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A B S T R A C T

In recent years, many energy markets have seen the rise of battery storage systems (BSSs). This study
focuses on home energy storage (HES) and community energy storage (CES) as two known applications of
distributed BSSs in energy communities (ECs). We explore the challenge of efficient market integration of
these systems by proposing a hybrid methodology combining agent-based electricity market modeling with
bilevel EC optimization. This approach allows for deriving an optimal real-time pricing (ORTP) mechanism
for the EC users. We apply our methodology to a case study of Germany in 2030, where a BSS capacity
of 1.5 GW is installed within the ECs. Subsequently, we evaluate the impact of static energy-based charges
included in the end-consumer’s electricity price on BSS operations. Our results reveal that future market
price fluctuations, when passed through to end-consumers, increase the incentive for market-aligned BSS
operations. The ORTP strategy significantly aligns HES with market dynamics, reducing system costs and
facilitating renewable energy integration. The profit-driven CES operation emerges as the most efficient use-
case, increasing community welfare by 88 ke/MW-year and concurrently reducing the annual operational
system costs by 0.6 %. However, static energy-based charges on power consumption hinder cost-effective
BSS operations from both community and system perspectives. Our research contributes to understanding the
intertwined dynamics between decentralized and central markets, thus advancing the modeling of complex
energy markets.
1. Introduction

1.1. Background and motivation

The prospects for distributed solar photovoltaics (PV) applications
in residential and commercial sectors are promising, mainly due to
decline in PV system costs and the rise in consumer electricity prices.
This trend indicates a future increase in the number of so-called pro-
sumers (International Energy Agency (IEA), 2022). Furthermore, the
decreasing feed-in remuneration and battery storage system (BSS) costs
has led to the growing adoption of BSSs to moderate the intermittent
nature of solar energy generation and promote self-consumption in
the residential energy sector (Schmidt and Staffell, 2024). This shift
towards distributed solar PV and BSS is a fundamental component of
establishing a sustainable energy supply and represents a paradigm
shift from the conventional centralized energy system (Agnew and
Dargusch, 2015; Jayaraj et al., 2024).

✩ This research is financed by the German Aerospace Center (DLR) basic-funding project SoGuR.
∗ Correspondence to: Accenture, Leipziger Platz 16, 10117 Berlin, Germany.
E-mail address: sf.sarfarazi@gmail.com (S. Sarfarazi).

Home energy storage (HES) and community energy storage (CES)
are two promising applications of BSSs for residential users, each offer-
ing unique advantages (Dong et al., 2020b). HES allows prosumagers,
i.e., prosumers with energy storage systems, to enhance their behind-
the-meter self-consumption rate. This business model is proven to be
economically viable under specific market and regulatory conditions
and local generation potential (Bertsch et al., 2017; Aniello and Bertsch,
2023). HES encourages private investment in storage technologies,
providing additional flexibility to the energy system and catalyzing
sector coupling, for example, by allowing for the flexible utilization
of self-generated solar electricity for electric vehicles or power-to-
heat appliances (Schill et al., 2017; Zakeri et al., 2021). Despite these
benefits, the partially independent operation of prosumagers presents
new technical and economic challenges for the broader energy sys-
tems (Klein, 2020). It may pose risks to the stability of the electricity
grid, lead to distributional impacts associated with grid charge savings,
and operate in a manner that is misaligned with market signals of
scarcity and surplus (Li et al., 2023; Aniello et al., 2024).
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Nomenclature

Parameters

𝐹 𝑝𝑟𝑖 , 𝐹
𝑎𝑔 HES/CES energy to power ratio

𝐾𝑝𝑟
𝑖 , 𝐾

𝑎𝑔 HES/CES capacity
𝛬𝑝𝑟𝑖 , 𝛬

𝑎𝑔 HES/CES self-discharge rate
𝑈𝑝𝑟
𝑖𝑡 , 𝑈

𝑎𝑔
𝑡 HES/CES availability

𝜖𝑝𝑟𝑖 , 𝜖
𝑎𝑔 HES/CES charge efficiency

𝜀𝑝𝑟𝑖 , 𝜀
𝑎𝑔 HES/CES discharge efficiency

𝑃 𝑐ℎ𝑖 Marginal operational cost of
charging/discharging the BSS

𝑀−, 𝑀+ Sufficiently large constants in the MILP
formulation

𝛤 Aggregator’s margin in benchmark pricing
strategies

𝑃 𝑟𝑐 Regulatory induced charges on electricity
consumption from the grid

𝑃+, 𝑃− Aggregator’s discrete sale and purchase
prices

𝑃 𝑎𝑔+𝑡 , 𝑃 𝑎𝑔−𝑡 Aggregator sale and purchase prices in 𝑡 in
SP scheme

𝜔 Forecast period of the BSS operator
𝜋 Schedule duration for the BSS optimization
𝐷𝑖𝑡 User’s power demand
𝐺𝑖𝑡 User’s power generation
𝐻𝑖𝑡 User’s residual load
𝐸 Market exchange during the simulation
𝐸𝑎𝑔−𝑡 , 𝐸𝑎𝑔+𝑡 Grid feed-in and usage limits for the

aggregator in 𝑡
𝐸𝑝𝑟−𝑖𝑡 , 𝐸𝑝𝑟+𝑖𝑡 Grid feed-in and usage limits for pro-

sumager 𝑖 in 𝑡
𝑃𝑀𝑡 Wholesale electricity market price in 𝑡
𝑃𝑀𝑚𝑖𝑛, 𝑃

𝑀
𝑚𝑎𝑥 Minimum and maximum market prices in

one 𝜔
𝛷 Community welfare
𝐶𝑝𝑟𝑖 Cost of prosumager 𝑖
𝐶 ′ Total cost of all users
𝐶𝑠𝑦 Operational system costs of the simulation

period
𝐶𝑐𝑎𝑝𝑠 Carbon emission allowance costs of power

plant 𝑝 in 𝑡
𝜖𝑝 Efficiency of power plant 𝑝
𝐶𝑓𝑢𝑝𝑠 Fuel costs of power plant 𝑝 in 𝑡
𝑄𝑝𝑠 Awarded generation of power plant 𝑝 in 𝑡
𝐶𝑚𝑎𝑝𝑠 Marginal cost of power plant 𝑝 in 𝑡
𝐶𝑂&𝑀𝑝𝑠 Operation and maintenance costs of power

plant 𝑝 in 𝑡
𝐵 Total number of power plants

Sets

𝜓 Set of decision variables in (1)
𝐵 Set of power plants outside the EC
 Set of all users within the EC
𝜉 Set of decision variables in (13)
𝜁 Set of decision variables in (3) and (4)

Community energy storage (CES) has emerged as a viable alter-
ative to both grid-scale and single-home BSS solutions, offering a
ange of benefits for both distribution grid operators and energy users
1179
Indices

𝑎𝑔 Aggregator
𝑘 Discretization step
∗ Trade direction: Sale or purchase
𝑡 Optimization time
𝑝 Power plant index
𝑝𝑟 Prosumager
𝑠 Simulation time
𝑖 User’s index

Variables

𝑤𝑎𝑔 Aggregator’s objective in the self-sufficiency
driven CES strategy

𝑟 Aggregator’s profit
𝛼, 𝛽, 𝜆, 𝛾, 𝜏, 𝜐, 𝜇 Dual variables
𝑏+𝑡𝑘, 𝑏

−
𝑡𝑘 Binary variables in the MILP formulation

𝑧𝑝𝑟+𝑖𝑡 , 𝑧𝑝𝑟−𝑖𝑡 HES charged and discharged amount
𝑧𝑎𝑔+𝑡 , 𝑧𝑎𝑔−𝑡 CES charged and discharged amount
ℎ+𝑖𝑡𝑘, ℎ

−
𝑖𝑡𝑘 Continuous variables in the MILP formula-

tion
𝑑−𝑡 , 𝑑+𝑡 Spanning variables
𝜋+𝑖𝑡 , 𝜋

−
𝑖𝑡 Bilinear term intermediate values

𝑒𝑎𝑔−𝑡 , 𝑒𝑎𝑔+𝑡 Aggregator’s sold and purchased power in
the market

𝑒𝑝𝑟+𝑖𝑡 , 𝑒𝑝𝑟−𝑖𝑡 Prosumager’s grid usage and feed-in
𝑝𝑎𝑔+𝑡 , 𝑝𝑎𝑔−𝑡 Aggregator’s sale and purchase prices
𝑎𝑝𝑟𝑖𝑡 , 𝑎

𝑎𝑔
𝑡 HES/CES energy content

within an energy community (EC). CES facilitates self-consumption
and energy sharing within the EC, provides auxiliary grid services,
and generates economic revenues by participating in various markets,
thereby internalizing system-wide benefits (Gjorgievski et al., 2021).
While successful pilot projects have demonstrated promising results,
the commercial rollout of CES has faced challenges due to high BSS
costs and inadequate regulatory frameworks (Parra et al., 2017). Specif-
ically, regulatory fees imposed on the charged electricity have been
identified as a major economic burden for CES business models (Gährs
and Knoefel, 2020).

Given the challenges and opportunities highlighted above, this
study aims to investigate the system integration of distributed BSSs in a
post-feed-in incentive era. Specifically, we aim to address the following
central research question: ‘‘Under what circumstances does the opera-
tion of CES and HES for self-consumption within ECs contribute to a
more effective integration of renewable energies in the energy market?’’
To answer this question, we first propose a novel methodology that
integrates a bottom-up EC model in an agent-based electricity market
model. We then use the developed models to analyze the systemic
impacts of various EC use-cases under different market and regulatory
environments.

In the remainder of this section, we provide an overview of related
research in Section 1.2, and we highlight the research gap and the
contributions of this paper in Section 1.3.

1.2. Related works

This paper contributes to the intersection of two strands of liter-
ature. The first strand of research concentrates on the operation of
distributed BSS and the effective aggregation of energy storage assets
within ECs, a review of which is presented in Section 1.2.1. The second
branch investigates the broader system integration of ECs, exploring
this subject from a holistic perspective. We provide an overview of this
research in Section 1.2.2.
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1.2.1. Community-level analysis of BSSs
The technical and economic performance of HES and CES is signifi-

cantly affected by various factors, including pricing structures, country-
specific regulatory frameworks, and weather conditions. In the existing
literature, we can identify two sub-categories of research. The first
sub-category focuses on modeling the operations of BSS and conduct-
ing techno-economic analyses under specific regulatory environments
and pricing mechanisms. Several studies have explored the profitabil-
ity of investing in PV-storage systems for residential prosumagers in
different countries. For instance, the profitability of PV-storage sys-
tems for prosumagers in Germany and Ireland was examined by the
authors of Bertsch et al. (2017). Similarly, the economic viability
of PV self-consumption combined with lithium-ion batteries in the
French residential sector was assessed in Yu (2018). Another study
conducted in Spain investigated the impact of fixed charges added to
electricity tariffs on prosumager self-consumption (Solano et al., 2018).
The authors of Green and Staffell (2017) analyzed the self-sufficiency
operation of HES in Germany, Spain, and the UK, highlighting that
such operations, even in Spain with ample solar resources, resulted in
oversized storage capacities and inefficient investments. To explore the
potential advantages of CES over HES, the studies presented in Van
Der Stelt et al. (2018), Dong et al. (2020a), Barbour et al. (2018)
have conducted a comparison of the profitability and efficiency of these
two technologies for residential users. The simulation results presented
in Barbour et al. (2018) demonstrate that the optimal capacity of
CES is 65% of the capacity at the individual household level. This
finding suggests that in scenarios with high adoption of PV systems,
the installed storage capacity can be utilized more efficiently with CES
compared to HES.

