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Abstract: This study advances the field of infectious disease forecasting by introducing a novel
approach to micro-level contact modeling, leveraging human movement patterns to generate realistic
temporal-dynamic networks. Through the incorporation of human mobility models and parameter
tuning, this research presents an innovative method for simulating micro-level encounters that closely
mirror infection dynamics within confined spaces. Central to our methodology is the application
of Bayesian optimization for parameter selection, which refines our models to emulate both the
properties of real-world infection curves and the characteristics of network properties. Typically,
large-scale epidemiological simulations overlook the specifics of human mobility within confined
spaces or rely on overly simplistic models. By focusing on the distinct aspects of infection propagation
within specific locations, our approach strengthens the realism of such pandemic simulations. The
resulting models shed light on the role of spatial encounters in disease spread and improve the
capability to forecast and respond to infectious disease outbreaks. This work not only contributes to
the scientific understanding of micro-level transmission patterns but also offers a new perspective on
temporal network generation for epidemiological modeling.

Keywords: contact networks; temporal networks; micro-level encounter modeling; human mobility
models; pandemic research; Bayesian optimization

1. Introduction

The study of mobility patterns and the formation of complex contact networks remains
a cornerstone in epidemic research, providing important insights into the dynamics of
disease spread and informing mitigation strategies and public health policies [1–4]. This
recognition has been underscored by the global COVID-19 pandemic, where the analysis of
contact networks has played a pivotal role in forecasting the virus’s trajectory [5–7]. These
networks attempt to capture the essence of human interactions, yet they often simplify
the granularity of individual movements and encounters through high-level abstractions.
The challenge of observing real-world contact networks directly has led to a demand for
accurate simulation models that can replicate infection propagation properties of temporal
networks observed in different settings.

In advancing our previous work [8], this paper extends the exploration of micro-
level contact modeling by integrating sophisticated human mobility models (HMMs).
These models are specifically designed to mimic the movement patterns of individuals
within constrained spaces, making them ideally suited for generating temporal contact
networks that reflect the nuances of specific locations. Our approach enriches the existing
methodologies by utilizing temporal-dynamic networks constructed from observed real-
world contacts and applying Bayesian optimization to fine-tune the parameters of our

Entropy 2024, 26, 703. https://doi.org/10.3390/e26080703 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26080703
https://doi.org/10.3390/e26080703
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-9226-0050
https://orcid.org/0009-0000-7453-9517
https://orcid.org/0000-0003-1731-0251
https://orcid.org/0000-0003-0833-7989
https://doi.org/10.3390/e26080703
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26080703?type=check_update&version=1


Entropy 2024, 26, 703 2 of 21

HMMs. This optimization ensures that the generated networks closely emulate infection
dynamics of their real-world counterparts.

We build upon our foundation of employing simple micro-level encounter mod-
els using synthesized networks, now enhanced by the inclusion of real-world data and
advanced analytical techniques, as well as more sophisticated encounter models. This
progression allows for a more nuanced understanding of encounter patterns and their
implications for epidemic spread. The analysis of topological network features, infection
curves, and the interpretation of optimized hyperparameters represent significant parts of
our methodology. These advancements can improve the accuracy of epidemic forcasting by
integrating location-specific micro-level infection characteristics into large-scale infection
spreading simulations. Notably, existing pandemic simulation models, such as Open-
ABM [9], Covasim [10], and Memillo [11], oversimplify infection propagation principles
when modeling contacts and infection transmissions in confined spaces. Our approach
accounts for the unique nuances and characteristics of different confined environments,
enabling improved epidemic forecasting simulations, and, therefore, can support investiga-
tions on public health interventions and contact-tracing efforts. The key contributions of
our paper include the following:

• The generation of temporal-dynamic networks that are based on a range of micro-level
encounter models. This includes advanced HMMs designed to simulate infection
properties as well as network characteristics in confined locations with high fidelity,
alongside simpler models.

• The introduction of Bayesian optimization for hyperparameter selection in HMMs, a
novel approach aiming at generating temporal-dynamic networks for confined spaces.
This strategy focuses on accurately replicating the infection propagation dynamics
observed in real-world contact networks, serving as a cornerstone in enhancing the
realism and relevance of large-scale epidemic simulations.

• The employment of various network metrics for both the optimization of our models
and their comprehensive evaluation, coupled with a thorough analysis that demon-
strates the capability to effectively parameterize HMMs using real-world network
data. This integrated approach not only validates the effectiveness of our networks in
mimicking real-world phenomena but also identifies certain models as particularly
well-suited for specific types of locations.

The structure of this paper is organized as follows: Section 2 sheds light on existing
methods employed in micro-level encounter modeling and explores HMMs as temporal-
dynamic networks. Following this, the methodology section, Section 3, then proceeds
to introduce our approaches to the modeling of micro-level contacts as well as the data
used in our experiments. The results section, Section 4, compares the outcomes of various
techniques we have employed in the capability of generating contact networks with realistic
infection propagation properties. We discuss our findings, the limitations of our approaches,
as well as the potential use for future pandemic modeling in Section 5. Finally, Section 6
summarizes our work and provides an outlook on future work.

2. Background

In the following section, we spotlight investigations focused on the modeling of micro-
level encounters as contact networks. In the context of this paper, micro-level contact
modeling refers to the creation of contact networks between individuals, who encounter
each other in limited environments such as supermarkets, offices, or trains. We discern
the primary contributions of each methodology and analyze their respective limitations.
Subsequently, different HMMs are introduced

2.1. Existing Approaches to Micro-Level Encounter Modeling

Two large pandemic simulation models, OpenABM [9] and Covasim [10], introduced
the concept of multi-layer networks. Both models were used to investigate COVID-19
dynamics and test different intervention strategies. The multi-layer network approach uses
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census data to build a synthetic population on an urban scale. Contacts are generated by
different models representing different types of interactions and environments in daily life.
Covasim generates fully connected networks within households, small-world networks
on the community and work level, and disconnected clique networks representing classes.
Similarly, OpenABM employs fully connected networks at the household level, random
networks for communities, and small-world networks for occupations. Both models under-
stand the necessity for different micro-level approaches in different locations. However,
they choose simplistic approaches that are grounded in small-world and random networks,
which cannot accurately reflect the dynamics of micro-level interactions, proving the need
for further research in that domain.

