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Abstract

Handling and analyzing massive data sets efficiently is particularly important in the field of earth observation. Nevertheless,
this can be challenging, especially for researchers and developers without a background in high-performance computing
(HPC). The Python library Heat aims at supporting such researchers and developers by providing general-purpose, memory-
distributed and hardware-accelerated array manipulation, data analytics, and machine learning algorithms in Python,
targeting the usage by non-experts in HPC. This paper show-cases how Heat can help to facilitate exploration and processing
of large amounts of data in earth observation on HPC-systems. This is done on behalf of two ongoing applications of Heat
in the context of anomaly detection in remote sensing data of German coastal regions.

Acronyms/Abbreviations
API Application programming interface
CPU Central Processing Unit
DMD Dynamic Mode Decomposition
DLR German Aerospace Center
EO Earth observation
GB Giga Byte (109 Bytes)
GPU Graphics Processing Unit
HPC High-Performance Computing
LOF Local Outlier Factor
PCA Principal Component Analysis
PB Peta Byte (1000 TB, 1015 Bytes)
RAM Random-Access Memory
SAR Synthetic Aperture Radar
SVD Singular Value Decomposition
TB Tera Byte (1000 GB, 1012 Bytes)
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1. Introduction
Processing large data sets has become a crucial compo-

nent in modern science and engineering; this is particularly
true for the field of earth observation and remote sensing.
The German Satellite Data Archive1 (D-SDA), e.g., has
currently a size of more than 20 PB and is growing by
more than 3 PB per year by current and upcoming satel-
lite mission. However, the benefit due to the increasing
amount of available data is accompanied by a growing ef-
fort required for an adequate analysis. For many scientist,
in particular non-experts in HPC, getting the best out of
their data may pose a true challenge.

Many scientific data science workflows are built in
Python on top of the libraries NumPy, SciPy, and/or scikit-
learn, or make use of tools that are based on these libraries.
This setup promises fast prototyping and good maintain-
ability due to the simple API, and—due to NumPy’s
and SciPy’s optimized C-kernels in the background—
competitive performance on CPU. In the big data regime
NumPy’s and SciPy’s limitation to so-called shared mem-
ory parallelism, i.e., parallel execution on the cores of a
single CPU, can pose a severe restriction: due to the limita-
tion to shared memory parallelism, only a single machine,
e.g., a workstation or a single node within a cluster, can be
used; this usually limits the available RAM to not much
more than 1 TB, even on machines with particularly large

1https://www.dlr.de/en/research-and-transfer/research-infrastructure/
d-sda-archive-production-oberpfaffenhofen [Accessed August 21, 2024]
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RAM. Moreover, no advantage can be taken from the huge
speed-ups that can be achieved by using modern GPUs, as
NumPy and SciPy are bound to CPUs.

Under these premises, the Python library Heat2 [1,2] is
being developed since 2018 in a collaborative effort of re-
search groups at the German Aerospace Center, Research
Center Jülich and Karlsruhe Institute of Technology. The
vision behind this library, developed for scientists and by
scientists, is to make array computing, data analytics and
machine learning as easy on a (GPU-)supercomputer as it is
known from NumPy, SciPy, and scikit-learn on a worksta-
tion. As related work we mention in particular the libraries
Dask3 [3], which is also well-known in the EO community,
and Jax4 [4]. For an extensive overview on the ecosystem
of scalable array computing and/or machine learning in
Python we refer to, e.g., [5] or [6].

The remaining part of this paper is structured as follows:
in Section 2 we provide the reader with a brief introduction
to Heats architecture and main features. In Section 3 we
discuss the recent application of Heat in the context of
anomaly detection on earth observation data at DLR. A
brief summary and outlook in Section 4 concludes the
paper.

2. Heat
Heat is a Python library for massively-parallel array

computing and machine learning on CPU/GPU-clusters.
For a technical description of its architecture and program-
ming model we refer the reader to [2], whereas a more
research software engineering-focused exposition can be
found in [6]. At this point we will limit ourselves to briefly
summarising the most important design principles and fea-
tures of Heat from [6, Sect. 3]:

• Multi-node- and GPU-capabilities: operations can be
performed in a multi-node-/multi-GPU-setting (e.g.,
on several nodes of a GPU-cluster).

• Simple API and usage: the simple API mimicks
NumPy/SciPy/scikit-learn and allows for rapid proto-
typing or adaptation of existing NumPy/SciPy/scikit-
learn workflows also by HPC-non-experts.

• Platform independence / Interoperability: as Heat is
mainly based on PyTorch [7] and MPI (via mpi4py
[8]) under the hood, it is interoperable, portable, and
supports hardware of different vendors (e.g., GPUs by
Nvidia and AMD).