The reviewed studies have assumed predetermined pricing rules
such as real-time pricing and time-of-use tariffs. However, in the con-
text of smart ECs, a narrow focus on the BSS operation overlooks
the role and interests of the EC managing entity. To overcome this
limitation, the second category of studies considers both the pricing de-
sign and the BSS operation in a simultaneous modeling approach. This
modeling typically employs game-theoretic techniques and bilevel op-
timization methods to simulate the interaction between an aggregator1

nd the EC users. For instance, in Mediwaththe and Blackhall (2020),
competitive operator of CES trades with the grid and establishes

ime-varying prices for the users while considering the distribution grid
oltage constraints. Similarly, in Liu et al. (2021), an aggregator man-
ges the reserve capacity provided by electric vehicles using dynamic
rice incentives to effectively participate in the day-ahead reserve
arket. Similarly, the aggregator in Sarfarazi et al. (2020) operates a
ES and develops an optimal real-time pricing (ORTP) scheme for an
C with heterogeneous actors. The study demonstrates that the ORTP
trategy leads to higher community welfare compared to a simpler
eal-time pricing strategy. The simulation results in Sarfarazi et al.
2023a) further support the superiority of the ORTP. In this study,
he aggregator creates price incentives to facilitate energy trading with
rosumagers and electric vehicles in the EC, taking into account various
ources of uncertainty.

.2.2. Overall system integration of distributed BSSs
Researchers have used various methodologies to examine the

idespread adoption of HES from a systemic perspective. In an ide-
lized, frictionless power system, wholesale market prices serve as
ffective indicators of scarcity or surplus in the energy system. To
valuate the potential systemic impact of prosumager self-consumption,
he authors of the study presented in Klein et al. (2019) propose a
‘market-alignment indicator’’. This indicator measures the ratio of the
elfare generated by HES to that of an arbitrage battery. Similarly, the

1 defined as an entity responsible for organizing distributed energy
esources (Botelho et al., 2022).
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authors in Sarfarazi et al. (2020) propose a comparable indicator for an
EC. Both studies identify potential inefficiencies in static pricing (SP)
and suggest real-time pricing strategies for improved market alignment.

The research presented in Yu (2018, 2021) investigates the role
of HES in the French energy system by 2030. In Yu (2021), the
author highlights significant systemic challenges within the seasonal
backup power system in relation to integrating variable PV sources.
They propose a load management model that relies on the secondary
utilization of HES to address these challenges. Similarly, in Yu (2018),
the author argues that incorporating HES for solar PV self-consumption
can effectively alleviate the systemic challenges associated with PV in-
tegration, such as daily balancing and annual backup issues, as opposed
to relying solely on full PV grid injection.

The authors in Günther et al. (2021) examine the investment choices
made by prosumagers and the systemic consequences of their opera-
tion within the German power sector in 2030. Their findings indicate
that when higher fixed annual expenses and lower volumetric grid
usage charges are introduced, households bear a greater portion of
the non-energy power sector costs. The authors also suggest that the
implementation of an hourly feed-in limit for households could help
mitigate stress on the distribution grid without necessarily having
adverse effects on the prosumage model. These results are aligned with
the findings in Fett et al. (2021), where the long-term impact of HES
diffusion on German electricity market is investigated. In Schick et al.
(2020), the research explores the suitability of high self-consumption
rates among prosumagers within an energy system with a substantial
share of renewable energy sources (RES). The investigation suggests
that inflexible HES operations driven solely by individual economic
interests might worsen the integration of RES, leading to higher car-
bon emissions and increased system expenses. Moreover, the authors
of Sarfarazi et al. (2023b) use a model-coupling approach to investigate
the impact of prosumagers’ behavior under different tariff mechanisms
on optimal system operation and design. This study highlights that
increasing the dynamic parts of the electricity usage and variable feed-
in remuneration can reduce the economic granularity gap between the
actual and the optimized energy systems.

1.3. Literature gap and contributions

In light of the above, we identify a research gap that exists at
the intersection of the two literature reviews. The studies focusing on
the EC perspective make significant assumptions about future market
dynamics and price developments. They also tend to overlook the
aggregated feedback effect of a large number of ECs on the larger power
system. Conversely, power sector studies often lack detailed models of
EC business models. Table 1 compares the focus of this paper with
the reviewed literature and highlights this gap. Focusing on energy
system operation, this paper contributes to this research gap from both
a methodological and substantive perspective:

• We propose a bottom-up methodology using an agent-based elec-
tricity market model to facilitate assessing the market integra-
tion of HES and CES. In particular, we develop a novel hybrid
approach that combines bilevel optimization with agent-based
energy market modeling. This approach allows for simulating the
decision-making interdependencies of the EC actors as well as the
self-interested behavior of other wholesale market participants.
While the bilevel optimization of EC allows for the derivation of
internal EC prices, referred to as ORTP, the agent-based market
simulation calculates the hourly wholesale market prices. There-
fore, unlike the main body of literature, our model architecture,
as shown in Fig. 1, accounts for the role of the aggregator and its

hierarchical interactions with EC users.
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Table 1
Comparative overview of the relevant literature on the system integration of distributed BSS.

Articles EC level
analysis

CES and HES
applications

EC pricing Overall system
implications

Energy
system model

Bertsch et al. (2017), Solano et al. (2018), Green and Staffell (2017) ✓ ✗ ✗ ✗ ✗

Van Der Stelt et al. (2018), Dong et al. (2020a), Barbour et al. (2018) ✓ ✓ ✗ ✗ ✗

Mediwaththe and Blackhall (2020), Liu et al. (2021), Sarfarazi et al. (2023a) ✓ ✓ ✓ ✓ ✗

Sarfarazi et al. (2020) ✓ ✓ ✓ ✓ ✗

Klein et al. (2019) ✓ ✗ ✗ ✓ ✗

Sarfarazi et al. (2023b), Schick et al. (2020) ✗ ✗ ✗ ✓ ✓

Yu (2018, 2021), Günther et al. (2021), Fett et al. (2021) ✓ ✗ ✗ ✓ ✓

This article ✓ ✓ ✓ ✓ ✓
Fig. 1. Model architecture in (a) the first body of literature focusing on EC (b) the
second strand of literature on system integration of prosumagers and (c) this paper.

• We apply our methodology to a case-study of German energy
system and conduct a comprehensive analysis on the short-term
systemic effects of different EC use-cases in two energy system
scenarios: one that represents the current status quo system in
Germany and another that projects the German power system in
2030. The EC use-cases under investigation can be distinguish
by three central factors: the choice of BSS application (CES or
HES), the operational strategy for CES (autarky-driven or profit-
maximizing), and the users’ pricing design, which can be either
SP or ORTP. The analysis concludes with an exploration of the
influence of regulatory induced charges on grid usage and a
benchmarking of the performance of distributed BSSs against a
system-cost minimizing storage operation.

The remainder of this paper is structured as follows. In Section 2,
we briefly describe the overall workflow of our methodology and
provide a description of the models used. Furthermore, this section
details the model parameterization for the analysis and introduces key
performance indicators to assess the results. We present the findings of
our analysis in Section 3, followed by a discussion of the limitations of
our methodology in Section 4. Finally, Section 5 concludes the paper
and outlines potential directions for future research.

2. Methodology

2.1. Overview

The core of our methodology revolves around the modeling of
representative EC use-cases and their integration into the electricity
market simulation model AMIRIS. The design of ECs is influenced
by various factors such as their organization structure, stakeholders
involved, and available technologies (Gjorgievski et al., 2021). In this
1181
Fig. 2. Schematic overview of the overall workflow to analyze the integration of ECs
in the future energy system.

paper, we consider an EC with a hierarchical structure that is not
isolated from the wholesale market. In this setup, the aggregator is
the intermediary entity between the EC users and the market. Besides
trading activities, the aggregator is responsible for creating sale and
purchase prices for bilateral trading with EC users. The available stor-
age and generation resources in the EC are BSSs, which are either
operated by the prosumagers as HES or by the aggregator as a CES,
and households’ rooftop PV systems.

We assess the performance of HES and CES in various EC use-cases
and within current and future German energy systems (respectively
referred to as current and future scenarios). In order to simulate the
current scenario, we parameterize AMIRIS using historical data. To
represent the energy system in the future scenario, we derive the
necessary parameters and time-series by utilizing the energy system
optimization model REMix. Finally, we introduce four key performance
indicators (KPIs) to evaluate the outcomes obtained from AMIRIS. Fig. 2
demonstrates a schematic overview of the overall workflow employed
in our methodology for the future scenario. This section provides a com-
prehensive explanation of all building blocks comprising this workflow.
Section 2.2 gives a concise introduction to the energy system models,
AMIRIS and REMix, outlining their key characteristics and functional-
ities. In Section 2.3, we explain our approach towards integrating the
EC models into AMIRIS and detail the mathematical formulation of the
optimization models. Section 2.4 describes the energy system scenarios,
the constructed EC use-cases, and the data used for parameterizing the
models. Finally, Section 2.5 introduces the selected KPIs to measure
the performance of the simulated ECs and their feedback impact on
the overall energy system.
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Fig. 3. Schematic structure of the basic agents in AMIRIS.
2.2. Energy system models

2.2.1. AMIRIS
Agent-based models provide robust tools to simulate the effects of

actor behavior on energy systems (Yao et al., 2023). AMIRIS is an open-
source agent-based model for electricity markets2 that is designed to
facilitate such analyses (Schimeczek et al., 2023a; Deissenroth et al.,
2017). Fig. 3 delineates the structure of AMIRIS and the key agents
relevant to this analysis.

AMIRIS enables model endogenous simulation of the Energy-Only-
Market with an hourly resolution. After all participants have submitted
their bids, these are sorted according to the merit order model. The
market is cleared hourly with the wholesale market price determined
at the intersection of the supply and demand curves. In AMIRIS, power
plants offer their generated electricity based on their marginal costs.
These costs are calculated considering plant-specific techno-economic
parameters (including efficiency and variable costs), fuel prices, and
CO2 prices.3 Policy regimes may entitle renewable power plants to re-
ceive a market premium, consequently influencing their bidding strat-
egy. AMIRIS is used in this paper exclusively to simulate the German
electricity market. Power exchanges with neighboring countries are
treated as exogenous input data for the model. Consequently, if elec-
tricity generation exceeds demand at any point during the simulation,
power from variable renewable energies will be curtailed.

In AMIRIS, a ‘‘forecaster’’ agent generates forecasts of electricity
prices and supply/demand bids of other market actors for future pe-
riods (e.g., 24 h). Flexibility operators can use these forecasts, which
may be perfect or erroneous, to optimize their bidding strategies and
maximize their objective functions. One of these flexibility options is
a storage module that minimizes the operational system costs (Cao

2 AMIRIS has been published as open-source software in Schimeczek et al.
(2023a), with the code accessible under (Schimeczek et al., 2023b). However,
the model developments related to the bilevel optimization are not included
in the open-source version at the time of publication.

3 To align the bid behavior of the simulated power generators with the price
patterns observed in actual markets, offsets termed as mark-ups and mark-
downs can be incorporated into the marginal values. However, to reduce the
complexity of the analysis, this study does not take into account mark-ups and
mark-downs.
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et al., 2019). However, AMIRIS does not endogenously model strategic
competition among actors, thereby allowing for the implementation
of a single storage entity.4 Hence, our analysis confines the available
flexibility options in the system to distributed BSS within the EC.