A study conducted by Klise et al. [12] harnessed mobility data to construct micro-
level person encounters. This approach considers temporal intersections of individuals at
locations, as well as the type of location. The authors differentiate three location types, with
each being associated with three basic transmission probabilities. A final edge-transmission
weight is computed by combining the location-dependent transmission risk and a score
derived from the intersection time of two individuals. However, for any given location, the
final transmission dynamics are solely dependent on intersection times, overlooking the
spatial attributes of the location and human movement patterns.

Müller et al. [13] attach an established data-driven transportation model to an infection
model, incorporating factors such as mask usage and air exchange rates specific to different
location types and sub-spaces. To model micro-level contact encounters, the approach
divides locations into sub-spaces of predetermined capacity, giving rise to a contact network
characterized by cliques. While this leads to a sophisticated model for location-based
person-to-person encounters, it requires access to mobile phone data and does not fully
account for the diverse encounter patterns that different location types exhibit.

The dynamics of disease spreading in various indoor environments have also been
explored by several studies using sophisticated simulation techniques [14–17]. Notably,
these investigations have aimed to provide insights into transmission patterns and infection
potentials in specific settings where a high amount of information is available. However, the
effectiveness of such approaches relies on available and accurate information, e.g., layout,
structure and architecture of the location under investigation, which limits its applicability
to settings with varying spatial configurations.

Up until now, the landscape of micro-level contact modeling has been characterized by
two predominant trends: network generators that mainly rely on time spent at locations as
well as the associated capacities and complex physical simulations necessitating substantial
data and computational resources for agent-based modeling. While the former overlooks
important interaction dynamics, the latter is resource- and data-intensive and may not be
feasible in many scenarios. In the methodology section, Section 3, we outline approaches
to model location-specific encounter patterns capable of capturing significant interaction
dynamics while maintaining low computational cost.

2.2. Human Mobility Models

Accurately modeling human mobility is crucial in understanding and forecasting the
dynamics of infectious disease spread, but also in other domains such as communication
networks and urban planning. The development and refinement of mobility models
provide essential insights into the complex patterns of human movement. These models
serve as the backbone for simulating scenarios that reflect real-world behaviors, potentially
addressing issues of micro-level encounter models recently used in epidemic simulations.
In the following, four HMMs are presented, which were used in our study:

Random Waypoint (RWP) [18] is a foundational mobility model where individuals
randomly select destinations and travel towards them at constant speeds that are drawn
from a uniform distribution U (vmin, vmax). After reaching a destination, a pause may occur
before the process repeats. The pause duration is drawn from a uniform distribution
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U (tp,min, tp,max). RWP is valued for its simplicity and provides a baseline for understanding
movement patterns in various contexts.

Truncated Levy Walk (TLW) [19] models human movements as a mix of short, frequent
trips and rare, longer journeys. The trip length l is drawn from a truncated power law with
shape αl and a maximum value of Hl . Similarly, pause times between flights are drawn
from a truncated power law with shape αtp and maximum value Htp . This model accurately
describes the heavy-tailed, power-law distribution of human trip lengths, offering insights
into mobility over large areas and its implications on epidemic spread.

Spatio-Temporal Parametric Stepping (STEPS) [20] abstracts human mobility with a
focus on spatio-temporal preferences. Nodes exhibit preferential attachment to favorite
locations, by structuring the location into sub-spaces. Each agent chooses a default location
Zde f ault; after a certain waiting time, drawn from a Pareto distribution P(tp,min = 1, αtp), a
trip is made where a trip distance d is drawn from

P(D = d) =
ξ

(1 + d)k . (1)

While ξ is a normalization constant, the parameter k reflects how strong nodes are
attached to their default location and their close surroundings. At k = 0, preferential
attachment vanishes completely and nodes choose their sub-spaces randomly. Then,
a random sub-space Zi from all sub-spaces that fulfill d(Zde f ault, Zi) ≤ d gets selected
and the node travels to its location with a speed drawn from a uniform distribution
U (vSTEPS,min, vSTEPS,max). STEPS captures essential characteristics of human mobility, such
as preferential attachment to close-distance areas, and the ability to model small-world
network structures inherent in human interactions.

STEPS with RWP [20] combines the STEPS model and the RWP model. Instead of
nodes not moving within their sub-space, they perform movement according to the RWP
model while waiting for their next trip.

These models serve as crucial tools for our study, enabling the simulation of a wide
range of human mobility behaviors and their impact on epidemic dynamics. By studying
these models in the context of contact networks based on micro-level encounters and
propagation dynamics, we can better understand how diseases spread and develop more
effective strategies for controlling outbreaks.

2.3. Temporal-Dynamic Contact Networks

Temporal-dynamic networks serve as a sophisticated framework that reveals the ever-
changing nature of interactions among individuals [21]. In contrast to static networks,
which offer a snapshot of connections, temporal-dynamic networks capture the intricate
evolution of relationships over time. This real-time depiction introduces a higher level of
realism, as interactions are not treated as fixed entities but rather as dynamic occurrences.
Temporal-dynamic networks prove invaluable in epidemiological studies, as they grant
insights into the spread of diseases over time [22]. By incorporating time-varying edges,
these networks portray the varying transmission potentials at different stages of an epi-
demic. This precision empowers researchers and policymakers to devise strategies for
disease containment and control more effectively.

Temporal-dynamic networks present interactions as evolving sequences, not mere
snapshots [23]. While dynamic networks are gaining traction in pandemic research, many
studies still rely on static networks due to their computational simplicity. Although static
networks can suffice when disease dynamics align with network changes, they can intro-
duce biases. Such biases arise when aggregating variable dynamic contacts, leading to
misrepresentations in potential infection paths. It is debated that static networks might
intensify infection dynamics. On the other hand, some cases are known where temporal
correlations accelerate the dynamics of stochastic processes in dynamic networks compared
to their static equivalent. In [24], infection spreading simulations were performed on an
empirical temporal network of sexual interactions to investigate the spreading of sexu-
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ally transmitted infections. Their findings suggest that, especially in the early pandemic
stage, temporal correlations in the network accelerate infection dynamics leading to higher
outbreak sizes, compared to different variations of static network representations.

3. Methodology

This section outlines the core methodologies that support our study of micro-level
interaction modeling via temporal-dynamic networks. Initially, the infection propagation
model used throughout this study as well as the real-world network data are presented.
We then proceed to describe methods for modeling micro-level contacts. This spectrum
includes simplistic, naive approaches as foundational baselines, alongside more complex
techniques that make use of HMMs.

