configuration for this investiga-
tion, and its aerodynamics performance is assessed by four different fidelity levels. The
lowest fidelity level is obtained by solving the potential flow, including a compressibility
correction employing the XFoil software v.6.99 [31,32]. The second lowest fidelity level
solves the Euler equations, while the two highest fidelity levels are based on the RANS
equations in conjunction with the Spalart Allmaras turbulence model, applied to two grids
with varying mesh density. The CFD solutions based on a finite volume method, i.e.,
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solutions to the Euler and RANS equations, are computed using the DLR TAU Code [33],
and the corresponding computational grids are shown in Figure 3.

(a) Euler (b) Coarse RANS (c) Fine RANS

Figure 3. Different meshes for the CFD solver.

The flow condition for both the optimization and uncertainty quantification task
is defined by the angle of attack, and the Mach and the Reynolds numbers listed in
Table 1. The pressure coefficient distributions obtained by the four different fidelity levels
are depicted in Figure 4. The RANS solutions are almost identical, with a shock wave
on the suction side at approximately 10% of the chord length. Larger deviations in the
pressure coefficient distribution are visible when analyzing the Euler solution: the shock is
located further downstream, and a lower-pressure coefficient value is obtained upstream
of the shock. Finally, as expected from the potential flow formulation, the XFoil result
features a sole peak on the suction side without capturing any shock. The representative
evaluation time (rounded average out of 50 simulations) for the four fidelity levels, along
with the resulting integral aerodynamics coefficients (i.e., the lift coefficient (Cl), the drag
coefficient (Cd), and their ratio Cl/Cd), are given in Table 2. Similarly to the pressure
coefficient distributions, the RANS solutions exhibit only minor differences in both Cl and
Cd, resulting in an accumulated error of roughly 6.6% in Cl/Cd. Because viscous effects
are neglected during Euler simulations, larger differences emerge when comparing the
highest-fidelity results with those obtained from solving the Euler equations, resulting in
an error in Cl/Cd exceeding 100%. Interestingly, the integral aerodynamics coefficients
determined by solving the potential flow equations with a compressibility correction exhibit
closer agreement with the RANS solutions than with the Euler solver, despite the complete
misrepresentation of the pressure distribution in the fore region of the suction side. When
comparing the evaluation time of the different solvers, the anticipated trend is observed:
decreasing fidelity simultaneously yields substantial speed-up.

Table 1. Flow conditions.

Flow Condition Value

Angle of Attack 2.79 [◦]
Mach Number 0.676
Reynolds Number 5.7 · 106

The Euler solver has also been tested on meshes finer than the one shown in Figure 3a,
resulting in negligible improvement in prediction accuracy at the cost of a substantial
increase in computational time. Note that the goal of this manuscript is to propose a new
multi-fidelity sampling technique capable of handling situations where some portions of
the domain are better described by a lower fidelity level than a higher one. Consequently,
the four fidelity levels selected for this study are representative of such a possible scenario.

Note that in the following analysis, the evaluation times reported in Table 2 are
consistently utilized to determine the fidelity level of the next infill point (Equation (4)),
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even though the actual evaluation times may be influenced by factors such as the underlying
geometry and operating conditions of the simulation.

Figure 4. Pressure distribution resulting from the different CFD fidelity levels.

Table 2. Aerodynamics coefficient and evaluation time for different fidelity levels.

Fidelity Level Solver Eval. Time [s] Cl Cd Cl /Cd

0 Fine RANS 1500.0 0.7057 0.0103 68.51
1 Coarse RANS 500.0 0.7068 0.0110 64.25
2 Euler 2.0 0.8377 0.0053 158.05
3 XFoil 0.3 0.6414 0.0077 83.29

3.2. SBO

The two-step multi-fidelity sampling presented in Section 2 is tested in a surrogate-
based shape optimization of the airfoil described in Section 3.1. In particular, the class/shape
function transformation technique (CTS) coefficients that define the airfoil shape are opti-
mized in order to maximize the lift-to-drag ratio at a given flow condition. Moreover, a
constraint on the minimum feasible maximum thickness is introduced in order to avoid
unreasonably thin airfoils. The resulting shape optimization problem can be written in
standard form as follows:

x∗ = arg maxx(Cl(x)/Cd(x)) with x ∈ R9

s.t. xi,l ≤ xi ≤ xi,u and θmin − θ(x) < 0
(18)

where x is the vector of the nine design variables bounded between xi,l and xi,l , and θ is
the maximum thickness of the airfoil shape that must be greater than θmin. The lower and
upper bounds are defined by subtracting and adding 0.075 to the design variables of the
original shape Table 3. This choice both guarantees enough freedom in the domain space
exploration and prevents the creation of a large number of self-intersecting or unreasonable
airfoil shapes.

