Eg ECEASST

Engineering a large-scale data analytics and array computing
library for research: Heat

Fabian Hoppe', Juan Pedro Gutiérrez Hermosillo Muriedas’, Michael Tarnawa’,

Philipp Knechtges', Bjorn Hagemeier’, Kai Krajsek’, Alexander Riittgers',
Markus Gétz?, Claudia Comito’

!German Aerospace Center (DLR), Institute of Software Technology, High-Performance
Computing Department, Cologne (Germany), >Karlsruhe Institute for Technology (KIT),
Scientific Computing Center (SCC), Karlsruhe (Germany), 3Forschungszentrum Jiilich GmbH
(FZJ), Jiilich Supercomputing Centre (JSC), Jiilich (Germany),

Abstract: Heat is a Python library for massively-parallel and GPU-accelerated array
computing and machine learning. It is developed by researchers for researchers,
with the ultimate goal to make multi-dimensional array processing and machine
learning for scientists (almost) as easy on a supercomputer as it is on a workstation
with NumPy or scikit-learn. This paper highlights the relevance of this project to the
research software engineering community by giving a short, but illustrative overview
of Heat and discusses its role in the context of related libraries with a specific focus
on its research software aspects.

Keywords: Multi-dimensional Arrays, Machine learning, Data Science, Data an-
alytics, High-Performance Computing, Parallel Computing, GPUs, Big Data, Re-
search Software

1 Introduction and overview

While the parallelization and scalability of deep learning applications on massive data have re-
ceived considerable attention in recent years, scaling traditional numerical data analysis to large
scientific datasets is still regarded as a niche activity for a few select areas of academic re-
search, including earth observation, climate science and earth system modelling, astro- and par-
ticle physics, biophysics and -informatics, among others. These areas have traditionally been
embedded in high-performance computing (HPC). Indeed, the challenge of adapting existing
data analysis procedures to ever-increasing data volumes is a common experience in academia.
The need to port applications from the workstation to the data center is a recognized and often
insurmountable roadblock for most research groups across every field of science.

Nowadays, scientific data analysis workflows are typically implemented in Python, build-
ing on the highly versatile libraries NumPy [HMW "20], SciPy [VGO'20], and scikit-learn
[PVGT11]. However, as researchers and/or research software engineers are confronted with
ever-increasing data volumes, these foundational libraries are hampered by an essential draw-
back: they are limited to so-called shared-memory parallelization' and, consequently, to a single
CPU of a workstation or cluster node; moreover, they do not support GPU acceleration. A

' A brief explanation of this and other parallelization-related terms is provided at the end of this introductory section.

1/26

Heat Eﬁ

research group seeking to overcome memory limitations (thereby accelerating their data analy-
sis) might start by swapping memory-intensive algorithms for specialized solutions like machine
learning (ML) or even deep learning (DL) algorithms to extract insights out of their large datasets.
As data volumes increase, however, single-CPU memory bottlenecks emerge throughout the data
processing chain, to the extent that even the necessary data preparation before ML or DL train-
ing becomes a challenge. We will go into the details of runtime and memory requirements for a
sample data analysis pipeline on moderately large data in Sect. 4.

On this premise—that most research groups dealing with numerical data are, at one point
or another, sitting on existing Python applications that can no longer be exploited because of
the exploding data volumes— we develop and maintain Heat> [GDC*20]. This work started
in 2018 within a project of the Helmholtz federation and is being continued as a cooperative
effort of research groups from the authors’ three host institutions. Heat is a generic Python
library that facilitates scaling existing NumPy-/SciPy-/scikit-learn-based applications to high-
performance computing (HPC) systems, including GPU clusters. More precisely, it implements
an infrastructure of distributed-memory n-dimensional arrays, as well as data processing, linear
algebra, and ML algorithms on top of that. The present paper does not replace the original
Heat paper [GDC"20], mainly targeting (HPC-)experts. Instead, our aim is to point out the
relevance of our work to a broader research software engineering (RSE) audience. Thus, the
key contributions of this paper are as follows: First of all, we take a different, less technical,
perspective than in [GDC"20] and put specific focus on Heat’s research software character and
the respective implications. Second, we provide a detailed discussion of related work that might
also be of independent interest to the reader. Finally, our numerical experiments extend those
of [GDC'20] as up-to-date versions of the respective software and modern hardware are used,
memory requirements are tracked (in addition to runtimes), and a focus is placed on the necessity
and realization of porting an originally non-HPC-capable code to HPC systems.

Structure of the paper

The remaining part of the paper is organized as follows: right at the end of this introductory
section, we will give readers without an HPC background a brief overview of the most important
parallelization- and HPC-specific terms used in the following. In Section 2 we discuss related
work, i.e., we present an overview of the current state-of-the-art in distributed Python frame-
works and discuss why we believe that Heat is filling an important gap in this field. Section 3
is devoted to Heat itself: in Subsection 3.1 we will examine in greater depth the features and
design principles of our library; past and current applications are highlighted in Subsection 3.2.
In Section 4 we illustrate our presentation by hands-on numerical examples: for a prototypi-
cal workflow consisting of some typical ML operations we first demonstrate the single-node
limitations of scikit-learn; then, we address porting of the underlying code to Heat and (for com-
parison) Dask. On behalf of these examples we compare the respective numerical performance
of Heat and Dask in terms of run time, memory consumption, and energy consumption. Finally,
in the concluding Section 5 we provide an outlook on future development and applications of
Heat.

2 https://github.com/helmholtz-analytics/heat [Accessed May 03, 2024]

2/26

https://github.com/helmholtz-analytics/heat

Eg ECEASST

Frequently used terms

As announced, we provide a very short overview over some frequently used terms related to par-
allelization. A reader well familiar with these topics may thus directly continue with Section 2.

Shared-memory vs distributed-memory (parallelization) — Under shared-memory parallelism,
each parallel process has access to the same, shared, memory, while in the distributed-memory
setting each process can only access its own, private, memory. A typical example for a shared-
memory environment is a multi-core CPU, whereas multiple nodes (i.e., machines) within an
HPC-cluster form a distributed-memory environment. See, e.g., [VT24] for a brief introduction.

Single Program Multiple Data (SPMD) vs Multiple Program Multiple Data (MPMD) — These
terms describe two different programming models for parallel computing, similar to Flynns tax-
onomy of parallel computer architectures [Fly66]. In the SPMD [Dar01] model each parallel pro-
cess executes the same program, but with different underlying data (i.e., values of the variables);
in contrast, in the MPMD model each parallel process can also execute a different program.

Task distribution / task-based parallelism — In this approach to parallelization, so-called
tasks, i.e., “sequence[s] of instructions within a program that can be processed concurrently
with other tasks in the same program” [TDH ' 18] are executed in parallel; see the reference for
an extensive discussion.

Data distribution / data chunking — In a parallel setting, the entirety of data to be handled
typically needs to be divided into pieces (“chunks”) that are assigned to and/or accessed by
different parallel processes. We refer to this in the following as data distribution (or chunking).

embarrassingly parallel [FWM94, Chapter 7.1] — This term describes workloads that can be
easily parallelized with no (or sometimes only minimal) need for interaction (i.e., communica-
tion/synchronization) between the parallel processes.

2 Related work: Python’s distributed-array ecosystem

The following discussion of related work considers libraries targeting distributed array comput-
ing in Python; “distributed” in this context refers at least to distributed onto several devices (e.g.,
multiple GPUs), with a clear focus on the memory-distributed setting, i.e. arrays distributed
onto several machines (e.g., cluster nodes). Libraries and tools for accelerating or distributing
Python code in general are not included if they do not explicitly support array computing. For a
wider, more general overview, also covering this aspect, we refer the reader to the recent survey
paper [CBST23]. The same applies to frameworks for distributed deep learning. In many cases,
they support memory-distributed parallelization at least to some extent. We exemplarily mention
the distributed-module of PyTorch®, the DTensor* implementation, or general frameworks for
distributed training such as Horovod’ or FairScale’; nevertheless, if no array operations or clas-
sical machine learning algorithms are explicitly available in distributed mode, we do not discuss
them further. The scientific data analytics library ROOT’, developed at CERN, will also not

3 https://pytorch.org/docs/stable/distributed.html [Accessed May 03, 2024]

4 https://github.com/pytorch/pytorch/blob/main/torch/distributed/_tensot/README.md [Accessed May 03, 2024]
3 https://github.com/horovod/horovod [Accessed May 03, 2024]

6 https://github.com/facebookresearch/fairscale [Accessed May 03, 2024]

7 https://root.cern/ [Accessed July 26, 2024]

3/26

https://pytorch.org/docs/stable/distributed.html
https://github.com/pytorch/pytorch/blob/main/torch/distributed/_tensor/README.md
https://github.com/horovod/horovod
https://github.com/facebookresearch/fairscale
https://root.cern/

Heat E"}

be addressed further as it is heavily rooted in the C++ context (despite availability of Python
bindings) and mainly targeting general C++ objects instead of arrays.