2.2.2. REMix
The current application of AMIRIS is accompanied by certain restric-

tions. Firstly, it does not endogenously simulate investment decisions,
instead relying on external inputs regarding the historical or future
design of the energy system. Secondly, it can only implement one
flexibility option. To circumvent these limitations, we utilize the REMix
model in this paper.

REMix is a modeling framework utilized to build energy system
optimization models that aim to optimize the capacity and hourly
dispatch of various technologies in a target year by minimizing the total
incurred costs. These optimizations are based on the assumption that
decisions are made by a benevolent system planner, aiming to find the
most cost-effective solutions for the entire system (Gils et al., 2017).
The total system costs include investment expenses, covering the costs
for the expansion of power plants, grid infrastructure, and storage tech-
nologies, as well as operational expenditures, such as fuel costs. Hence,
power plants are constructed and operated only if they contribute to the
most cost-effective solution within a one-year operational timeframe.

The modeled power sector includes a variety of power plant tech-
nologies, energy storage facilities, and power transmission capacities.
It also considers the electricity demand from conventional consumers,
heat pumps, heat boilers, and electric vehicles. To feed data into the
model, techno-economic parameters for each technology, feed-in time
series, and potential data for renewable power generation (such as
wind and solar radiation) are necessary. Additionally, the input data
comprises prescribed and maximum capacities for power generation,
storage, and transmission, along with costs associated with CO2 cer-
tificates, forming a comprehensive scenario dataset. To realistically
estimate operating power plants in 2030, we restrict capacity expan-
sions in REMix according to available energy system scenarios. The
assumptions utilized in this regard are detailed in Section 2.4.

4 Simultaneous operation of storage systems using the same forecast results
in extreme price peaks due to the so-called avalanche effect (Ensslen et al.,
2018), which is a model artifact.
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Fig. 4. Implementation of the EC models in AMIRIS.

As illustrated previously in Fig. 2, two REMix results are primarily
sed in AMIRIS: installed capacities and dispatch profiles representing
he operation of flexibility options within the system. Note that the
EMix results do not differentiate between load, generation, and stor-
ge in the EC and other market actors. Therefore, to parameterize the
C in AMIRIS, we divide the data related to PV and BSS capacities, as
ell as electricity demand and storage dispatch profiles, between the
C and other market actors. The assumptions related to this division
re explained in Section 2.4.

.3. EC models

We use two different approaches to model the ECs in AMIRIS. The
irst approach involves modeling two separate entities, the ‘‘aggrega-
or’’ and the ‘‘prosumager’’, with each optimizing their BSS indepen-
ently in order to maximize their individual utilities. The aggregator
btains forecasts of upcoming prices and demand/supply bids from the
orecaster agent and creates two sets of electricity prices for bidirec-
ional trading with the prosumager. Given these prices, the prosumager
etermines its trading strategy by optimizing the HES. Upon receiving
he prosumager’s strategy, the aggregator generates bids for market
rading. In this approach, the aggregator may use a CES to optimize
ts market trading strategy.

The second modeling approach involves the concurrent optimiza-
ion of both the aggregator and prosumager, where the aggregator
nticipates the prosumagers’ response to price signals and develops
pricing strategy that maximizes its overall profits. Unlike the first

pproach, where the electricity prices are calculated based on pre-
etermined rules, in the second approach, the bidirectional energy
rading prices with the prosumagers (what we refer to as ORTP) are
erived by solving a bilevel optimization problem. As the strategies of
he aggregator and prosumager are inherently interconnected, they are
reated as a single ‘‘Energy community’’ entity. Fig. 4 illustrates the
mplementation of the EC models and their corresponding optimization
odels in AMIRIS.

To optimize the operation of ECs during the simulation process, a
olling horizon optimization methodology is implemented. The agents
ndertake their respective optimizations over the ‘‘forecast period’’ (𝜔),

and store the results of this optimization for the ‘‘schedule duration’’ (𝜋,
𝜋 ≤ 𝜔). Fig. 5 A depicts the 𝜔 and 𝜋 during the simulation time, 𝑠. The
optimization results compiled during the 𝜋 are subsequently employed
n the ensuing simulation steps. 𝜋 time steps after this optimization, an

optimization for the new planning horizon (Fig. 5 B) is executed.
We develop and incorporate three optimization models into AMIRIS

to represent different EC use-cases effectively. The ‘‘HES optimizer’’
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is responsible for the optimization of behind-the-meter BSS systems,
which are operated by prosumagers. The ‘‘CES optimizer’’ enables the
aggregator to determine the operation strategy of the CES. Finally, the
‘‘EC optimizer’’ comprises a bilevel optimization model where both the
aggregator’s pricing strategy and HES dispatch are determined simulta-
neously. Detailed step-by-step information exchange among the actors
in both EC implementation approaches is describe in Appendix A.1. The
remainder of this section explains these three models in details.

2.3.1. HES optimization model
A prosumager is defined as a household equipped with a PV system

that owns and operates a HES. The prosumager can be parameterized
to represent either a single household or an aggregate of households.
The schematic representation of the prosumager model is illustrated in
Fig. 6.

We assume that the prosumagers have a flawless forecast of their
solar PV generation (𝐺𝑖𝑡) and power demand (𝐷𝑖𝑡). Additionally, we
presume that the power generated is predominantly used to meet
the household’s electricity demand. The energy management system
then manages any residual load or generation (𝐻𝑖𝑡 = 𝐷𝑖𝑡 − 𝐺𝑖𝑡) from
he household to minimize the prosumager’s electricity bill (𝐶𝑝𝑟𝑖 ). To

accomplish this, the energy management system acquires the sale and
purchase prices, then decides the hourly grid usage and feed-in (𝑒𝑝𝑟+𝑖𝑡
and 𝑒𝑝𝑟−𝑖𝑡 ), and the HES charge/discharge schedule (𝑧𝑝𝑟+𝑖𝑡 , 𝑧𝑝𝑟−𝑖𝑡 ). Note that
if the EC users are not parameterized with a HES, the optimization is
bypassed and the 𝐻𝑖𝑡 is announced to the aggregator. The optimization
problem for prosumager 𝑖 is mathematically modeled as follows:

Minimize
𝜓

𝐶𝑝𝑟𝑖 =
∑

𝑡
((𝑃 𝑎𝑔+𝑡 + 𝑃 𝑟𝑐 )𝑒𝑝𝑟+𝑖𝑡 − 𝑃 𝑎𝑔−𝑡 𝑒𝑝𝑟−𝑖𝑡 +

𝑃 𝑐ℎ𝑖 (𝑧𝑝𝑟+𝑖𝑡 + 𝑧𝑝𝑟−𝑖𝑡 )) (1a)

ubject to: 𝑎𝑝𝑟𝑖𝑡 = (1 − 𝛬𝑝𝑟𝑖 )𝑎
𝑝𝑟
𝑖(𝑡−1) + 𝜖

𝑝𝑟
𝑖 𝑧

𝑝𝑟+
𝑖𝑡 −

𝑧𝑝𝑟−𝑖𝑡
𝜀𝑝𝑟𝑖

∶ (𝜆𝑎𝑖𝑡), (1b)

𝑧𝑝𝑟+𝑖𝑡 = 𝑒𝑝𝑟+𝑖𝑡 − 𝑒𝑝𝑟−𝑖𝑡 −𝐻𝑖𝑡 + 𝑧
𝑝𝑟−
𝑖𝑡 ∶ (𝜆𝑧𝑖𝑡) (1c)

0 ≤ 𝑎𝑝𝑟𝑖𝑡 ≤ 𝐾𝑝𝑟
𝑖 𝐹

𝑝𝑟
𝑖 ∶

(

𝜏 𝑖𝑡, 𝜏𝑖𝑡
)

, (1d)

𝑎𝑝𝑟𝑖(𝑡−1) = 𝐴𝑝𝑟𝑖0 ∶
(

𝜆𝑎0𝑖0
)

, 𝑡 = 1, (1e)

0 ≤ 𝑒𝑝𝑟+𝑖𝑡 ≤ 𝐸𝑝𝑟+𝑖𝑡 ∶
(

𝜐𝑖𝑡, 𝜐𝑖𝑡
)

, (1f)

0 ≤ 𝑒𝑝𝑟−𝑖𝑡 ≤ 𝐸𝑝𝑟−𝑖𝑡 ∶ (𝜇
𝑖𝑡
, 𝜇𝑖𝑡), (1g)

0 ≤ 𝑧𝑝𝑟+𝑖𝑡 ≤
𝑈 𝑝𝑟
𝑖𝑡 𝐾

𝑝𝑟
𝑖

𝜖𝑝𝑟𝑖
∶ (𝛽

𝑖𝑡
, 𝛽𝑖𝑡), (1h)

0 ≤ 𝑧𝑝𝑟−𝑖𝑡 ≤ 𝑈 𝑝𝑟
𝑖𝑡 𝐾

𝑝𝑟
𝑖 𝜀

𝑝𝑟
𝑖 ∶ (𝛾

𝑖𝑡
, 𝛾 𝑖𝑡), (1i)

Eq. (1a) portrays the cost-minimizing objective function of the
prosumager. The term 𝜓 symbolizes the set of optimization variables,
i.e., 𝜓 = {𝑒𝑝𝑟+𝑖𝑡 , 𝑒𝑝𝑟−𝑖𝑡 , 𝑧𝑝𝑟+𝑖𝑡 , 𝑧𝑝𝑟−𝑖𝑡 , 𝑎𝑝𝑟𝑖𝑡 }. In our model, 𝑡 and 𝑖 respectively
denote the optimization time step and the user index. The terms in
parentheses (i.e., 𝜆𝑎𝑖𝑡, 𝜆

𝑧
𝑖𝑡, 𝜏 𝑖𝑡, 𝜏 𝑖𝑡, 𝜆

𝑎0
𝑖0 , 𝜐𝑖𝑡, 𝜐𝑖𝑡, 𝜇𝑖𝑡, 𝜇𝑖𝑡, 𝛽𝑖𝑡, 𝛽𝑖𝑡, 𝛾 𝑖𝑡, 𝛾 𝑖𝑡) are

the Lagrangian dual variables of the constraints in the prosumager HES
optimization model and are defined for later use in the EC optimization
model. 𝑃 𝑎𝑔+𝑡 and 𝑃 𝑎𝑔−𝑡 in (1a) represent the electricity sale and purchase
prices offered to the prosumager. The aggregator, when selling electric-
ity to the users, is obliged to incorporate regulatory-induced charges
(𝑃 𝑟𝑐) into the end-user price. 𝑃 𝑐ℎ𝑖 is the marginal cost of charging or
discharging the HES.

Eq. (1b) describes on the state of charge (SOC) of the HES, which
depends on the SOC from the preceding time step, the self-discharge
rate (𝛬𝑝𝑟𝑖 ), the charged and discharged power (𝑧𝑝𝑟+𝑖𝑡 and 𝑧𝑝𝑟−𝑖𝑡 ), and the
HES’s charging and discharging efficiencies (𝜖𝑝𝑟𝑖 and 𝜀𝑝𝑟𝑖 ). The balance
f incoming and outgoing power flows for each prosumager and time
tep is maintained as per the constraint in (1c). Eq. (1d) ensures that

he stored energy is neither negative nor exceeds the energy capacity
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Fig. 5. Forecast period (𝜔) and schedule duration (𝜋) in two consequent optimization runs A and B.
Fig. 6. Schematic overview of the prosumager’s model.

of the HES (represented as BSS power 𝐾𝑝𝑟
𝑖 multiplied by its energy-to-

power ratio 𝐹 𝑝𝑟𝑖 ). The initial SOC of the HES (𝐴𝑝𝑟𝑖0 ) is established in (1e),
with the rolling horizon parameter 𝐴𝑝𝑟𝑖0 updated according to the SOC
stored from the prior simulation step (𝑠−1). The maximum permissible
grid usage (𝐸𝑝𝑟+𝑖𝑡 ) and feed-in (𝐸𝑝𝑟−𝑖𝑡 ) by the prosumager are outlined
in constraints (1f) and (1g) respectively. The upper bounds of the grid
interactions are computed as shown in (2).

