
RRT*-GBO for Perception-aware Tra-
jectory Optimization using NASA’s As-
trobee Robot

Scientific Thesis for the procurance of the degree M.Sc.
from the Department of Electrical and Computer Engineering at the
Technical University of Munich.

Supervised by Univ.-Prof. Dr.-Ing./Univ. Tokio habil. Martin Buss
PD Dr.-Ing. habil. Marion Leibold
Chair of Automatic Control Engineering

Dr.-Ing. Roberto Lampariello
Caroline Specht, M.Sc.
German Aerospace Center (DLR)

Submitted by cand. M.Sc. Victor Kowalski Martins
Zieblandstr. 35
80798 Munich
+49 1575 284 1574

Submitted on Munich, 03.08.2024

buck_ca
Logo

TECHNISCHE UNIVERSITÄT MÜNCHEN

LEHRSTUHL FÜR STEUERUNGS- UND REGELUNGSTECHNIK
UNIV.-PROF. DR.-ING./UNIV. TOKIO HABIL. MARTIN BUSS

DR.-ING. MARION LEIBOLD

February 5, 2024

M A S T E R ’ S T H E S I S
for

Victor Kowalski Martins
Student ID 10770482, Degree Mechatronics and Robotics

RRT*-GBO for Perception-aware Trajectory Optimization using NASA’s Astrobee Robot

Problem description:

On-orbit servicing (OOS) denotes the maintenance, repair, or enhancement of satellites, satellite parts,
or other structures while they are in space. This thesis aims to contribute to the goal of enabling a
robotic system to autonomously reach a target satellite for performing an OOS task.
The focus of the thesis lies in the motion planning task. The RRT*-GBO method [12] is employed
for finding an optimal reference trajectory for a given scenario. This method extends the RRT* search
method [7] by solving a boundary value problem (BVP) for each edge construction via gradient-based
optimization (GBO).
The edges are parameterized as B-Splines, and the optimization formulation considers kinodynamic
constraints and collision avoidance. The goal is to find the B-Spline parameters that minimize the
system’s mechanical energy while maximizing a perception metric. This metric is the density of
visual landmarks in the environment captured by the robot’s vision system during its trajectory. Such
landmarks are also known as features.
During the actual execution of the OOS task, the robot will follow the reference trajectory provided
by the RRT*-GBO method. However, it is necessary to update the robot’s trajectory at consecutive
time steps to account for possible disturbances and dynamic conditions of the environment. That
involves solving shorter GBO problems in real-time, which requires the GBO solution to be found in
an acceptable time frame. An issue is that the perception metric computation is time-consuming.
Therefore, this thesis aims to achieve an efficient implementation of this metric.
The Astrobee robot from NASA [1] is the robotic platform to validate our solution. The DLR’s
OOS-SIM (on-orbit servicing simulator) [4] is used as an on-ground facility to simulate the orbital
scenario.
This thesis aims to improve the results from the ROAM/TumbleDock Astrobee experiment campaign,
which was a collaboration between MIT and DLR. The TRACE pipeline was developed to perform
all the steps of an autonomous rendezvous procedure [2, 11, 3]. It stands for Tumbling Rendezvous
via Autonomous Characterization and Execution and includes estimating the target’s state, motion
planning, localization, and robust control. The present work focuses on improving the motion planning
step.
The mentioned pipeline employed a Monte Carlo approach similar to the one described in [8, 11] to
find globally optimal trajectories in the motion planning step. This thesis seeks to find if the RRT*-
GBO method presented in [12] provides better results than the Monte Carlo approach. However, the
RRT*-GBO method introduces a new set of parameters to be tuned, such as the minimal distance
of a new node to its neighbors and the size of the neighborhood. These should be explored to find
combinations that yield good results for the current application.

In [2, 11, 3, 12], the robot’s orientation is either not included as an optimization variable or uniquely
defined by the constraints. For the present work, it is important to explore different possible orientations
of the robot. A reason for that is that the perception metric varies according to the robot’s field of
view, which is a function of its orientation.
The perception metric to be implemented will be based on the visibility of landmarks of the environment
[9, 5]. This metric is expected to improve the TRACE pipeline’s localization step and must be computed
in an acceptable time.