The necessity for a portable, generic Python framework to overcome memory bottlenecks and
distribute NumPy/SciPy workflows has been a recognized issue for some time. Early efforts
like DistArray® and D20° [SGBE16] (both no longer maintained) implemented distributed n-
dimensional arrays within a NumPy-like API and a limited set of features on multi-CPU sys-
tems already in the early 2010s. Currently, the landscape of distributed array computing and
machine learning in Python is dominated by frameworks based on task distribution such as
Dask '’ [Roc15] and, in the DL space, Ray'' [MNW*18]. Dask distributes tasks using a cen-
trally managed dynamic task scheduler. The scheduler process coordinates the actions of several
Dask worker processes spread across multiple machines, and the concurrent requests of several
clients. The workers execute the tasks and communicate with each other and the scheduler as
needed. As such, Dask is a sophisticated and powerful tool to distribute Python-based array
computing and machine learning tasks similar to NumPy and scikit-learn. GPU support how-
ever is only provided via third-party libraries (CuPy, cuNumeric, and cuML, with limitations,
see below). Porting an existing NumPy/SciPy/scikit-learn code to Dask can be quite complex,
as the programming style slightly differs (see examples in Section 4, particularly Listing 4),
and the size and shape of the data chunks must often be tuned by the user via trial and error;
in particular, it needs to be ensured that the RAM of a worker is sufficient for the tasks to be
performed on it. Naturally, understanding memory consumption under this approach, i.e. dis-
tributing tasks in MPMD style, is slightly more intricate than under the more traditional (in HPC)
approach to distribute data in SPMD style, which is applied for Heat. Moreover, the task sched-
uler model introduces significant overhead: our benchmarks in Section 4 indicate that Heat’s
memory-distributed, communication-optimized algorithms are able to outperform Dask signifi-
cantly for certain operations in terms of runtime, and especially memory consumption. Xorbits'”
[LHQ™24], formerly Mars'?, is roughly comparable to Dask in its overall approach and scope.

Equally pressing in the scientific and data-science community is the wish to speed up exist-
ing NumPy/SciPy/scikit-learn applications by enabling (multi-)GPU computing. In the CUDA
ecosystem built around Nvidia GPUs, CuPy [OUN " 17] is intended to serve as a straight-forward,
GPU-ready drop-in replacement for NumPy, however distributed, i.e. multi-GPU, capabilities
are quite limited to a few operations'* like min, max or sum; matrix-matrix-multiplication is the
only supported linear algebra operation so far. cuNumeric'®, developed by Nvidia on top of
Legate [BG19], enables GPU acceleration for NumPy arrays. However, as of early 2024, it does
not enable parallel I/O from shared memory, which significantly limits its usability in the con-
text of memory-intensive operations that would require loading large data from a file. cuML'®,

8 https://github.com/enthought/distarray [Accessed May 03, 2024]

9 https://gitlab.mpedf.mpg.de/ift/D20 [Accessed May 03, 2024]

10 https://github.com/Dask/Dask [Accessed May 03, 2024]

I https://github.com/ray-project/ray [Accessed May 03, 2024]

12 https://github.com/xorbitsai/xorbits [Accessed December 11, 2024]

13 https://github.com/mars-project/mars [Accessed December 11, 2024]

14 https://docs.cupy.dev/en/stable/reference/generated/cupyx.distributed.array. Distributed Array.html [Accessed May
13, 2024]

15 https://github.com/nv-legate/cunumeric [Accessed May 03, 2024]

16 hitps://github.com/rapidsai/cuml [Accessed May 03, 2024]

4/26

https://github.com/enthought/distarray
https://gitlab.mpcdf.mpg.de/ift/D2O
https://github.com/Dask/Dask
https://github.com/ray-project/ray
https://github.com/xorbitsai/xorbits
https://github.com/mars-project/mars
https://docs.cupy.dev/en/stable/reference/generated/cupyx.distributed.array.DistributedArray.html
https://github.com/nv-legate/cunumeric
https://github.com/rapidsai/cuml

@ ECEASST

Classical machine learning / data analytics

m process local array device host
cu M L Spoliz MLiib. R - I

- MPl-rank 1

(o)) Intel

£ r' dask Extension

< ..\ for scikit-

© Xorbits |carm

8 N i

§ # FairScale /' HEAT daaldpy .

o . -

3 :

% %, RAY Bohrium . :

R cuNumeric { MPL-rank 30 1 X

. - !

@ :’b @f@ i
o dpnp

Distributed linear algebra

Figure 1: Left hand side: The landscape of distributed array computing and machine learning
in Python w.r.t. the scope of the libraries. Right hand side: Illustration of a 2-dimensional
DNDarray on GPU that is distributed over 8 nodes / hosts with 4 GPUs each (“cuda:0” -
“cuda: 3”) and 64 MPI-processes (i.e. one GPU per MPI-process).

offers CUDA-accelerated drop-in replacements for scikit-learn functions; multi-node execution
is mostly based on Dask.

Apart from the Nvidia ecosystem, an increasingly popular and rapidly evolving option to dis-
tribute and accelerate NumPy functions, is the Google library Jax'’ [FIL18]; the focus of the
library is to enable hardware acceleration (on GPUs of different vendors and Google TPUs) as
well as straight-forward SPMD-parallelization and automatic differentiation (AD) of all oper-
ations. Jax however follows the paradigm of functional programming which is quite different
from NumPy’s rather object-oriented approach. As a consequence, Jax only parallelizes pure
functions, i.e., functions whose outputs are based only on their inputs and do not modify any-
thing outside of themselves in the process, and Jax arrays are immutable, unlike NumPy or Heat
arrays; therefore, e.g., assigning a new value to a numpy .ndarray or to its distributed coun-
terpart in Heat (see Subsection 3.1 for a description) at a given index is easy, whereas the same
operation requires a functional workaround in Jax. While DL applications can be easily built
with the help of several libraries on top of Jax, we are not aware of a scikit-learn-like library in
the Jax-ecosystem.

A number of other libraries populate specialized niches of the Python distributed-array ecosys-
tem. Intel develops Ramba'® [PAM22], speeding up and parallelizing NumPy operations on
CPU with minimal changes using compiled functions on process, and a Ray or MPI-based back-
end for distribution. So far Ramba only implements a fraction of the features that are already

17 https://github.com/google/jax [Accessed May 03, 2024]
18 https://github.com/Python-for-HPC/ramba [Accessed May 03, 2024]

5/26

https://github.com/google/jax
https://github.com/Python-for-HPC/ramba

Heat E"}

available to Heat users, and does not support GPUs, while dpnp'® offers drop-in replacements
for certain NumPy functions that can be executed efficiently on Intel GPUs. Other options like
MLIib*" based on Apache Spark, Arkouda’' [MRN19] based on the Chapel programming lan-
guage, dislib®> [CS19] based on PyCOMPSs [TBA ™' 17], are not easily portable across HPC
systems.

In our view, a Python library for high-performance scientific large-scale data analysis ideally
must satisfy the following conditions:

* portability from personal laptop to cluster systems, ideally to cloud resources, supporting
diverse operating systems and hardware;

* interoperability within the Python array and ML ecosystem (i.e., NumPy, SciPy, scikit-
learn, PyTorch etc.);

* multi-node parallelism enabled for all operations (including those that are not embarrass-
ingly parallel), and transparent to the user;

* multi-GPU acceleration across vendor ecosystems;
* scalability of operations and algorithms and efficient usage of available HPC resources;
* ease of use via a standardized, intuitive API;

* research-focused user support to accommodate scientists’ unique needs in terms of fea-
tures, software quality and reliability / reproducibility, as well as project and publication
timelines.

Table 1 (at the very end of the paper) and Figure 1 (lhs) summarize our overview of the
landscape of parallel array computing in Python, focusing on the central aspects: multi-node
capabilities, GPU-acceleration, a simple NumPy-/scikit-learn-like API, interoperability / porta-
bility (in terms of both software and hardware requirements), as well as scope (from basic array
operations to linear algebra and classical machine learning, up to deep learning).

3 Heat

3.1 Heat in a nutshell

A detailed technical description of Heat and its programming model can be found in the original
Heat publication [GDC'20]. Therefore, in this section, we will summarize Heat’s design and
features for a research software engineering (RSE) audience. Heat strives to satisfy all of the
conditions we regard as important for this kind of software; see the end of the previous section.
To ensure this, Heat’s development is guided by the following five main paradigms, the first four
being functional design requirements, the fifth one serving as reminder where Heat comes from
and what it is developed for:

19 https://github.com/IntelPython/dpnp [Accessed May 03, 2024]

20 hitps://spark.apache.org/docs/latest/api/python/index.html [Accessed May 03, 2024]
21 https://github.com/Bears-R-Us/arkouda [Accessed May 03, 2024]

22 https://github.com/bsc-wdc/dislib [Accessed May 03, 2024]

6/26

https://github.com/IntelPython/dpnp
https://spark.apache.org/docs/latest/api/python/index.html
https://github.com/Bears-R-Us/arkouda
https://github.com/bsc-wdc/dislib

Eg ECEASST

Multi-node parallelism — Heat allows for memory-distributed, i.e., multi-node / multi-host,
parallelization and is not limited to embarrassingly parallel applications in this setting.
Heat distributes data, not tasks, and thus allows the user to take full advantage of the
memory-distributed setting when dealing with memory-intensive use-cases.

Hardware acceleration — Heat can take advantage of modern GPUs (both Nvidia and AMD);
nevertheless, CPUs —including multi-threading— are natively supported as well. The
handling of devices (CPU or GPU) is as straightforward as in PyTorch.

Simple API and usage — Heat has a simple NumPy-/scikit-learn-like API [BLB™13] that al-
lows for rapid prototyping as well as for easy adaptation of existing codes and workflows.
Applications can be easily run with the mpirun command.