𝐸𝑝𝑟+𝑖𝑡 = max{0, 𝐾𝑝𝑟
𝑖 +𝐻𝑖𝑡} (2a)

𝐸𝑝𝑟−𝑖𝑡 = max{0, 𝐾𝑝𝑟
𝑖 −𝐻𝑖𝑡} (2b)

Eqs. (1h) and (1i) limit the charging and discharging power in
each time step. The term 𝑈 𝑝𝑟

𝑖𝑡 delineates the availability of the HES
in a time step and can assume a value between 0 and 1. We solve
the optimization problem in (1) by discretizing the SOC and applying
a dynamic programming model (DPM) similar to the approach used
in Sarfarazi et al. (2020).

2.3.2. CES optimization model
Once the users’ grid interaction is planned (that is, 𝑒𝑝𝑟+𝑖𝑡 and 𝑒𝑝𝑟−𝑖𝑡

are determined), the aggregator can leverage the CES to optimize its
bidding strategy, denoted as 𝑒𝑎𝑔∗𝑡 . As depicted in Fig. 7, if the aggregator
does not possess a CES, 𝑒𝑎𝑔∗𝑡 equals to the grid interaction of all EC users
(∑

𝑖 𝑒
𝑝𝑟∗
𝑖𝑡 , ∗ stands for both + and − indices and  is set of all users in

the EC).
The aggregator can adopt either a self-sufficiency driven or a profit-

maximizing strategy for CES optimization. Given that these strategies
share similar constraints with the HES optimization model detailed
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Fig. 7. Schematic overview of the CES model.

in 2.3.1, the relevant equations are described in Appendix A.2. In
the following, we describe the objective functions for these two CES
strategies.
Self-sufficiency driven: With this strategy, the CES is employed to
minimize interactions with the wholesale market. Consequently, the
objective function can be expressed as follows:

Minimize
𝜁

𝑤𝑎𝑔 =
∑

𝑡
(𝑒𝑎𝑔−𝑡 + 𝑒𝑎𝑔+𝑡 )2 (3)

In (3), 𝜁 represents the set of optimization variables: 𝜁 = {𝑒𝑎𝑔+𝑡 , 𝑒𝑎𝑔−𝑡 ,
𝑧𝑎𝑔+𝑡 , 𝑧𝑎𝑔−𝑡 , 𝑎𝑎𝑔𝑡 }. The implemented quadratic function aims to minimize
the power exchange with the market while preventing sudden peaks in
charge and discharge.
Profit maximization: The aggregator employs the CES to capitalize on
market price fluctuations and maximize its revenue. Given the forecast
of upcoming power supply and demand bids over 𝜔, the aggregator has
knowledge of its market power when optimizing the CES. The objective
function in this strategy is given in Eq. (4):

Maximize
𝜂

𝑟 =
∑

𝑡
(𝑝𝑀𝑡 (𝑒𝑎𝑔−𝑡 −𝑒𝑎𝑔+𝑡 )+𝑃 𝑎𝑔+𝑡

∑

𝑖
𝑒𝑝𝑟+𝑖𝑡 −𝑃 𝑎𝑔−𝑡

∑

𝑖
𝑒𝑝𝑟−𝑖𝑡 −𝑃 𝑟𝑐𝑧𝑎𝑔+𝑡 )

(4)

In this equation, 𝑝𝑀𝑡 refers to the anticipated market price, consider-
ing the aggregator’s bids. The set of decision variables, 𝜂, includes 𝑝𝑀𝑡 ,
𝑒𝑎𝑔+𝑡 , 𝑒𝑎𝑔−𝑡 , 𝑧𝑎𝑔+𝑡 , 𝑧𝑎𝑔−𝑡 , and 𝑎𝑎𝑔𝑡 . The term 𝑃 𝑟𝑐𝑧𝑎𝑔+𝑡 accounts for potential
regulatory charges that may be levied when the CES charges.

As illustrated in Fig. 8, during a full charge–discharge cycle of the
CES, the market clearing price may adopt higher (𝑃𝑀𝑐) or lower (𝑃𝑀𝑑)
𝑡 𝑡
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Fig. 8. Illustrative example of CES exercising market power.

values than the forecasted price (𝑃𝑀𝑡 ). In such a scenario, the CES might
reserve some of its capacity to avoid inflated purchase prices during
charging or revenue lower than expected while discharging. Similar to
the HES model, the CES optimization model also employs a DPM.

2.3.3. EC optimization model
The second approach involves the simultaneous optimization of

the aggregator and the prosumager objective functions. While the
prosumagers aim to minimize their electricity bills (similar to the
first approach), the aggregator seeks to maximize its profit by setting
the ORTP for bidirectional energy trading with prosumagers. In order
to isolate the effect of ORTP, it is assumed that the aggregator is
not equipped with CES in the EC optimization model. Therefore, the
aggregator’s bids in terms of quantity are identical to the prosumagers’
grid interaction (𝑒𝑎𝑔∗𝑡 =

∑

𝑖𝑒
𝑝𝑟∗
𝑖𝑡 ). The interplay between the users of the

EC and the aggregator is modeled as a bilevel optimization problem:

Maximize
𝑝𝑎𝑔+𝑡 , 𝑝𝑎𝑔−𝑡

𝑟 =
∑

𝑖,𝑡
(𝑃𝑀𝑡 (𝑒𝑝𝑟−𝑖𝑡 − 𝑒𝑝𝑟+𝑖𝑡 ) + 𝑝𝑎𝑔+𝑡 𝑒𝑝𝑟+𝑖𝑡 − 𝑝𝑎𝑔−𝑡 𝑒𝑝𝑟−𝑖𝑡 ) (5a)

subject to: 𝑃𝑀𝑚𝑖𝑛 + 𝛤 ≤ 𝑝𝑎𝑔+𝑡 ≤ 𝑃𝑀𝑚𝑎𝑥 + 𝛤 , (5b)

𝑃𝑀𝑚𝑖𝑛 − 𝛤 ≤ 𝑝𝑎𝑔−𝑡 ≤ 𝑃𝑀𝑚𝑎𝑥 − 𝛤 , (5c)

where 𝑒𝑝𝑟+𝑖𝑡 ,𝑒𝑝𝑟−𝑖𝑡 ∈ argmin
𝜓

𝐶𝑝𝑟𝑖 =
∑

𝑡
((𝑝𝑎𝑔+𝑡 + 𝑃 𝑟𝑐 )𝑒𝑝𝑟+𝑖𝑡 − 𝑝𝑎𝑔−𝑡 𝑒𝑝𝑟−𝑖𝑡 + 𝑃 𝑐ℎ𝑖 (𝑧𝑝𝑟+𝑖𝑡 + 𝑧𝑝𝑟−𝑖𝑡 )), (5d)

(1b)–(1i). (5e)

Eq. (5a) represents the objective function for profit maximization with
decision variables 𝑝𝑎𝑔+𝑡 and 𝑝𝑎𝑔−𝑡 . Here, 𝑃𝑀𝑡 refers to the forecast of the
electricity market price, which is obtained from the forecaster agent. In
this model, the aggregator assumes that prices after the market clearing
will not deviate from the forecast, and thus, it does not factor in its
market power during the optimization process.

The lower and upper bounds for the aggregator’s sale and purchase
prices are constrained by Eqs. (5b) and (5c), respectively. These con-
straints are put in place to ensure that the prices remain attractive for
prosumagers, especially in the absence of competition among multiple
aggregators. We set the upper and lower price bounds based on the
forecast prices, as exemplified in Fig. 9. Here, 𝑃𝑀𝑚𝑖𝑛 and 𝑃𝑀𝑚𝑎𝑥 represent
the minimum and maximum market prices for each optimization period
(from simulation time 𝑠 to 𝑠 + 𝜔), and these values can change during
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the simulation. Eqs. (5d) and (5e) represent the objective function
and constraints for the lower-level problem. These are identical to the
prosumager’s model that was described in Section 2.3.1.

In order to solve the problem formulated in (5), a single-level
reduction approach is applied. This approach uses the Karush-Kuhn–
Tucker (KKT) optimality conditions, which are both necessary and
sufficient, to transform the problem into an equivalent mathematical
program with equilibrium constraints. The dual feasibility conditions
are described in Eq. (6).

𝛽
𝑖𝑡
, 𝛽𝑖𝑡, 𝛾 𝑖𝑡, 𝛾 𝑖𝑡, 𝜇𝑖𝑡, 𝜇𝑖𝑡, 𝜏𝑖𝑡, 𝜏𝑖𝑡, 𝜐𝑖𝑡, 𝜐𝑖𝑡 ≥ 0, (6)

where 𝛽
𝑖𝑡
, 𝛽𝑖𝑡, 𝛾 𝑖𝑡, 𝛾 𝑖𝑡, 𝜇𝑖𝑡, 𝜇𝑖𝑡, 𝜏 𝑖𝑡, 𝜏𝑖𝑡, 𝜐𝑖𝑡, 𝜐𝑖𝑡 are the Lagrangian dual

variables of the lower-level problem constraints, as defined in (1). The
stationary conditions are given in (7).

𝑝𝑎𝑔+𝑡 + 𝑃 𝑟𝑐 + 𝜆𝑧𝑖𝑡 + 𝜐𝑖𝑡 − 𝜐𝑖𝑡 = 0 ∶ 𝑒𝑝𝑟+𝑖𝑡 , (7a)

− 𝑝𝑎𝑔−𝑡 − 𝜆𝑧𝑖𝑡 + 𝜇𝑖𝑡 − 𝜇𝑖𝑡 = 0 ∶ 𝑒𝑝𝑟−𝑖𝑡 , (7b)

− 𝜆𝑎𝑖𝑡 + (1 − 𝛬𝑝𝑟𝑖 )𝜆
𝑎
𝑖(𝑡+1) − 𝜏 𝑖𝑡 + 𝜏 𝑖𝑡 = 0 ∶ 𝑎𝑝𝑟𝑖𝑡 , (7c)

(1 − 𝛬𝑝𝑟𝑖 )𝜆
𝑎
𝑖1 − 𝜆

𝑎0
𝑖0 = 0 ∶ 𝑎𝑝𝑟𝑖𝑡 , 𝑡 = 1, (7d)

𝑃 𝑐ℎ𝑖 − 1
𝜀𝑝𝑟𝑖

𝜆𝑎𝑖𝑡 + 𝜆
𝑧
𝑖𝑡 − 𝛾 𝑖𝑡 + 𝛾 𝑖𝑡 = 0 ∶ 𝑧𝑝𝑟−𝑖𝑡 , (7e)

𝑃 𝑐ℎ𝑖 + 𝜖𝑝𝑟𝑖 𝜆
𝑎
𝑖𝑡 − 𝜆

𝑧
𝑖𝑡 − 𝛽𝑖𝑡 + 𝛽𝑖𝑡 = 0 ∶ 𝑧𝑝𝑟+𝑖𝑡 . (7f)

Complementary slackness conditions for the lower-level problem
result in several nonlinear terms, but, since the prosumager’s problem
is a linear program, these can be replaced with the strong duality
condition (Bard, 2013). The strong duality condition for the lower-level
problem can be formulated as:

