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Abstract. This paper explores how an AI model might aid pilots fac-
ing time-sensitive, multi-criteria decision-making challenges, focusing on
the dynamic alternate airport selection problem. Traditional decision-
making methods from the literature are ill suited in time-constrained,
stressful situations. This has prompted an exploration into how incor-
porating AI models might provide decision-makers, pilots in this case,
recommendations in such predicaments. Within the paper we explore
how a Learning Classifier Systems (LCS), might be employed to tackle
the problem. To train the LCS, an augmented dataset is derived from
an online survey study featuring scenarios simulating alternate airport
decision-making problems where state variables, reflecting aircraft con-
ditions, and three airport options were presented to pilots. The LCS
system showed promising results and appears to be a suitable model for
the task.

Keywords: mutli-criteria decision-making · learning classifier system ·
artificial intelligence.

1 Introduction

Making decisions that involve multiple criteria is inherently challenging, and the
complexity of such tasks is further exacerbated when the decision needs to be
made in a time-sensitive emergency situation. A real world example of this is
the dynamic alternate airport selection (DAAS) problem [1]. The DAAS problem
aims to represent a situation that pilots may find themselves in, specifically when
certain factors necessitate the selection of a new destination airport midflight.
In [1] and here, the problem is presented as a multi-criteria decision-making
problem in which pilots need to gather information on possible airports, compare
their characteristics, and select a new final destination. Although structured
schemes such as FORDEC (Facts, Options, Risks, Decision, Execution, Control)
or TDODAR (Time, Diagnosis, Options, Decide, Assign Task, Review) are used
[2] [3], pilots in interviews expressed their desire for additional decision-support
in emergency situations [4].

At the DLR (Deutsches Zentrum für Luft- und Raumfahrt e.V., engl. Ger-
man Aerospace Center), an Intelligent Pilot Advisory System (IPAS) [4] is being
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developed to explore how an AI-powered decision support system might be inte-
grated into the cockpit. Currently, one of the focuses behind this advisory system
is to provide pilots assistance during a DAAS problem situation. The idea is that
the system would take in relevant input data and provide the pilots with a sug-
gested course of action. This paper delves into how the AI of such a system
might be trained using data gathered from a survey, where pilots were tasked
to solve a DAAS problem consisting of three alternate airports. Additionally,
given the importance of safety in aviation, emphasis was placed on using a more
interpretable model whose recommendation would be easier to check. Thus, the
lesser-known Learning Classifier System (LCS) was selected to tackle the pilot
dataset.

The structure of this paper is as follows: The follwing section provides a de-
scription of the pilot dataset used to train the model Afterwards, the LCS is
described along with the precise implementation used. Then in 4 the experimen-
tal design and results analysis are presented. Finally we have the conclusions
drawn and avenues for future research.

2 Dataset

2.1 Data collection

The pilot dataset used was compiled as part of the master’s thesis titled ”Are
there any factors that make the pilots’ decisions predictable? An analysis of the
impact of conditions on the choice of alternate airports.” [7]. The data was gath-
ered through an anonymous online survey using LimeSurvey. The survey took
place between October 28, 2022 and November 12, 2022 and had 46 participants.
The recruitment of the participants was carried out by direct mail with contacts
who were in the the Institute of Flight Guidance’s mailing list and were not
compensated for their participation. The study consisted of:

– An inclusion criterion: active type approval for the Airbus A320 family (yes
or no question).

– Sociodemographic questions: year of birth, gender.
– Experience questions: total flight hours, flight hours last year, flight hours

on the A320 type approval, pilot rank.
– Twelve decision-making scenarios.

