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Abstract: GVT are conducted to identify structural modal models which are used afterwards either 

to validate an existing numerical model or to establish a mathematical substitute model for further 

analysis, e.g. as input for flutter analysis.  The use of experimental substitute models is not based 

on modelling assumptions. However, the system identification methods applied to the test data are 

based on the assumptions of linear and time-invariant systems (LTI). Most often nonlinear effects 

are observed with aerospace structures in a GVT. This would also affect the results of flutter 

analysis and critical flutter speeds. However, considering nonlinear effects in the analysis model 

and subsequent nonlinear simulations might not be feasible shortly before the first flight. This 

work proposes a procedure to perform flutter analysis in time domain with a nonlinear 

mathematical substitute model, which can be derived from experimental data. A numerical model 

of a wing section is considered in this work to assess the presented approach. It is shown that LCOs 

with a fair agreement in amplitude and flight speed of LCO onset in comparison to the nonlinear 

simulation can be obtained. 

1 INTRODUCTION 

Aeroelastic stability analysis is an important aspect in aircraft design and certification. For this, 

numerical models are required which represent the dynamic behavior of the actual structure with 

sufficient accuracy. A correlation of structural models and experimental results from GVT is 

conducted before the aeroelastic analysis. If necessary, parameters of the structural model are 

adjusted in order to improve prediction results [1]. Another approach is to use the experimental 

modal data, identified from GVT, directly for aeroelastic analysis. However, this method requires 

accurate modal parameters such as generalized mass and modal damping. But this method would 

fail when it comes to nonlinear structural dynamics. Aeroelastic stability analysis also assumes 

linear behavior of the structural model and the aerodynamic model, leading to exponentially 

growing vibration amplitudes when passing the flutter critical speed. In this respect, nonlinear 

structural behavior can be beneficial, if for example the system would not show unlimited growth 

of vibration amplitude, but instead would stabilize at reasonably high amplitudes resulting in limit 

cycle oscillations (LCO). When the amplitude and the onset speed of the LCO can be predicted, it 

might be possible to expand the flight envelope [2]. On the contrary, it is also possible that the 

nonlinear behavior results in reduced flutter speeds for high deflection amplitudes. This is an 

important feature which must also be known before the first flight. 
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The nonlinear modelling of mechanical structures is difficult because source and location of 

nonlinearity is often unknown. Thus, direct usage of nonlinear experimental modal data for 

aeroelastic analysis is a promising approach, since no assumptions on nonlinear modelling is 

required. This work investigates whether it is feasible to provide a nonlinear modal model from 

experimental results and will be illustrated in the following based on a simulation model. The focus 

will be on the flutter simulation with this substitute model. How those substitutes models are 

derived experimentally has been indicated in the past [3]. When a nonlinear system is harmonically 

excited at a given frequency with a given response amplitude, an equivalent linear system can be 

derived from curve-fitting the nonlinear response with the fundamental harmonic only. This is then 

repeated for a number of discrete frequencies and amplitudes. From this set of linearized response, 

a set of linear modal models are derived which are then finally combined to a linear parameter-

varying system (LPV) being dependent on the response amplitude itself. Such LPV models can be 

derived from GVT as well. However, this work does not address the generation of LPV models 

but instead the use of an LPV model for flutter analysis of a nonlinear system is investigated. 

A typical wing section with a nonlinear spring, representing a preloaded gap, at the aileron hinge 

line is used as proposed by Breitbach [4]. The subsonic unsteady aerodynamics is governed by the 

Theodorsen function and is transferred to time-domain with the Jones approximation. For this 

model, a nonlinear simulation is set up and also a simulation with an LPV system approximating 

the true nonlinear system. Numerical investigations in vacuo with moment excitation as well as 

aeroelastic time domain analysis are conducted. Both models are then compared to assess whether 

the LPV system is able to reproduce the results from the nonlinear simulations. 