Table 3. Bounds of the design variables.

xi x1 x2 x3 x4 x5 x6 x7 x8 x9

xi,l 0.05372 0.06228 0.11768 0.11687 0.12716 0.06146 0.14980 0.00101 −0.11397
xi,u 0.20372 0.21228 0.26768 0.26687 0.27716 0.21146 0.29980 0.15101 0.03602
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Firstly, the optimization problem in Equation (18) is initially solved using a single-
fidelity surrogate based optimizer. Such an optimization solution establishes a baseline
performance, which will later serve as a point of comparison for the performance of the
surrogate-based optimizer with the two-step multi-fidelity sampling. The initial surrogate
model is a Gaussian process model with a Gaussian Exponential kernel and constant mean,
and the training is completed using 50 initial samples generated via a Sobol sequence.
The choices of the Gaussian process kernel and of the number of initial samples aim at
achieving a root mean squared error below 10% and a maximum prediction error below
20% with respect to a test dataset made of 10 random samples. The convergence history
of optimal Cl/Cd is visualized in Figure 5 as a function of unit time t̂, where t̂ represents
the cumulative evaluation time divided by the evaluation time of the highest fidelity level,
namely, the fine RANS simulation.

Figure 5. History of the optimum for the three optimizations with respect to the unit time, i.e., time
divided by the evaluation time of the fine RANS.

A second optimization is completed by enabling the two-step multi-fidelity sampling
technique presented in this manuscript. The selection of model kernels and the choice
of the initial training dataset sizes for each fidelity level are calibrated to ensure that the
resulting initial model has a comparable precision to that of the single-fidelity case (i.e., a
root mean squared error below 10% and a maximum prediction error below 20% when
evaluated against the same test dataset made of 10 random samples). As a result, all fidelity
levels employ a Gaussian Exponential kernel with a constant mean, and the number of
initial samples is set to 20, 30, 120, and 380 for fine RANS, coarse RANS, Euler, and XFoil,
respectively. Taking into account the evaluation time of each fidelity level (Table 2), the
total time required for evaluating the initial samples using the multi-fidelity model is 40%
lower (45,354 s) compared to the single-fidelity approach (75,000 s). When considering
the optimization process, the advantage of employing multi-fidelity sampling becomes
apparent through the convergence history of the optimal Cl/Cd as shown in Figure 5. The
proposed multi-fidelity sampling method converges to Cl/Cd ≈ 81.12 in approximately
17 unit times, compared to the single-fidelity approach, which converges around 82 unit
times: this translates to a speed-up factor of approximately 5 times. Further insights into
the behavior of the multi-fidelity sampling can be obtained from the distribution of function
calls across fidelity levels as depicted in Figure 6a. Notably, as expected, the Euler solver is
consistently omitted from selection due to its poor prediction of Cl/Cd (refer to Table 2).
Additionally, XFoil holds a significant portion of function calls, likely because of its low
evaluation time, which proves advantageous during the exploration of the design space.

The initial multi-fidelity optimization was designed as an academic test to validate the
consistency of the proposed multi-fidelity sampling method. Specifically, the preliminary
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analysis of the prediction accuracy across the four fidelity levels (Table 2) clearly indicates
that there may be no advantage in including the Euler solver because a faster fidelity level
(XFoil) demonstrates superior prediction accuracy. Moreover, the negligible evaluation
time required by XFoil suggests that the number of initial samples assessed with XFoil
can be substantially augmented without noticeably increasing the evaluation time of the
initial samples. For this reason, a second multi-fidelity optimization is conducted, omitting
the Euler solver from the list of available fidelity levels and increasing the number of
XFoil initial samples to 1500. This results in a total evaluation time for the initial sample of
approximately 45,450 s, which is comparable to the value obtained for the first multi-fidelity
optimization (45,354 s). Similar to the previous analysis, the convergence of the optimal
Cl/Cd value is plotted in Figure 5, while the fidelity level selection percentage is illustrated
in Figure 6b. As anticipated, the substantial number of initial XFoil samples yields an
enhanced representation of the design space at this fidelity level, consequently reducing
the need for XFoil queries during the optimization phase. Regarding the convergence
of the optimal value, a slower initial reduction in optimal value is succeeded by a better
final optimal value. This trend might arise from the finer sampling of the design space
resulting from the increased number of initial XFoil samples. The resulting enriched
representation of the design space may contain a greater number of promising regions
that the algorithm must explore, thereby extending the initial exploration phase. However,
the enhanced accuracy of the initial surrogate model ultimately guides the algorithm
toward convergence to a better Cl/Cd value compared to both the single-fidelity and first
multi-fidelity optimization.