Tasks:

• Compare RRT*-GBO to a Monte Carlo approach [8, 11] for the search of globally optimal solutions.
• Investigate tuning the GBO solver [6], B-Spline, and RRT* parameters.
• Parameterize the robot’s orientation to include it as an optimization variable.
• Collect images from OOS-SIM.
• Use NASA’s tool [10] to generate feature maps.
• Implement generated OOS-Sim feature map into the RRT*-GBO framework, to be evaluated by the
perception metric.

• Implement Astrobee-style localization [NAS20] on the OOS-SIM.
• Use RRT*-GBO to plan a reference trajectory on the OOS-SIM.
• Come up with an efficient C++ implementation of the perception metric.
• Test the real-time capability of the GBO solver on the OOS-SIM.

Bibliography:

[1] K. Albee, M. Ekal, and C. Oestreich. A brief guide to astrobee’s flight software. 2020.
[2] K. Albee, C. Oestreich, C. Specht, A. Terán Espinoza, J. Todd, I. Hokaj, R. Lampariello, and R. Linares. A robust

observation, planning, and control pipeline for autonomous rendezvous with tumbling targets. Frontiers in Robotics
and AI, 8:641338, 2021.

[3] K. Albee, C. Specht, H. Mishra, C. Oestreich, B. Brunner, R. Lampariello, and R. Linares. Autonomous rendezvous
with an uncertain, uncooperative tumbling target: The tumbledock flight experiments. In Symposium on Advanced
Space Technologies in Robotics and Automation (ASTRA), 2022.

[4] J. Artigas, M. De Stefano, W. Rackl, R. Lampariello, B. Brunner, W. Bertleff, R. Burger, O. Porges, A. Giordano,
C. Borst, et al. The oos-sim: An on-ground simulation facility for on-orbit servicing robotic operations. In IEEE
International Conference on Robotics and Automation (ICRA), 2015.

[5] L. Bartolomei, L. Teixeira, and M. Chli. Perception-aware path planning for uavs using semantic segmentation. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020.

[6] S. G. Johnson. The nlopt nonlinear-optimization package. https://github.com/stevengj/nlop.
[7] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. The International Journal

of Robotics Research, 30(7):846–894, 2011.
[8] R. Lampariello, D. Nguyen-Tuong, C. Castellini, G. Hirzinger, and J. Peters. Trajectory planning for optimal robot

catching in real-time. In IEEE International Conference on Robotics and Automation (ICRA), 2011.
[9] V. Murali, I. Spasojevic, W. Guerra, and S. Karaman. Perception-aware trajectory generation for aggressive

quadrotor flight using differential flatness. In American Control Conference (ACC), 2019.
[10] NASA. Astrobee robot software. https://github.com/nasa/astrobee.
[11] C. Specht, A. Bishnoi, and R. Lampariello. Autonomous spacecraft rendezvous using tube-based model predictive

control: Design and application. Journal of Guidance, Control, and Dynamics, pages 1–19, 2023.
[12] S. Stoneman and R. Lampariello. Embedding nonlinear optimization in rrt* for optimal kinodynamic planning. In

IEEE Conference on Decision and Control, 2014.

Supervisor: M. Leibold (TUM), R. Lampariello, C. Specht (DLR)
Start: 05.02.2024
Intermediate Report: 05.05.2024
Delivery: 05.08.2024

(M. Leibold)
Privatdozent

Abstract

Robots can be used for on-orbit tasks in outer space, such as interacting with satel-
lites. A free-flying robot such as NASA’s Astrobee should be able to autonomously
navigate in space, but a common issue is that the robot’s vision-based localization
system fails if its camera does not see enough visually descriptive landmarks. That
makes the robot lose track of its position and orientation, and consequently fail to
execute a desired trajectory. To avoid this scenario, this thesis presents a trajec-
tory planner that guarantees the visibility of descriptive features while maintaining
energy efficiency and satisfying motion constraints from the robot’s actuators and
obstacles in the environment. The visibility consideration in the planning of a tra-
jectory is referred to as perception-aware planning. The trajectories are optimized
by exploring all six translation and rotation degrees of freedom of the SE(3) domain
with the RRT*-GBO algorithm, which uses an effective sampling-based approach
to find initial guesses that converge to globally optimal solutions. The time effi-
ciency of the RRT*-GBO algorithm is highlighted in different scenarios. Additional
time savings are obtained with an offline precomputation of the feature visibility
metric for a given environment. Our solution is experimentally validated for a ren-
dezvous task between two Astrobee robots in the International Space Station (ISS)
and for a satellite capture task on DLR’s On-Orbit Servicing Simulator (OOS-SIM).
These two experiments demonstrate a significant improvement in the accuracy of
the robot’s localization system by planning perception-aware trajectories.