2 THEORETICAL BACKGROUND 

Nonlinear assessments are made during GVT in order to characterize the structure under 

investigation. Those are detected with swept sine excitation or sinusoidal excitation [5]. From 

those measurements, a nonlinearity curve is derived with eigenfrequency and damping as a 

function of the strength of excitation. It will be shown how this curve is connected to describing 

functions and how this is then converted into a simulation model. 

 

Figure 1 Nonlinearity plot for an aileron mode of a glider from GVT. Left: variation in Eigenfrequency, right: mode shape plot. 

Figure 1 left presents the nonlinearity plot for the eigenfrequency of an aileron mode of a glider, 

measured with normal modes tuning (PRM), as proposed by this author [6]. The force level is 

stepwise increased and the harmonic excitation frequency is automatically tuned, so the phase lag 

between excitation force and acceleration response is 90 deg. The angular deflection of the aileron 
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is estimated from translational acceleration measurements at the hinge line and the trailing edge 

and the distance between the acceleration sensors. The frequency clearly depends on the actual 

deflection amplitude and decreases with higher amplitudes. The corresponding mode shape is 

shown in the right plot in Figure 1. Green arrows in the middle represent the oscillation of the 

control stick and the blue arrows on the wing illustrate the oscillation of the ailerons. The usage of 

these experimental findings in further numerical aeroelastic predictions is not straight forward. 

One could use lowest response level as linearized eigenfrequency for small amplitudes, i.e. 

underlying linear system. Or assuming highest amplitude response as linear equivalent, since the 

aircraft must be flutter free for high amplitudes. Best would be the usage of the whole measured 

curve for subsequent aeroelastic analysis, which requires a nonlinear model reflecting the detected 

nonlinearity. If a nonlinear model is not available, the direct usage of the measured experimental 

curve could improve the predictions and simplify the mathematical modelling. 

The eigenfrequency shown in Figure 1 depends on the amplitude response of the structure. One 

theory to describe this behavior are the so-called equivalent harmonic linearization. Within this 

approach, a harmonic excitation is assumed and the nonlinear response consisting of fundamental 

and higher harmonics is reduced to the fundamental harmonic response only. This is repeated for 

varying amplitudes and the relation between all reduced responses and excitations forms the 

describing function, where one parameter is linearized for each amplitude [7]. 

An illustrative example of the harmonic linearization is presented in Figure 2. A nonlinear 

restoring force is shown on the left and on the right the input deflection and output force for 1.5 

deg amplitude is displayed, which is in the nonlinear regime of the restoring force. The nonlinear 

response is projected on the fundamental harmonic and shown as reduced response, which can be 

interpreted as expansion into a Fourier Series and cut off after the first harmonic. The relation 

between the input and reduced response is the linearized spring constant for this specific amplitude 

and harmonic excitation frequency. If this procedure is repeated for a range of different amplitudes, 

the harmonic linearization or also describing function is derived as shown in Figure 4 for the given 

amplitudes. 

 

Figure 2 Nonlinear restoring force on the left. Linearization for one given amplitude 

Linear parameter-varying systems represent an ensemble of linear models obtained for a grid of 

discrete values of on one or more governing parameters [8]. As previously discussed, the 

describing function provides a linearization for a range of different amplitudes. Therefore, the 

amplitude can be seen as the varying parameter of the system. This establishes a link between the 
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nonlinearity plot and the describing function. So, the nonlinearity plot, as a result from 

experiments, can be used to build an LPV model and to run simulations with it. In this case, the 

parameter depends on the actual deflection of the system itself, whereas originally the governing 

parameter is an external parameter. 

3 SIMULATION MODEL 

A typical wing section as shown in Figure 3 and mathematically modelled by Theodorsen [9] is 

used for the illustration of the presented approach.  It consists of three degrees of freedom with 

plunge, pitch and aileron rotation. Subsonic flow is assumed so that potential theory is applicable. 