Platform independence / Interoperability — Heat is based on PyTorch and MPI and thus
avoids restrictions to very specific hardware or software environments as much as pos-
sible. In particular, both Nvidia and AMD GPUs, and Intel, AMD, and Arm-based CPUs
are supported so far.

Scientific background — Heat is developed as a general-purpose HPC array computing and
machine learning library by scientists for scientists; in particular the FAIR4RS principles
[BCK"22] are complied with.

The last point hereof deserves particular attention as it also heavily influences the preceding
points. As it is developed for a research purpose, Heat clearly satisfies the common, prescriptive
definition of “research software”, used, e.g., by the FAIR4RS working group [BCK "22]. Since
the current use is exclusively within research, there is a paper about the software [GDC'20],
there are research results [Bli, Bou, NHG "22] obtained with this software and even a publica-
tion on such results [DRP*20], the software is developed by (academic) researchers, and has
been cited by researchers (outside the developers team) [ALP*24, DCB*23, AIS™23, HC2I,
RPVS21], Heat also meets some stricter criteria for “research software” (in distinction to “soft-
ware in research”) discussed in [GKL"21]. Except for dislib—which is developed in academia
as well—Heat is, as far as we know, the only currently maintained and developed library in
the ecosystem discussed above that also meets these stricter criteria and thus may indisputably
be identified as “research software”; for at least some of the competitors developed outside
academia, the distinction from “software in research” under the stricter criteria may be con-
sidered unclear.

In order to comply with the FAIR (“Findable, Accessible, Interoperable, Reusable™) princi-
ples of research software development [BCK "22], we provide an open repository (MIT licence)
hosted on GitHub, were everyone can submit related issues or feature requests, while also peri-
odically releasing to the Python Package Index to conform to the standard way to provide python
packages; furthermore, a docker file is provided for those users who require containerization.
Each release is accompanied with a DOI in Zenodo, to ensure each version of Heat is citable.
To ensure correct functionality and reproducibility, each change to the code base goes through
multiple steps of quality assurance, including code reviews, automated static code analysis, con-

7126

Heat Eﬁ

tinuous testing”®, on multiple hardware’* and software stacks, and continuous benchmarking
using the performance monitoring tool perun®> [GFD 23] to detect performance degradation.

Heat arrays are compatible with other popular array computing libraries, giving it a high de-
gree of interoperability; in particular, interoperability with PyTorch is given by construction,
whereas interoperability with NumPy is a central design goal. Heat’s main dependencies are
the Python libraries PyTorch and mpi4py. PyTorch?® [PGM*19] is a large, open-source tensor
framework for deep learning. We make use of its highly optimized and versatile implementation
of single-process n-dimensional arrays ("torch.Tensor”) and corresponding array comput-
ing routines as process-local compute engine; in particular, Heat inherits the support both for
Nvidia and AMD GPUs as well as the ability to utilize multi-threading on multi-core CPUs
from PyTorch. Memory-distributed parallelism is built on top of PyTorch utilizing mpidpy>’
[DPSDOS8], which offers Python-wrappers for the C++-implementation of the MPI-standard
(“Message Passing Interface”) [Mes15]. Since PyTorch is widely used and supports all hard-
ware architectures common in HPC, and MPI is the de facto standard for memory-distributed
parallelism in traditional HPC, these dependencies are very unlikely to present users with prob-
lems. This ensures a high degree of interoperability and is the reason why we label Heat as
“platform-independent” in Figure 1 (lhs) and Table 1.

For convenience of the reader, we now provide a summary on Heat’s data object, the dis-
tributed n-dimensional array (“DNDarray”) class, its programming model, and the respective
implications; for details we refer again to [GDC20]. Figure 1 (rhs) illustrates the basic idea of
this class on behalf of a two-dimensional DNDarray that is distributed over 32 MPI-processes
on 8 nodes with 4 GPUs each. The data of the entire, global array are split along the rows and
distributed over the available MPI processes; each process has only direct access to its own frac-
tion of the entire number of rows. In our example, each such process is associated with exactly
one GPU and the local data, given by a PyTorch tensor, are stored on this device, here called
“cuda:0” - “cuda: 3” by PyTorch. This has the advantage that —for this concrete example—
the array does not need to fit into the memory of a single GPU, but rather into the combined
memory of all GPUs. Non-trivial operations on such an array will require the processes to ex-
change data. Heat implements an MPI communication layer (via mpidpy) and the necessary
data exchange for all operations where needed, while the actual process-local computations are
implemented in PyTorch.

Technically speaking, Heat follows the SPMD paradigm of parallel computing as each MPI-
process executes the same Python program, but with different underlying data. Thus, the overall
style may be described as hybrid-parallel and bulk-synchronous since process-local, shared-
memory parallel computations (utilizing PyTorch’s native OpenMP-, CUDA-, or ROCm-support)
alternate with MPI-based, memory-distributed inter-process communication, the latter including
also potentially synchronizing / blocking communication operations. Moreover, so-called “eager
execution” is done, i.e., operations are performed immediately when they appear in the program

23
24

current code coverage by unit tests is about ~ 92% [accessed May 04,2024]

currently on hardware with an Nvidia- and AMD-GPU, respectively, provided on codebase.helmholtz.cloud by
HIFIS (Helmholtz Digital Services for Science) of the Helmholtz Association of German Research Centres

25 https://github.com/Helmholtz-Al-Energy/perun [Accessed May 03, 2024]

26 https://pytorch.org/, https://github.com/pytorch/pytorch [Accessed May 03, 2024]

27 https://github.com/mpidpy/mpidpy [Accessed May 03, 2024]

8/26

https://github.com/Helmholtz-AI-Energy/perun
https://pytorch.org/
https://github.com/pytorch/pytorch
https://github.com/mpi4py/mpi4py

Eg ECEASST

code; this is in contrast to “lazy execution”, where certain operations are not executed immedi-
ately, but only when their results are needed for further calculations. In terms of transparency of
resource usage of a certain operation as well as in terms of easy prototyping and debugging, we
consider eager execution as advantageous compared to lazy execution.

Heat’s programming model implies that, on a multi-process architecture, each process (each
node or each GPU) initially reads load-balanced slices of the input data directly from shared
memory. From that moment on, any data exchange or synchronization that may be necessary
for the execution of operations is conducted via point-to-point or collective MPI calls between
processes. Array copies are avoided whenever possible, in line with NumPy guidelines. A
memory-intensive operation is distributed across the entire available resources—certainly with
some overhead if inter-node communication is required—and does not need to be broken down
manually in operations on smaller arrays by the user. For scientific data processing and analysis
the implication is huge, as coherent, interdependent, but massive data units can still be processed
as units, albeit memory-distributed, and do not need to be broken up in pseudo-independent
chunks. Porting existing NumPy/SciPy/scikit-learn code to Heat is straightforward: typically,
the user simply needs to specify the dimension along which the input data will be sliced, and if
desired, the device. A concrete example will be provided in the Section 4.

3.2 Past and current applications of Heat

Before moving on to concrete examples in the next section, we will briefly highlight two appli-
cations of Heat in scientific research. An outlook to currently planned future applications will be
provided in the final Section 5.

3.2.1 ‘““Rocket science” with Heat

In a study at the German Aerospace Center (DLR), researchers used Heat to analyze datasets
from hybrid rocket combustion experiments. Each dataset comprised 30,000 high-resolution
images captured from high-speed video footage, recording dynamic combustion processes over
three seconds at 10,000 frames per second.

The primary objective was to employ clustering techniques to discern distinct combustion
phases and identify transient phenomena that are critical for optimizing rocket engine perfor-
mance. To achieve this, two different clustering algorithms implemented in Heat were used:
K-Means clustering and spectral clustering. K-Means clustering was chosen for its efficiency
on large datasets, allowing researchers to quickly group similar combustion states based on vi-
sual similarity [RPK20]. Spectral clustering was applied to further refine these classifications
by considering the connectivity of data points in a lower-dimensional space, thus identifying
more complex patterns and especially short-term turbulent structures that K-Means might over-
look [DRP*20].

3.2.2 Post-processing in earth system modelling with Heat

Heat is currently used in production by a research group at the Institute of Bio- and Geosciences
(IBG) within the Forschungszentrum Jiilich (FZJ). In this concrete application, a post-processing

9/26

Heat Eﬁ

workflow for outputs of the ParFlow”® hydrological model makes use of Heat as its compu-
tational backend; hereby, Heat’s multi-node, multi-GPU-capabilities enable and accelerate the
processing of the big data volumes produced from the ensemble-based simulations. This post-
processing tool, ParFlow Diagnostics®, is openly available on GitHub. Associated research
results on, e.g., continental-scale high-resolution soil moisture reanalysis have been presented in
[NHG™22]. Moreover, the master’s thesis [Bou] has been written in this context.

4 Hands-on

To give the reader a more illustrative impression of memory limitations in the context of scikit-
learn ML applications, and to demonstrate the Heat user experience, we show how typical code
snippets in the context of array computations and machine learning written in NumPy and/or
scikit-learn can be ported to a cluster via Heat, and compare this with the respective steps in
Dask. The comparison with Dask is motivated by the fact that this library is likely the most
widely used among those mentioned in Section 2 at the moment. As our test data set we utilize
the ATLAS Top Tagging Open Data Set [ATL22], a data set with roughly 42 million data points
with 819 features each; represented in single-precision floating-point format, this corresponds
to roughly 135 GB of data. We consider the following operations that are typical components
of data analytics workflows: loading the data from the .h5-file’’, stacking the data to a matrix
(some of the features are saved as separate data sets in the .h5-file), pre-processing by applying
in-place standardization, computing the truncated SVD of the data (with prescribed accuracy),
K-means Clustering with appropriate initialization (fit and predict), and linear regression with
Lasso-regularization (fit and predict).