2

CONTENTS 3

Contents

1 Introduction 5
1.1 Problem Statement . 7
1.2 Related Work . 8
1.3 Structure of the thesis . 10
1.4 Theoretical background . 11

1.4.1 Transformations matrices in SE(3) 11
1.4.2 Angle-axis representation of rotations 12
1.4.3 Robot dynamics . 13
1.4.4 Trajectory parameterization with B-Spline functions 14
1.4.5 Gradient-based nonlinear optimization 17
1.4.6 Camera model . 18
1.4.7 Mapping and localization . 21

2 Technical Approach 23
2.1 Optimization problem . 25

2.1.1 Energy cost function . 25
2.1.2 Perception objective function 25
2.1.3 Weighted cost function . 29
2.1.4 Constraints . 29
2.1.5 Solver . 30

2.2 RRT*-GBO . 31
2.2.1 Algorithm steps . 31
2.2.2 Tuning parameters . 32
2.2.3 Distance metrics in SE(3) . 32
2.2.4 GBO edges creation . 33
2.2.5 Smoothing . 34

2.3 Mapping and localization . 34

3 Evaluation 37
3.1 Energy-optimal trajectory planning 38

3.1.1 Motion in R3 (3D translations) 38
3.1.2 Motion in SE(3) . 55

3.2 Perception-awareness . 73

4 CONTENTS

3.2.1 Feature count vs. relaxed visibility 76
3.2.2 Interpolated perception objective function 79
3.2.3 Weighted metric analysis . 84

3.3 Astrobees rendezvous experiment . 89
3.3.1 Mapping and perception metric interpolation 91
3.3.2 Trajectory planning and execution 92
3.3.3 RRT*-GBO solutions . 102

3.4 Satellite capture experiment . 108
3.4.1 Mapping and perception metric interpolation 109
3.4.2 Trajectory planning and execution 111

4 Discussion 121

5 Conclusion 123

A RRT*-GBO Pseudo-code 125

List of Figures 129

Bibliography 133

5

Chapter 1

Introduction

The United Nations Office for Outer Space Affairs (UNOOSA) lists over 13000
Objects Launched into Outer Space orbiting Earth in 2024 [fOSA]. Satellites are
examples of those.

On-orbit servicing (OOS) includes inspection, maintenance, relocation, and de-
orbiting tasks, which require physical access to these objects. The adverse outer
space conditions motivate employing robots to perform on-orbit tasks as autonomously
as possible. Fig. 1.1 illustrates that.

Figure 1.1: On-orbit servicing task showing a robot interacting with a satellite in
space [Wol11].

Consider that a free-flying robot must interact with a nearby target satellite in
space. The robot must plan a trajectory to optimally reach the satellite. Optimal-

6 CHAPTER 1. INTRODUCTION

ity often means minimal energy consumption while satisfying constraints such as
the actuation capacity and avoidance of collisions. The robot’s control system then
commands the robot’s actuators in a way that makes the robot follow the planned
trajectory as accurately as possible. The actuation commands are computed as a
function of the error between the real robot state and the desired robot state (from
the planned trajectory) at each time step. The real robot state is, in practice, an
estimative. For instance, the robot’s position and orientation in the environment
are commonly estimated via visual-based localization, which uses what the robot’s
camera sees to infer where the robot is. An estimation always involves errors whose
magnitude determines the success or failure of the desired robot task. If the error
in the localization estimation is too large, the robot may not reach the goal or even
collapse with the target satellite and damage both. With that in view, the contri-
bution of this thesis is a trajectory planner that optimizes the camera viewpoint for
minimizing localization errors while maintaining energy efficiency.

1.1. PROBLEM STATEMENT 7

1.1 Problem Statement

robot
(start)

obstacle

obstacle

y

x

optimal
robot

trajectory

obstacle

satellite

robot
(goal)

Figure 1.2: Motion planning problem. The magenta triangles are visual features
that the robot uses for localization. Since the lowest (and closest) obtacle is poor
in features, the planner quickly makes the robot look to regions with higher feature
density.