The indicated position of the elastic axis a and hinge axis c are normalized with the semi chord 

length b. The dynamics are driven by the structural dynamics as described in Eq. (1) and the 

unsteady aerodynamics as shown in Eq. (2). The matrix notation is inspired by Perry [10]. The 

Theodorsen function lags the circulatory forces and is formulated in the frequency domain and are 

approximated according to Jones, as given by Brunton [11] in state space form. Breitbach [4] added 

nonlinear springs in order to study the nonlinear dynamics of the wing section. The example with 

preloaded free play as depicted in Figure 2 is used within this work. 

 

Figure 3 Wing section described by Theodorsen [9] 

The equations given by Theodorsen read 

 𝐴𝑠𝑞̈ + 𝐵𝑠𝑞̇ + 𝐶𝑠𝑞 = 𝑃 (1) 

 𝐴𝑛𝑐𝑞̈ + 𝐵𝑛𝑐𝑞̇ + 𝐶𝑛𝑐𝑞 + 𝐶(𝑘)[𝐴𝑐𝑞̈ + 𝐵𝑐𝑞̇ + 𝐶𝑐𝑞] = 𝑃, (2) 

where q is the deflection vector of the wing section and A, B, C are coefficient matrices. Subscript 

s denotes the structural matrices. The subscript nc denotes the noncirculatory matrices for the 

unsteady aerodynamics, which act directly on the structure. Finally, subscript c denotes the 

circulatory part of the aerodynamic forces, which is lagged by the Theodorsen function C(k). The 

deflection vector is defined as (see Figure 3 for orientation): 

 𝑞 = [ℎ 𝛼 𝛽]𝑇 (3) 
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And the structural coefficient matrices are 

 

𝐴𝑠 = [

𝑀 𝑆𝛼 𝑆𝛽

𝑆𝛼 𝐼𝛼 𝐼𝛽 + 𝑏(𝑐 − 𝑎)𝑆𝛽

𝑆𝛽 𝐼𝛽 + 𝑏(𝑐 − 𝑎)𝑆𝛽 𝐼𝛽

] 

𝐵𝑠 = [

𝑐ℎ 0 0
0 𝑐𝛼 0
0 0 𝑐𝛽

] and 𝐶𝑠 = [

𝑘ℎ 0 0
0 𝑘𝛼 0
0 0 𝑘𝛽

] 

(4) 

where k denotes the stiffness for each degree of freedom and c the damping coefficients, which 

are usually set to zero. The inertia properties in As are given in Theodorsen [9]. 

The aerodynamic coefficient matrices for the noncirculatory part are 

 

𝐴𝑁𝐶 = −𝜌𝑏2

[
 
 
 
 

𝜋 −𝜋𝑏𝑎 2 𝑇10

−2𝜋𝑏 (𝑎 +
1

2
) 𝜋𝑏2 (

1

8
+ 𝑎2) −(𝑇7 + (𝑐 − 𝑎)𝑇1)𝑏

2

−𝑇1 𝑏 2 𝑇13 𝑏
2 −

1

𝑝𝑖
𝑇3 𝑏

2

]
 
 
 
 

 

𝐵𝑁𝐶

= −𝜌𝑏2𝑣

[
 
 
 
 
 
0 𝜋 −𝑇4

0 𝜋 (
1

2
− 𝑎) 𝑏 (𝑇1 − 𝑇8 − (𝑐 − 𝑎)𝑇4 +

1

2
𝑇11) 𝑏

0 (−2 𝑇9 − 𝑇1 + 𝑇4  (𝑎 −
1

2
)) 𝑏 −

1

2𝜋
𝑏 𝑇4 𝑇11

]
 
 
 
 
 

 

𝐶𝑁𝐶 = −𝜌𝑏2𝑣2 [

0 0 0
0 0 𝑇4 + 𝑇10

0 0
1

𝜋
(𝑇5 − 𝑇4  𝑇10 )