(a) Four fidelity levels (b) Three fidelity levels
Figure 6. Percentage of fidelity level evaluations during the optimization for the 4 and 3 fidelity cases.

The resulting optimal design variables are presented in Table 4, while the optimal
airfoil shapes and pressure distributions are compared against the original shape in Figure 7.
All optimizations succeed in maximizing Cl/Cd by shifting the position and reducing the
strength of the shock wave on the suction side, and by increasing the pressure on the second
half of the pressure side. Interestingly, all the optimal airfoil shapes are extremely similar,
indicating that all the conduced optimizations successfully identified the characteristics of
the optimal shape. In case a finer optimization is desired, a gradient-based or a surrogate-
based trust-region algorithm can be employed to further refine the optimal solution.
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(a) Airfoil shapes (b) Cp distributions
Figure 7. Comparison of optimal airfoil shapes and Cp distributions with the original airfoil.

Table 4. Optimal design variables.

Shape x1 x2 x3 x4 x5 x6 x7 x8 x9

Original 0.12872 0.13728 0.19268 0.19187 0.20216 0.13646 0.22480 0.07601 −0.03897
Single fidelity 0.14370 0.16171 0.21617 0.20375 0.27716 0.15377 0.14980 0.00101 −0.11397

4 fidelity levels 0.13766 0.16652 0.20038 0.244059 0.21019 0.159159 0.14981 0.00101 −0.11397
3 fidelity levels 0.15398 0.15974 0.23295 0.21245 0.23939 0.12518 0.15903 0.00101 −0.11397

3.3. SBUQ

The surrogate-based uncertainty quantification described in Section 2.5 is employed to
propagate uncertainties in (i) operating conditions—Mach number M and angle of attack
α, and (ii) geometrical representation of the airfoil using CST coefficients (Section 3.1).
As shown in Figure 8, case A and B (later B1, B2) refer to low (informative) and high
(uninformative) uncertainty levels (distributions) in operating conditions, respectively.
In order to study the effect of varying JSDlim, its default value of 0.7 is used for cases A
and B1, and a value of 0.5 is used for case B2. The uncertainty in (CST) design vector
x = [x1, . . . , x9]

T results in about 1% variation in the airfoil geometry and is consistent for
all three cases. The Quantity of Interest (QoI) considered is the lift-to-drag ratio which is
the same as that considered for optimization. However, under the presence of uncertainties,
a rather important quantity is the mean of QoI.

(a) Operational uncertainties (b) Uncertainty in airfoil geometry.

Figure 8. Uncertainties considered for forward UQ analysis.

To accumulate the information from all four levels of fidelity discussed in Section 3.1,
along with a single-fidelity (highest) Gaussian process with a Gaussian Exponential ker-
nel, a multi-fidelity surrogate model is constructed using a hierarchical approach (see
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Appendix A). The mean lift-to-drag ratio is computed using 10,000 Quasi Monte Carlo
samples in the surrogate model. In the single-fidelity analysis, the infill phase is considered
to be converged when the value of the statistic, for a given threshold, does not change
over two consecutive iterations. Similarly, for the multi-fidelity analysis, convergence is
assumed when the statistic value, for two consecutive iterations, is close to that obtained
from single-fidelity analysis, under a small threshold.

Figure 9 shows the infill history of multi-fidelity surrogate-based uncertainty propa-
gation. Note that (i) iteration zeros refer to the last sample in the DoE stage, and (ii) the
converged statistic values for single-fidelity investigation are shown with black squares.
The multi-fidelity approach for Case A results in samples mostly from the highest fidelity
with only a couple of samples from the lower levels. For relatively precise inputs in Case A,
the surrogate errors are rather small. As a consequence, the Jensen–Shannon divergence
(JSD) between these surrogates at different locations is mostly larger than the default value,
resulting in samples predominantly from the highest fidelity level. As the input uncertainty
is increased, i.e., Case B1, the surrogate errors become larger, resulting in the majority of
the samples being from lower fidelity levels. Consequently, the convergence takes more
iterations as compared to Case A. In Case B2, with the same level input uncertainty as Case
B1, the JSDlim is lowered to a value of 0.5. This allows for a balanced sampling between
fidelity levels with enough samples from the highest fidelity to make an accurate prediction
of the mean lift-to-drag in a smaller number of infill iterations.