Our numerical experiments have been performed on the following HPC-systems: DLRs terra-
byte cluster’! for experiments on GPUs and DLRs cluster CARO?? for experiments on CPUs;
low-level software is loaded from the module system of the respective cluster, while Heat, Dask,
and scikit-learn together with their high-level dependencies are installed in Python virtual envi-
ronments, respectively; see the above footnotes for the corresponding details.

28 https://www.parflow.org/ [Accessed May 29, 2024]

29 hitps://github.com/HPSCTerrSys/ParFlowDiagnostics [Accessed May 29, 2024]

30 HDF5 [For98] is an HPC-compatible data format common for storing large scientific data sets; see also
https://www.hdfgroup.org/ [Accessed May 29, 2024].

31 The system is operated by LRZ (Munich). Its GPU-nodes are equipped with 2 Intel Xeon Gold 6336Y 24 cores
185 W 2.4 GHz, 1024 GB RAM, and 4 Nvidia HGX A100 80 GB 500 W GPUs. Software loaded as modules: Python
3.10.10, OpenMPI 4.1.5 (Intel compiler 2023.1.0), CUDA 11.8, SLURM 21.08.8-2. Software installed via pip in a
virtual environment: Heat 1.4.1, NumPy 1.26.3, h5py 3.11.0, PyTorch 2.2.0+cul18, mpidpy 3.1.6, perun 0.6.2.

32 The system is operated by GWDG (Géttingen). Its CPU-nodes are equipped with 2 AMD EPYC 7702 64 cores
200 W 2.0 GHz each and 256 GB RAM (“medium” partition) or 1000 GB RAM (“bigmem” partition). Software
loaded as modules: Python 3.9.16, OpenMPI 4.1.5 (GCC 10.4.0), SLURM 23.11.4. Software installed via pip in a
virtual environment: Heat 1.4.1, dask 2024.4.2, dask_ml 2024.4.4, dask_mpi 2022.4.0,NumPy 1.26.4, h5py 3.11.0,
PyTorch 2.2.2, mpidpy 3.1.6, perun 0.6.2., scikit-learn 1.4.6

10/26

https://www.parflow.org/
https://github.com/HPSCTerrSys/ParFlowDiagnostics
https://www.hdfgroup.org/

E} ECEASST

]
193
(=)}

Operation
load data

1000 %

stack data

=)
<)
S 128
z
@ 100 5 —— StandardScaler (in-place)
g i 64 —— trunc. PCA (arpack)
= é —— trunc. PCA (“randomized”)
10 —— § 3 —— K-Means: fit
_ - / Mini-batch K-Means: fit
" g —— K-Means: predict
1 16 Lasso: fit
10 2()') 30 40 50 60 10 2()' ‘ 30 40 50 60 Lasso: predict
Fraction of data (%) Fraction of data (%)

Figure 2: Memory- and runtime consumption for each of the operations using scikit-learn. The
lines indicate averages, the shaded areas the range of observations over 5 runs.

4.1 Implementation in scikit-learn

First of all, let us consider an implementation in scikit-learn (see Listing 1) and the associated
results on 64 CPU-cores of a single “medium” node of DLRs cluster CARO. Because of single-
node memory limitations affecting NumPy, SciPy and scikit-learn, none of these operations can
be successfully performed on the entire data set. Accordingly, we show runtime and memory
consumption results on representative fractions of the entire data set. We observed that pre-
processing, K-Means clustering, and Lasso could only be performed on 60 %, 50 %, and 40 %
of the data, respectively, until an out-of-memory error appeared; in some cases this seems to
be due to scikit-learn falling back to some double precision computations internally although
the data set has been loaded as single precision. The truncated SVD with prescribed accuracy
could not even be computed for 10 % of the data (as the underlying full SVD in NumPy resulted
in an init_gesdd-error); the alternative solvers for scikit-learns PCA-routine resulted in an
LAPACK integer overflow error (for the “arpack™ solver) or, again, an out-of-memory for 30 %
or more of the data (for the “randomized” solver). Switching to MiniBatchKMeans (with the
suggested batch size of 256 x 64) could avoid the out-of-memory error only for 40 % or less of
the data. Maximum memory consumption and runtime for each of the operations are shown in
Figure 2. Memory and time requirements grow at least proportional to the amount of data to
be processed, respectively. It becomes evident that already for scientific data set with moderate
size, such as the present one, the RAM limit of a single machine may pose a severe limitation.

The fact that NumPy, SciPy, and scikit-learn are literally running out of memory when it
comes to the processing of really huge data sets, underlines the need to enable a distributed-
memory setting, i.e., being able to perform computations on several machines in parallel, e.g., on
several nodes of a cluster, hence exploiting the cumulative RAM of all machines together. Tak-
ing into account hardware acceleration even increases the urgency of using memory-distributed
alternatives, as up to now the RAM available for GPUs usually is significantly smaller than that
available for CPUs.

11/26

=T - NV S N e Ry

Heat

4.2 From scikit-learn to Heat or Dask

In the following, we exemplify porting our scikit-learn example from Listing 1 to memory-
distributed execution on multi-CPU, multi-GPU architecture via Heat, and for comparison also
with Dask.

import numpy as np

import h5py

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

from sklearn.cluster import KMeans

from sklearn.linear_model import Lasso

filename = <...>

load data from file
with hbpy.File(filename, 'r') as file:

features = file.keys()

arrays = [np.asarray(file[feature]) for feature in features if (feature
— = "labels' and feature != 'weights')]

labels = np.asarray(file['labels'])

weights = np.asarray(file['weights'])

stack data to matrix
for k in range(len(arrays)):

arrays|[k] = arrays([k].reshape(n_data_points,-1)
data = np.hstack (arraylist)

pre-processing
scaler = StandardScaler (copy=False)
scaler.fit_transform(data)

PCA with prescribed tolerance
rtol = 2.5e-2

pca = PCA(n_components=1l-rtol)
data_pca = pca.fit_transform(data)

K-Means

kmeans = KMeans (n_clusters=25)
kmeans.fit (data)

labels = kmeans.predict (data)

Linear regression by Lasso

lasso = Lasso(alpha=0.1, max_iter=100)
X = weights.reshape(-1,1)*%x0.5 » data
y = welghtsxx0.5+2% (labels-0.5)
lasso.fit (X, vy)

prediction = lasso.predict (data)

Listing 1: Typical operations in a machine learning workflow implemented in scikit-learn

import h5py
import heat as ht

12/26

® N AW

EE ECEASST

filename =

load data

features = hbpy.File(filename, 'r'") .keys ()

arrays =

— [ht.load_hdf5 (filename, feature, split=0,device="gpu",dtype=ht.float32)
— for feature in features if ...]

stack data to matrix
data = ht.hstack (arrays)

pre-processing
scaler = ht.preprocessing.StandardScaler (copy=False)
scaler.fit_transform(data)

PCA with prescribed tolerance
rtol = 2.5e-2
data_pca = ht.linalg.hsvd_rtol (data,rtol)

K-Means

kmeans = ht.cluster.KMeans (n_clusters=25, init="batchparallel")
kmeans.fit (data)

labels = kmeans.predict (data)

Linear regression by Lasso

lasso = ht.regression.Lasso (0.1, max_iter=100, tol=le-4)
X = weights.reshape(-1,1)*%x0.5 *x data

y = weights**0.5%2x (labels-0.5)

lasso.fit (X, vy)

prediction = lasso.predict (data)

Listing 2: Heat implementation of the machine learning workflow

Listing 2 show the corresponding workflow implemented in Heat. Note that the changes re-
quired for the transition from scikit-learn to Heat are marginal for, e.g., stacking, K-Means,
and Lasso; for StandardScaler or the arithmetics in lines 38/39 of Listing 1 literally no
changes are necessary at all. A scikit-learn-similar API for PCA is planned for the near future.
The most important, but still rather simple, change happens for loading the data: the argument
split=0 indicates that the resulting DNDarray is supposed to be split along the axis with
number 0, i.e. along the axis enumerating the 42 million data points in our case. The argument
device="gpu" specifies that the array is loaded to, stored, and processed in the GPU-memory;
omitting this argument yields the fallback default option device="cpu". Hence, switching
from CPU to GPU is as straightforwards in Heat as known from PyTorch.

Let us point out that the code in Listing 2 does not contain any explicit reference to par-
allelization or data distribution except for specifying the “split”-axis along which the data
shall be distributed over the available computational resources. If all dependencies are available,
the script can be run using the standard srun- or mpirun-commands on a HPC-system (with
SLURM as scheduler) or —mainly for development and debugging, of course— on a worksta-
tion or notebook; see Listing 3.