−
∑

𝑡
(𝑝𝑎𝑔+𝑡 𝑒𝑝𝑟+𝑖𝑡 + 𝑃 𝑟𝑐𝑒𝑝𝑟+𝑖𝑡 − 𝑝𝑎𝑔−𝑡 𝑒𝑝𝑟−𝑖𝑡 + 𝑃 𝑐ℎ𝑖 (𝑧𝑝𝑟+𝑖𝑡 + 𝑧𝑝𝑟−𝑖𝑡 )) =
∑

− 𝜆𝑎0𝑖0𝐴
𝑝𝑟
𝑖0 +

∑

𝑡
(𝜏 𝑖𝑡𝐾

𝑝𝑟
𝑖 𝐹

𝑝𝑟
𝑖 + 𝜇𝑖𝑡𝐸

𝑎𝑔−
𝑡 + 𝜐𝑖𝑡𝐸

𝑎𝑔+
𝑡 + 𝜆𝑧𝑖𝑡𝐻𝑖𝑡

+𝛽𝑖𝑡
𝑈 𝑝𝑟
𝑖𝑡 𝐾

𝑝𝑟
𝑖

𝜖𝑝𝑟𝑖
+ 𝛾 𝑖𝑡𝑈

𝑝𝑟
𝑖𝑡 𝐾

𝑝𝑟
𝑖 𝜀

𝑝𝑟
𝑖 ) (8)

In the single-level reduction process, two bilinear terms emerge
in the objective function (5a) and the strong duality condition (8):
𝑝𝑎𝑔+𝑡 𝑒𝑝𝑟+𝑖𝑡 and 𝑝𝑎𝑔−𝑡 𝑒𝑝𝑟−𝑖𝑡 . To handle the resulting non-linearity, as proposed
in Sarfarazi et al. (2023a), we assume that 𝑝𝑎𝑔+𝑡 and 𝑝𝑎𝑔−𝑡 can only take
discrete values. Hence, a disjunctive formulation for the bilinear terms
is proposed as follows:

𝑝∗𝑡 𝑒
𝑝𝑟∗
𝑖𝑡 =

⋁𝑛
𝑘=1

𝑃 ∗
𝑘𝑡𝑒

𝑝𝑟∗
𝑖𝑡 (9)

In this case, 𝑘 is the disjunction index and ⋁ is the disjunction oper-
ator. The binary expansion technique is then used to introduce binary
variables 𝑏∗𝑡𝑘 and reformulate the disjunctive program ⋁𝑛

𝑘=1𝑃
∗
𝑘𝑡𝑒

𝑝𝑟∗
𝑖𝑡 .

−𝑀∗𝑏∗𝑡𝑘 ≤ ℎ∗𝑖𝑡𝑘 ≤𝑀∗𝑏∗𝑡𝑘,∀𝑖𝑡𝑘 (10a)

−𝑀∗(1 − 𝑏∗𝑡𝑘) ≤ ℎ∗𝑖𝑡𝑘 − 𝑃
∗
𝑘𝑡𝑒

𝑝𝑟∗
𝑖𝑡 ≤𝑀∗(1 − 𝑏∗𝑡𝑘),∀𝑖𝑡𝑘 (10b)

∑𝑛
𝑘=1

𝑏∗𝑡𝑘 = 1 (10c)

𝑀∗ in (10) is a sufficiently large number and ℎ∗𝑖𝑡𝑘 is a continu-
ous variable which is enforced to adopt corresponding discrete value.
Hence, we can substitute the bilinear terms and the aggregator prices
as:

⋁𝑛
𝑘=1

𝑃 ∗
𝑘𝑡𝑒

𝑝𝑟∗
𝑖𝑡 =

∑𝑛
𝑘=1

ℎ∗𝑖𝑡𝑘, (11a)

𝑝∗𝑡 =
∑𝑛

𝑘=1
𝑃 ∗
𝑘𝑡𝑏

∗
𝑡𝑘. (11b)

Consequently, the original bilevel optimization problem in (5) can
be reformulated with additional constraints derived in (10) and (11)
as:

Maximize 𝑟 =
∑

(𝑃𝑀 (𝑒𝑝𝑟− − 𝑒𝑝𝑟+) +
∑𝑛

ℎ+ −
∑𝑛

ℎ− )

𝜉 𝑡, 𝑖 𝑡 𝑖𝑡 𝑖𝑡 𝑘=1 𝑖𝑡𝑘 𝑘=1 𝑖𝑡𝑘
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Fig. 9. Sale and purchase price limits for one exemplary optimization period.
Subject to: (5b) and (5c),
(8) rewritten with (9) and (11a),
(1b) − (1i), (6) and (7),

(10) and (11a). (13)

In this formulation, 𝜉 includes {𝑝𝑎𝑔+𝑡 , 𝑝𝑎𝑔−𝑡 , 𝑒𝑝𝑟+𝑖𝑡 , 𝑒𝑝𝑟−𝑖𝑡 , 𝑧𝑝𝑟+𝑖𝑡 , 𝑧𝑝𝑟−𝑖𝑡 , 𝑎𝑝𝑟,
𝜆𝑎𝑖𝑡, 𝜆

𝑧
𝑖𝑡, 𝜏 𝑖𝑡, 𝜏 𝑖𝑡, 𝜆

𝑎0
𝑖0 , 𝜐𝑖𝑡, 𝜐𝑖𝑡, 𝜇𝑖𝑡, 𝜇𝑖𝑡, 𝛽𝑖𝑡, 𝛽𝑖𝑡, 𝛾 𝑖𝑡, 𝛾 𝑖𝑡, 𝑏

+
𝑡𝑘, 𝑏

−
𝑡𝑘, ℎ

+
𝑖𝑡𝑘, ℎ

−
𝑖𝑡𝑘}. The

problem in (13) is a mixed integer linear problem (MILP) and can be
solved using standard commercial MILP solvers and branch-and-bound
algorithms.

2.4. Model parameterization and data

This section introduces the energy system scenarios and EC use-
cases, explaining the data used and the underlying parameterization.

We investigate the systemic impacts of distributed BSS within two
energy systems. The current scenario resembles the German electricity
market and the installed capacities for the year 2019. The parame-
terization and back-testing of AMIRIS for this scenario, founded on
historical data, is illustrated in Nitsch et al. (2021). The future scenario
represents a projection of the German energy system for the year 2030.
As detailed in Section 2.2, we utilize the energy system optimization
model REMix to derive the optimal capacity expansions and storage
operations for the future scenario.

The REMix model configuration used in this research is grounded
on Cao et al. (2018), treating Germany as a singular model node with
imports/exports to neighboring countries considered as exogenous. The
primary emphasis is on the power sector, integrating renewable and
conventional power converters, the electricity grid, and electricity stor-
age technologies into the analysis. By 2030, we assume that Germany
will cease the use of coal or lignite power plants,5 adhering to the
projections set out in the energy scenario of Agora Energiewende and
Prognos (2022). As such, only gas power plants can be expanded
and dispatched. A carbon emission price serves as a stimulus for the
investment and operation of renewable power plants. As shown in
Table 2, Agora Energiewende and Prognos (2022) proposes a CO2 price
of 100 e per ton for the year 2030. The same source also anticipates
that the price of natural gas, after the price shocks in 2022, will stabilize
at 38 e/MWh. Furthermore, an average energy-to-power ratio of 3 h,
based on the analysis in Hesse et al. (2017), is included as a constraint
on the expansion of lithium-ion batteries.

5 According to various studies, including (Hauenstein et al., 2022), achiev-
ing a coal phase-out by 2030 remains a feasible scenario, considering the
ambitious goals of the German federal government and the substantial
expansion of renewable energy sources.
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To adapt AMIRIS for the future scenario, we use input data and
results derived from REMix. We assume that renewable power plants
do not receive feed-in incentives and the operations of pump storage
and lithium-ion BSS in AMIRIS, excluding those located within the EC,
mirror those of their REMix counterparts. REMix does not differentiate
between centralized and decentralized generation or storage resources.
As such, we assume an existing EC that possesses a total installed
capacity of 3 GW for PV generation and 1.5 GW for BSS, along with an
annual power demand of 2.25 TWh in both scenarios. These values are
subsequently subtracted from the total capacities and profiles derived
from REMix.6

Our model supports the integration of multiple ECs, with each EC
comprising various users (as denoted by the index 𝑖). However, due to
data scarcity and for simplicity, our analysis is constrained to a single
representative EC composed of an aggregator and a representative
prosumager (|𝑖|=1). We use household power demand profile data
from (Tjaden et al., 2015), which offers high-resolution load profiles for
74 households. The aggregate of these profiles yields a single demand
profile with an hourly resolution, closely approximating the standard
load profile due to smoothing effects.

We assume that both the aggregator and the prosumager possess
precise foresight of the upcoming prices for the next 24 h (𝜔 = 24),
adjusting their strategies bi-daily (𝜋 = 12). Furthermore, we assume
that all BSSs are available at all times (𝑈𝑎𝑔

𝑡 = 1,∀𝑡). In all cases, with
the exception of the profit-maximizing CES where the aggregator might
reserve a portion of its capacity to exert market power, we assume that
it opts for exceedingly high prices for demand bids and extremely low
prices for supply bids, ensuring that the bids are always awarded. The
aggregator is also mandated to include volumetric charges, denoted
as 𝑃 𝑟𝑐 , comprising taxes, levies, and grid charges in the prosumager
electricity tariff. These charges may also apply when the CES is drawing
power from the grid. The elimination of the EEG-levy in Germany
in 2022 resulted in a reduction in the total value of added charges
from 22.7 cents/kWh to 18.5 cents/kWh (Anon, 2022). Therefore, we
conduct our simulations for two cases: one incorporating regulatory
charges (𝑃 𝑟𝑐 = 18.5), and a hypothetical case devoid of regulatory
charges (𝑃 𝑟𝑐 = 0).

In this paper, we study five EC use-cases, depicted in Table 3,
by considering three fundamental components of EC business models:

6 To prevent disproportionate systemic effects provoked by the EC,
the proposed storage capacity is significantly below future energy sce-
nario predictions. The installed HES is projected to reach capacities of 26
GW by 2030 (Agora Energiewende and Prognos, 2022) and 64 GW by
2037 (Bundesnetzagentur, 2022).
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Table 2
Fuel and CO2 costs in the energy system scenarios.

Item Current scenario (Nitsch et al., 2021) Future scenario (Agora Energiewende and Prognos, 2022)

CO2 [e/ton] 24.7 100
Gas [e/MWh] 27.3 38
Coal [e/MWh] 7.8 –
Lignite [e/MWh] 5 –
Oil [e/MWh] 30.7 –
Nuclear [e/MWh] 3.0 –
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Table 3
Studied EC use-cases.

Use-case Model Storage Pricing scheme Goal

No_stor No optimization – SP –
CES_A Single-level optimization in (3) CES SP Autarky
CES_P Single-level optimization in (4) CES SP Profit
SP Single-level optimization in (1) HES SP Profit
ORTP Bilevel optimization in (5) HES ORTP Profit

Pricing scheme, BSS application, and the aggregator’s optimization
objective. Among these, the No_stor acts as the reference point, enabling
the evaluation of the performance of other use-cases that deploy a BSS
within the EC.

In addition to the aforementioned EC use-cases, we introduce a
Sys_min case, wherein the built-in storage module in AMIRIS is used
to minimize system operational costs (Cao et al., 2019). Thus, while
the EC model in this case mirrors the No_stor, an optimization for a
BSS with a capacity of 1.5 GW, hypothetically located outside the EC,
is undertaken. We consider this case to benchmark the most desirable
system-wide outcome for a BSS operation, against which we assess the
system-friendly operation of our EC use-cases.