The scenarios consist of a decision-making problem, in which the participants
are asked to rank three airports in terms of what they would choose if they had
to select a new destination airport midflight. Within the scenarios the reason to
select the new airport is not specified. The aircraft in the scenarios are defined
to be fully operational with no technical failures. The following information was
provided for the twelve scenarios to provide additional context details to the
participants:

Airbus A320 fully loaded with passengers and luggage which weighs 64.5
tons along with the maximum possible landing weight. Cruising altitude FL350.
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Normal weather according to ISA conditions without wind until you reach the
alternates. Manual landing, A/THR off, auto brake medium, reversers. The in-
formation provided was to indicate that the status of the aircraft reflected that
of what would be considered average for the aircraft type. Regarding the twelve
scenarios themselves, the following characteristics for each airport were provided:

1. Distance alternate to original airport: This factor describes the distance be-
tween the originally planned airport and the alternate airport.

2. Related Landing Performance: This code translates runway conditions, such
as wet, snowy, icy, etc., into a classification of the expected landing perfor-
mance of the aircraft.

3. Margin landing distance: This factor is the difference between the length of
a runway and the braking distance of the aircraft.

4. Crosswind: the wind blowing across the direction of movement.
5. Tailwind: This factor is calculated from the wind direction and speed using

trigonometric functions.
6. Fuel remaining: This factor gives the amount of fuel that is left when the

airspace of an airport is reached. The minimum amount can be calculated
based on regulatory requirements and the current conditions.

7. Number of runways at the airport.

Additionally, the airports were given generic names with two letters to avoid
biasing the pilots’ responses. This was done to ensure that the pilots were not
influenced by their own personal preferences or experiences. Within the study
the twelve scenarios were designed to be difficult in order to challenge the partic-
ipants. This meant that the scenarios showcased where more extreme scenarios
where the true answers is not clear. In fact, in [7] the idea was to use extreme
cases so that more insight could be gathered into the trade-offs that pilots would
make in terms of airport characteristics. Additionally, the scenarios were divided
into difficult and very difficult categories. In this context difficulty refers to the
how extreme the values are for the factors in terms of how much they close to
breaking the safety guidelines.

2.2 Data analysis

Figure 1 shows the favored or Rank 1 choice of the pilots for each of the sce-
narios. It is important to note that although 46 participants took part in the
study not all of them evaluated all the scenarios presented, hence there are some
discrepancy’s in the number of evaluations in figure 1. From the figure one can
ascertain that many scenarios have more apparent preferences, and it would
seem that the participants were of a similar mind in their choices.However, in
some scenarios, such as S7 and S9, we see that the margin between the airport
ranked first most often and the second-best ranked one is not as big as it is in
the other scenarios where we can see a more decisive clear preference. While the
participants did not always agree, the dataset was still compiled from experts in
a specific field, making it a valuable treasure trove of information that models
can learn from.
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Fig. 1. Analysis of pilot choices
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In [7], aside from the wider breath of the investigation analysis the examina-
tion of the scenario data was primarily approached by treating all the options/
airports as separate instances of a complete dataset. It is worth mentioning that
analysis focusing on the scenarios as complete separate units was included but
to a limited degree. To better understand the factors influencing participants’
decisions, an additional analysis was conducted. In it each scenario was treated
as a separate subdataset of the whole dataset. The initial step taken was to
simplify the target variable by transforming the answers from the pilot survey
to a single variable instead of having three variables for each of the rankings.
To accomplish this, a score for each option/airport was calculated based which
incorporates all three ranking. The new score was calculated as:

SC(ai) = R1(a) +
R2(ai)

2
+

R3(ai)

3
(1)

where a refers to the airport selected and Rm refers to the mth ranking from
the dataset. This enables the scoring function to take into account the values
corresponding to the other rankings and not just focus on the airport which
was ranked first. This is needed as figure 1 showcased that in certain scenarios
the preferred choice is not entirely clear. This score was then used to calculate
the Pearson correlation. The correlations for each scenario were calculated and
then averaged. Fisher’s z-transform was used for this purpose [9], as it stabilizes
the variance of correlation coefficients and makes them more suitable for statis-
tical analysis by normalizing their distribution. Using this transformation the
influence of the features across all the scenarios can be examined as depicted in
figure 2. Based on Figure 2, the Marginal Landing Distance and Related Land-
ing Performance emerge as the most influential factors when making decisions,
exhibiting a correlation of nearly 1. This observation aligns with the logical con-
sideration that pilots prioritize information about available landing distance,
recognizing its critical role in preventing runway excursions. A runway excursion
refers to an incident in aviation where an aircraft departs from the runway during
either takeoff or landing. This can occur due to various factors, such as adverse
weather conditions, pilot error, technical malfunctions, or a combination of these
elements. Runway excursions may involve the aircraft veering off the side of the
runway, overshooting the runway end, or, in more severe cases, going off the
runway surface entirely. These incidents can pose safety risks and often prompt
investigations to determine the causes and implement preventive measures to
enhance aviation safety. Similarly, the substantial correlation for Related Land-
ing Performance is justifiable, given that runway conditions significantly impact
the aircraft’s braking coefficient, thereby influencing the likelihood of a runway
excursion.