] 

(5) 

The coefficient matrices of the circulatory term are 

 

𝐴𝐶 = [0] 

𝐵𝐶 = −𝜌𝑏𝑣

[
 
 
 
 
 2𝜋 2𝜋𝑏 (

1

2
− 𝑎) 𝑏 𝑇11

−2𝜋𝑏 (𝑎 +
1

2
) −2𝜋𝑏2 (𝑎 +

1

2
) (

1

2
− 𝑎) −𝑏2 (𝑎 +

1

2
)𝑇11

𝑏 𝑇12 𝑏2 𝑇12  (
1

2
− 𝑎)

𝑏2

2𝜋
𝑇11 𝑇12 ]

 
 
 
 
 

 

𝐶𝐶 = −𝜌𝑏𝑣2

[
 
 
 
 
0 2𝜋 2 𝑇10

0 −2𝜋𝑏2 (𝑎 +
1

2
) −2𝑏 𝑇10  (𝑎 +

1

2
)

0 𝑏 𝑇12

𝑏

𝜋
𝑇12 𝑇10 ]

 
 
 
 

 

(6) 
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The T coefficient are given by Theodorsen [9]. 

Figure 2 plots the nonlinear restoring force of the spring at the aileron, as proposed by Breitbach 

[4]. It is a preloaded free play, where the gap ranges from 1 deg to 3 deg. Figure 4 presents the 

describing function of the nonlinear spring with respect to harmonic motion with zero mean value 

and variable deflection amplitude. The decrease in stiffness indicates a decrease in eigenfrequency 

as observed in the measured eigenfrequency over amplitude plot in Figure 1. 

 

Figure 4 describing function of nonlinear spring 

A drop of the equivalent stiffness is seen when the deflection amplitude reaches the entry of the 

gap at 1 deg. If the deflection amplitude exceeds 3 deg, the stiffness increases again since the 

restoring force also increases again as the end of the gap is passed. 

For the numerical investigations two simulation models of the structure have been set up in 

Simulink. One model represents the full nonlinear system with the nonlinear restoring force, 

whereas the other simulation model is represented as a modal LPV system and depends on the 

deflection amplitude of the system itself. Both models of the structure are then coupled with the 

same linear unsteady aerodynamics based on the equations of Theodorsen and the Jones 

approximation. 

The equations for the structural dynamics are recasted into state space form as follows: 

 
𝑥̇𝑒 = 𝐴𝑒

𝑠𝑠𝑥𝑒 + 𝐵𝑒
𝑠𝑠𝑢𝑒  

𝑦𝑒 = 𝐶𝑒
𝑠𝑠𝑥𝑒 + 𝐷𝑒

𝑠𝑠𝑢𝑒 , 
(7) 

with xe being the state vector consisting of deflection and velocity for the three degrees of freedom. 

And ye comprises acceleration, velocity and displacement as output quantities. The input ue 

represents the forces and moments acting on the wing section. One force and moment act on the 

elastic axis and one moment act on the hinge axis of the aileron. The system matrices are 

 

𝐴𝑒
𝑆𝑆 = [

𝑂 𝐼
−𝐴𝑠

−1𝐶𝑠 −𝐴𝑠
−1𝐵𝑠

], 𝐵𝑒
𝑆𝑆 = [

𝑂
𝐴𝑆

−1] 

𝐶𝑒
𝑆𝑆 = [

−𝐴𝑠
−1𝐶𝑠 −𝐴𝑠

−1𝐵𝑠

𝑂 𝐼
𝐼 𝑂

], 𝐷𝑒
𝑆𝑆 = [

𝐴𝑠
−1

𝑂
𝑂

] 

(8) 
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The unsteady aerodynamics are also put into the form of a state space model with the structural 

deflection, velocity and acceleration as input ua and the three forces and moments as ouput ya, so 

that structural dynamics and unsteady aerodynamics can be put into a feedback loop, as shown in 

Figure 5. 