13/26

=T - Y S N O N

Heat

srun —--nodes=8 --ntasks-per-node=4 --gres=gpu:4 python ml_pipeline.py
OMP_NUM_THREADS=16 MKL_NUM_THREADS=16 srun —-nodes=8 —--ntasks—-per—-node=8
— ——cores-per-task=16 python ml_pipeline.py

mpirun -n 4 python ml_pipeline.py

Listing 3: Command line instructions for running the Heat implementation on 8 GPU-nodes
with 4 GPUs each on an HPC-system with SLURM (first line), on 8 CPU-nodes with 8 MPI-
processes per node and 16 cores per process (second line), or simply on a workstation or note-
book with 4 CPU-cores (third line). For the second line, device="gpu" needs to be replaced
by device="cpu", of course. In the third line, if device="gpu" in the python script and a
GPU is available, the GPU will be used.

We now compare this with our implementation of the same workflow using Dask (cf. List-
ing 4); at this point, it should be noted that the authors of this paper are not Dask experts and
—despite their best efforts— the proposed implementation may not be the best possible. Let us
just note that —in our opinion— the handling of data distribution (called “chunking” in Dask)
together with lazy evaluation is somewhat more complicated than in Heat as the differences
from NumPy / scikit-learn are slightly larger. To make data distribution into distributed memory
actually happen before the computations (which is advantageous for their performance), e.g.,
client .persist-calls as in line 34 are necessary.

import os

import h5py

import numpy as np

import dask

import dask.array as da

from dask mpi import initialize

from distributed import Client

from dask ml.preprocessing import StandardScaler
from dask_ml.cluster import KMeans

from dask_ml.decomposition import PCA

from dask_ml.linear_model import LinearRegression

filename =
num_procs = int (os.getenv ('SLURM_NTASK'))
num_threads = int (os.getenv ('SLURM_CPUS_PER_TASK'"))

initialize Dask client
initialize (interface="1b0", nthreads=num_threads)
client = Client ()

file = hbpy.File(filename, mode='r"')
features = list (hbSpy.File(filename, 'r') .keys())

prepare chunk sizes

global_length_along_0 = f[features[0]].shapel0]
chunk_length_along_0 = int (global_length_along_0/ (num_procs—1))
chunksizes = {key: np.array(fl[key].shape) for key in features}
for key in features:

14 /26

30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7

ECEASST

chunksizes[key] [0]=chunk_length_along_0
chunksizes[key]=tuple (chunksizes[key])

load data from file

xs = [client.persist(da.from_array(file[feature]l[:,...],
— chunks=chunksizes[feature])) for feature in features if (feature !=
— 'labels' and feature != 'weights')]

stack data to matrix
for k in range(len(xs)):
xs[k] = da.reshape(xs[k], (loadLength, -1))
X = da.concatenate(xs, axis=1)
da.rechunk (x, chunks=(chunkLength, x.shape[l]))
x = client.persist (x)

X
Il

pre-processing

x = x.astype(float)

scaler = StandardScaler (copy=False)
x = scaler.fit_transform(x)

PCA (randomized)
pca = PCA (n_components=691, svd_solver="randomized")
data_pca_rand = pca.fit (x)

PCA (full and truncated)
pca = PCA (n_components=691,svd_solver="full")
data_pca_full = pca.fit (x)

K-Means

clusterer = KMeans (n_clusters=25, init="k-means]||")
clusterer.fit (x)

y = clusterer.predict (x)

labels, weights = ... # similar as above

Linear regression by Lasso

X = client.persist (weights.reshape(-1,1)*%x0.5 » Xx)

y = client.persist (weights*x0.5%«2% (labels-0.5))

lasso = LinearRegression(penalty="11", tol=le-2, C=0.1, max_iter=100)
lasso.fit (x,V)

y = client.persist (lasso.predict (X))

file.close()
client.shutdown ()

Listing 4: Dask implementation of the machine learning workflow

4.3 Heat vs Dask: Runtime, memory and energy consumption

We investigate performance and scalability of the respective implementations in Heat (Listing 2)
and Dask (Listing 4) in terms of runtime as well as memory and energy consumption. Since
our focus regarding the performance is on scalability, we investigate the so-called weak scal-

15/26

Heat E"}

10000 load data StandardScaler (in-place) K-Means: fit K-Means: predict
@ 100 -—0-0-0 o—o—o—0-9-0
Q 1 ."’_ "—’\—"_‘.—... L e~ e~ —]
£ o0
& 0.0001

781412 1 2 4 8
. No. of Nodes
trunc. PCA Lasso: fit Lasso: predict

10000 o—e—o-o-0
2 100 a Package Device
g 1 —— Dask cpu
= 001 o—0—0=0"Y Heat - u
& 0.0001 &

1412 1 2 4 8 1/81/412 1 2 4 8 181412 1 2 4 8
No. of Nodes No. of Nodes No. of Nodes

Figure 3: Runtime of different typical ML operations in Heat (CPU and GPU) and Dask (CPU).
The (dashed) lines show the average runtime and the shaded areas indicate the range of observed
runtimes each. (Smaller values and less growth are better.)

ing behaviour, i.e., we increase the amount of data proportional to the compute resources until
the entire data set is processed on the maximum resources (here: 8 CPU- or GPU-nodes, re-
spectively). Thus, in the Heat experiments each MPI-process receives about 650000 data points
(CPU) or 1.3 x 10° data points (GPU). The experiments have been conducted on CPU- (Heat and
Dask) and GPU-nodes (Heat only) with 4 MPI-processes per node (i.e., 1 GPU per MPI-process)
for the GPU-experiments and 8 MPI-processes per node (i.e., 16 CPU-cores per MPI-process)
for the CPU-experiments; consequently, in the Heat experiments 1/2 etc. node refers to 2 or 4
MPI-processes etc. on a GPU- or CPU-node, respectively. Since for Dask, one MPI-process
is reserved for the scheduler anyway, we run our experiments with Dask with at least 2 MPI-
processes (1/4 node); the experiments for 2 processes, however, did not complete within the 24 h
time limit which is the reason that the results start with 1/2 node (4 MPI-processes).

Due to time constraints, the complete workflow was run only once; after that, the workflow
was run 10 times without the most time-consuming operation (K-Means fit and predict for Heat,
Lasso fit and predict for Dask), respectively, in order to obtain statistically more meaningful
results for at least a subset of the operations. Let us also point out that we consider the com-
parability of K-Means and Lasso in Heat and Dask to be rather weak, since the initialization
of K-Means and the entire algorithm of Lasso are very different in both libraries. Similarly,
the approaches for computing an approximate truncated PCA are different (randomized SVD in
Dask and hierarchical SVD in Heat) although we expect the results of both methods to be of
comparable quality.

In Figure 3, it can be seen that Heat outperforms Dask in terms of runtime for loading data,
standardization, truncated SVD, Lasso fit, and K-means predict, while Dask is significantly faster
than Heat for stacking the data, Lasso predict, and K-Means fit. Due to lazy evaluation in Dask,
however, we are not absolutely sure whether for stacking and Lasso predict actual computations
took place in Dask, whereas regarding K-Means the difference in the runtimes is likely due
to the implementation in Heat currently being less efficient from an algorithmic point of view
than in Dask. In the cases where Heat performs better than Dask, we believe this is due to the

16 /26

(=

ECEASST
o load data StandardScaler (in-place) K-Means: fit K-Means: predict
=
't_‘ﬁ g 1.0 \ '\'—— =<2 E— e v———v
38 N ==
z2o0s . SN
< = \. °
2 M 0.0 ——
1 2 4 8
No. of Nodes
o trunc. PCA Lasso: fit Lasso: predict
(= .
= 9 1.0 - — P — Package Device
3 S
(% g s \._._. \. —, —— Dask cpu
== Ne Heat === gpu
2™ 00
1 2 4 8 1 2 4 8 1 2 4 8
No. of Nodes No. of Nodes No. of Nodes

Figure 4: Weak scaling efficiency of typical ML operations in Heat (CPU and GPU) and Dask
(CPU). The (dashed) lines show the geometric mean of the observed values. (Higher values are
better.)

Dask Heat
Operation
load data

W
—
(38}

StandardScaler (in-place)

— K-Means: fit
—— K-Means: predict
— trunc. PCA

8 — Lasso: fit
178 14 112 1 2 4 8 1/8 1/4 112 1 2 4 8 Lasso: predict
No. of Nodes No. of Nodes

\

Max DRAM Memory
per Node (GB)
{

Figure 5: Memory consumption for typical ML operations of Heat and Dask on CPU. The lines
show the averages and the dashed areas the range of observed values, respectively. (Smaller
values and less growth beyond one node are better.)

overhead associated with Dask’s centrally managed dynamic task scheduling. In terms of scaling
efficiency (of the runtime), the results shown in Figure 4 indicate that Heat scales similarly or
better than Dask for most of the operations, although there is an undeniable uncertainty due to
the comparatively large variations between the rounds.

The situation is much clearer when considering the maximum memory consumption of the
different operations; see Figure 5 (lhs). Dask consumes significantly more memory than Heat
for all operations and configurations. In particular, the Dask experiments had to be run on the
“bigmen” partition of CARO, while all Heat experiments could be run on the default “medium”
partition. It can be clearly seen that the amount of RAM used by Heat per node remains almost
constant for the experiments on 1 to 8 nodes, while it keeps increasing for Dask; this might
eventually become problematic when considering a more data-intensive use case. We suspect
that the observed differences in memory requirements can be explained by the fact that Heat by
design distributes data, while Dask primarily distributes tasks.