Figure 9. Infill iterations history for < Cl/Cd > and fidelity level sampled for low (Case A) and high
uncertainty levels (Cases B1 and B2). Iteration 0 refers to the last sample in the DoE stage.

Box plots indicating the variability in the lift-to-drag ratio for 10,000 realizations of
the surrogate model under different fidelity levels and uncertainty cases are shown in
Figure 10. As the uncertainty level increases, as expected, the single-fidelity analysis shows
an increase in variance. In Case A, pertaining to lower uncertainty, the multi-fidelity
approach estimates are fairly accurate. As the uncertainty is increased in Case B1, the
multi-fidelity approximation of the variance becomes less accurate. This can be attributed
to the inaccuracy in the surrogate model due to the majority of infill samples from the lower
fidelity levels. This inaccuracy is, however, dealt with a lower JSDlim in Case B2, facilitating
a balanced sampling which retains the accuracy of the model and thereby the statistics.
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Figure 10. Box plots for 10,000 realizations of Cl/Cd using the final surrogate model based on high-
and multi-fidelity infill strategies for low (Case A) and high uncertainty levels (Cases B1 and B2).

Sobol indices are used to attribute the variance in the QoI (Cl/Cd) to different input
uncertainties, providing a sensitivity analysis. A high Sobol index for an input parameter
indicates its significant impact on the output’s variability. The bar charts in Figure 11
compare the sensitivity of the lift-to-drag ratio to the Mach number (M), angle of attack (α),
and the CST design vector (x) under single- and multi-fidelity strategies for the low and
high uncertainty levels. For all the three cases, the single-fidelity analysis show that the
variability in Cl/Cd is dominated by the uncertainty in the angle of attack. Although small,
the impact of the Mach number and geometrical uncertainty is not negligible in Case A
and Case B(1,2), respectively. Similar to the box-plot results, and for the same reasoning,
the multi-fidelity approach estimates of the Sobol indices are fairly accurate for Case A,
inaccurate for Case B1, and reasonably accurate for Case B2, indicating the correlation
between the uncertainty level and JSDlim.

Figure 11. Sobol indices for Cl/Cd with respect to the Mach number (M), angle of attack (α) and
design vector (x), using the final surrogate model based on high- and multi- fidelity infill strategies
for low (Case A) and high uncertainty levels (Case B1, B2).

Table 5 summarizes the computational cost for single- and multi-fidelity approaches
for all the three cases. It is evident that, under different uncertainty levels and hyper-
parameter settings, the multi-fidelity approach provides the same level of accuracy as
the single-fidelity method at 25–30% lower computational cost. Therefore, multi-fidelity
modeling may be an efficient approach for uncertainty quantification, especially when
considering the computational resources and time constraints commonly encountered in
engineering projects.
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Table 5. Comparison of high-fidelity and multi-fidelity evaluations and total cost for different
uncertainty levels.

Case

Single-Fidelity Multi-Fidelity

No. of Evals. Total Eval. No. of Evals. DoE, Infill Total Eval.
DoE, Infill Time [s] Fine Coarse Euler XFoil Time [s]

RANS RANS

A 15, 12 40,500 5, 11 6, 2 100, 0 400, 0 28,320
B1 15, 13 42,000 6, 8 9, 14 100, 1 400, 0 32,822
B2 15, 13 42,000 6, 11 9, 3 100, 2 400, 0 31,824

4. Conclusions

The manuscript introduces a novel infill technique for multi-fidelity sampling in the
context of surrogate-based algorithms. In particular, the method decouples the identifica-
tion of the new infill sample from the selection of the fidelity level that has to be used for its
performance evaluation. This key characteristic distinguishes the proposed technique from
the majority of existing multi-fidelity schemes which typically rely on a single multiplicative
acquisition function. Consequently, the proposed algorithm avoids the risk of continuously
sampling from a lower fidelity level in case its computational cost is significantly lower
compared to others. Another relevant novelty introduced in this study is the use of the
Jensen–Shannon divergence for quantifying the accuracy of the different fidelity levels.