 
𝑥̇𝑎 = 𝐴𝑎

𝑠𝑠𝑥𝑎 + 𝐵𝑎
𝑠𝑠𝑢𝑎 

𝑦𝑎 = 𝐶𝑎
𝑠𝑠𝑥𝑎 + 𝐷𝑎

𝑠𝑠𝑢𝑎, 
(9) 

The matrices B, C and D are derived from Eq. (2) and matrix A is given by the Jones approximation 

from Brunton [11]. The state space representation of the Jones approximation reads 

 
𝐴0

𝑆𝑆 =
𝑣

𝑏
[
−0.3455 −0.01365

1 0
], 𝐵0

𝑆𝑆 = [
1
0
] 

𝐶0
𝑆𝑆 =

𝑣

𝑏
[0.1081 0.006852] and 𝐷0

𝑆𝑆 = 0.5 

(10) 

Matrix A and C are scaled by v/b in order to transform the Jones approximation to dimensioned 

angular frequencies according to 𝜔 = 𝑘
𝑣

𝑏
. 

Finally, the system matrices for the unsteady aerodynamics results in  

 
𝐴𝑎

𝑆𝑆 = 𝐼⨂𝐴0
𝑆𝑆, 𝐵𝑎

𝑆𝑆 = [𝐴𝑁𝐶 𝐵𝑁𝐶 𝐶𝑁𝐶]⨂𝐵0
𝑆𝑆 

𝐶𝑎
𝑆𝑆 = 𝐼⨂𝐶0

𝑆𝑆 , 𝐷𝑎
𝑆𝑆 = 𝐷0

𝑆𝑆[𝐴𝑁𝐶 𝐵𝑁𝐶 𝐶𝑁𝐶] 
(11) 

with ⨂ being the Kronecker product. The Kronecker product expands the state space model given 

by eq. (10) so that the three circulatory forces are lagged separately. 

 

Figure 5 Block diagrams for simulation models. Left: nonlinear model; right: LPV model with amplitude estimate 

Figure 5 presents the architecture of the simulation models used in Simulink. The left side shows 

the nonlinear model, where the actual deflection of the aileron is fed back through the nonlinear 

function depicted in Figure 2 left. The aileron stiffness in the system matrix is set to zero in this 

case. The right graph shows the architecture of the LPV model, where the system matrices are 

dependent on the actual amplitude of the aileron deflection, as depicted in Figure 4. The amplitude 

of the aileron deflection is estimated as scaled root mean square (√2 𝑅𝑀𝑆) of the aileron response, 

as shown in Eq. (12). 
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This equation is implemented as discrete filter, which allows an online estimate of the aileron 

deflection in order to adjust the LPV system in accordance to the current response amplitude. 

However, the length of the time window T has to be chosen as an additional parameter and is an 

integer multiple of the discrete time step. 

 𝐴𝛽 = √
2

𝑇
∫ 𝛽(𝑡)2𝑡

𝑡−𝑇
𝑑𝑡, (12) 

4 RESULTS 

This section describes the results from the simulation model. A comparison between the LPV 

model against the full nonlinear model is conducted, in order to assess whether the linearization is 

able to capture the nonlinear effects. First, the unsteady aerodynamics is not considered and in 

vacuo force excitation is tested with different sweep excitation levels. From GVT, only a 

mechanical substitute model is identified, so this mathematical model is verified from those 

simulations. Then, aeroelastic simulations are conducted, to assess the ability of the LPV model to 

also predict LCO responses. 

4.1 Mechanical Simulations 

4.1.1 Linearized Analysis 

The linear system with small amplitude response is described first. Looking at Figure 4, one can 

see that the spring behaves linearly if the aileron deflection response remains below 1 deg. For the 

linear system, the first eigenfrequency at 3.56 Hz is the plunge mode, as presented in Figure 6 left. 