Figure 1.2 illustrates the type of motion planning problem tackled by this work. A
robot has to travel from a start state to a goal state in the best way possible. A state
comprises the robot’s pose (position and orientation) and its derivatives (velocity,
acceleration, jerk, and so on). The trajectory to reach the goal must be feasible.
Fundamentally, it means that the robot must not collide with any obstacles and that
the motion constraints - including position, velocity, and actuation constraints - are
respected. The quality of such a trajectory considers the number of relevant visual
features the robot can keep in view while following the trajectory and the energy
consumed by the actuation that the robot must exert.

8 CHAPTER 1. INTRODUCTION

1.2 Related Work

Astrobee is a free-flying robotic system developed by NASA to be a test bed for zero-
gravity robotics research inside the International Space Station (ISS) [NASa, NASb].
Fig. 1.3 shows two Astrobees inside the ISS.

Figure 1.3: Two Astrobee robots inside the ISS [DLR]. Credit: NASA.

Albee et al. [ASM+22] uses the Astrobee robots as an experimental platform for the
autonomous on-orbit servicing pipeline developed in [AOS+21, SBL23]. The pipeline
comprises motion planning, control, and visual-based localization. Experimental
results from [ASM+22] evidence large errors in the localization stage, impairing the
task execution. In the experiments, the localization module employs the method
from [CFM+16]. Soussan et al. [SKCS22] present Astroloc as an alternative method
to improve Astrobee’s localization accuracy.
Instead of targeting the localization method, Faraci [Far23] explores perception-
aware motion planning for the Astrobee. Perception-aware planning [ZS18, SCSG19,
TH22, CFD+17, FFLS18, MSGK19, BTC20] is the explicit inclusion of perception
metrics in the planning stage of a robotic task. The metrics from [MSGK19, BTC20]
are explored in this thesis. They model the visibility of visually descriptive regions
along the planned robot trajectory. Applications of perception-aware planning in the
literature are mainly focused on UAVs (Unmanned Aerial Vehicles), which makes
its application to the Astrobee free-flyer a novelty. A clear difference is the domain
of the planned tasks. While UAV orientations are usually constrained to a single
yaw rotation on the horizontal plane, free-flyers can rotate in the complete domain
of rotations SO(3).

1.2. RELATED WORK 9

Gradient-based nonlinear optimization [Sca85] is a common approach to perception-
aware planning, whose downside is that the obtained result strongly depends on
an initial guess. Sampling-based methods [KF11] evade that issue but can only
guarantee optimality in infinite time (probabilistic completeness). Lampariello et
al. [LNTC+11] presents a mixed approach employing a sampling-based Monte Carlo
method to explore various initial guesses provided to a gradient-based optimizer.
The RRT*-GBO algorithm [SL14] replaces Monte Carlo with an RRT* sampling
method to locate promising initial guesses more efficiently.
Perception-aware planning usually requires a pre-computed map of a given envi-
ronment, and evaluating a perception-optimized trajectory requires a localization
estimator to be compared to the ground-truth trajectory. Simultaneous localiza-
tion and mapping [TUI17, GKSB10] covers both requirements. The ORB-SLAM3
algorithm [CER+21] is a popular, state-of-the-art implementation of SLAM.

10 CHAPTER 1. INTRODUCTION

1.3 Structure of the thesis

To close Chapter 1, Section 1.4 gives an overview of the theoretical background that
supports the solution developed in this thesis.
Chapter 2 details the design and implementation of the solution. Section2.1 for-
mulates the trajectory optimization problem, introducing the energy cost and per-
ception objective metrics, the motion constraints, and the gradient-based solver.
Section 2.2 explains the RRT*-GBO algorithm, and Sec. 2.3 describes how SLAM
is used in our solution.
Chapter3 experimentally evaluates different aspects of the designed solution. Sec-
tion 3.1 investigates constrained energy-optimal trajectory planning and the different
possible solutions found by the optimizer and assesses the efficiency of the RRT*-
GBO algorithm. Section 2.1.2 analyzes the effectiveness of the designed perception
objective metrics, the offline interpolation for time economy, and the influence of
the weighting between energy- and perception-optimality in planned trajectories.
Section 3.3 describes the setup and results of the Astrobee rendezvous experiment
in the simulated ISS scenario, and Sec 3.3 describes the setup and results for the
satellite capture experiment in DLR’s OOS-SIM facility.
Chapter 4 discusses the findings from Chapter 3, and Chapter 5 concludes.