2https://github.com/helmholtz-analytics/heat/
3https://www.dask.org [Accessed August 07, 2024]
4https://github.com/google/jax [Accessed August 07, 2024]

Fig. 1: Heats design principles and main dependencies.

• Scientific background: Heat (primarily) targets usage
by scientists and offers the opportunity of collabora-
tion/joint publications with users.

The basic data type in Heat is the DNDarray class, a
distributed-memory- and GPU-capable n-dimensional ar-
ray, mimicking NumPy’s ndarray class. For these arrays,
several creation, manipulation, and analysis routines, as
well as linear algebra operations are available. In addition,
a growing amount of classical machine learning algorithms
is provided—adapted to a massively parallel setting, of
course. Heat allows you to exploit the combined memory
of several machines/devices in a compute cluster ("dis-
tributed memory parallelism"); consequently, huge data
sets can be be handled and processed as a unit, which
would not be possible when being restricted to the mem-
ory available at a single machine/device ("shared memory
parallelism"). Internally, Heat automatically distributes
the data as evenly as possible across the available process-
ing resources (CPUs or GPUs). The numerical examples
in [2,6] indicate that this reduces the overall memory foot-
print and in certain cases also avoids some overhead (w.r.t.
runtime) compared to Dask’s approach to distribute tasks.

Finally, we note that software quality is enforced by
corresponding measures during development (unit tests on
different hardware, monitoring of code coverage, code re-
view, etc.).
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Fig. 2: Top: One of the 363 SAR images showing the
mouth of the Elbe into the North Sea. Bottom: Enlarged
section from the centre of the image.

3. Application to use-cases in earth observation
The DLR project RESIKOAST5 focuses on enhancing

the resilience of the North Sea and Baltic Sea coasts against
the impacts of climate change. Among the predicted chal-
lenges are rising sea levels and an increasing frequency of
extreme weather events such as storm surges, storms, and
heavy rainfall. To address these threats, the project aims
to develop strategies for long-term adaptation and tools
for early risk detection. A key aspect hereby is the detec-
tion of hotspots, i.e., locations with significant changes or
anomalies over time. Detecting these hotspots is crucial for
timely interventions and protection of coastal landscapes,
populations, and infrastructure.

3.1 Use-case I: massively parallel anomaly detection
In the following we focus on two parts of the entire

machine learning pipeline that are both time- and memory-
intensive and thus challenging to scale up to the finally

5https://www.dlr.de/en/sc/research-transfer/projects/resikoast [Ac-
cessed July 29, 2024]

intended amount of data. A time series of 363 SAR images6

(2100× 5660 pixels each) is considered as a prototypical
example that allows to highlight the challenges associated
with scaling up the existing workflows. As an example,
one particular image is shown in Figure 2.

Each image of size 2100 × 5660 pixels contains
11,839,476 (not necessarily disjoint) patches of shape
7× 7 pixels; consequently, given our time series of 363
images, there are 11,839,476 many time series of 363
such 7× 7-patches each. To each of these time series an
instance of the so-called local outlier factor (LOF, [9]) al-
gorithm shall be applied, resulting in 11,839,476× 363
LOF-values. Finally, a patch shall be classified as anoma-
lous if, e.g., its LOF-value is more than two standard de-
viations above the mean over all LOF-values. While the
original images have a size of about 17 GB (in single preci-
sion float data type), the collection of all patches amounts to
roughly 840 GB which makes this a challenging problem,
in particular, because sequential execution of 11,839,476
LOF-instances in a for-loop would take prohibitively long.

3.1.1 Implementation of use-case I
Heat allows to implement this in a scalable way with

minimal effort. The underlying images can be read from an
HDF5-file into a DNDarray of shape (363,2100,5660).
From this another array of shape (11839476,363,49),
containing all the patches, can be easily generated using
the unfold- and reshape-functionality available in Heat.
Scaling up an existing PyTorch implementation of LOF
is straightforward using Heat’s vmap-function that works
analogous to PyTorch’s vmap, but in a multi-node, multi-
GPU setting. In fact, let

def torch_local_outlier_factor(torch_data:
torch.Tensor, n_neighbors: int=10):↪→

...
return lofs

be a PyTorch implementation of LOF, i.e., a function that
computes the LOF-values lofs (a tensor of shape (n,)) of
the given input tensor torch_data of shape (n,m). The
number of neighbours to be used in the LOF-algorithm is
passed as a keyword argument. Then

vmapped_torch_lof =
heat.vmap(torch_local_outlier_factor,
chunk_size=chunksize)

↪→

↪→

yields a callable, vmapped_torch_lof, that takes a
DNDarray of shape (k,n,m), possibly distributed over
multiple CPUs or GPUs along axis no. 0, computes the