The second mode results in pitch with aileron deflection at 15.3 Hz as shown in the middle. At 

18.1 Hz the aileron deflection is seen as depicted on the right. In contrast to the example shown in 

Figure 1, the aileron mode is located at rather high frequency, even above the pitch mode. The 

high eigenfrequency can be explained with a different mounting of the aileron with the wing in 

comparison to the glider shown in the beginning. 

Table 1 modal parameters of the wing section 

 Heave Pitch Aileron 

eigenfrequency 3.56 Hz 15.3 Hz 18.1 Hz 

 

 

Figure 6 Mode shapes of the wing section 

As response amplitudes of the aileron exceed 1 deg, the entry of the gap is reached and the spring 

softens, as indicated in Figure 4. Linearizing the system at different amplitude levels and 

recomputing the modal properties results in a drop of frequencies with amplitudes around the gap 

and increase of eigenfrequencies above 3 deg aileron deflection again, as shown in Figure 7 on the 
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left. The wing bending around 3.5 Hz is not affected at all, whereas the aileron mode at 18 Hz 

clearly changes in frequency. However, the wing torsion around 15 Hz is also affected by the 

aileron stiffness, since the aileron is also participating in the mode shape as seen in Figure 6 in the 

middle. The mode shapes also remain very similar in appearance as sown in Figure 7 right, where 

the MAC value is shown over the aileron deflection amplitude with respect to the linear case. The 

pitch mode drops around 2% in MAC if the aileron oscillates within the gap, means that the mode 

shape is not changing a lot with deflection amplitude. 

 

Figure 7 left:eigenfrequencies with respect to aileron deflection ampiltude. Right: MAC values referenced to linear modes. 

With eigenfrequencies, mode shapes and modal masses, it is possible to build modal models for 

each response amplitude of the aileron. Figure 7 left indicates the 5 mode sets chosen for the LPV 

model of the structure representing the nonlinear system. Those amplitudes at which the mode sets 

are chosen capture significant points, such as the beginning of the drop in eigenfrequency when 

the aileron enters the gap and the amplitude with the minimal equivalent stiffness. The LPV model 

interpolates linearly in between. For the simulations of the mechanical system only, 2 % modal 

damping has been applied to the linear system in order to enable damped response of the system. 

4.1.2 Nonlinear Response Simulations 

The simulation models shown in Figure 5 without unsteady aerodynamics are utilized to compute 

responses to swept sine moment excitation at the aileron. Three excitation levels are chosen to 

assess the applicability of the LPV model. For the first excitation level linear response is expected. 

At the second excitation level a softening effect is expected, where aileron runs into the gap, and 

the third excitation level a stiffening effect is expected, when the aileron leaves the gap again. 

The time step has been set to 10-4 s for the nonlinear simulation. In a sensitivity study it has been 

verified, that the results remain similar if time step is further reduced. The sweep rate is set to 0.5 

Oct/min and the first level is 0.01 Nm to ensure linear behavior. As input location, the aileron has 

been chosen. Now, the simulation model is replaced by the LPV model. The estimate of the 

amplitude of the aileron deflection for the state of the LPV model is crucial. If the filter length is 

too long, the delay is too high and the dynamics are not appropriately represented. If it is too short, 

the amplitude is not estimated correctly or tends to oscillate. As a compromise, the averaging time 

T from Eq. (12) is chosen to be 0.02 s. 
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Figure 8 time domain simulations. Increasing excitation level from left to right (0.01Nm, 0.2Nm and 0.6Nm). 

Figure 8 shows the results from simulations at the three excitation levels. The signal shown is the 

deflection of the aileron. The down sweep excites the aileron mode first and then the pitch mode. 