3.1. Susceptible–Infectious–Recovered Model

The overall goal of this study is the generation of realistic contact networks for confined
spaces, which reflect the infection propagation properties of their real-world counterparts.
For the parameterization of the HMMs used in this study, as well as the comparison
of resulting contact networks, we employed the Susceptible–Infectious–Recovered (SIR)
model [25]. The SIR model is a well-established compartmental model used to analyze
the spread of infectious diseases within a population. It divides individuals into three
compartments: susceptible (S), infectious (I), and recovered (R). The SIR model tracks the
transitions of individuals between these compartments based on their interactions and
the disease’s transmission dynamics. For our evaluation, we utilized a temporal-dynamic
SIR model implemented using the Tacoma framework (https://github.com/benmaier/
tacoma, accessed on 30 July 2024). Tacoma provides a versatile platform for studying
epidemic spreading and other dynamical processes on networks utilizing the Gillepsie
algorithm [26]. We let the epidemic spreading simulations run for a simulated period of
35 artificial days. During this time, we monitored the progression of the infection within
the population and observed how different modeling approaches influenced the spread
of the disease. This SIR-based evaluation allowed us to gain insights into the impact of
micro-level encounter modeling on the topological properties of contact networks and the
resulting epidemic dynamics.

To ensure adequate infection dynamics in our simulations, we set a uniform recovery
rate across all networks, with 1/γ = 7 days, indicating that an infected node typically
recovers within a 7-day period. By selecting β values that would achieve roughly 20%
of infectious nodes at the infection peak, we could maintain a robust dynamic across the
experiments. The chosen β values for the networks in our study—namely, high school,
primary school, office, and supermarket—were 0.007, 0.0013, 0.013, and 0.075, respectively.
Using varied transmission rates allowed us to simulate realistic infection dynamics by
accounting for the distinct nature of each network while ensuring that the desired infection
peak was met.

3.2. Dynamic Network and Mobility Data

In this work, we utilized two distinct data sources to inform and test our models:
temporal-dynamic networks from socio-patterns and supermarket mobility data. We will
now detail these sources and discuss any associated technical limitations. It is important to
note that, to conduct comprehensive SIR simulations across several days, we addressed
the challenge posed by the availability of accurate long-term mobility data. Our approach
involved stacking the temporal contact network data from single days to simulate a contin-
uous span of 35 days. This step was necessary to ensure a fair comparison between different
locations, as the original period of the temporal network datasets used in this study varied
heavily. In environments where individuals typically have assigned, consistent interactions
(e.g., most offices and schools), this method provides a reasonable approximation. While
this approach may not fully capture long-term fluctuations, it still allowed us to create
contact networks with a certain extent in infection dynamics and identify infection potential

https://github.com/benmaier/tacoma
https://github.com/benmaier/tacoma


Entropy 2024, 26, 703 6 of 21

specific to confined spaces. Conversely, in locations with high variability in individual
movement and interactions, such as supermarkets, the infection dynamics likely deviate
more from actual dynamics. We discuss this further in the context of our supermarket
network below.

3.2.1. Socio-Patterns Network Data

We incorporated three real-world datasets for specific settings: a high school net-
work [27], a primary school network [28], and an office network [29]. These temporal-
dynamic networks consist of interactions between individuals over different periods. The
datasets do not record exact arrival, departure, and duration times; these must be inferred
from the timing of the first and last interactions of each node. This means that, for each
person, the arrival time is marked by the occurrence of the first edge, and the departure
time is set by when their last interaction ends. Due to the experimental setup noted in these
studies, the data capture only face-to-face contacts that occur within a range of up to 1.5 m.
Our analysis concentrated exclusively on the recorded physical encounters included in the
datasets. We adopted the temporal resolution of 20 s given by the empirical networks. For
the purpose of this study, we will refer to real-world networks as networks which have been
constructed from observed real-world [27–29].

3.2.2. Supermarket Network Data

In [30], encounters of supermarket visitors were recorded during the COVID-19
pandemic. In addition to encounters, the exact arrival and departure times are provided as
well. The data encompass approximately five hours of encounters.

In contrast to the socio-patterns datasets, the supermarket dataset was created us-
ing ultra-wideband technology instead of radio devices, providing significantly higher
sensitivity. Despite this improvement, individuals still wore the devices in front of their
bodies, leading to potential limitations in detecting interactions when people were posi-
tioned behind one another. As a result, we assumed a similar field of view as in the other
datasets, indicating that the devices can detect encounters within this range. To align with
the temporal resolution of the socio-patterns networks, we aggregated the contacts of the
supermarket network into 20-s intervals.

In our study, which examines the spread of infections within confined spaces, super-
markets were not ideal locations for analysis due to the infrequent visits by individuals,
which inhibits the initiation of infection dynamics. To mitigate this limitation, we also used
receiver IDs assigned to participants during the experiment to keep track of nodes over
multiple days (as explained above, we stacked single days of network data to longer time
spans). This approach allowed us to utilize the supermarket network as a proxy for loca-
tions that attract the same group of visitors but exhibit highly random movement patterns
compared to schools or offices. In general, locations with infrequent individual appearances
are not conducive to modeling the propagation of infections over extended durations, and
are, therefore, more effectively integrated into large-scale simulation frameworks. Nev-
ertheless, our analysis benefitted from including the supermarket case, as it introduced a
distinct nature of interactions compared to socio-patterns networks, allowing us to explore
the adaptability and optimization of our models for differently characterized networks.

3.3. Micro-Level Contact Modeling

This section introduces various micro-level contact models. Initially, we recapitulate
naive approaches from our prior work [8], before advancing to innovative contact modeling
techniques, which leverage HMMs and Bayesian optimization.

While aggregated mobility data may be available, detailed micro-level movements
are typically not available, leaving a gap in accurately modeling the nuanced interaction
patterns that influence infection dynamics. By bridging this gap, micro-level models can
enhance the precision of infection forecasting. In the context of this study, micro-level
encounter modeling aims to generate temporal networks that reflect infection dynamics
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and certain network properties of observed real-world temporal networks. All models
discussed are designed to input arrival and departure times, producing temporal contact
networks that, while maintaining consistent overall node counts, differ in the number and
duration of edges due to varying movement patterns.

Real-world datasets used in this study offered an actual temporal network as a baseline
for validation, essential for the parameterization of HMMs. As already pointed out, we
inferred arrival and departure times in these cases based on a node i’s initial and final edge
appearance, assuming that nodes were not leaving the location between contacts.