6kindly provided by the DLR Microwaves and Radar Institute
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LOF-values of each of the k many n×m-data, and returns
them as DNDarray of shape (k,n). The "vmapped" func-
tion has the same keyword argument as the original one,
i.e., n_neighbors, and the argument chunk_size allows
to determine how many instances of the function to be
vmapped may be performed in parallel on each CPU/GPU.
Having computed the LOF-values, one may easily get an
overview over them by applying standard statistical func-
tions:

mean, std = lofs.mean(), lofs.std()

Finally, a boolean array indicating the anomalies can be
generated by

anomalies = (lofs > mean + 2*std),

and the number of anomalies in total, per time, or per patch,
can be computed by

total = anomalies.sum()
per_time = anomalies.sum(axis=0)
per_location =

anomalies.sum(axis=1).reshape((np1,np2)),↪→

where np1,np2 denote the number of patches in the two
images dimensions, respectively. Note that these lines, as
well as those for computing statistics and determining the
anomalies, are exactly the same as in NumPy. However,
since the output of vmapped_torch_lof is distributed
over several processes and devices, communication be-
tween processes and devices is necessary in the background
to execute the required operations. Nevertheless, Heat
takes care of these aspects internally and hides it behind its
simple NumPy-like API.

3.1.2 Results for use-case I
Since our focus is on scalability w.r.t. increasing vol-

umes of data, we performed a so-called weak scaling study
on both the GPU- and the CPU-partition of DLRs cluster
terrabyte7, respectively. We increase the the amount of
data proportional to the resources used for their process-
ing until the entire data are processed. Consequently, we
process roughly 1

48 of the data (the left 2100× 117 range
of the images, respectively) on one GPU, 1

24 of the data
(the left 2100×235 range of the images, respectively) on 2

7The GPU-nodes are equipped with 2 Intel Xeon Gold 6336Y 24 cores
185 W 2.4 GHz, 1024 GB RAM, and 4 Nvidia HGX A100 80 GB 500 W
GPUs each, and the CPU-nodes are equipped with 2 Intel Xeon Platinum
8380 40 cores 270 W 2.3 GHz and 1024 GB RAM each. Software loaded
as modules: Python 3.10.10, OpenMPI 4.1.5 (Intel compiler 2023.1.0),
CUDA 11.8, SLURM 21.08.8-2. Software installed via pip in a virtual
environment: Heat 1.5-dev (main branch), NumPy 1.26.3, h5py 3.11.0,
PyTorch 2.2.0+cu118, mpi4py 3.1.6, perun 0.6.2.
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Fig. 3: Run times observed for different functions in use-
case I — Top: on GPU Bottom: on CPU.
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GPUs, and so on, until the full images are processed finally
on 48 GPUs (12 GPU-nodes). Similarly, we process 1

12 of
the data, 1

6 of the data, ... on 1, 2, ... CPU-nodes, until
the full data set is processed on 12 CPU-nodes. Runtime
and memory consumption are measured using the Python
library perun8 [10].

Figures 3 and 5 (top) show the observations in terms
of runtime and memory consumption. Due to the
smaller amount of RAM available at GPUs, we required
chunk_size=40000 in vmap on GPU, whereas no restric-
tion needed to be imposed on CPU; it can be seen that
the maximum RAM consumption per GPU almost touches
the available maximum. Nevertheless, computation of the
LOFs was significantly faster on GPU than on CPU al-
though on CPU a much larger number of LOFs could be
computed simultaneously. LOF computation scales well
both on GPUs and CPU; the corresponding run times re-
main almost constant during our weak scaling study, and
memory consumption only increases slightly in the case
of GPUs. Statistics and subsequent computations are still
faster on GPU than on CPU, but scale much worse on GPU
than on CPU; we believe that this is due to the fact that
the overhead introduced by communication is (relatively)
higher on GPUs because the process-local computations on
GPUs are much faster than on CPUs. Finally, one can ob-
serve that a—by construction—communication-intensive
operation like the generation of patches is comparatively
expensive in terms of runtime.

Finally, Figure 6 displays exemplary some of the results
obtained during the experiments. The described work-
flow seems to be able to identify both spatial and temporal
"hotspots" of anomalies.

3.2 Use-case II: clustering a huge data set
In this second use-case, the entirety of all 7×7-patches

over all 363 time steps is considered as a single, huge
data set with more than 4 billion elements. To explore
the structure of this data set—more precisely: to gain an
insight what basic types of patches there are—a clustering
algorithm is applied.