17 /26

Heat Eﬁ

Package Device
—— Dask cpu e~
107 Heat -=-= gpu B -
S =
)
3 10°
m
10°
1/8 1/4 12 1 2 4 8
No. of Nodes

Figure 6: Energy consumption for a single run of the workflow (all operations) on CPU (Heat
and Dask) and GPU (Heat only).

Finally, as awareness of the need to use energy responsibly is increasing in particular in the
context of machine learning and Al [DPS 23], we report the energy consumption for the entire
workflow, i.e. for the first run only. The results shown in Figure 6 indicate that in certain cases
it can also make sense to use GPUs from an energy-efficiency point of view, as their increased
energy consumption (compared to CPUs) can be offset by a significantly lower runtime.

5 Future challenges, development, and applications

To begin the discussion of current and future challenges, let us briefly categorise our software
within the realm of research software in general. In doing so, we follow an approach for struc-
turing the latter from [HDB24]: on the role-based scale, Heat itself falls mainly into the third
category (“Research Infrastructure Software”); its intention is to be used within the first category
(containing software for data analytics in the context of a specific domain-level research ques-
tion). Regarding the developer-based categorization, the project currently falls into the “Project
Group ”-category as three groups from different host institutions collaborate on Heat’s develop-
ment; however, with the participation at Google Summer of Code 2022 we made first steps to
expand towards the “Community”-category. On the maturity-based scale, the most part of Heat
falls into the third category (“Accepted Methods and Models”) as our intention is to provide the
user with rather established and reliable instead of experimental algorithms. Nevertheless, from
time to time a partial overlap with the second category (“Novel Methods and Models”) comes
into play since our work sometimes requires adapting and modifying existing algorithms as well
as benchmarking and comparing them. Finally, on the level of application classes in institutional
software engineering guidelines, Heat is grouped in “Application class 2 as we aim at long-term
development and maintenance.

Another popular approach for the characterization of software created and used in research is
the concept of the software stack [Hin19] that identifies six layers ranging from hardware (the
lowest) to project-specific code (the highest). Here, one may locate Heat in one of the middle
to upper layers, probably best in the “Scientific infrastructure” layer. Herein, the distinction

33 https://summerofcode. withgoogle.com/archive/2022/organizations/forschungszentrum-julich [Accessed May 02,
2024]

18 /26

https://summerofcode.withgoogle.com/archive/2022/organizations/forschungszentrum-julich

Eg ECEASST

from the next lower layer “Non-scientific infrastructure” —containing, e.g., compilers or pro-
gramming languages— is obvious, whereas there might be a partial overlap with the next upper
layer “Domain-specific tools” as further development is often driven by the needs of a specific
application.

The fact that our software is by design in the infrastructure category and mainly falls into the
“project group” category in terms of the development team is currently the biggest non-scientific
challenge in further development. Despite welcome progress in recognising software as a re-
search output, the focus of most institutional and third-party funders remains on domain-specific
outputs rather than underlying infrastructure. In other words: in the worst-case scenario, the
work on Heat is too methodical to be funded as concrete specialised research, but too applied
to count as pure methodological research. Funding pure maintenance, i.e. classic software en-
gineering tasks such as updating dependencies, proper releases etc., is even more difficult in a
scientific context. The challenge is therefore to find an appropriate balance between further de-
velopment in the context of concrete domain-specific applications (with a rather narrow focus
prescribed by the needs of the application), further development with a broader methodological
focus (i.e., with a view to the library as a whole, in particular with regard to re-usability) and
the maintenance of the already existing code. Despite these drawbacks, from our personal per-
spective as developers and scientists, working at the intersection of methodological research and
concrete application is quite appealing and varied.

After the first five years of Heat development, our main objective at present is to make the
transition to long-term development and maintenance, which is usually particularly challenging
in the context of research software as the early deaths of similar projects show. To make this
transition, we are considering particularly the following two measures: first, we want to increase
the number of users (especially outside our host institutions), and second, we want to take ac-
tive steps towards more community-based development. To achieve the latter, participation in
community-building efforts such as the currently forming “High Performance Software Founda-
tion”** may be a good opportunity that we are currently discussing. To achieve the first goal,
we are actively promoting our software in various scientific communities and offering help to
scientists who are considering trying out Heat for their research; such help may range from sup-
port during installation, hints on adapting existing workflows up to the implementation of new
features required for a particular application. Especially the last point should be considered as
valuable for scientists and distinguishes Heat from similar libraries. We thus conclude the paper
with an outlook on ongoing and planned future efforts in this direction:

Climate change and resilience: Heat for anomaly detection in earth observation data

Heat is going to be applied at DLR within an ongoing DLR project on risks for coastal regions
in the context of climate change and associated resilience measures®>. The task to be performed
with Heat is anomaly detection in a large dataset of Earth observation images of the Northern and
Baltic Seas. This dataset, spanning from 2016 to 2023 and comprising a total of 5 TB, includes
remote sensing images collected every six days. Anomaly detection will be performed using
the so-called Local Outlier Factor (LOF) algorithm multiple times, which requires the computa-

34 https://hpsf.io/ [Accessed May 02, 2024]
35 https://www.dlr.de/en/pi/research-transfer/projects/resikoast [Accessed May 02, 2024]

19/26

https://hpsf.io/
https://www.dlr.de/en/pi/research-transfer/projects/resikoast

Heat Ea

tion of a huge number of pairwise Euclidean distances (in the order of ¢(10”)) between image
details [RP21]. The respective part of the project team and the Heat developers are currently
investigating how Heat can be used to handle the associated computational demands efficiently,
e.g., using Heat’s implementation of cdist or a possibly improved or adapted version of it; in
particular, we expect a new type of distance computation (based on a structural similarity index
measure (SSIM)) and a scalable implementation of LOF to be added as new features to Heat as
part of this collaboration.

Space science and beyond: Heat for ESA applications

In the course of the recently started, ESA-funded (European Space Agency) early technology
development project ESAPCA “Enabling the analysis of extremely large data sets by scalable
and hardware-accelerated PCA and DMD ”*° Heat will be made fit for various ESA applica-
tions by adding massively-parallel implementations of SVD, PCA, and DMD (Dynamic Mode
Decomposition) as new features to Heat. These methods are indispensable and ubiquitous in
data science and engineering, but computationally challenging in the context of large data sets
as runtime and memory footprint can easily grow superlinearly as a function of data size. The
intended application areas at ESA include the data-driven modelling of thermospheric density
and problems arising in the area of digital manufacturing, e.g., in situ measurements of powder
bed solidification. In the context of this project, we also want to explore the opportunities of
using Heat in the data science workflow of the new-space startup parametry.ai. As the idea of
transfer is becoming increasingly important in all areas of science we regard this as an important
step for future development as well.

Matter and light: massive data processing in astro-/particle physics

We support the radioastronomical and nuclear physics communities. In both cases, researchers
look to Heat to adapt existing NumPy/SciPy applications to exploding data volumes, the former
to detect and flag radiofrequency interferences in their data, the latter for particle tracking in high
occupancy detectors with machine learning algorithms on GPUs.

Acknowledgements: The authors gratefully acknowledge the computational resources pro-
vided through the joint high-performance data analytics (HPDA) project “terrabyte” of the Ger-
man Aerospace Center (DLR) and the Leibniz Supercomputing Center (LRZ). The authors grate-
fully acknowledge the scientific support and HPC resources provided by the German Aerospace
Center (DLR). The HPC system CARO is partially funded by “Ministry of Science and Culture
of Lower Saxony* and Federal Ministry for Economic Affairs and Climate Action”. This work is
supported by the Helmholtz project HIRSE_PS and Helmholtz Al. Moreover, the authors thank
all past and current contributors to Heat for their valuable work.

36 https://activities.esa.int/4000144045 [Accessed May 02, 2024]

20/26

https://activities.esa.int/4000144045

Eﬁ ECEASST

Bibliography

[AIST23] M. Aach, E. Inanc, R. Sarma, M. Riedel, A. Lintermann. Large scale performance
analysis of distributed deep learning frameworks for convolutional neural networks.
Journal of Big Data 10(1):96, Jun 2023.
doi:10.1186/s40537-023-00765-w

[ALP™24] C. Alt, M. Lanser, J. Plewinski, A. Janki, A. Klawonn, H. Kostler, M. Selzer,
U. Riide. A continuous benchmarking infrastructure for high-performance comput-
ing applications. International Journal of Parallel, Emergent and Distributed Systems
39(4):501-523, 2024.
doi:10.1080/17445760.2024.2360190

[ATL22] ATLAS Collaboration. ATLAS Top Tagging Open Data Set. 2022.
doi:10.7483/OPENDATA.ATLAS.FG5F.96GA

[BCK22] M. Barker, N. P. Chue Hong, D. S. Katz, A.-L. Lamprecht, C. Martinez-Ortiz, F. Pso-
mopoulos, J. Harrow, L. J. Castro, M. Gruenpeter, P. A. Martinez, T. Honeyman. Intro-
ducing the FAIR Principles for research software. Scientific Data 9(1):622, Oct. 2022.
Number: 1 Publisher: Nature Publishing Group.
doi:10.1038/s41597-022-01710-x

[BG19] M. Bauer, M. Garland. Legate NumPy: Accelerated and Distributed Array Computing.
In Proceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis. Pp. 1-23. 2019.
doi:10.1145/3295500.3356175

[BLB™13] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae,
P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt,
G. Varoquaux. API design for machine learning software: experiences from the scikit-
learn project. In ECML PKDD Workshop: Languages for Data Mining and Machine
Learning. Pp. 108-122. 2013.