Surprisingly, a significant number of brief edge durations could be observed when
nodes that have been isolated for longer periods, such as two hours, were completely re-
moved from the network. Apparently, nodes spent a considerable time without any contact
recorded, even in school environments. This is likely due to the face-to-face nature of the
empirical networks. In [31], a similar experimental-technical infrastructure was employed
as in the empirical networks used in this study, but focusing on temporal networks at
scientific conferences. The study found that contacts were rare during presentations, even
in crowded rooms, because attendees generally do not face each other. This implies that,
in other environments, such as offices and high schools, close proximity alone does not
guarantee that contacts are recorded by radio devices. To ensure that our models accurately
represented this aspect, we chose to model nodes continuously, from their first appearance
to their last in the empirical network, without removal, even if they showed no contacts for
prolonged periods.

3.3.1. Naive Micro-Level Encounter Models

Baseline approach (BASE): our baseline approach delivers the most simplistic and
intuitive way to build contact networks from the arrival and departure times of individuals
at certain locations. A similar approach was described by [12]. In essence, this method
leverages mobility data and individual-specific time allocations at specific locations to
compute intersecting time frames between individuals, subsequently constructing contact
networks. Individuals present at the same location are linked by edges in a contact network.
Transforming this concept into a temporal-dynamic network, we established edges connect-
ing pairs of individuals who coincide at a given point in time within the same location (see
Section 2.3). Under this premise, our approach assumes an equal likelihood of infection for
any pair of individuals who share the same duration of stay at a location. In other words
BASE constructs a fully connected network between all nodes active at time t. Additionally
the contact intensity w influences the weight of an edge. This parameter w is assumed to be
constant for all edges and is determined by the type of location, e.g., locations with a lot of
social interactions like kindergartens or cafes are assumed to have a higher w value than
libraries or supermarkets. A noticeable difference between our approach and the approach
suggested by [12] is that, in our case, nodes are always connected to all other active nodes,
while, in their case, the number of contacts was capped at 20. While, in big locations, both
approaches generate very different networks, they are identical for small locations where
the number of nodes stays below 20 for the majority of the time. This simplified framework
formed the foundation of our exploration, serving as a reference point against which we
compared our more intricate modeling techniques.

Random graph-based approach (RAND): in our random graph-based approach,
similar to [9], every possible edge, meaning any nodes i and j present at the location at time t,
is selected with probability pRAND. Additionally, a contact duration is drawn from a Pareto
distribution P(tcd,min = 1, αcd). Contacts, therefore, have a minimum duration of a one-
time step and follow a power law determined by the shape parameter αcd. This distribution
accounts for the variable nature of interaction durations, resulting in a dynamic and
realistic representation of human encounters when the recurrence of contacts is completely
random. A possible application would be in locations where interactions form mainly due
to uncorrelated movement instead of social relations, like in supermarkets, where the case
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of two individuals being nearby for the entire shopping trip is rather unlikely; however,
frequent but short contacts are to be expected.

Clique-based approach (CLI): we advanced the clique-based strategy of [13] for the
purpose of micro-level encounter modeling. To construct cliques, we utilized a combination
of spatial dynamics and contact patterns. First, individuals are assigned to sub-spaces
within the location, with the parameterizable Npps mirroring the number of individuals
per space. Whenever a node is introduced into the location , it stays in its space and forms
connections to all nodes present in this space, forming tight cliques. To allow contacts
between cliques at every time step, a node changes its space with probability pclique for a
duration that is drawn from a normal distribution N (µ, σ). Afterward, the node returns to
its default space.

Clique-based approach with random substructure (CLI+RAND): cliques from CLI
can be imagined as classrooms, offices, or apartments in residential buildings. Large values
for Npps will generate a high number of contacts, e.g., a classroom with 30 students already
generates 435 edges, at every time frame, due to their fully connected nature. To lower the
density of the clique networks and allow for edge changes, we added our RAND approach
to sit on top of the clique structure. Contacts within cliques are now randomly sampled
according to the procedure explained in RAND. This leads to the formation of cliques
with an adjustable density, where individuals have pronounced edges connecting them
within the clique, reflecting intensive interactions. In contrast, connections outside the
clique are rare, mirroring more sporadic or distant interactions. The underlying idea of
this approach is to encapsulate the nuanced interplay between spatial arrangements and
interpersonal encounters.

3.3.2. Human Mobility-Based Micro-Level Encounter Models

To build temporal contact networks from HMMs, we used an open-source implementa-
tion of RWP and TLW (https://github.com/panisson/pymobility, accessed on 30 July 2024)
that follows the model description provided in Section 2. The STEPS model was integrated
with RWP to form the combined STEPS+RWP model, as detailed in Section 2.2. Since all
models need a confined area for nodes to walk in, we built synthetic locations according
to our empirical networks. We therefore inferred the capacity C of each location. For the
primary school, the high school, and the office networks, we assumed the capacity of the
location to be equal to the number of participants in the experiment. The capacity for the
supermarket network was defined as the peak number of active nodes across all time steps,
which resulted in a capacity of 44. To determine the area based on a location’s capacity,
we utilized values for location-dependent space per person from [13], denoted as ρ. We
developed a quadratic surface based on these values, calculating the area A as A = C × ρ.
For the STEPS-based models, we additionally sub-structured the area into

⌈√
NV/Npps

⌉
sub-spaces in the horizontal and vertical direction, where NV denotes the number of nodes
(see Table 1). This ensures a uniform distribution of sub-spaces across the entire area,
resulting in some sub-spaces potentially containing fewer nodes than the default Npps.

In all HMM-based approaches, we continuously tracked node movements during the
simulation. A contact between two nodes i and j is generated if both contact conditions

Cond.1 : 0 ≤ d(⃗ri, r⃗j) ≤ dmax, (2)

Cond.2a : arccos

(
v⃗i · r⃗ij

∥v⃗i∥ · ∥⃗rij∥

)
≤ φ∗

2
, (3)

Cond.2b : arccos

(
v⃗j · r⃗ji

∥v⃗j∥ · ∥⃗rji∥

)
≤ φ∗

2
, (4)

are fulfilled. Cond.1 ensures that, for nodes positioned at r⃗i and r⃗j, the distance between
them must be smaller than a specified maximum distance dmax to result in an edge. To

https://github.com/panisson/pymobility
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calculate distances between all nodes at every time step, we used the well-known kd-tree
algorithm, utilizing the standard Euclidean distance. Secondly, we wanted to determine
whether the lines of sight of both nodes aligned or not, accounting for the experimental
design outlined in Section 3.2.1. Therefore, we defined their line of sight vectors, v⃗i and
v⃗j, which are always parallel to the latest movement. For all nodes that pass condition
Cond.1, the angles between their lines of sight and the connecting vector r⃗ij = r⃗j − r⃗i
are calculated. If those angles are smaller or equal to one-half of their field of view φ∗,
then conditions Cond.2a and Cond.2b are fulfilled, and a contact between nodes i and j
is generated. Following the conditions from the original studies outlined in Section 3.2,
we set the field of view to 120 degrees, a typical value for the human binocular field of
view, and the maximum contact distance to 1.5 m. The timescale of our simulation was one
second. To align with the timescale of the empirical networks, we established a contact
if nodes met at least once within a 20-s window. Consequently, a contact was considered
ended if nodes lost contact for at least 20 s.