1.4. THEORETICAL BACKGROUND 11

1.4 Theoretical background

This section introduces the fundamental concepts that set the basis for our methods.

1.4.1 Transformations matrices in SE(3)

A homogeneous transformation matrix TB
A represents the relative pose (rotation and

translation) of a reference frame B concerning a reference frame A. It reads as

TB
A =

[
RB

A tBA
0 1

]
. (1.1)

The rotation matrix RB
A is part of the special orthogonal group

SO(3) = {R ∈ R3×3 : R−1 = RT , det(R) = 1}, (1.2)

and its elements are

RB
A =

[
xB
A | yB

A | zBA
]
, (1.3)

where xB
A,y

B
A , z

B
A are the orthogonal unit vectors that form the basis of the reference

frame B represented in the coordinate system of the reference frame A.

The translation vector tBA ∈ R3 encodes the origin of the reference frame B repre-
sented in the coordinate system of the reference frame A.

Therefore, TB
A is part of the special euclidean group

SE(3) =

{[
R t
0 1

]
|R ∈ SO(3), t ∈ R3

}
(1.4)

that contains all rotations and translations in the tri-dimensional space.

The inverse of TB
A represents the pose of the reference frame A with respect to a

reference frame B, such that

(TB
A)−1 = TA

B . (1.5)

Furthermore, homogeneous transformation matrices can be combined. Given a third
reference frame C, TC

A can be calculated with

TC
A = TB

A · TC
B . (1.6)

By fixing a reference frame to a rigid body, homogeneous transformation matrices
are a convenient way of representing the body’s pose in arbitrary reference frames.
For instance, the pose of a frame CoM fixed at the center of mass of a given body
can be represented w.r.t the world frame W as TCoM

W .

12 CHAPTER 1. INTRODUCTION

1.4.2 Angle-axis representation of rotations

The angle-axis representation of rotations ξ = θe ∈ R3 describes a rotation of an
angle θ around an arbitrary unit vector e. This representation is useful in the context
of the gradient-based optimization method used in this thesis since incremental
rotations can be represented by component-wise addition, which does not work with
rotation matrices. It also has the advantage of using only three parameters against
the nine parameters from a rotation matrix.

Conversions between rotation matrix and angle-axis

The angle-axis vector ξ can be converted to a rotation matrix R using the matrix
exponential

R = exp(ξ̂) (1.7)

defined by the Rodrigues’ formula for rotations

exp(ξ̂)
def
= I+

sin(θ)

θ
ξ̂ +

1− cos(θ)

θ2
ξ̂
2
, (1.8)

where:

ξ̂ =

 1 −ξz ξy
ξz 1 −ξx
−ξy ξx 1

 . (1.9)

Inversely, a rotation matrix

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (1.10)

can be converted to an angle-axis vector ξ via the matrix logarithm

ξ̂ = log(R). (1.11)

As defined in [LP17], the output of the matrix logarithm ξ follows one of the three
cases:

1. If R = I then θ = 0 and e is undefined.

2. If tr(R) = −1 then θ = π and e is any of the following that result in a feasible
solution:

e =
1√

2(1 + r33)

 r13
r23

1 + r33

 (1.12)

or

e =
1√

2(1 + r22)

 r12
1 + r22
r32

 (1.13)

1.4. THEORETICAL BACKGROUND 13

or

e =
1√

2(1 + r11)

1 + r11
r21
r31

 (1.14)

.