Interestingly, crosswind and tailwind exhibit a negative correlation, with
crosswind exerting a more pronounced influence. It was initially hypothesized
that tailwind might be the more influential factor due to the potential dangers
associated with strong tailwinds, making landing precarious or even impossi-
ble at certain speeds. However, the data suggests a stronger association with
crosswind, challenging the initial assumption and emphasizing the need for a
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Fig. 2. Feature corelations

nuanced understanding of the interplay between wind conditions and landing
performance

2.3 Traning dataset creation

With a better understanding of the dataset, attention can now shift to how it
can be utilized for training the model. The scenarios evaluated by participants
were designed to reflect a real-world decision-making problem, albeit in a sim-
plified form. Due to time and resource constraints, only this limited subset of
scenarios could be assessed. However, training a model on such a small and re-
stricted dataset may not be optimal, as the algorithm would benefit more if
it could generalize and handle a broader range of scenarios. Consequently, the
model should not only perform well on the smaller pool of evaluated scenarios
but also on scenarios that differ from those assessed. To tackle this, a dataset
comprising new scenarios was created. These scenarios were generated by sam-
pling airports, including their characteristics, and incorporating them into new
scenarios consisting of three airports. The sampling was performed to ensure
that no new scenario would contain duplicate airports. Using this method and
the fact that 12 ∗ 3 = 36 airports were available to sample, a total of 988 new
scenarios were generated. These new scenarios were combined with the original
twelve scenarios to create a dataset of 1, 000 scenarios that could be used to
train the LCS. The new dataset, unlike the sampling pool, consists of unlabeled
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data. ”Unlabeled” refers to the fact that the new scenarios have not been evalu-
ated, and there is no established measure of what constitutes a correct response.
Hence, the initial idea was to approach this dataset as a reinforcement learning
(RL) problem. In an RL problem, an intelligent agent learns through trial and
error by receiving rewards or penalties for its actions [8]. However given that the
dataset comprised a single step problem, i.e. only a single action/ classification
was needed per scenario the dataset was instead converted to a labeled dataset.
This was done by making use of a weighted similarity function for each of the
airports/options in the new scenarios. The evaluation for an option a from a
scenario S is calculated using:

EV (ai, Sn) =
1

dmin(x⃗, b⃗j)
∗ SC(ai) (2)

where n refers to the nth scenario, dmin(x⃗, b⃗j) represent the smallest Eucledian

distance between the current input S⃗ and b⃗j which represents the the jth element
of the the created reference matrix b. The reference matrix comprises the original
twelve scenarios, flattened so that each scenario is represented by a single row
in the reference matrix. The Eucledian distance between any scenario S⃗ and a
scenario from the reference matrix is calculated as:

d(Sn, bj) =
√

(S1 − bj1)2 + (S2 − bj2)2 + ...(Snk − bjk)2 (3)

where k is the number of factors in our dataset, i.e., the number of airport char-
acteristics being considered. Using the evaluation, we measure the similarity
between the scenario from the newly created dataset and an evaluated scenario.
Subsequently, each of the available actions in the scenario is evaluated based
on the scores from the original twelve scenarios. The closer the scenarios re-
semble each other, the more the ranking of the options ought to resemble each
other. Using this new evaluation for the options, the correct class or label is the
airport/option that has the highest value. Thus, the unlabeled dataset, using
the original twelve scenarios as a reference guide, is transformed into a labeled
dataset that can be used to train the model.