2.5. Key performance indicators

In this paper, we study the performance of the EC use-cases by
observing and assessing indicators at both the community and overall
energy system levels:

• Community welfare (𝛷): This refers to the total revenue gen-
erated by all participants in the EC, including the aggregator
and users. It is calculated using the equation presented in (14).7
Efficient trading practices can enhance 𝛷, while paid regulatory
charges may negatively influence it. It is worth noting that the
internal transactions within the EC do not impact the 𝛷 value.
This analysis, therefore, does not cover the actual redistribution
of welfare among EC stakeholders.

𝛷 =
∑

𝑠
(𝑟𝑠 −

∑

𝑖
𝐶𝑝𝑟𝑖𝑠 ) =

∑

𝑠
𝑃𝑀𝑠 (𝑒𝑎𝑔+𝑠 − 𝑒𝑎𝑔−𝑠 ) − 𝑃 𝑟𝑐 (𝑧𝑎𝑔+𝑠 +

∑

𝑖
𝑒𝑝𝑟+𝑖𝑠 )

(14)

• Market exchange (𝐸): This indicator pertains to the total power
exchanged with the higher-level grid or market. Although self-
consumption and self-sufficiency ratios are prevalent measures
of prosumager autonomy from the larger energy system, they
fail to accurately depict the scenario in ECs due to continuous
interactions of a grid-connected CES with the broader energy
system. Therefore, the necessity arises for alternative methods
to evaluate the level of independency of ECs. We define the
market exchange indicator as a suitable measure to assess the
self-sufficient operation of the EC:

𝐸 =
∑

𝑠
(𝑒𝑎𝑔+𝑠 + 𝑒𝑎𝑔−𝑠 ) (15)

7 Given that the value of 𝑃 𝑐ℎ
𝑖 is negligible in comparison to 𝑃𝑀

𝑡 and 𝑃 𝑟𝑐 ,
e have omitted the term 𝑃 𝑐ℎ(𝑧𝑝𝑟+ + 𝑧𝑝𝑟−) in the definition of 𝛷.
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𝑖 𝑖𝑡 𝑖𝑡 W
• Market-driven curtailment: This event takes place when a re-
newable energy power plant fails to secure contract awards de-
spite submitting bids to the wholesale market. Consequently, the
potential generation of solar or wind power plants cannot be
sold on the market and has to be curtailed. Considering the
near-zero marginal costs of renewable power generation and the
national geographical scope of this analysis, such curtailment
becomes necessary if the potential RES generation exceeds the
electricity demand in Germany. Note that in our model, the solar
PV generated in the EC is never curtailed.

• Operational system costs (𝐶𝑠𝑦): This refers to the sum of short-
term running costs of all power plants, i.e., the summation of the
marginal costs of all awarded power plants:

𝐶𝑠𝑦 =
∑

𝑠

∑𝐵
𝑝
𝑄𝑝𝑠𝐶

𝑚𝑎
𝑝𝑠 , (16)

where the marginal cost of power plant 𝑝 (𝐶𝑚𝑎𝑝𝑠 ) is determined as
follows:

𝐶𝑚𝑎𝑝𝑠 =
𝐶𝑓𝑢𝑝𝑠 + 𝐶𝑐𝑎𝑝𝑠

𝜖𝑝
+ 𝐶𝑂&𝑀𝑝𝑠 . (17)

Here, 𝐶𝑓𝑢𝑝𝑠 , 𝐶𝑐𝑎𝑝𝑠 , and 𝐶𝑂&𝑀𝑝𝑠 respectively denote the fuel, CO2, and
variable costs of the power plant 𝑝 at time 𝑡, while 𝜖𝑝 signifies the
efficiency of each power plant.

. Results

The forthcoming section provides a comprehensive presentation of
ur analytical findings for different readerships. Sections 3.1 to 3.3
ccommodate those readers who seek a detailed understanding of the
esults. Section 3.1 describes the results from simulating the two energy
ystem scenarios as introduced in Section 2.4. Subsequently, Section 3.2
resents the operation of BSS, showcasing the local consumption and
nergy arbitrage across various EC use-cases. In Section 3.3, we eval-
ate the introduced EC and overall system level KPIs. Moreover, Sec-
ion 3.4 summarizes our main findings and serves readers more inclined
owards high-level insights, who may prioritize a concise overview and
re less focused on methodological complexities and specific details.

.1. Energy system scenarios

Fig. 10 depicts the installed capacities for the simulated energy
ystems. Capacities in the current scenario are derived from historical
ata, while the capacities for the future scenario are direct outcomes
f REMix, under the assumptions explicated in Section 2.4.

Before incorporating the EC into AMIRIS, we simulate the electricity
arkets for the two energy system scenarios to provide an overview

f the key market indicators. The simulation outcomes are shown in
able 4. In the current scenario, renewable sources contribute to 42%
f the power generation, while this figure rises to 82% in the future
cenario. These results are in line with the objectives set forth in the
ederal government’s climate emergency program (Easter Package),
ublished in early 2022, which aimed for a minimum of 80% of gross
lectricity consumption to come from renewable sources (Abuzayed
nd Hartmann, 2022). The future scenario sees higher operational sys-
em costs due to the increased cost of conventional power generation.

ith a larger proportion of renewable energy sources and a phase-out



Energy Reports 12 (2024) 1178–1196S. Sarfarazi et al.
Fig. 10. Installed power plant capacities in the current and future scenarios.
Table 4
Descriptive energy system indicators resulted from AMIRIS simulations.

Indicator Current scenario Future scenario

Renewable power generation [TWh] 224.0 578.5
Conventional power generation [TWh] 303.19 125.1
Operational system costs [Me] 9227.8 14 004.4
CO2 emissions [Mt] 155.1 47.9
Curtailed power generation [GWh] 0.9 92 609.3

of coal, the future scenario results in a 69% reduction in CO2 emissions
compared to the current scenario. The curtailment of power generation
from renewable energy sources is 0.9 GWh in the current scenario. This
figure escalates to 93.5 TWh in the future scenario.

Table 5 provides an overview of the market price statistics. In the
future energy scenario, the average market price escalates by 14.4
e/MWh due to the higher marginal costs of gas power plants, an
outcome primarily arising from the projected increase in gas and CO2
prices. The peak electricity price rises from 63.8 e/MWh to 173.7
e/MWh in the future scenario, also attributable to the projected hikes
in fuel and CO2 prices. Notably, the lowest market price remains
constant at 0 e/MWh in both scenarios because of the absence of regu-
latory incentives for renewable feed-in, coupled with the presumption
that the marginal cost of power generation from RES is zero. In the fu-
ture scenario, the duration of RES price-setting extends drastically from
a single hour8 in the current scenario to 4350 hours, thus decreasing the
median price from 42.5 e/MWh to 6.6 e/MWh. The increased standard
deviation distinctly showcases the intensified market volatility in the
future scenario. This volatility becomes more evident in the Bollinger
bands chart depicted in Fig. 11. The price fluctuations in the future
scenario during the spring and summer seasons become particularly
striking due to the surge in solar PV power generation.

3.2. EC operation

The operation of the EC varies across the case studies due to
differences in the BSS operating entity, optimization goals, and pric-
ing mechanisms for the prosumagers. Fig. 12 displays the simulated
EC dispatch over three exemplary days in the current scenario with
regulatory-induced charges assumed to be zero (𝑃 𝑟𝑐 = 0). Fig. 12(A)

8 The deviation of this value from historical data can be explained by the
electricity demand and generation of the EC, which are not considered in this
simulation.
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Table 5
Descriptive statistics of the market prices before EC integration.

Indicator Current scenario Future scenario

mean [e/MWh] 43.0 57.4
std [e/MWh] 4.7 62.7
min [e/MWh] 0 0
max [e/MWh] 63.8 173.7
median [e/MWh] 42.5 6.6

shows the predicted market prices to which the aggregator is exposed.
Fig. 12(B) displays the direct electricity consumption and residual de-
mand of the prosumer in the No_stor. The BSS dispatch and the residual
load of the EC in different use-cases are presented in Figs. 12(C) to
12(F).

The storage optimization approach employed in the CES_A actively
disregards market dynamics, while the users in the SP do not receive
any time-varying price signals. Consequently, the charging schedule of
the BSS in these two cases remains unaffected by the fluctuations in
market prices. In the CES_A, the CES aims to minimize the power traded
in the market, and on a sunny day, it accumulates excess generation
to meet the evening electricity demand. Similarly, the HES in the
SP follows this pattern on the first day, as selling electricity to the
grid is not cost-effective due to lower market prices. However, on the
following two days, the charging profiles of the BSS in these cases
diverge. While the CES in the CES_A utilizes the stored energy to sustain
a stable grid usage, the cost-optimizing HES in the SP use-case finds no
incentive to charge the battery.

In contrast to the previous use-cases, the BSS operation in the ORTP
and the CES_P is subject to market fluctuations. In both cases, the aggre-
gator endeavors to align the BSS operation with market signals. In the
CES_P, this is achieved by direct optimization of the CES, while in the
ORTP, dynamic incentives in the form of time-varying electricity prices
are created. The simulation results clearly demonstrate that the BSS
charging and discharging strategy in the CES_P closely follows market
price developments, with charging occurring during periods of high
prices and discharging when prices are low. In the ORTP, however, the
behind-the-meter self-consumption still remains more attractive than
selling self-generated electricity to the grid. Nonetheless, the HES shifts
the electricity load to hours of low market prices (e.g., in timesteps
385, 387, and 412). Our observations reveal that due to significant
price fluctuations in the future scenario (as shown in Fig. 11), selling
self-generated solar energy is occasionally more attractive than self-
consumption. Additional insights regarding the BSS dispatch can be
obtained from the annual duration curves, as depicted in Appendix A.3.
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Fig. 11. Bollinger bands chart for the market prices in current and future scenarios. The chart illustrates two standard deviations, both above and below, from the 24-hour moving
average trend.
3.3. KPI results

In this section, we examine the KPIs introduced in Section 2.5. To
isolate the effects of the BSS operation on the KPIs, we present relative
values compared to the No_stor.

Fig. 13 presents the community-level KPIs. As shown in Fig. 13(A),
the EC in the CES_A and SP simulations significantly reduces its in-
teraction with the wholesale market (50.7% and 48.4% respectively).
Conversely, the EC in CES_P shows the highest trading volume. The
incentive for trading activities is notably higher in the future scenario
due to increased short-term volatility (54.7% compared to 15.5% in the
current scenario). In both scenarios, the incentive for market arbitrage
diminishes significantly if the CES is required to pay an additional
18.5 cents/kWh for charging the battery. Prosumagers’ behavior in
ORTP contrasts somewhat across scenarios: Although electricity self-
consumption remains a priority in the current scenario (with nearly
45% less grid usage and feed-in), the HES shows up to a 23% higher
market trading volume in the future scenario. Even when 𝑃 𝑟𝑐 = 18.5
cents/kWh, where the market signals of scarcity and excess do not
‘‘directly’’ reach the EC users, prosumagers interact 15% more with the
grid.