The result on the left shows linear response. It seems that the LPV system has more damping. The 

plot in the middle with 0.2 Nm excitation force shows that the LPV system is able to capture also 

nonlinear behavior. However, the jump is predicted at a different point in time, which might be 

related to the amplitude estimate of the LPV simulation. But the amplitude at which the jumps 

occurs is approximately the same. The right plot shows the results for the highest force level at 

0.6Nm, where both modes are exhibiting nonlinear behavior, as indicated in Figure 7. Again, the 

LPV system is able to represent the same dynamic behavior, although damping seems to be slightly 

higher and also the jump of the response is predicted at a different point in time but approximately 

at the same response amplitude, probably due to the different damping seen in the linear response. 

Additionally, the responses in the nonlinear simulations show higher harmonics in the nonlinear 

regime, whereas the LPV system is a combination of linear systems and thus, the response does 

not include higher harmonics due to the nonlinear spring. 

4.2 Aeroelastic Simulations 

4.2.1 Linearized Flutter Analysis 

It has been seen in the previous section, that the LPV system is able to represent the nonlinear 

system to some extent. This section includes the aerodynamics as proposed by Theodorsen with 

linearization through Jones approximation. The stability analysis of the linear system is presented 

first. 

Figure 9 shows the results for the flutter analysis of the wing section with small response 

amplitudes. The blue line represents the aileron mode which turns unstable at around 85 m/s. The 

yellow line represents the pitch mode and the green line represents the bending mode. For both 

modes, the damping increases with increasing free stream velocity. 

Figure 10 shows the results for a reduced stiffness at the aileron hinge line with a deflection 

amplitude around 3 deg, as indicated in Figure 4. One can see that the initial eigenfrequencies are 

lower and also the evolution with free stream velocity is slightly different. No crossing between 

the frequencies of aileron and pitch mode appears anymore. More importantly, the aileron mode 

becomes unstable around 80 m/s. The system stiffens again with higher amplitude, which means 

that a limit cycle oscillation is expected here, because flutter speed should also increase again with 

increasing stiffness. 



IFASD-2024-077 

 

 

 

Figure 9 stability diagram for the wing section 

 

Figure 10 stability diagram for the wing section with reduced aileron stiffness 

This is illustrated in Figure 11. The zero crossing in the damping in Figure 10 are found for 

different stiffness variations at different response amplitudes from Figure 7. The dark region 

represents the unstable regime and the bright region is stable. It is seen, that the wing section 

becomes unstable at lower free stream velocity when aileron amplitudes increase. The minimum 

flutter speed is reached at 3 deg aileron deflection amplitude around 80 m/s. After passing the 3 

deg deflection amplitude, the flutter speed increases again. Up to 83 m/s LCOs can occur. For 

example, if the wing section becomes unstable at 82 m/s, the aileron deflection increases and 

stabilizes itself again at a certain amplitude, so that an LCO occurs. It shall be noted that the shape 
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of the boundary between the stable and the unstable regimes in Figure 11 looks similar to the shape 

of the describing function of the nonlinear spring shown in Figure 4. 

 

Figure 11 stability chart with respect to aileron deflection and velocity 

4.2.2 Nonlinear Time Domain Simulations at 82 m/s 

For the LPV system, the coupling has been conducted for each linearization, resulting in 5 coupled 

aeroelastic models. Again, the amplitude of the aileron deflection is fed back for the LPV system. 

For the nonlinear simulation, the time step has been reduced to 10-5 s, since the simulation time 

was shorter. The time step for the LPV model stays at 10-4 s. As disturbance, a 1-cos moment pulse 

at the aileron with different excitation level is chosen. The frequency of the 1-cos pulse was chosen 

to be 15 Hz. 

 

 

Figure 12 time domain simulations of the aeroelastic system at 82 m/s. Increasing disturbance from left to right (4Nm, 40Nm and 

240Nm) 

Figure 12 shows the aileron deflection after applying the disturbance for the two systems. For a 

small disturbance of 4 Nm, both simulations show the same decay. If the disturbance is increased 

to 40 Nm, an LCO occurs and is predicted from both systems. However, the response of the LPV 
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system is estimated at a higher amplitude. The nonlinear system response is around 7 deg in 

accordance with Figure 11. The LPV system on the other hand gives an amplitude of 16 deg. 