3 Model configuration

An LCS consists of a set of rules known as the population of classifiers. The
primary goal is for these classifiers to collectively emulate an intelligent decision
maker. This is done through evolution and learning. The genetic algorithm and
a problem-specific learning mechanism guide the system toward better rules.
Both mechanisms rely on the system’s ”environment,” which, in the context of
LCS literature, refers to the source of input data for the algorithm. The infor-
mation received from the environment depends on the problem being addressed.
In this instance, the system will receive decision-making scenarios requiring the
selection of one out of three airports. After the interaction with the environ-
ment, the LCS will receive feedback in the form of numerical rewards, which
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then in turn drive the learning process. While various LCS algorithm imple-
mentations exist, a basic framework includes a finite population of classifiers
representing system knowledge, a performance component regulating interac-
tion with the environment, a reinforcement component distributing rewards to
classifiers, and a discovery component improving rules through different genetic
operators. These components serve as the foundation for numerous variations in
LCS algorithms. Figure 3 illustrates how specific mechanisms of LCS interact
within the context of these major components [18] [19]. Aside from the inter-
pretability and explainability of the model, LCS has also been extensively used
for problems characterized by both epistasis, complex interactions between fea-
tures of a dataset, and heterogeneity, different features or subset of features are
important for different instances of the dataset. The same characteristics are
present in popular benchmark problems such as the multiplexer problem [20]
[18]. Given that these characteristics are also present in the dynamic alternate
airport selection problem and that the problem was used as inspiration for the
construction of a multi-objective multiplexer benchmark problem [21], using an
LCS seems like a suitable model to employ.
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genotypes by recombining subparts of the genotypes of two
or more individuals (rules). Mutation operators randomly
modify an element in the genotype of an individual (rule).
The selection pressure which drives “better” organisms
(rules) to reproduce more often is dependent on the fitness
function. The fitness function quantifies the optimality of
a given rule, allowing that rule to be ranked against all
other rules in the population. In a simple classification
problem, one might use classification accuracy as a metric
of fitness. Running a genetic algorithm requires looping
through a series of steps for some number of iterations
(generations). Initially, the user must predefine a number of
parameters such as the population size (N) and the number
of generations, based on the user’s needs. Additionally the
GA needs to be initialized with a population of rules which
can be generated randomly to broadly cover the range of
possible solutions (the search space). The following steps will
guide the reader through a single iteration of a simple genetic
algorithm.

(1) Evaluate the fitness of all rules in the current
population.

(2) Select “parent” rules from the population (with
probability proportional to fitness).

(3) Crossover and/or mutate “parent” rules to form
“offspring” rules.

(4) Add “offspring” rules to the next generation.

(5) Remove enough rules from the next generation (with
probability of being removed inversely proportional
to fitness) to restore the number of rules to N.

As with LCSs, there are a variety of GA implementations
which may vary the details underlying the steps described

above (see Section 9.5). GA research constitutes its own field
which goes beyond the scope of this paper. For a more
detailed introduction to GAs we refer readers to Goldberg
[8, 11].

3.2. Learning. In the context of artificial intelligence, learn-
ing can be defined as, “the improvement of performance
in some environment through the acquisition of knowledge
resulting from experience in that environment” [12]. This
notion of learning via reinforcement (also referred to as
credit assignment [3]) is an essential mechanism of the
LCS architecture. Often the terms learning, reinforcement,
and credit assignment are used interchangeably within the
literature. In addition to a condition and action, each
classifier in the LCS population has one or more param-
eter values associated with it (e.g., fitness). The iterative
update of these parameter values drives the process of
LCS reinforcement. More generally speaking, the update
of parameters distributes any incoming reward (and/or
punishment) to the classifiers that are accountable for
it. This mechanism serves two purposes: (1) to identify
classifiers that are useful in obtaining future rewards and
(2) to encourage the discovery of better rules. Many of
the existing LCS implementations utilize different learning
strategies. One of the main reasons for this is that different
problem domains demand different styles of learning. For
example, learning can be categorized based on the manner
in which information is received from this environment.
Offline or “batch” learning implies that all training instances
are presented simultaneously to the learner. The end result
is a single rule set embodying a solution that does not
change with respect to time. This type of learning is often
characteristic of data mining problems. Alternatively, online