[Bli] L. Blind. Parallel Dynamic Mode Decomposition - Identifying spatiotemporal patterns
with HPC. Bachelor Thesis, Fachhochschule Aachen, Campus Jiilich, 2021.
doi:10.5281/zenodo.7682668

[Bou] B. Bourgart. Massiv parallele Datenanalyse fiir die Erdsystemmodellierung mit dem
Helmbholtz Analytics Toolkit. Bachelor Thesis, Fachhochschule Aachen, Campus
Jiilich, 2019.
https://juser.fz-juelich.de/record/866456

[CBST23] O. Castro, P. Bruneau, J.-S. Sottet, D. Torregrossa. Landscape of High-Performance
Python to Develop Data Science and Machine Learning Applications. ACM Comput.
Surv. 56(3), oct 2023.
doi:10.1145/3617588

21/26

http://dx.doi.org/10.1186/s40537-023-00765-w
http://dx.doi.org/10.1080/17445760.2024.2360190
http://dx.doi.org/10.7483/OPENDATA.ATLAS.FG5F.96GA
http://dx.doi.org/10.1038/s41597-022-01710-x
http://dx.doi.org/10.1145/3295500.3356175
http://dx.doi.org/10.5281/zenodo.7682668
https://juser.fz-juelich.de/record/866456
http://dx.doi.org/10.1145/3617588

Heat Ea

[CDG122] D. Coquelin, C. Debus, M. Gétz, F. von der Lehr, J. Kahn, M. Siggel, A. Streit.
Accelerating neural network training with distributed asynchronous and selective opti-
mization (DASO). Journal of Big Data 9(1):14, 2 2022.
doi:10.1186/s40537-021-00556-1

[CS19] J. Alvarez Cid-Fuentes, S. Sola, P. Alvarez, A. Castro-Ginard, R. M. Badia. dislib:
Large Scale High Performance Machine Learning in Python. In Proceedings of the 15th
International Conference on eScience. Pp. 96-105. 2019.

[Dar01] F. Darema. The SPMD Model: Past, Present and Future. In Cotronis and Dongarra
(eds.), Recent Advances in Parallel Virtual Machine and Message Passing Interface.
Lecture Notes in Computer Science 2131(1), pp. 1-1. Springer Berlin Heidelberg, 2001.
doi:10.1007/3-540-45417-9_1

[DCB*23] D. Degen, D. Caviedes Voullitme, S. Buiter, H.-J. Hendricks Franssen,
H. Vereecken, A. Gonzalez-Nicolas, F. Wellmann. Perspectives of physics-based ma-
chine learning strategies for geoscientific applications governed by partial differential
equations. Geoscientific Model Development 16(24):7375-7409, 2023.
doi:10.5194/gmd-16-7375-2023

[DPS*23] C. Debus, M. Piraud, A. Streit, F. Theis, M. Gotz. Reporting electricity consump-
tion is essential for sustainable Al. Nature Machine Intelligence 5(11):1176-1178, Nov
2023.
doi:10.1038/s42256-023-00750-1

[DPSDOS8] L. Dalcin, R. Paz, M. Storti, J. D’Elia. MPI for Python: Performance Improvements
and MPI-2 Extensions. Journal of Parallel and Distributed Computing 68:655-662, 05
2008.
doi:10.1016/j.jpdc.2007.09.005

[DRP*20] C. Debus, A. Riittgers, A. Petrarolo, M. Kobald, M. Siggel. High-performance data
analytics of hybrid rocket fuel combustion data using different machine learning ap-
proaches. 2020.
doi:10.2514/6.2020-1161

[FIL18] R. Frostig, M. J. Johnson, C. Leary. Compiling machine learning programs via high-
level tracing. Systems for Machine Learning 4(9), 2018.
https://mlsys.org/Conferences/doc/2018/146.pdf

[Fly66] M. Flynn. Very high-speed computing systems. Proceedings of the IEEE 54(12):1901—
1909, 1966.
doi:10.1109/PROC.1966.5273

[For98] B. Fortner. HDF: The hierarchical data format. Dr Dobb’s J Software Tools Prof Pro-
gram 23(5):42, 1998.

[FWM94] G. Fox, R. Williams, P. Messina. Parallel Computing Works! Parallel processing
scientific computing. Morgan Kaufmann, 1994.

22 /26

http://dx.doi.org/10.1186/s40537-021-00556-1
http://dx.doi.org/10.1007/3-540-45417-9_1
http://dx.doi.org/10.5194/gmd-16-7375-2023
http://dx.doi.org/10.1038/s42256-023-00750-1
http://dx.doi.org/10.1016/j.jpdc.2007.09.005
http://dx.doi.org/10.2514/6.2020-1161
https://mlsys.org/Conferences/doc/2018/146.pdf
http://dx.doi.org/10.1109/PROC.1966.5273

Eﬁ ECEASST

[GDC*20] M. Gétz, C. Debus, D. Coquelin, K. Krajsek, C. Comito, P. Knechtges, B. Hage-
meier, M. Tarnawa, S. Hanselmann, M. Siggel, A. Basermann, A. Streit. HeAT — a
Distributed and GPU-accelerated Tensor Framework for Data Analytics. In 2020 IEEE
International Conference on Big Data (Big Data). Pp. 276-287. 2020.
doi:10.1109/BigData50022.2020.9378050

[GFD"23] J. P. Gutiérrez Hermosillo Muriedas, K. Fliigel, C. Debus, H. Obermaier, A. Streit,
M. Gotz. perun: Benchmarking Energy Consumption of High-Performance Computing
Applications. In Cano et al. (eds.), Euro-Par 2023: Parallel Processing. Pp. 17-31.
Springer Nature Switzerland, Cham, 2023.
doi:10.1007/978-3-031-39698-4 2

[GKL*21] M. Gruenpeter, D. S. Katz, A.-L. Lamprecht, T. Honeyman, D. Garijo, A. Struck,
A. Niehues, P. A. Martinez, L. J. Castro, T. Rabemanantsoa, N. P. Chue Hong,
C. Martinez-Ortiz, L. Sesink, M. Liffers, A. C. Fouilloux, C. Erdmann, S. Peroni,
P. Martinez Lavanchy, 1. Todorov, M. Sinha. Defining Research Software: a contro-
versial discussion. Dec. 2021.

doi:10.5281/zeno0do.5504016

[HC21] K. M. A. Hasan, S. Chakraborty. GPU Accelerated Tensor Computation of Hadamard
Product for Machine Learning Applications. In 2021 International Conference on In-
formation and Communication Technology for Sustainable Development (ICICT4SD).
Pp. 1-5. 2021.
doi:10.1109/ICICT4SD50815.2021.9396980

[HDB"24] W. Hasselbring, S. Druskat, J. Bernoth, P. Betker, M. Felderer, S. Ferenz, A.-L.
Lamprecht, J. Linxweiler, B. Rumpe. Toward Research Software Categories. Preprint
on arXiv, 2024.
doi:10.48550/arXiv.2404.14364

[Hin19] K. Hinsen. Dealing With Software Collapse. Computing in Science & Engineering
21(3):104-108, 2019.
doi:10.1109/MCSE.2019.2900945

[HMW20] C.R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H.
van Kerkwijk, M. Brett, A. Haldane, J. F. del Rio, M. Wiebe, P. Peterson, P. Gérard-
Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T. E. Oliphant.
Array programming with NumPy. Nature 585(7825):357-362, Sept. 2020.
doi:10.1038/s41586-020-2649-2

[LHQ'24] W. Lu, K. He, X. Qin, C. Li, Z. Wang, T. Yuan, X. Liao, F. Zhang, Y. Chen, X. Du.
Xorbits: Automating Operator Tiling for Distributed Data Science. In 2024 IEEE 40th
International Conference on Data Engineering (ICDE). Pp. 5211-5223. May 2024.
doi:10.1109/ICDE60146.2024.00392

23 /26

http://dx.doi.org/10.1109/BigData50022.2020.9378050
http://dx.doi.org/10.1007/978-3-031-39698-4_2
http://dx.doi.org/10.5281/zenodo.5504016
http://dx.doi.org/10.1109/ICICT4SD50815.2021.9396980
http://dx.doi.org/10.48550/arXiv.2404.14364
http://dx.doi.org/10.1109/MCSE.2019.2900945
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1109/ICDE60146.2024.00392

Heat Ea

[Mes15] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Ver-
sion 3.1. High Performance Computing Center Stuttgart (HLRS), 2015.
https://fs.hlrs.de/projects/par/mpi//mpi3 1/

[MNW*18] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol,
Z. Yang, W. Paul, M. L. Jordan, I. Stoica. Ray: A Distributed Framework for Emerging
Al Applications. In 13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18). Pp. 561-577. USENIX Association, 2018.
https://www.usenix.org/conference/osdil 8/presentation/moritz

[MRN19] M. Merrill, W. Reus, T. Neumann. Arkouda: Interactive Data Exploration Backed by
Chapel. In Proceedings of the ACM SIGPLAN 6th on Chapel Implementers and Users
Workshop (CHIUW 2019). ACM, 2019.
doi:10.1145/3329722

[NHG'22] B. Naz, H.-J. Hendricks-Franssen, K. Gorgen, B. Bourgart, C. Montzka, C. Comito,
D. Coquelin, S. Kollet. An ensemble-based parallel data assimilation and data analytics
framework for the development of continental-scale high-resolution soil moisture re-
analysis. 5 2022.
https://juser.fz-juelich.de/record/917267

[OUNT17] R. Okuta, Y. Unno, D. Nishino, S. Hido, C. Loomis. CuPy: A NumPy-Compatible
Library for NVIDIA GPU Calculations. In Proceedings of Workshop on Machine Learn-
ing Systems (LearningSys) in The Thirty-first Annual Conference on Neural Information
Processing Systems (NIPS). 2017.
http://learningsys.org/nips17/assets/papers/paper_16.pdf

[PAM22] B. Pillai, T. A. Anderson, T. Mattson. Ramba: High-performance Distributed Arrays
in Python. In Proceedings of the 21th Python in Science Conference. 2022.
https://www.scipy2022.scipy.org/posters

[PGM™19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala. PyTorch: An Im-
perative Style, High-Performance Deep Learning Library. In Advances in Neural Infor-
mation Processing Systems 32. Pp. 8024-8035. Curran Associates, Inc., 2019.