Table 1. Parameters used for different locations and network properties. ρ is the density [m2/node],
and β represents the SIR transmission rate. NV denotes the number of nodes and NE represents the
number of edges in the original real-world network.

Parameter High School Primary School Office Supermarket

ρ [m2/node] 2.0 2.0 10.0 10.0
β 0.007 0.0013 0.013 0.075
NV 327 242 217 539
NE 47,300 60,623 12,162 6660

3.3.3. Bayesian Optimzation for Hyperparameter Selection

To perform hyperparameter optimization, we used the Optuna framework described
in [32]. Optuna employs advanced Bayesian optimization algorithms to identify a set of
parameters from a specified search space that minimizes a designated objective function.
A comprehensive table detailing all tuned parameters and their respective ranges can be
found in Appendix A.1. To evaluate the error generated by a specific model, we focused
on metrics that assess the similarity between the infection dynamics of the empirical
network Ge and the modeled network Gm. The infection dynamics were calculated as
outlined in Section 3.1. Here, Im and Ie denote the number of infected nodes for Gm and Ge,
respectively. We measured both the difference in infection peaks, denoted as ∆Imax, and
the timing difference of these peaks, expressed as ∆TImax , using the following formula:

∆Imax(Im, Ie) =
1

NV

∣∣∣∣max
t

{Ie(t)} − max
t

{Im(t)}
∣∣∣∣, (5)

∆TImax (Im, Ie) =

∣∣∣∣∣∣
arg max

t
{Ie(t)} − arg max

t
{Im(t)}

arg max
t

{Ie(t)}

∣∣∣∣∣∣, (6)

Such that a model achieving a low value for ∆Imax closely replicates the peak number
of infections observed in the empirical network. When a network yields a small value for
∆TImax , it suggests that the timing of the peaks in both the model and the empirical network
align closely, demonstrating that the model effectively captures the empirical infection
dynamics. In general, topologically different networks can generate very similar infection
dynamics. To address this, we also took into account the overall number of edges generated
as well as the similarity in the contact duration distributions. The relative difference in the
total number of edges between two networks is defined as

∆NE(Gm, Ge) =

∣∣∣∣NE, Ge − NE, Gm

NE, Ge

∣∣∣∣, (7)
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where NE, network is calculated using

NE, network = ∑
i,j,t

ai,j, network(t). (8)

To assess the similarity between two contact duration distributions, we utilized the
well-known Kolmogorov–Smirnov (KS) test. The KS test quantitatively determines if two
underlying one-dimensional probability distributions differ significantly. We computed the
difference in the contact duration distribution with

∆tcd(Gm, Ge) = KS(Gm, Ge). (9)

After conducting explorative experiments with various weights and observing the
typical value spectra for each metric, we defined the objective function L(mod) with the
following weights:

L(Gm, Ge) = 5 · ∆Imax(Im, Ie) + 3 · ∆TImax (Im, Ie) + 2 · ∆NE(Gm, Ge) + ∆tcd(Gm, Ge). (10)

All models, except for BASE, in our framework, are stochastic. Consequently, the
outcome of L(Gm, Ge) not only depends on the parameters selected from the search space
but also varies around a mean value. Additionally, SIR runs are stochastic and need to
be executed multiple times. To balance the stochastic variations of the SIR runs and the
network construction, we generated 20 network realizations for a given set of parameters
and conducted 250 SIR runs per network, a number of runs that resulted in stable infection
peaks during our tests. The mean value of all L(Gm, Ge) values (1 for each network
realization) was considered as the objective function value for that trial. For each model,
a total number of 150 trials was computed by scanning the search space for the optimum
parameter set.

Due to the stochastic nature of the model, the final parameter set can still yield slight
differences in the final objective function value. To account for this, we conducted a final
test with 21 networks generated using the optimal parameters. The definitive value for
L(Gm, Ge) was determined as the median among these 21 networks. All model evaluations
within our experiments were applied to these resulting median networks, including final
SIR runs with 10 × NV iterations. Appendix A.1 lists all the model parameters used in the
Bayesian optimization process.

4. Results

This section presents findings from experiments that examined the impact of different
contact patterns on infection dynamics across various scenarios. We used HMMs and opti-
mized them according to our proposed methodology. This approach enabled us to construct
contact networks that replicate infection dynamics and network characteristics observed
in real-world settings. The results were then used to compare the cost values for different
models, with correlations drawn to the corresponding SIR dynamics. We also analyzed the
network properties and outlined the parameters derived from the optimization process.

Following the methodologies described in Sections 3.3.2 and 3.3.3, we fine-tuned
the parameters of HMMs. We performed SIR simulations, running a total of ten times
the number of nodes for each network, to ensure statistically robust outcomes. We
used the high school, primary school, office, and supermarket networks, introduced in
Sections 3.2.1 and 3.2.2.

Figure 1 presents the costs associated with each method as derived from the objective
optimization function. The STEPS and STEPS+RWP approaches consistently achieve the
lowest costs across most types of locations, followed by CLI+RAND and RAND. Notably,
for TLW, RWP, and BASE, performance varies significantly with location type. For instance,
TLW achieves costs lower than 1.5 for the supermarket location but exceeds a cost of 10 at
other locations. This variability highlights the location-dependent performance of models,
a topic we will explore further in Section 5. Overall, the high school network presents the
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greatest challenge for the tested models, followed by the office network. Conversely, the
primary school and supermarket networks yield the lowest costs across all tested models.
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Figure 1. Comparison of cost value for different encounter models. The x-axis shows the encounter
model, while the y-axis depicts the median cost. The results cover an office, a high school, a primary
school, and a supermarket. The median cost is used to account for variability in the stochastic
processes involved in generating the networks (see Section 3.3.3).