Fig. 3. Visual representation of a LCS, taken from [19]
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Due to the large number of LCS variants and the lack of a standardized im-
plementation, here the exact structure of the LCS will be presented. The LCS
implemented is loosely based on [24] and is in fact avariation on an enhanced
Michigan-style learning classifier, often called XCSF [25] [26]. The LCS is com-
prised of:

1. The condition C which is a hyperellipsoidal condition and is mathematically
represented as:

C = (m⃗,Σ) = ((m1,m2, ...,mn)
T , (σ1, σ2, ..., σn)), (4)

where m⃗ specifies the center of the ellipsoid, T denotes the transpose of
a (column) vector or matrix, and Σ defines the fully weighted Euclidean
distance metric of the ellipsoid, also termed Mahalanobis distance [27]. This
transformation matrix determines the stretch of the ellipsoid and the rotation
in the n -dimensional problem space.

2. The possible action set A, that is, A ∈ A where A = {a1, ..., am} represents
the set of all possible actions.

3. The linear function prediction R which is specified by the weight vector

R = w⃗ = (w0, w1, ..., wn)
T , (5)

where wo is the offset weight
4. The prediction error ε which estimates the mean absolute deviation of the

reward predictions.
5. F which is the fitness of the classifier.

The values are iteratively modified and evolved. The LCS is initialized with
an empty population. Each learning iteration t, the LCS receives a instance xt

along with the function value yt. LCS then forms a match set [M ] of all classifiers
whose conditions are active. Classifier activity is determined by

cl.ac = exp

(
− (x−m)TΣ−1(x−m)

2

)
,

which determines the distance from the current input and then applies the Gaus-
sian kernel on the distance. A classifier is active, that is, it matches if its current
activity is above the threshold θm. For each step within a learning trial the LCS
constructs a match set [M ] comprised of active classifiers from the population.
Each classifier in [M ] has its numerocity increased by 1, cl.num = cl.num + 1.
Should the match set [M ] generate fewer than θmna actions a covering mecha-
nism generates new classifiers and adds them to the population [P ]. The center
of the hyperellipsoid (m) fro the newly generated classifiers is set to the current
input (x). Only the diagonal entries in the transformation matrix (Σ) are initial-
ized to the squared inverse of the uniformly randomly chosen number between
zero and the parameter r0. All other matrix entries are set to zero. In this way,
covering creates axis-parallel hyperellipsoidal condition parts. During learning
for each possible action ak in [M ] a classifier prediction pj is calculated as:

cl.P (x⃗) = cl.w0 × x0 +
∑
i>0

cl.wi × xi (6)
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For each action ak, prediction pj , and classifier fitness Fj the expected payoff is
computed using:

Pk =

∑
j Fjpj∑
j Fj

(7)

Afterwards a system action is chosen and all of the classifiers in [M ] advo-
cating the chosen action are used to create a action set [A]. The chosen action
is then performed and a scalar reward r is received along with the next input.
Upon receiving the reward each classifier in [A] has its weight vector updated
according to:

cl.wi ← cl.wi +∆wi (8)

where ∆wi is calculated as:

∆wi =
η

|x⃗|2
(y − cl.P (x⃗))xi (9)

where η ∈ [0, 1] denotes the learning rate and y the target output. The error for
each classifier is then calculated as:

εj ← εj + η (|y − pj | − εj) (10)

The fitness is updated next using:

F ← F + η(κ′ − F ) (11)