Increasing the disturbance even more to 240 Nm amplitude, the result on the right is obtained. The 

response is decaying until the LCO amplitude is reached. Again, a difference in amplitude for both 

systems agree to the middle plot. The overall behavior is predicted well by the LPV system. The 

decay observed is in correspondence with Figure 11, as the starting point is in a stable region and 

the deflection decreases until it reaches a damping of zero. 

The eigenfrequency of the LCO for the LPV system is at 11.84 Hz and from the nonlinear analysis 

at 11.76 Hz. The amplitude distribution of the three degree of freedom are for both simulations 

very similar and the same applies for their phase lag amongst each other. The Results for the LCO 

mode are summarized in Table 2. So, the LCO mode is predicted well by the LPV system. 

Table 2 LCO amplitude ratios and phase lag to aileron response. 

 Heave Pitch Aileron 

NL (11.84 Hz) 0.20 (170 deg) 0.86 (107 deg) 1 (0 deg) 

LCO (11.76 Hz) 0.21 (173 deg) 0.88 (109 deg) 1 (0 deg) 

 

Figure 13 shows the result for the nonlinear simulation at 83 m/s and the LPV simulation at 82 

m/s. The disturbance set to 40 Nm and the LCO amplitude is now in good agreement as well. From 

Figure 11, the sensitivity of the LCO can be seen. The LCO amplitude is given by the upper line 

and increases a lot with increasing wind speed, meaning that this parameter is very sensitive to 

wind speed changes. 

 

Figure 13 comparison of LPV at 82 m/s and nonlinear simulation at 83 m/s 

5 CONCLUSIONS 

In linear aeroelasticity the flutter analysis can be conducted with modal models identified from 

test data. This does not work anymore for nonlinear structures. However, this work gives a proof 

of concept for a procedure that does not rely on a nonlinear structural model. Instead, the nonlinear 

effects are covered by an ensemble of linear substitute models arranged in an LPV system. Such 

an LPV system can be established from experimental modal analysis as it has been indicated in 

the past [3]. 

A wing section with three degrees of freedom, as it is presented by Theodorsen, is used for 

demonstration purposes. The aileron stiffness has been replaced with a nonlinear spring 
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representing a preloaded gap. This example has been proposed by Breitbach and the simulation 

results could be reproduced (Figure 11). From describing function analysis, equivalent linear 

modal models for different amplitude levels of the aileron deflection are derived and assembled 

into an LPV system. The blending from one equivalent linear model to another one is controlled 

in this case by the actual deflection amplitude of the aileron. This LPV system can be also 

assembled from experimental modal data measured at different constant response amplitude levels. 

Purely mechanical simulations and aeroelastic simulations have been conducted and it was shown 

that the qualitative behavior of the nonlinear system can be captured by this simplified LPV model, 

although the amplitude predictions are different. 

In this case, the LPV system has been generated from five equivalent linear systems. During the 

simulation, the response analysis has to switch from the one linear system to another one. When 

using LPV in Simulink, this is all controlled automatically. But in fact, the quality of the numerical 

simulation with LPV systems largely depends on the number of equivalent linear systems and on 

the location of the discrete points in the amplitude range. In this example, the describing function 

was known a priori and the distinct amplitudes to blend from the one equivalent linear system to 

another one was chosen accordingly. However, in a real experiment the describing function is not 

known a priori and thus the required number of equivalent linear systems and the discrete points 

in the range of amplitudes might be difficult to find. Nonetheless, effort has to be spent to obtain 

an experimental describing function of a nonlinear mode of a structure. Once this is available, the 

number of discretization points and their distribution in the amplitude range can be optimized 

based on the curvature of the describing function. 
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