Although inherent randomness in both the SIR evaluations and our network models
may lead to deviations from the median in the final 21 runs, the results demonstrate reliable
consistency. This consistency is evidenced by the 95% confidence intervals, which do not
exceed 13% above or below the median value. This indicates that our model’s performance
is stable, as 95% of the expected cost values fall within these error bars shown in Figure 1.

Infection dynamics are driven by the transmission probability parameter β and re-
covery probability parameter γ. To verify that our top model, STEPS, performs well
irrespective of these parameters, we examined its performance across various β and γ
combinations. Specifically, we tested seven different β values for each location, combining
each β value with three γ values (1/γ = 4 days, 1/γ = 7 days, and 1/γ = 10 days) to
reflect recovery on average after 4, 7, and 10 days. Observing only minimal fluctuations in
L, the results showed good adaptability to different β and γ values. For detailed results,
see Appendix A.4.

Table 2 details the parameters of the STEPS and STEPS+RWP models, as discussed in
Section 3.3.2, optimized using the Bayesian optimization strategy detailed in Section 3.3.3.
For the high school network, the STEPS model yields an Npps value of 27, compared to
39 for the primary school, suggesting a higher density of individuals per unit space in the
primary school. For the STEPS+RWP model, the Npps for the high school is 21, while it is
22 for the primary school, showing no pronounced difference.

The attractor strength k for the primary school is greater in the case of the STEPS model,
showing a value of 9.974 for the primary school and 4.387 for the high school, while for
STEPS+RWP, the primary school has an attractor strength of 7.870 compared to 8.128 for the
high school. While, for STEPS+RWP, again, no strong difference is observable, the attractor
strength of STEPS suggests that individuals in primary schools are more tightly bound
to specific spaces and less likely to change the space compared to those in high schools.
Besides Npps and k, the models show similarities in the αtp value, which determines the
shape of the Pareto distribution for pause times. A larger αtp will result in more movement,
as the pause times between movements are decreased. As a consequence, the higher the αtp

value, the more short-term contacts occur. Both models show higher values for the primary
school compared to the high school. This indicates that the likelihood of short-term contacts
is somewhat greater in the primary school setting. The STEPS model, especially, which
shows the lowest cost for most locations, reflects the distinct characteristics of high schools
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and primary schools by accounting for shorter, more frequent contacts in the primary
school, along with a tighter adherence of primary school children to their default spaces.

Table 2. Comparison of parameters resulting from Bayesian optimization procedure for STEPS
and STEPS+RWP.

Location
STEPS STEPS+RWP

N pps k αtp N pps k αtp tp,max [s]

High school 27 4.388 0.421 21 8.128 0.120 3588
Primary school 39 9.974 0.613 22 7.870 0.520 3600
Supermarket 20 2.387 2.887 24 9.161 2.172 24

Office 24 2.881 0.768 40 5.120 0.346 317

In the supermarket scenario, the Npps values for both STEPS and STEPS+RWP are
on a similar scale, with 20 for STEPS and 24 for STEPS+RWP. However, the attractor
strengths between the two models differ strongly. STEPS has an attractor strength of 2.387,
while STEPS+RWP uses a much stronger value of 9.161. Despite this, the αtp values are
similarly high, with STEPS at 2.887 and STEPS+RWP at 2.172. Furthermore, the parameter
tp,max, used only in STEPS+RWP, is considerably lower in the supermarket scenario (24 s)
compared to other locations, where it exceeds 1000 s. This constant movement causes
individuals to have very short inter-contact periods, while also experiencing very brief
contacts. Besides tp,max, αtp clearly exceeds for the supermarket compared to the other
locations. With αtp = 2.887 for STEPS, and αtp = 2.172 for STEPS+RWP, both models
introduce a high number of short-term contacts. In contrast, both models show αtp values
ranging from 0.1 to 0.8 for all other locations. These differences align with the nature of the
underlying location characteristics: supermarkets are characterized by frequent short-term
encounters, while schools and offices tend to have longer-lasting interactions. In the office
network, the k values are relatively low, with 2.881 for STEPS and 5.120 for STEPS+RWP.
The parameter αtp is notably higher in this setting for STEPS, at 0.768, compared to other
locations. This suggests that the STEPS approach indicates a higher frequency of short-term
contacts in offices than in school environments, but significantly less than those observed
in supermarket scenarios. The STEPS+RWP model has an αtp value of 0.346, positioning it
between the values found in high schools and primary schools.

To explore the correlation between the computed costs and the SIR curves generated
by the parameterized models, Figure 2 illustrates the SIR curves for the temporal contact
networks derived from various encounter models. Each subplot’s legend indicates the
corresponding cost for each model. Models with a cost of up to 1 demonstrate precise
replication of infection dynamics in terms of both timing and extent, e.g., STEPS in the
primary school network scenario. A cost ranging from 1 to 2 still indicates some similarity
to the infection propagation properties of the real-world network, such as STEPS in the case
of the office network, yet deviations from the baseline infection dynamics can be observed.
Costs exceeding higher values tend to result in infection dynamics that significantly diverge
from real-world dynamics, as observed for RWP in the high school scenario. Nonetheless,
our methodology proved effective, as we were able to apply Bayesian optimization and
HMMs to deploy encounter models that generate temporal networks reflecting properties
of realistic, location-specific infection dynamics.

Figure 3 illustrates the outcomes of applying the parameterized models STEPS,
STEPS+RWP, and RAND to the four selected locations, focusing on not only SIR curves
but also the probability density functions of contact durations and edge counts in both the
generated and real-world networks. Contact durations and edge counts for all models can
be found in Appendixes A.2 and A.3. The STEPS approach successfully produces temporal
contact networks that emulate real-world SIR curves, with the greatest deviations observed
for the office network. The outcome for STEPS+RWP is comparable, though it also shows
a significant deviation of the SIR curve and contact durations in the high school case. The
RAND approach mostly captures the temporal peak in infection but results in a higher
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number of infections across most locations. In fact, the RAND approach-based networks
tend to underestimate edge counts but result in a network topology associated with higher
infection dynamics than the real-world counterpart. This, again, underscores the critical
role of network topology in shaping SIR dynamics, beyond mere connectivity levels.
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Figure 2. Comparison of SIR curves for different models and empirical networks (EMPs) across
various locations: high school, office, primary school, and supermarket. The x-axis represents time
in days (t[d]), and the y-axis represents the proportion of infected nodes (I/NV ). The legend includes
cost values associated with each approach, and EMP represents the ground truth. (a) High School;
(b) Office; (c) Primary School; (d) Supermarket.