κ =

{
1 if ε0 ≤ α

∣∣∣ ε
ε0
− ν

∣∣∣
0 otherwise

κ′ =
κ · num∑

cl∈[M ] cl.k · cl.num
(12)

where cl.k refers to the k value for the specific classifier and cl.num refers to
the numerocity of the classifier. Finally the set size estimate of each classifier is
updated:

aj ← aj + η(|[M ]| − aj) (13)

The LCS employs a Evolutionary algorithm (EA) for the evolution of classifiers.
EAs are a type of algorithm inspired by the natural process of evolution and
attempt to solve a problem by evolving and mutating potential solutions to
the problem while also applying specific selection pressures. The EA applied to
classifiers within [A] it he average time since it’s last execution exceeds θEA. The
EA used here employs set-size relative tournament selection [28] based on the
fitness estimates of classifiers to choose two parental classifiers from the current
match set [M ]. This means that from the set [M ], a random sample is selected
to participate in a tournament of varying size. The size of the tournament refers
to the number of classifiers that will be compared simultaneously. The classifiers
are compared based on their fitness, as this is the mechanism the GA uses to
determine how ”fit” a classifier is. Subsequently, two offspring are produced
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through crossover and mutation operations. Uniform crossover is used in which
the corresponding values in the two selected classifier are exchanged with a
probability of 0.5. Mutation, with a probability of µ, modifies each entry in
the condition part by either randomly shifting the center of the hyperellipsoid
within its current interval. During mutation, a matrix entry undergoes a maximal
increase or decrease of the value by 50%. If the value is initially set to zero, it is
initialized to a randomly selected value, using the same method from covering
process for diagonal matrix entries, while taking into account the parameter µ0.
The implemented LCS also has a deletion operator in order to maintain the
population size . The deletion mechanism initially establishes the average fitness
of all classifiers in the population. Next, each classifier is assigned a deletion
vote based on its match count and fitness. The deletion vote initially equals the
classifier’s estimated set size. If the classifier’s match count exceeds a threshold
θdel and its fitness falls below a fraction δ, its deletion vote is further increased.
This ensures that classifiers with many matches and low fitness are more likely to
be selected for deletion. A probability distribution where classifiers with higher
deletion votes have a higher probability of being selected for deletion is created
by normalizing the deletion votes. Using this probability distribution, a classifier
is randomly chosen for deletion and removed from the population. This process
is repeated until the population size reaches the maximum allowed limit.

4 Experimental design and results analysis

The experiments were carried out in Python version 3.9.6 and made use of the
XCSF Python package [30]. LCS is characterized by a large number of hyper-
parameters, i.e., parameters that need to be given beforehand. Due to this, hy-
perparameter tuning was done using Bayesian optimization and made use of
the Bayesian Optimization: Open-source constrained global optimization tool
for Python package [29]. This method employs a Gaussian process to establish a
posterior distribution of functions that accurately represents the function being
optimized. As the number of observations increases, the posterior distribution
becomes more refined, empowering the algorithm to make more informed deci-
sions about which regions of the parameter space are worth exploring and which
are not [31]. The Bayesian optimization was carried out using twenty initial
points and fifty additional evaluation points. For each combination of parame-
ters, the model was run thirty one times due to its stochastic nature and had
10% of the dataset used as a validation set. The weighted F1 score was used
as a measure for hyperparameter tuning, i.e., the parameters were optimized to
obtain the highest average (from the thirty one runs per combination of parame-
ters) weighted F1 score. The Weighted F1 Score is calculated using the following
formula:

Precision =
TP

TP + FP
(14)

where TP refers to the number of true positives predictions and FP refers to the
number of false positives, additionally FN refers to the number of false negatives
and TN refers to the number of true negative predictions.
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Recall =
TP

TP + FN
(15)

F1 Score = 2× Precision× Recall

Precision + Recall
(16)

The Weighted F1 Score is then computed as the weighted average of the
F1 Scores for each class, where the weights are based on the number of true
instances for each class:

Weighted F1 Score =

∑
i(TPi +TNi)× F1 Scorei∑

i(TPi + FNi)
(17)

The Weighted F1 Score is then computed as the weighted average of the F1
Scores for each class, where the weights are based on the number of true instances
for each class:

Weighted F1 Score =

∑
i TPi × F1 Scorei∑

i TPi + FNi
(18)

The best-found hyperparameters are illustrated in Table 1.