Fig. 13(B) illustrates how the use of BSS in each case impacts com-
munity welfare. The changes in community welfare are, by definition
(as expressed in Eq. (14)), driven by the overall profit gained in the
market and the regulatory fees paid. The aggregated impact of these
two drivers differs in the current and future scenarios: In the current
market with comparably lower arbitrage potential, higher end-user
electricity prices incentivize a higher level of behind-the-meter self-
consumption and encourage the users to invest more in self-sufficiency.
In such environment, the operation of front-of-the-meter CES does not
generate a positive welfare effect. Due to higher power prices in the
future market, the welfare gain using a BSS is significantly higher,
where the least favorable case, CES_A with 𝑃 𝑟𝑐 = 18.5 cents/kWh,
generates over 34 Me (i.e., ≈ 22.6 ke/MW-year) additional welfare
for the community. Moreover, the profit potential from volatile market
dynamics in the simulated future scenario generally outweighs the cost
savings through self-consumption, leading to viable use-cases in market
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driven CES (CES_P) and HES (ORTP) solutions. The most profitable use-
case, CES_P with 𝑃 𝑟𝑐 = 0, generates an additional 132 Me, (i.e., ≈ 88
ke/MW-year).

The BSS operation in the CES_P effectively aligns the EC’s operation
with market price signals, resulting in the highest 𝛷. Nevertheless, due
to limited foresight, the operator may still experience misalignment
as the forecast for the entire simulation period is not available. The
sensitivity analysis presented in Fig. 14 illustrates that extending the
forecast period from 2 to 256 h significantly improves the community
welfare, but the improvements are diminished when the forecast period
exceeds 64 h. This is mainly due to the short charging cycle of the
BSS that is taken into account. In addition, the analysis indicates that
a shorter schedule duration leads to superior performance of the BSS
operation, and the most favorable outcomes are attained with a 𝜋 =
1. However, the considerable computational effort demanded by the
bilevel optimization in the ORTP justifies the choice of the schedule
duration (𝜋 = 0.5𝜔) in our analysis.

Fig. 15 shows the impact of the EC on overall system KPIs, i.e., the
operational system costs and the market-driven curtailment of RES, and
compares them against a benchmark case where the BSS is used to
minimize the system costs (Sys_min). The benchmark case assumes that
the BSS operator has the same foresight as the aggregator in the EC,
enabling a comparison of the system-friendly behavior of the different
use-cases.

The results show that the BSS operation can have a more significant
impact on system costs in the future scenario, owing to the higher
marginal costs of gas power plants in this scenario. While the BSS in
the Sys_min reduces the system costs by as much as 2.7 Me (0.03% of
total operational costs) in the current scenario, cost savings increases
to 132.16 Me (0.94%) in the future scenario. Among the EC use-cases,
the most substantial reduction in system costs is achieved in the CES_P,
where market-oriented BSS optimization leads to a reduction of up to
2.4 Me (0.026%) and 83.5 Me (0.6%) in the current scenario and the
future scenario, respectively. In the current scenario, the high level
of local self-consumption in the SP, ORTP, and CES_A increases the
operational system costs. The negative impact of local self-consumption
on system costs is reduced in the future scenario, with the EC operation
in the SP resulting in an increase of 12.7 Me (0.09%) in this scenario,
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Fig. 12. EC dispatch in different use-cases over three exemplary days. Market price
forecast is shown in A. User’s direct consumption and residual demand are presented
in B. subplots C, D, E, F respectively show the EC dispatch in the CES_A, SP, ORTP
and CES_P use-case (as described in Table 3).

while system costs in the ORTP and CES_A decrease by 59.9 Me
(0.42%) and 8.2 Me (0.05%), respectively. The negative impact of
volumetric regulatory-induced charges on BSS performance is most
visible for the CES_P and ORTP. The system costs for the CES_P increase
by 1.87 Me and 4.47 Me, while for the ORTP they increase by 0.36
Me and 1.14 Me in the current scenario and the future scenario,
respectively, compared to the simulations with 𝑃 𝑟𝑐 = 0. The impact
of these charges in other cases is comparatively insignificant.

As presented earlier in Table 4, there is a significant increase in
market-driven curtailment in the future energy system scenario, no-
tably characterized by a high level of RES generation. It is important to
note, as will be discussed in the following section, that the high level of
market-driven curtailment in our findings is primarily a model artifact
resulting from the omission of endogenous modeling of sector coupling
and cross-border power exchange. Specifically, the untapped potential
of RES generation that could not be marketed even at the price of 0
e/MWh escalate from a mere 0.9 GWh in the current scenario to over
1190
92 TWh in the future scenario. In our benchmark scenario (Sys_min),
the BSS operator absorbs 100% (0.9 GWh) and 1.25% (1156.45 GWh)
of the unused RES generation in the current scenario and the future
scenario, respectively, with the aim of minimizing the operational
system costs. Our analysis indicates that the BSS operation had a minor
effect on the curtailment in the CES_A and SP, with the exception of the
SP in the future scenario, where the curtailment increased by 206 GWh
more. In contrast, in the CES_P and ORTP, the BSS effectively absorbed
all the surplus generation in the current scenario. Similarly, the battery
operation in the CES_P and ORTP reduces the amount of market-
driven curtailment by up to 290 GWh and 205 GWh, respectively.
Furthermore, our results show that the regulatory induced charges do
not have a fundamental effect on the curtailment.

3.4. Key takeaways

The key findings in the context of the central research question of
our study can be summarized as follows:

In the current energy system, distributed BSSs are used to reduce
reliance on the grid by promoting self-consumption. Within the existing
regulatory framework, where energy consumers face substantial static
energy-based charges for taxes, levies, and fees aimed at covering
grid investment and operational expenses, the most financially viable
BSS use-case remains behind-the-meter self-consumption using HES
systems. This observation aligns with current realities, with over 83%
of stationary battery installations in Germany being HES.9 While such
self-consumption approach improves the integration of local PV gen-
eration, the full potential of energy storage systems remains largely
untapped. Our findings indicate that focusing solely on self-sufficiency-
oriented operation yields only marginal improvements in system-level
KPIs compared to approaches oriented towards the wholesale market.
As we move towards a future energy system, in which the abundant
RES need to be curtailed during certain hours and RES scarcity leads
to expensive power generation from conventional, high-CO2 footprint
fuels, efficient utilization of available flexibility becomes crucial. The
simulated scenario in 2030 with an 82% share of RES exhibits a
potential for significant price volatility in the future energy system,
which may lead to growing incentive for BSSs to engage in energy
arbitrage. It is important to note that our study did not address grid
constraints related to electricity transportation. Given that a significant
amount of RES is already curtailed due to transmission grid limita-
tions, relying solely on local consumption and generation through BSS
operation could exacerbate efficiency losses from the system perspec-
tive (Monforti-Ferrario and Blanco, 2021). Moreover, as for example
shown in van Westering and Hellendoorn (2020) CES can provide
services to distribution grid operators to reduce the congestion caused
by decentralized RES generation in the low voltage grid.

The proposed ORTP scheme, which results from the simultaneous
optimization of the aggregator and prosumagers’ profit-maximizing
utility functions, improves the alignment of the HES systems’ operation
with the real-time conditions of the overall energy system. In contrast to
the straightforward real-time pricing strategies examined in the existing
literature (such as those discussed in Klein et al. (2019), Sarfarazi
et al. (2023b), and Günther et al. (2021)), which simply pass wholesale
prices through to end-users, ORTP ensures an equilibrium in the EC.
As mathematically proved in Sarfarazi et al. (2023a), this equilibrium
guarantees the highest welfare for the EC. While this approach effec-
tively communicates market signals to the EC users, the preference

9 As of March 1st, 2024, the total installed battery storage capacity in
Germany amounts to 12.4 GWh. Among these installations, 10.4 GWh are
attributed to HES systems, typically with a size of up to 30 kWh. Additionally,
488 MWh are associated with commercial and industrial batteries, ranging
from 30 kWh to 1 MWh in size, while 1.5 GWh are accounted for by large-scale
batteries exceeding 1 MWh in capacity (Figgener et al., 2022, 2024).
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Fig. 13. Community level KPIs: market exchange (A) and community welfare (B) in the CES_A, SP, ORTP and CES_P relative to the No_stor(as described in Table 3). Note that
subplots are scaled differently.
Fig. 14. Sensitivity analysis regarding the impact of the schedule duration (𝜋) and
forecast period (𝜔) on the community welfare (𝛷).

for behind-the-meter self-consumption of PV electricity remains strong
among prosumagers in the current market. However, the simulated fu-
ture energy system scenario reveals increased short-term price volatility
in the market, amplifying the incentive for grid interactions during
specific hours. This contributes to the cost-effective operation of the
HES and improves the nationwide integration of RES. Nevertheless, the
effectiveness of such a mechanism is compromised if the tariff structure
incorporates static energy-based charges that distort real-time signals.

The profit-oriented operation of CES emerges as the most system-
friendly approach, yielding the highest EC welfare among the studied
use-cases. It is important to note that the profit derived from CES
cannot be directly compared with that of HES, as we evaluated the
generated welfare across the entire EC. The profitability of CES op-
eration through arbitrage is heavily dependent on prevailing market
conditions. Our findings indicate a per-unit arbitrage opportunity rang-
ing from 1.7 ke/MW in the current system to 88 ke/MW in the future
energy system. These figures fall on the lower and upper bounds of the
spectrum of data compiled from 176 individual valuation studies and
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market transactions, which range from 5 to 85 ke/MW-year in Schmidt
and Staffell (2024).10 The operation of CES becomes even more sensi-
tive to regulatory charges in the absence of behind-the-meter potential.
The recent decision by the German government to exempt BSS projects
commissioned until 2029 from grid fees for 20 years (German Energy
Storage Systems Association (BVES), 2024), enhances the attractiveness
of investment in this sector. Additionally, under current market condi-
tions revenue stacking by providing multiple services within a specified
time frame, though not explored in this study, has the potential to
significantly improve the profitability of BSSs (Schmidt and Staffell,
2024). For instance, the study in Sorourifar et al. (2018) demonstrates
that under specific market conditions, simultaneous participation in
energy and ancillary services markets can yield a 4- to 5-fold increase
in net present value compared to solely engaging in energy transactions
in the day-ahead market.

Furthermore, our results underscore the systemic advantages of en-
ergy arbitrage in the market using BSSs. The considered 1.5 GW battery
in our study results in a reduction of operational system costs by 2.4 Me
and 83.5 Me in current and future scenarios, respectively. Despite these
positive effects on the system, the operation of BSSs often diverges from
the optimization of system costs, as the business economic benefits of
BSS operation do not always align perfectly with the system’s require-
ments. One such scenario arises when a price-setting BSS deliberately
withholds its full capacity to respond to energy scarcity and excess,
aiming to prevent price cannibalization. The assumption of system-
cost minimizing BSS operation is commonly employed when assessing
the potential of batteries in future energy systems using energy system
optimization models.

4. Discussion of limitations

We conducted a comprehensive analysis to assess the efficiency of
BSS operations across different EC use-cases, taking into account the
perspectives of the EC and the overall energy system. Our evaluation,
encompassing assessments at both the EC and wholesale market levels,

10 To provide context, the current investment cost for Lithium Ion Phosphate
batteries is estimated approximately 300 ke/MW.
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Fig. 15. Changes in system costs and RES generation curtailment in both energy system scenarios and in the CES_A, SP, ORTP and CES_P (as described in Table 3). Note that
subplots are scaled differently.
was subject to various constraints. Firstly, in terms of the market, we
did not account for the potential externalities of BSS operation on non-
energy power sector costs, such as those associated with the electricity
network. To ascertain whether BSS operation has any adverse effects
on the distribution grid, it would be necessary to explicitly model the
underlying power flows, a task that exceeded the scope of our study. In
this context, one vital avenue for future research involves establishing
appropriate incentives and coordination mechanisms that align BSS
operations with both market and grid signals.