Although our models do not yet account for the exact temporal distributions of edge
counts (as observed in Figure 3), they can already produce realistic infection dynamic prop-
erties. We anticipate that incorporating additional network measures will further improve
our modeling capabilities. An analysis of this limitation is provided in the discussion
section. Notably, in the supermarket scenario, where the arrival and departure times of
each individual were available (see Section 3.2.2), our models successfully reflected the
temporal aspects of the edge count distribution.

In regard to the contact duration distributions, the office and supermarket networks
especially show the greatest deviations from the ground truth. STEPS manages to replicate
these distributions for the primary school and the high school locations to a large extent.
Interestingly, while the RAND model generally underestimates the edge counts, the contact
duration distributions are varying, with an overestimation of contact durations in the
supermarket case, and a strong underestimation for the high school.
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Figure 3. Comparison of STEPS and STEPS+RWP with the empirical network (EMP). The leftmost
column shows the SIR curves, with the proportion of infected individuals (I/NV) on the y-axis
and time in days (t[d]) on the x-axis. The middle column displays the probability density function
(PDF), with the contact duration on the x-axis. The rightmost column depicts the normalized edge
counts (NE(t)), with time in hours (t[h]) on the x-axis. All depicted edge counts are smoothed over
20 time steps. (a) High School; (b) Office; (c) Primary School; (d) Supermarket.
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5. Discussion

The results of our study demonstrate that employing HMMs and Bayesian optimiza-
tion can effectively create dynamic temporal networks that mirror infection dynamics and
certain network characteristics of temporal-dynamic networks constructed from observed
real-world contacts. The high degree of interpretability of the optimized hyperparameters,
coupled with the ability to control model parameters, underscores the robustness and utility
of our approach. By incorporating detailed, micro-level encounter data, our methodology
contributes significantly to enhancing the reliability and precision of infection forecast-
ing models. This is particularly crucial for improving responses and strategies in future
pandemics, ensuring that interventions are both timely and based on robust, data-driven
insights. Our results not only validate the effectiveness of our modeling approach but also
highlight the importance of granular contact networks for accurately predicting the spread
of infectious diseases across various locations. Overall, the availability of fast, simple,
and interpretable models is essential for rapid response in pandemic situations, a need
our study addresses. These models can easily be parameterized and quickly deployed,
providing effective solutions, even when data are scarce.

The examination of the optimized parameters, detailed in Table 2, allows for inter-
pretability. One notable observation is that the model incorporates parameters that align
with real-world characteristics of different locations. For instance, primary schools typically
have fixed classrooms, while high schools often feature dedicated rooms for specific sub-
jects. Additionally, the likelihood of interaction with individuals from other classes might
be higher, particularly in courses like language classes where class assignments may vary.
This tendency is reflected for all parameters, the attractor strength k, the Pareto distribution
shape value αtp , and the Npps value. Nevertheless, it is conceivable that a different set
of parameters could theoretically produce similar infection dynamics. Furthermore, this
interpretation is highly driven by the characteristics of the reference locations used, which,
in our case, are based in western countries. Thus, to achieve a deeper understanding and
validation, further evaluation and additional experiments are essential.

As discussed in Section 4, the model representation of a supermarket exhibited a
significant difference in the k parameter between simulations using STEPS with and without
the RWP component. Specifically, while STEPS modeled the supermarket with a k of 2.387,
STEPS+RWP utilized a value of 9.161. The likelihood of individuals staying within their
default space is, therefore, higher with the STEPS+RWP model compared to STEPS. This
generally creates a more distinct clique structure, where nodes in the same space are more
likely to connect. However, both models seem to address the nature of short-term contacts
by setting the parameter αtp so high that all individuals are effectively in constant motion.
This approach leads to frequent but short-term contacts. In this case, it does not matter
whether these contacts occur within a single space or across different spaces, as both
models can create temporal network topologies that reflect the properties of the ground
truth network. Nevertheless, all interpretations must be approached with caution due to
the high degree of interdependence among the various parameters.

When comparing edge counts generated by different models across various locations
to the real-world counterparts, the supermarket scenario exhibited the highest level of
similarity. This is attributed to the availability of precise arrival and departure times,
as highlighted in Section 3.2.2. The accuracy of this information is significant because
individuals can only encounter each other when they are present at the same location. For
the high school, primary school, and office networks, however, the arrival and departure
times are inferred from the first and last edges in the data. Conversely, in the supermarket
scenario, knowing the exact number of individuals who might meet leads to more accurate
modeling of edge counts over time. We assume that the availability of exact arrival and
departure times would enhance the performance for other real-world networks, resulting
in more consistent network characteristics and SIR outcomes.

The RWP and TLW mobility models generally align with the concept of random move-
ment, where individuals randomly select destinations, move towards them, and then pause
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for varying durations before repeating the process. This characteristic can explain why these
models delivered moderate results in our experiments with the supermarket network, yet
failed to capture the dynamics of other real-world networks like offices, high schools, and
primary schools. In the supermarket scenario, individuals often move randomly between
aisles, making the RWP and TLW models somewhat effective at capturing these patterns.
However, these models lack the concept of attachment to specific locations, a key feature in
environments like offices, high schools, and primary schools, where people tend to stay in
defined areas for extended periods. The STEPS approach, which emphasizes a stronger
attachment to certain spaces within a location, better represents these scenarios. Regarding
the cost function, the STEPS+RWP model showed optimal performance in the supermarket
network, highlighted by a close match in network properties and SIR curves. However,
although the model managed the primary school network adequately, it struggled to accu-
rately simulate the high school network. On the one hand, the model demonstrated strong
performance in two very different locations: the primary school and the supermarket. This
adaptability can be attributed to its blend of a random component and a clique-emerging
component, which is driven by individuals being tied to default spaces. On the other hand,
its performance significantly declined in the high school setting, highlighting limitations in
its adaptability. The specific characteristics of our models, particularly the role of the RWP
component in STEPS+RWP, will be the subject of future investigations.

While our study has provided insights into the behavior and characteristics of tem-
poral contact networks, limitations need to be acknowledged. Our current approach of
temporarily stacking networks to represent extended time periods does not accurately
capture the long-term dynamics of infection spread. However, we believe that our method-
ology remains valuable for providing insights and deepening our understanding of how
confined spaces influence infection dynamics. To improve the accuracy of our models,
future studies will need real-world contact data that covers longer periods.