Hyperparameter Lower bound Upper Bound Optimal Value

population size 100 200 163

α 0.01 1 0.30

β 0.01 1 0.1

δ 0.01 1 0.4646

error reduc. 0.01 1 0.264

fit reduc. 0.01 1 0.265

max nu. trials 1000 10000 7937

ν 1 10 5.383

crossover probability 0.01 1 0.46

patience 10 10000 4540

perf. trials 1 500 142

θdel 20 200 159.873

θEA 20 200 155.066
Table 1. Hyperparameter values
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As depicted in table 1, the population for the LCS was chosen quite conserva-
tively, ranging between 100 and 200 classifiers. This decision was made to exert
additional pressure on the LCS to create classifiers that can generalize well. The
optimal number found was 163 classifiers, meaning that, on average, one rule
would represent 1000/163 = 6.13 inputs/scenarios from the dataset. However,
this is a very rough and simplified estimate, as the classifiers in this configura-
tion of the LCS can overlap. Therefore, it is challenging to determine if solely
one classifier from the population represents 6 inputs/scenarios. It is more likely
that various subsets of classifiers from the population together are responsible for
multiple similar inputs. Another noteworthy hyperparameter is the patience pa-
rameter, whose optimal value was estimated to be 4540. This hyperparameter is
used as a stopping criterion for the algorithm. If there is no improvement within
the last patience number of inputs/scenarios, the algorithm stops training. The
chosen number seems quite high compared to the total number of trials. In this
context, trials refer to the number of inputs/scenarios given to the algorithm,
with a number greater than the size of the dataset indicating multiple passes on
the dataset. For the maximum number of trials, it would indicate that the LCS
went over the dataset almost 8 times, as the optimal value for this number is
7937.

Using the best-found hyperparameters, an instance of the LCS was run thirty
one times, and its precision was measured and compared to that of a random
agent. The random agent randomly selects from one of the three available classes
for its prediction. The comparison can be seen on figure 4. Examining the figure
we an observe that the average accuracy of the LCS lies somewhere between 0.55
and 0.6, which would indicate that it gets the answer right around 60% of the
time. Although the LCS has a wider distribution for it’s accuracy values even
at it’s worst it would still outperform the random agent. Although being able
to outperform a random agent the LCS still has a mildly impressive accuracy.
Additionally, during an exploration into the training of the algorithm it was
noticed that in many training sessions of the model there would be a decline of
the validation error followed by a plateau or oscillation by the validation error
and often, but not always a sudden drop in the validation error. An example of
it can be seen in figure 5. This behavior could be caused by the more stochastic
nature of the algorithm, as the evolution of classifiers may not be sufficient,
and at some point, one or a subset of classifiers is created in the population
that drastically improves performance. However, it does seem like a problem, as
this oscillation can last for many trials, and in some cases, it was never able to
reduce. To this end, greater investigation should be given to the stability and
consistency of the training of the algorithm, as this undoubtedly influences the
overall performance of the algorithm.
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5 Conclusion and future work

This paper explores the utilization of an AI model to assist pilot decision-making
in emergency situations. The model was trained on a dataset from an online sur-
vey assessing how pilots would decide in twelve scenarios representing a simplified
version of midflight emergency alternate airport selection. The dataset was pro-
cessed using the Learning Classifier System (LCS), a machine learning approach
employing a set of classifiers to simulate intelligent decision-making. LCS was
chosen for its enhanced explainability and interpretability compared to more
contemporary models like neural networks. The LCS demonstrated promise,
achieving an accuracy of approximately 0.6 and outperforming a random agent.
However, the algorithm exhibited training instability, leading to a lack of re-
duction in validation error. Moving forward, efforts focus on enhancing LCS
performance and constructing more elaborate datasets for model testing. The
ultimate goal is to develop a real-world system that enhances aviation safety
and earns pilots’ trust.
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