Secondly, our market simulation was subject to several simplifying
assumptions. By solely focusing on Germany, our results are prone to
overestimating price fluctuations and required curtailment due to mar-
ket reasons. Furthermore, neglecting uncertainties and forecast errors
has a tendency to exaggerate the efficiency of storage operations. Ad-
ditionally, our model did not take into account the competition among
flexibility operators. We anticipate that strategic bidding by various
storage operators and aggregators of sector coupling technologies will
mitigate the intense price fluctuations observed in future energy system
scenarios. Correspondingly, if we parameterize our model to represent
a large array of ECs, each encompassing diverse actors, we anticipate a
similar effect. The effective modeling and data supply for the large-scale
integration of small actors in the energy market is a topic of another
research path.

Thirdly, our study imposed restrictions on the available technolo-
gies within the EC, limiting it to PV and lithium-ion battery systems,
which were parameterized exogenously. However, if capacity expan-
sions are optimized endogenously, prosumagers invest extensively in
self-sufficiency when regulatory-induced charges are in place (Bertsch
et al., 2017). Moreover, we did not consider the heterogeneity of house-
holds and instead parameterized a single prosumager with a standard
load profile and national generation profile. In Sarfarazi et al. (2023a),
we demonstrated that incorporating actor heterogeneity within the
EC leads to greater welfare, as there are more opportunities for local
trading and balancing within the EC.

Last, we analyzed the impact of regulatory charges as static energy-
based charges added to the electricity price and demonstrated that
such charges distort market signals, leading to sub-optimal utilization
of demand-side flexibility options. Furthermore, while prosumagers
1192
benefit from reduced costs through self-consumption, they contribute
less to taxes, levies, and grid expenses. In the case of grid costs, these
expenses must be borne by non-privileged consumers, raising distribu-
tional concerns (Mehigan et al., 2018). Future research should delve
into alternative tariff options, such as time-varying levies (Sarfarazi
et al., 2023b) or capacity-based grid charges (Khalilpour and Lusis,
2020; Klein et al., 2019), and also consider feed-in remunerations as
well as CO2-oriented reforms of retail tariffs abolishing the regulatory-
induced energy taxes and surcharges altogether (Aniello and Bertsch,
2023). Although the aggregator in our model participates in a single
electricity market, multi-use business models can enhance the prof-
itability of BSS operation (Gährs and Knoefel, 2020), particularly as
the storage remains idle for numerous hours in the year. Collective
self-consumption within the EC and providing grid services can create
additional revenue streams for BSS, making the investment more at-
tractive. We demonstrated that the community welfare in the EC can be
increased, but the question of how the resulting welfare is distributed
among stakeholders remains unanswered; specifically, what financial
incentives encourage users to participate in this business model, rather
than switch to another aggregator.

5. Conclusion

Decreasing battery storage system (BSS) costs and growing interest
in self-consumption of solar electricity have driven significant pri-
vate investments in home energy storage (HES). On the other hand,
multi-use business models using community energy storage (CES) are
proposed as alternatives to behind-the-meter HES operation. The rise
of distributed BSSs for local consumption poses a challenge to effi-
cient energy system operation and design. This study employed the
agent-based market model AMIRIS to evaluate the distributed BSS
operation from the EC and overall energy system perspectives. For CES,
we analyzed profit and autarky-oriented operations. We investigated
HES operation under static pricing and an optimal Real-Time Pricing
(ORTP) scheme. Additionally, we benchmarked these cases against a
system-cost minimizing battery.

Our study explored the ECs in current and future energy systems.
Simulations of the future energy market, with an 82% share of fluc-
tuating renewable energies, revealed an increase in price volatility. In
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this market environment, BSSs exhibit significant arbitrage potential,
thereby aiding the integration of renewable energies. In the current
system, a 1.5 GW BSS minimizes the operational system costs by mere
2.72 Me in one year. However, in the future scenario, this value
rises impressively to 132.16 Me. Despite this, the favorable impact
f BSS on studied EC use-cases is lower than system-cost minimizing
peration. Consequently, our conclusion emphasizes that policy deci-
ions relying solely on system-cost minimizing storage assumptions,
ommonly employed in large-scale energy system models, without
onsidering the micro-economic interests of BSS operators, may lead
o an underestimation of future storage system needs.

Our findings highlighted inefficiencies in autarky-oriented CES op-
ration. Despite trading 50% less power in the market compared to
rofit-seeking CES, the self-sufficiency-driven CES has limited effec-
iveness in reducing system operational costs and consuming surplus
nergy during high RES generation. The reduced EC interaction with
he larger energy system may result from the prevailing regulatory
ramework, such as free of charge behind-the-meter self-consumption,
nd lack of dynamic price incentives rather than being intentional.
ur proposed ORTP design creates time-varying incentives, enhancing
ommunity welfare and aligning BSS operation with market signals.
mplementing such real-time pricing schemes, currently hindered by
mart grid infrastructure, will be increasingly crucial in the future
nergy system.

Incorporating high static energy-based regulatory charges into con-
umer tariffs promotes prosumager self-consumption, but our study
nderscored potential trade-offs. During periods of high market fluctu-
tions, the efficiency gain through market participation may outweigh
avings from regulatory-induced charges, increasing overall commu-
ity welfare. Without incentives for local self-consumption, regulatory
harges decrease the efficiency of front-of-the-meter BSS operation.
ur investigation showed that profit-maximizing CES remains idle for
ver half of the year, emphasizing the potential benefits of multi-use
usiness models for both ECs and the energy system.

This study provides a valuable foundation for further exploration,
ostering comprehensive understanding of EC dynamics in sustain-
ble energy system transitions. The methodology allows for extended
nalysis of distributed energy systems, considering technological di-
ersity and regulatory frameworks. Future research may enhance the
RTP scheme to incorporate physical energy system signals for a more

ystem-friendly operation of distributed BSS. Additionally, endogenous
odeling of investment decisions, both within the EC and at the macro

nergy system level, offers significant prospects for a comprehensive
nderstanding of energy system design aspects.
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Appendix

A.1. Information exchange in EC models

In Section 2.3.3, we introduced the integration of two EC models
in AMIRIS and introduced two modeling approaches to represent EC
use-cases in AMIRIS. The main difference between these approaches
lies in the definition of EC prices. In the first method, the aggre-
gator uses a ‘‘Tariff strategist’’ module to calculate the prices using
predetermined rules, such as SP or simple real-time pricing. In the
second method the aggregator passes the forecasted market prices to
the ‘‘Energy community’’ and the internal EC prices (ORTP) are derived
by solving the bilevel optimization. The interplay between the actors
during simulation in both approaches is described in Fig. 16.

A.2. Constraints for the CES optimization model

The CES optimization model can adopt the self-sufficiency driven or
profit maximizing objective functions as respectively formulated in (3)
or (4). The constraints to the CES optimization problem are formulated
as:

𝑎𝑎𝑔𝑡 = (1 − 𝛬𝑎𝑔)𝑎𝑎𝑔(𝑡−1) + 𝜖
𝑎𝑔𝑧𝑎𝑔+𝑡 −

𝑧𝑎𝑔−𝑡
𝜀𝑎𝑔

, (18a)

𝑧𝑎𝑔+𝑡 = 𝑒𝑎𝑔+𝑡 − 𝑒𝑎𝑔−𝑡 −
∑

𝑖
(𝑒𝑝𝑟+𝑖𝑡 − 𝑒𝑝𝑟−𝑖𝑡 ) + 𝑧𝑎𝑔−𝑡 (18b)

0 ≤ 𝑎𝑎𝑔𝑡 ≤ 𝐾𝑎𝑔𝐹 𝑎𝑔 , (18c)

𝑎𝑎𝑔𝑡−1 = 𝐴𝑎𝑔0 , 𝑡 = 1, (18d)

≤ 𝑒𝑎𝑔−𝑡 ≤ 𝐸𝑎𝑔+𝑡 , (18e)

≤ 𝑒𝑎𝑔+𝑡 ≤ 𝐸𝑎𝑔−𝑡 , (18f)

≤ 𝑧𝑎𝑔+𝑡 ≤
𝑈𝑎𝑔
𝑡 𝐾

𝑎𝑔

𝜖𝑎𝑔
, (18g)

0 ≤ 𝑧𝑎𝑔−𝑡 ≤ 𝑈𝑎𝑔
𝑡 𝐾

𝑎𝑔𝜀𝑎𝑔 (18h)

where the storage parameters 𝜖𝑎𝑔 , 𝜀𝑎𝑔 , 𝛬𝑎𝑔 , 𝐾𝑎𝑔 , 𝑈𝑎𝑔
𝑡 , and 𝐹 𝑎𝑔 are

imilar to those of prosumagers. In Eq. (18a), the SOC of the CES is
etermined by various factors including the self-discharge rate (𝛬𝑎𝑔),
he charged and discharged power (𝑧𝑎𝑔+𝑡 and 𝑧𝑎𝑔−𝑡 ), as well as the CES
harge and discharge efficiencies (𝜖𝑎𝑔 and 𝜀𝑎𝑔), in addition to the SOC
n the previous time step. To ensure that power flows are balanced in
ach time step, constraint (18b) is in place. Eq. (18c) sets a limit to the
mount of stored energy to prevent negative storage levels or exceeding
he HES energy capacity, which is determined by the power capacity
𝐾𝑎𝑔) multiplied by the energy to power ratio (𝐹 𝑎𝑔). Furthermore, the
nitial SOC of the CES is established in Eq. (18d), with the rolling
orizon parameter 𝐴𝑎𝑔0 being updated based on the previous simulation
tep’s (𝑠 − 1) stored SOC. Aggregator market bids are capped in (18e)
nd (18f). Specifically, the upper bounds for power purchase and sale
rom the market are defined as followed:
𝑎𝑔+
𝑡 = max{0, 𝐾𝑎𝑔 +

∑

𝑖
(𝑒𝑝𝑟+𝑖𝑡 − 𝑒𝑝𝑟−𝑖𝑡 )} (19a)

𝑎𝑔−
𝑡 = max{0, 𝐾𝑎𝑔 −

∑

𝑖
(𝑒𝑝𝑟+𝑖𝑡 − 𝑒𝑝𝑟−𝑖𝑡 )} (19b)

e restrict the charging and discharging power of the CES through
18g) and (18h). To complete the formulation, we add 𝑈𝑎𝑔

𝑡 to denote
he availability of the CES in each time step, which takes a value
etween 0 and 1.

.3. Storage dispatch duration curves

Fig. 17 shows the charging duration curves of the BSS for different
se-cases and scenarios, with and without regulatory charges. The
harging duration curves for the CES_A and the SP can be seen to

emain constant, as they function independently of the broader energy
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Fig. 16. Interaction among AMIRIS agents in one simulation step: Purple and pink boxes respectively correspond to information flows in the first and second approaches.
Fig. 17. BSS usage duration curves for different use-cases and scenarios. Positive and negative values respectively indicate charging and discharging of the BSS.
system and are unaffected by scenario modifications. Conversely, the
operation of the BSS in the CES_P is substantially impacted by regu-
latory charges, particularly in the current scenario, where the CES is
charged or discharged for a mere 63 h annually (compared to 1975 h
in the absence of regulatory charges). However, the existence of intense
short-term price fluctuations in the future scenario suggest potentially
1194
profitable CES market trading activities. Thus, a significant increase
in CES charging cycles compared to those in the current scenario can
be noticed in this scenario, a trend that persists even with regulatory
charges in place. In the current scenario, the HES in the ORTP pri-
marily serves the purpose of self-consumption. However, in the future
scenario, there is an increase in the charging and discharging hours of
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the HES, suggesting expanded opportunities for trading in the market.
Notably, the BSS in the CES_P and ORTP deviates from the behavior of
the CES_A and SP, exhibiting less frequent charging or discharging in
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