Our parameter optimization strategy, described in Section 3.3.3, aims to replicate
SIR properties, contact durations, and edge counts. Future work should also address
the temporal distribution of edge occurrences to accurately capture typical events in
environments like high schools, offices, or supermarkets (such as rush hours or lunch
breaks). Beyond incorporating exact departure times and specific temporal events, future
models could also benefit from integrating additional human mobility frameworks that
more closely represent the complex behaviors and interactions found in these environments.

6. Conclusions

This paper has presented a comprehensive approach to modeling micro-level contact
networks through human mobility models, focusing on refining the realism and fidelity
of infection spreading in temporal-dynamic networks. By integrating Bayesian optimiza-
tion for hyperparameter tuning and utilizing network metrics, we have demonstrated
the potential of our approach in replicating the infection propagation characteristics of
contact networks. By integrating the nuances of different confined spaces, our work can
contribute to the overall quality of pandemic simulations and improve the reliability of
forecasting models.

The discussion has highlighted the strengths of our methodology, including the capa-
bility to optimize HMM parameters using real-world network data, an analysis of network
metrics, and the interpretation of optimized model parameters. These advancements
pave the way for a more nuanced understanding of how different micro-level encounter
models impact the spread of infectious diseases. However, the study also acknowledged
limitations, such as the constrained scope of our experiments and the need for broader
validation across diverse locations and scenarios. Besides expanding the dataset, exploring
additional models, and integrating our approach into larger-scale epidemic simulations
with multiple locations, future work could incorporate temporal events specific to certain
location types, such as lunch times in offices and peak hours in supermarkets, to better
reflect real-world dynamics.
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In conclusion, this paper contributes to the field of epidemiological modeling by
offering a framework for generating contact networks that align with infection propagation
characteristics observed in temporal contact networks constructed from real-world contacts.
Our model can be particularly useful for regions or countries where such detailed data are
unavailable, providing valuable insights through simulated scenarios. Our work fills a gap
by providing a method to model infection dynamics in confined spaces, thereby supporting
larger-scale epidemic simulations and forecasting models.
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Appendix A

Appendix A.1

Table A1. Parameters used for HMMs and naive encounter models. Depicted parameter ranges
were used for Bayesian optimization.

Parameter Methods Value Range Short Description

w BASE [0, 0.01] Contact intensity, probability to propagate virus
within one TU is βw.

pRAND RAND , CLI+RAND [0.00001, 0.01]
If an edge is possible, i.e., both nodes are present
at location at the same time, how likely it is that
this edge occurs.

αcd RAND , CLI+RAND [0.1, 10.0] Shape of the Pareto distribution that contact
durations are drawn from.

pCLI CLI+RAND [0.0001, 0.01] Probability for node to change space per TU.

µ CLI+RAND [5 TU, 720 TU] Mean of normal distribution that time spent at
non-default location is drawn from.

σ CLI+RAND [1 TU, 100 TU] Variance of normal distribution that time spent
at non-default location is drawn from.

Npps CLI+RAND , STEPS,
STEPS+RWP [1, 40] Number of people that have one space as their

default space.

k STEPS, STEPS+RWP [1.1, 10.0] How strong nodes are attached to their default
space and its close surroundings.

αtp STEPS, STEPS+RWP [0.1, 10.0] Shape of the Pareto distribution that pause times
are drawn from.

http://www.sociopatterns.org/datasets/
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Table A1. Cont.

Parameter Methods Value Range Short Description

U (vSTEPS,min, vSTEPS,max) STEPS, STEPS+RWP 0.83 ms−1, 3.2 ms−1,
fixed values [33]

Uniform distribution that travel speed between
spaces is drawn from.

U (vRWP,min, vRWP,max) RWP, STEPS+RWP 0.1 ms−1, 1.0 ms−1,
fixed values [33]

Uniform distribution that travel speed within
spaces is drawn from.

U (0s, tp,max) RWP, STEPS+RWP [10 s, 1 h] Upper limit of uniform distribution that pause
times are drawn from. Lower limit is always 0 s.

αtp ,trunc TLW [−10.0, −0.1] Shape of truncated power law that pause times
are drawn from.

Htp TLW [1 s, 1 h] Maximum value of truncated power law that
pause times are drawn from.

αl,trunc TLW [−10.0, −0.1] Shape of truncated power law that flight lengths
are drawn from.

Hl TLW [10 m, 100 m] Maximum value of truncated power law that
flight lengths are drawn from.
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Figure A1. Contact duration across different locations. The y-axis represents the probability density
function (PDF), and the x-axis indicates contact duration. The legend identifies each model, along
with the difference in contact duration ∆tcd compared to the empirical network (EMP). (a) High
School; (b) Office; (c) Primary School; (d) Supermarket.
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Figure A2. Normalized edge counts across high school, primary school, office, and supermarket
networks. The y-axis shows the normalized edge count (∆NE(t)), the x-axis depicts the time in
days (t[d]). The legend identifies the different models along with the overall difference in edge
counts (∆NE). All depicted edge counts are smoothed over 50 time steps. (a) High School; (b) Office;
(c) Primary School; (d) Supermarket.

Appendix A.4

The variation in the infection parameter β and the recovery parameter γ impacts the
spread of infection. To ensure that our models can adapt to various β, we tested seven
different β values for each location, exploring ranges that result in up to a 40 percent
infection peak. The models demonstrated better adaptability to different β values in
locations where the results were generally more favorable (see Figure 1). Notably, there was
some deviation in the high school scenario, particularly at higher β values. We observed
similar results for the office network. Additionally, the L was plotted against the maximum
infection peak in the lower right part of the figure, showing results for 21 different β-γ
pairs for each location. The depicted β ranges were combined with three different γ values,
1/γ = 4 days, 1/γ = 7 days, and 1/γ = 10 days, to reflect recovery on average after 4,
7, and 10 days. We observed only minor fluctuations around the median cost, indicating
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good adaptability of our model. However, these are preliminary findings, and further
investigation into β–γ values and the underlying reference network’s impact on model
performance is necessary.
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Figure A3. Impact of β and γ values on STEPS’s performance. Results are shown for the high school,
primary school and the supermarket scenarios. Each line shows the infection curve of the reference
network for a specific β value (the exact beta values are provided in the legend). The dotted lines
represent the infection curves of the generated networks. The plot at the right bottom shows the cost
values for 21 β–γ pairs, depicted for each of the three locations.
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