3.2.1 Implementation of use-case II
This use-case can be realized with the help of Heat’s

BatchParallelKMeans-class that implements a batch-
parallel version of the famous K-Means clustering; see [11]
for a detailed description of this algorithm. For simplicity
we now load the patches from an HDF5-file in which they

8https://github.com/Helmholtz-AI-Energy/perun [Accessed August
07, 2024]
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Fig. 4: Run times observed for different functions in use-
case II — Top: on GPU Bottom: on CPU.
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are stored as an array of shape (4297729788, 49). As
pointed out above, this amounts to about 840 GB of data
(in single precision); nevertheless, Heat manages the diffi-
culties of parallel I/O for the user. Moreover, Heat’s API
for machine learning techniques mimicks the one of scikit-
learn whenever possible and hence enables rapid proto-
typing and/or easy transition from serial to scalable code.
Hence, the complete code for loading and clustering the
data is as follows:
import heat as ht
data = ht.load_hdf5("my_file.h5", "patches",

split=0, dtype=ht.float32, device="gpu")↪→

clusterer =
ht.cluster.BatchParallelKMeans(n_clusters=10)↪→

clusterer.fit(data)
labels = clusterer.predict(data)
print(clusterer.functional_value_)

Note in particular, that the handling of devices is as simple
as known from PyTorch: by specifying device="gpu" in
an array creation routine, e.g., load_hdf5, the respective
DNDarray will be created on GPUs.

3.2.2 Results for use-case II
Again, we performed a weak scaling study both on

CPUs and GPUs. We were able to process the entire set
of 4,297,729,788 patches on 16 CPU-nodes in a reason-
able amount of time (∼ 30min); judging from the result-
ing memory consumption of below 200 GB per node, the
number of nodes could have been decreased, but then the
computing time would have increased in return. We esti-
mate that for the processing of the entire data set about 64
GPUs (16 GPU-nodes), would have been required; how-
ever, due to limits on the number of nodes per job, we
could only conduct our experiments on up to 48 GPUs (12
GPU-nodes), on which still more than 3 billion patches
could be dealt with.

In Figures 4 and 5 (bottom) we show the results for
10 cluster centers, i.e., n_clusters=10. It can be seen
that all involved operations—loading of the patches from
file, determining the cluster centers ("fit"), assigning the
data points to their respective clusters ("predict")—scale
well, both in terms of memory consumption and runtime.
The operations underlying the clustering algorithm allow
GPUs to demonstrate their advantages compared to CPUs:
on 12 nodes (and, consequently, 75% of the entire data set)
we observe a speed-up of roughly factor 40. Only loading
from file to GPU is slower than loading to CPU as in the
first case an additional data transfer from CPU to GPU is
necessary.

Having at hand a scalable clustering routine, an in-
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Fig. 5: Memory consumption observed for the entire two
use-cases — Top: on GPU Bottom: on CPU.
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Fig. 6: Top: Number of anomalies detected for every patch
over time on the enlarged section from Figure 2. Bot-
tom: Amount of patches of the entire image classified
as anomalous, plotted over time.
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formed choice of the number of cluster centers, becomes
feasible, e.g., by repeating clustering for a varying number
of cluster centers and choosing the so-called "elbow point";
see Figure 7 (top). An example of how the final assignment
to different clusters may look like is provided in Figure 7
(bottom).

4. Summary and Outlook
In this paper we have demonstrated that the Python li-

brary Heat allows to scale up data science workflows to
large amounts of data in a straightforward and transparent
way. We exemplarily considered anomaly detection and
clustering on up to 840 GB of data and conducted numeri-
cal experiments on up to 16 CPU-nodes or 12 GPU-nodes
(48 GPUs) in a compute cluster. The presented example
are the first results of the recently initiated efforts to make
various analysis pipelines developed for the RESIKOAST
project scalable. In the future, our so far prototypical
implementations will be further adapted and finally fully
integrated in the existing project code base.

At the same time, Heat’s capabilities for analysing and
predicting time-dependent processes are being expanded as
part of the ESA-funded project ESAPCA9 by implement-
ing a scalable dynamic mode decomposition (DMD, [12]).
DMD can roughly be viewed as kind of principal compo-
nent analysis (PCA) for dynamical systems, and similar as
PCA it is based on singular value decomposition (SVD).
Thus, the development of a scalable, GPU-accelerated im-
plementation of SVD as a backend for the high-level algo-
rithms like PCA and DMD forms the algorithmic core of
the project; this is illustrated in Figure 8.

Another problem related to data originating from satel-
lite observations will serve as prototypical application for
scalable DMD: the analysis of long-term thermospheric
density data with the goal to enable in data-driven predic-
tions. However, in the course of the project, the context
of change detection of coastal areas described here could
provide another exciting use case for this upcoming imple-
mentation.
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