3. Otherwise θ = arccos
(
1
2
(tr(R)− 1)

)
∈ [0, π) and

ê =
1

2sin(θ)
[R−RT] (1.15)

Conversions between angular velocity/acceleration and angle-axis deriva-
tives

According to [NP16], the angular velocity ω and angular acceleration ω̇ are given
by:

ω = A(ξ)ξ̇ (1.16)

ω̇ = A(ξ)ξ̈ +C(ξ, ξ̇), (1.17)

where

A(ξ)
def
= I− 1− cos(∥ξ∥)

∥ξ∥2
ξ̂ +
∥ξ∥ − sin(∥ξ∥)

∥ξ∥3
ξ̂
2

(1.18)

and

C(ξ, ξ̇)
def
=
∥ξ∥ − sin(∥ξ∥)

∥ξ∥3
ξ̇ × (ξ × ξ̇)

− 2 cos(∥ξ∥) + ∥ξ∥ sin(∥ξ∥)− 2

∥ξ∥4
ξT ξ̇(ξ × ξ̇)

+
3 sin(∥ξ∥)− ∥ξ∥ cos(∥ξ∥)− 2∥ξ∥

∥ξ∥5
ξT ξ̇(ξ × (ξ × ξ̇)).

(1.19)

Since A(ξ) is non-singular ([PR97]), the derivatives of the angle-axis vector can be
obtained with

ξ̇ = A (ξ)−1ω (1.20)

ξ̈ = A (ξ)−1
(
ω̇ −C

(
ξ, ξ̇

))
. (1.21)

1.4.3 Robot dynamics

The method from this thesis focuses on single-body free-flying robots such as the
Astrobee, whose rigid body motion can be represented in a fairly straightforward
way, as shown next.
The translation vector t ∈ R3 defines the position of the robot’s center of mass w.r.t
to the world frame and ω ∈ R3 is the angular velocity of the robot w.r.t to a frame
fixed at its center of mass.

14 CHAPTER 1. INTRODUCTION

Newton-Euler dynamics are used to describe the robot’s motion, resulting in the
equations

ẗ = F/m (1.22)

ω̇ = I−1(τ + ω × Iω), (1.23)

where F ∈ R3 is the force vector, m is the mass of the robot, τ ∈ R3 is the torque
vector, and I is the inertia tensor.
The actuation vector u is defined as

u =

[
F
τ

]
, (1.24)

and (1.22) and (1.23) can be reformulated as

u =

[
mẗ

Iω̇ + ω × Iω

]
. (1.25)

The instantaneous power P produced by the robot is defined as

P = u · v, (1.26)

where

v =

[
ṫ
ω

]
. (1.27)

1.4.4 Trajectory parameterization with B-Spline functions

The robot’s trajectory over time s(t) is represented as the 6-dimensional vector

s(t) =


x(t)
y(t)
z(t)
ξx(t)
ξy(t)
ξz(t)

 , (1.28)

composed by stacking the three translational components from t and the three
rotational components from ξ.
Each of the components of the vector s(t) must be uniquely defined for every time t in
a given interval [t0, tf], as well as their derivatives up to a desired order. That can be
achieved with a one-dimensional B-Spline function of degree p for each component,
which is p− 1 times continuously differentiable.
Following the definition from [BM08], it is represented as

s(t) =
m∑
j=0

pjB
p
j (t), t0 ≤ t ≤ tf (1.29)

1.4. THEORETICAL BACKGROUND 15

where pj are the m + 1 arbitrary control points, and Bp
j (t) are the basis functions.

The basis functions Bp
j (t) are recursively defined as

B0
j (t) =

{
1, if tj ≤ t < tj+1

0, otherwise
(1.30)

Bp
j (t) =

t− tj
tj+p − tj

Bp−1
j (t) +

tj+p+1 − t

tj+p+1 − tj+1

Bp−1
j+1 (t), p > 0 (1.31)

where ti, i = 0, . . . , nknot, are the components of the knot vector k, typically defined
as

k = [t0, . . . , t0︸ ︷︷ ︸
p+1

, tp+1, . . . , tnknot−p−1︸ ︷︷ ︸
nin

, tf , . . . , tf︸ ︷︷ ︸
p+1

], (1.32)

where nin is an arbitrary number of “interior” points, that can be chosen as linearly
spaced values between t0 and tf .
The k-th derivative of the B-Spline function can be computed with

s(k)(t) =
m∑
j=0

pjB
p(k)
j (t), t0 ≤ t ≤ tf (1.33)

where

B
p(k)
j (t) =

p!