The efficacy of the proposed sampling method was successfully tested in both surrogate-
based optimization and uncertainty quantification scenarios. In the optimization test prob-
lem, a multi-fidelity surrogate-based optimization algorithm was used for aerodynamic
shape optimization with the aim of maximizing the lift-to-drag ratio. The solution resulting
from the proposed multi-fidelity sampling is compatible with the optimal solution ob-
tained with a standard single-fidelity sampling. Notably, the multi-fidelity strategy exhibits
approximately a five-fold reduction in computational cost compared to its single-fidelity
counterpart. Similarly, the multi-fidelity sampling strategy is used for the propagation of
operational and geometrical uncertainties to quantify the mean and standard deviation
of the lift-to-drag ratio. The statistics obtained from the proposed multi-fidelity sampling
approach is not only in accordance with the traditional single-fidelity sampling but also
significantly cheaper to compute than the latter. The investigation also highlighted an
interesting observation, where the correlation between the level of uncertainty in the inputs
and JSDlim can significantly impact the accuracy of the surrogate model and thereby the
estimated statistics.

It is important to clarify that the research outlined in this manuscript focuses solely
on single-objective optimization. Hence, the logic described in this paragraph is tailored
to this specific context. The extension to multi-objective optimization is currently under
development, and it will be probably presented in a future publication.
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Abbreviations
The following abbreviations are used in this manuscript:

CFD computational fluid dynamics
Cl lift coefficient
Cd drag coefficient
Cl/Cd lift-to-drag ratio
DoE design-of-experiment
EI expected improvement
JSD Jensen–Shannon divergence
KLD Kullback–Leibler divergence
L list of available fidelity levels

Lacc
list of fidelity levels whose surrogate models are sufficiently accurate
at the infill sample location

PoF probability of feasibility
RANS Reynolds-averaged Navier-Stokes
SBO surrogate-based optimization
SBUQ surrogate-based uncertainty quantification
teval evaluation time
UQ uncertainty quantification

Appendix A. Gaussian Process Regression

We outline the process for constructing a Kriging surrogate model using SMARTy.
Detailed steps can be found in the reference literature [34] and the references therein.
Kriging assumes that the true functional relationship y : D → R between the inputs
x ∈ D ⊆ Rd and the corresponding scalar-valued output y(x) ∈ R is a realization of a
random function,

Y(x) = g(x)β + ϵ(x), (A1)

where g : Rd → Rp is a known regression model, β is the unknown regression parameter
vector, and ϵ(x) is a Gaussian process with zero mean and known covariance function
given by a known stationary spatial kernel:

Cov[ϵ(x), ϵ(x′)] = σ2Rθ(x, x′), (A2)

where Rθ(x, x′) is the correlation kernel, and σ2 is the marginal variance. SMARTy consists
of various kinds of covariance function implementations. In this work, we use one such
kernel called the Gaussian Exponential kernel [35]:

Rθ(x, x′) =
m

∏
k=1

exp(−θk|xk − x′k|
pk ), with θk ∈ R+, pk ∈ [1, 2], k = 1, . . . , m (A3)

with θ as the unknown correlation parameters [3].
The predictor in Kriging is identified as the optimal linear unbiased estimator and can

be reformulated as follows:

ŷ(x) = g(x)β̂ + r(x)⊤R−1(Y − Fβ̂), (A4)

where R is the correlation matrix, Y is the vector of observed data, F is the matrix of
regression vectors, r(x) is the vector of correlations between sample locations and the new
location x, and β̂ = (FT R−1F)−1FT R−1Y.
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The selection of correlation parameters θ significantly influences the Kriging predictor.
Typically, these parameters are determined through the maximum likelihood estimate [36].
The mean squared error (MSE) of the Kriging estimator at a location x ∈ D is computed
using the likelihood-optimal parameter:

MSE(x) = σ2(1 + u⊤(F⊤R−1F)−1u − r(x)⊤R−1r(x)), (A5)

with u = F⊤R−1r(x)− f (x) as an estimate for the prediction error variance at location x.
A hierarchical surrogate model integrating multiple data fidelity levels resulting in a

variable-fidelity model is implemented in SMARTy [8]. This approach efficiently utilizes
high- and low-fidelity data. In the context of Kriging, a low-fidelity model serves as a
global trend, formulated as g(x) = ŷl f (x). The multi-fidelity Kriging predictor can be
expressed as,

ŷ(x) = ŷl f (x)β̂ + r(x)⊤R−1(Y − Fβ̂), (A6)

with F =
[
ŷl f (x1), . . . , ŷl f (xn)

]T
.
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