[PVG™11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, E. Duchesnay. Scikit-learn: Machine Learning in Python. Jour-
nal of Machine Learning Research 12:2825-2830, 2011.
http://jmlr.org/papers/v12/pedregosal 1a.html

[Roc15] M. Rocklin. Dask: Parallel Computation with Blocked algorithms and Task Scheduling.
In Huff and Bergstra (eds.), Proceedings of the 14th Python in Science Conference
(SciPy 2015). Pp. 130-136. 2015.
https://conference.scipy.org/proceedings/scipy2015/pdfs/matthew _rocklin.pdf

24 /26

https://fs.hlrs.de/projects/par/mpi//mpi31/
https://www.usenix.org/conference/osdi18/presentation/moritz
http://dx.doi.org/10.1145/3329722
https://juser.fz-juelich.de/record/917267
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://www.scipy2022.scipy.org/posters
http://jmlr.org/papers/v12/pedregosa11a.html
https://conference.scipy.org/proceedings/scipy2015/pdfs/matthew_rocklin.pdf

Eﬁ ECEASST

[RP21] A. Riittgers, A. Petrarolo. Local anomaly detection in hybrid rocket combustion tests.
Experiments in Fluids 62(136):1-16, 2021.
doi:10.1007/s00348-021-03236-1

[RPK20] A. Riittgers, A. Petrarolo, M. Kobald. Clustering of paraffin-based hybrid rocket fuels
combustion data. Experiments in Fluids 61(1):1-17, 2020.
doi:10.1007/s00348-019-2837-8

[RPVS21] N. A. Rink, A. Paszke, D. Vytiniotis, G. S. Schmid. Memory-efficient array redistri-
bution through portable collective communication. Preprint on arXiv, 2021.
doi:10.48550/arXiv.2112.01075

[SGBE16] T. Steininger, M. Greiner, F. Beaujean, T. Enflin. d2o: a distributed data object for
parallel high-performance computing in Python. Journal of Big Data 3, 2016.
doi:10.1186/s40537-016-0052-5

[TBAT17] E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R. M. Badia, J. Torres, T. Cortes,
J. Labarta. PyCOMPSs: Parallel computational workflows in Python. The International
Journal of High Performance Computing Applications 31(1):66-82, 2017.
doi:10.1177/1094342015594678

[TDH" 18] P. Thoman, K. Dichev, T. Heller, R. Iakymchuk, X. Aguilar, K. Hasanov,
P. Gschwandtner, P. Lemarinier, S. Markidis, H. Jordan, T. Fahringer, K. Katrinis,
E. Laure, D. S. Nikolopoulos. A taxonomy of task-based parallel programming tech-
nologies for high-performance computing. The Journal of Supercomputing 74(4):1422—
1434, Apr 2018.
doi:10.1007/s11227-018-2238-4

[VGO™20] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,
K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pe-
dregosa, P. van Mulbregt, SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python. Nature Methods 17:261-272, 2020.
doi:10.1038/s41592-019-0686-2

[VT24] M. Verdicchio, C. Teijeiro Barjas. Introduction to High-Performance Computing.
Pp. 15-29. Springer US, New York, NY, 2024.
doi:10.1007/978-1-0716-3449-3 2

25/26

http://dx.doi.org/10.1007/s00348-021-03236-1
http://dx.doi.org/10.1007/s00348-019-2837-8
http://dx.doi.org/10.48550/arXiv.2112.01075
http://dx.doi.org/10.1186/s40537-016-0052-5
http://dx.doi.org/10.1177/1094342015594678
http://dx.doi.org/10.1007/s11227-018-2238-4
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1007/978-1-0716-3449-3_2

[Name [by [Tifetime [Intended scope [AP [m-n [GPU [idp. [Comments |
| | | (latest release) | DA | | ML | DL | | | | | |
Arkouda M. Merrill / W. Reus (US 2019 - present v v v * *builds on Chapel
DoD) (v2024.04.19)
Bohrium University of Copenhagen 2011 - 2020 ' v v v v
(v0.11.0)
RAPIDS / cuML Nvidia 2019 - present v vE v wx *multi-node, multi-GPU mode is based on Dask **built on CUDA and thus only support for
(v24.04.00) NvidiaCUDA-GPUs
Legate / cuNumeric Nvidia 2021 - present ' v W)* v wx *No scalable I/0 routine available **requires CUDA and thus supports Nvidia-GPUs only
(v23.11.00)
CuPy Preferred Networks / commu- 2017 - present v v * v (V) *module cupyx.distributed (based on NCCL) only contains matmul as a linalg functionality,
nity (v13.1.0) most operations on distributed array are not implemented yet **focus seems to be on Nvidia-
CUDA-GPUs as support of AMD-ROCm-GPUs is “experimental” as of v13.0.0
D20 Max Planck Institute for As- 2016 - 2017 (no re- W)
trophysics lease)
daaldpy Intel 2019 - 2020* v v wE ok *Drop-in functionality for scikit-learn has been deprecated and moved to Intel(R) Extension for
(v2024.3.0) scikit-learn **GPU-support has been deprecated ***no ARM-based CPUs
Dask M. Rocklin / community 2015 - present v v vE v (V) *Dasks task-based parallelization approach (“worker-scheduler”) allows for multi-node paral-
(v2024.4.2) lelization as long as the RAM of each node is sufficient for the respective tasks. **Dask arrays
on GPU need to be realized via CuPy.
dislib Barcelona Supercomputing 2018 - present v v v v * *parallelization builds on the task-based framework PyCOMPSs, GPU-support is built on CuPy
Center (v0.9.0)
| DistArray | NASA /Enthought | 2008-2015(v0.6) | | | | | | | | v | |
dpnp Intel 2020 - present v P *hardware requirements not stated explicitly in the documentation; a focus on or even restriction
(v0.14.0) to Intel-hardware is likely
Heat DLR, JSC, KIT 2018 - present v v W v v v v *data-parallel training of neural networks as in the torch.distributed package as well as the
(v1.4.1) DASO-algorithm [CDG ' 22]
Intel Extension for Intel 2021 - present v * v ok *currently no distributed mode **no ARM-CPUs; direct support of Intel-GPUs only as usage
scikit-learn (v2024.3.0) of Nvidia-CUDA- or AMD-ROCm-GPUs requires a dedicated plug-in (the latter being in beta-
state for AMD-devices)
Jax Google 2020 - present v vE v v VO v Jax arrays are always immutable (unlike NumPy) and Jax is aimed to work best with functional
(v0.4.26) programming (see Castro et al, Table 3). *several libraries for DL based on Jax are available
**Jax natively also supports Google TPUs.
Xorbits (Mars) Xorbits Inc. (Alibaba) 2018 - present v v v v v W)* *GPU-support is based on CuPy
(v0.7.2)
PySpark / MLIlib Apache Software Foundation 2013 - present v v)* ok *Nvidia-GPUs can be used for certain algorithms via Spark Rapids ML based on cuML **ML-
(v3.5.1) lib is Apache Spark’s scalable machine learning library and thus relies on Spark
‘ Ramba ‘ Intel ‘ 2021 - present (pypi: ‘ v ‘ ‘ ‘ ‘ v ‘ v ‘ ‘ v ‘ ‘

v0.1.post157)

Table 1: Overview of the libraries and their features. “DA”, “LA”, “ML”, and “DL” stand for “basic distributed arrays”, “distributed linear algebra”, “distributed
, “GPU”, and “idp.” are abbreviations for “Simple NumPy-/scikit-learn-like
API”, “multi-node capabilitites”, “GPU-support”, “platform independence”. The “lifetime” of a project refers to the span between the first and the latest release on
the corresponding repository; projects with the latest release dating back more than one year (i.e., prior than April 2023) are considered “dead”.

(classical) machine learning”, and “distributed deep learning”, respectively. “API”, “m-n’

s

	Introduction and overview
	Related work: Python's distributed-array ecosystem
	Heat
	Heat in a nutshell
	Past and current applications of Heat
	``Rocket science" with Heat
	Post-processing in earth system modelling with Heat

	Hands-on
	Implementation in scikit-learn
	From scikit-learn to Heat or Dask
	Heat vs Dask: Runtime, memory and energy consumption

	Future challenges, development, and applications