(p− k)!

k∑
i=0

ak,iB
p−k
j+i (1.34)

with
a0,0 = 1

ak,0 =
ak−1,0

uj+p−k+1 − uj

ak,i =
ak−1,i − ak−1,i−1

uj+p+i−k+1 − uj+i

ak,k =
−ak−1,k−1

uj+p+1 − uj+k

, i = 1, . . . , k − 1. (1.35)

The number of control points m + 1 and the length nknot + 1 of the knot vector k
are related via

m+ 1 = nknot + 1− (p+ 1). (1.36)

Considering the definition from k in (1.32),

m+ 1 = nin + (p+ 1). (1.37)

These m + 1 control vertices are design parameters that define the shape of the
B-Spline function and can be tuned according to the trajectory requirements.
The chosen k in (1.32) results in a clamped B-Spline, for which

16 CHAPTER 1. INTRODUCTION

s(t0) = p0 (1.38)

s(tf) = pm. (1.39)

Therefore, p0 and pm are the trajectory’s desired start and end points. The remaining
m − 1 control points can be implicitly defined by imposing trajectory constraints.
For instance, it is possible to define constraints on the derivatives of the spline at
the initial and final times with

s(k)(t0) = bt0,i, k = 1, . . . , l (1.40)

s(k)(tf) = btf ,i, k = 1, . . . , l (1.41)

Which can be represented as a linear system of the form

Ap = c (1.42)

where

A =



B
p(1)
0 (t0) B

p(1)
1 (t0) · · · B

p(1)
m−1 (t0) B

p(1)
m (t0)

...
...

...
...

B
p(l)
0 (t0) B

p(l)
1 (t0) · · · B

p(l)
m−1 (t0) B

p(l)
m (t0)

B
p(l)
0 (tf) B

p(l)
1 (tf) · · · B

p(l)
m−1 (tf) B

p(l)
m (tf)

...
...

...
...

B
p(1)
0 (tf) B

p(1)
1 (tf) · · · B

p(1)
m−1 (tf) B

p(1)
m (tf)


, p =


p0
p1
...

pm−1

pm

 ,

c =



bt0,1
...

bt0,l
btf ,l
...

btf ,1


.

(1.43)

As p0 and pm are known, system (1.43) can be reformulated as

A′p′ = c′ (1.44)

1.4. THEORETICAL BACKGROUND 17

where

A′ =



B
p(1)
1 (t0) · · · B

p(1)
m−1 (t0)

...
...

B
p(l)
1 (t0) · · · B

p(l)
m−1 (t0)

B
p(l)
1 (tf) · · · B

p(l)
m−1 (tf)

...
...

B
p(1)
1 (tf) · · · B

p(1)
m−1 (tf))


, p′ =

 p1
...

pm−1

 ,

c′ =





bt0,1
...

bt0,l
btf ,l
...

btf ,1


−



B
p(1)
0 (t0) B

p(1)
m (t0)

...
...

B
p(l)
0 (t0) B

p(l)
m (t0)

B
p(l)
0 (tf) B

p(l)
m (tf)

...
...

B
p(1)
0 (tf) B

p(1)
m (tf)


[

p0
pm

]


.

(1.45)

System (1.45) has 2l equations for m − 1 unknowns. Choosing l = p, there are 2p
equations. To make the system determined, it is necessary that m− 1 = 2p, thus

m+ 1 = 2(p+ 1) (1.46)

and from (1.37),
nin = p+ 1. (1.47)

The resulting control points vector p′ then consists of

p′ = [pinitial︸ ︷︷ ︸
p

,pfinal︸︷︷︸
p

]T . (1.48)

More control points can be freely added in between the initial and final control
points to change the shape of the spline without affecting the imposed constraints:

p′ = [pinitial︸ ︷︷ ︸
p

,pfree︸︷︷︸
nfree

,pfinal︸︷︷︸
p

]T , (1.49)

resulting in
m+ 1 = 2(p+ 1) + nfree (1.50)

and
nin = p+ 1 + nfree. (1.51)

1.4.5 Gradient-based nonlinear optimization

A nonlinear optimization problem can be generally formulated as

x∗ = argmin
x∈Rn

f(x) , s.t. : (1.52)

18 CHAPTER 1. INTRODUCTION

heq(x) = 0 (1.53)

hineq(x) ≤ 0, (1.54)

where f(x) is the objective function and x contains the n design variables to be
optimized, heq(x) is a set of equality constraints, and hineq(x) is a set of inequality
constraints, which the optimal solution x∗ must satisfy. Any of f(x), heq(x), and
hineq may contain nonlinear terms.
Equation (1.52) can be solved using a gradient-based solver such as the sequential
least squares programming method SQLSP [Kra94], a gradient-based local optimiza-
tion algorithm implemented in the nonlinear optimization library NLOpt [Joh07].
“Gradient-based” means that the gradient of the function f(x) is used to orient the
algorithm in the search for a minimum. “Local optimization” means that the result
found is a local minimum, i.e., f(x∗) is guaranteed to be smaller than f(x∗ + ∆x)
only for an infinitesimal ∆x. Many local minima may exist for a given nonlinear
function f(x). The global minimum is the smallest among the local minima.
The minimum x∗ found among all the possible minima depends on the initial guess
x0 that must be provided to the solver. It is, therefore, helpful to explore distinct
initial guesses.

1.4.6 Camera model

The robot is equipped with a camera that is used for localization purposes. In
essence, a camera maps 3D points of the world to a 2D image plane. The basic pin-
hole projection model presented in [HZ04] is used to represent the camera mapping.
Using homogeneous coordinates, a 3D point/feature in the world frame

w =
[
x y z 1

]T
(1.55)

can be mapped to a 2D point on the image plane

i = α ·
[
u v 1

]T
(1.56)

with
i = Pw , (1.57)

where P is the projection matrix

P = KHW
cam. (1.58)

The camera extrinsics matrix HW
cam is used to transform the feature coordinates from

the world frame to the camera frame. It is defined as

HW
cam =

[
RW

cam tWcam
]
, (1.59)

where RW
cam is the world frame rotation matrix w.r.t to the camera frame, and tWcam

is the translation vector from the origin of the camera frame to the origin of the

1.4. THEORETICAL BACKGROUND 19

world frame, w.r.t. the world frame. The matrix K is the camera intrinsics matrix,
defined as

K =

f 0 px
0 f py
0 0 1

 (1.60)

where f is the camera focal length, and px and py are offsets from the principal point
in the x and y directions. Expanding (1.57) leads to

α ·

uv
1

 =

fxcam + pxzcam
fycam + pyzcam

zcam,

 (1.61)

where xcam, ycam, zcam are the feature coordinates w.r.t. to the camera frame, and
therefore

u = fxcam/zcam + px (1.62)

v = fycam/zcam + py (1.63)

α = zcam (1.64)

The limits of the image plane are defined by the width W and the height H. Fig.1.4
illustrates the image plane relative to the camera frame.

20 CHAPTER 1. INTRODUCTION

u

v

xcam

ycam

zcam

W

H

px

py

Figure 1.4: Camera frame and image plane.

1.4. THEORETICAL BACKGROUND 21

1.4.7 Mapping and localization

As a robot navigates in an environment, it is fundamental to have some information
about the location of existing objects (mapping) and the robot itself (localization),
which is helpful for collision avoidance and correcting deviations from a planned
trajectory.

That can be achieved with a purely camera-based approach called Visual Simulta-
neous Localization and Mapping (V-SLAM). It consists of constructing a 3D map
of the environment by comparing images taken from different camera views. At the
same time, estimations of the camera pose with respect to the initial camera frame
are obtained.

In feature-based V-SLAM, the first step is extracting relevant characteristics of the
captured images, called features. Examples of features are corners and edges.

Descriptors are mathematical operators applied to the pixels of an image to encode
such features numerically. Different descriptors exist in the literature, such as ORB
[RRKB11], SIFT [Low04], and BRISK [LCS11].

The extracted features must be matched across different images. As explained in
[HZ04], each matched feature gets its 2D positions in pairs of images compared
to triangulate the 3D position of the feature and determine how much the camera
moved between the two images. The triangulation process is performed considering
the epipolar geometry of the camera projections. Multiple pairwise triangulations
are fed into a least-squares optimization step that estimates the actual positions of
the features and the camera path.

The optimization problem finds the feature positions and camera path that minimize
the reprojection error of the 3D features. The reprojection error is defined as the
difference between the actual 2D coordinates of a feature on a given camera plane
and the (re-)projection of the triangulated 3D position of the feature onto this
camera plane. As shown before, the projection of a 3D point onto the camera plane
can be obtained via (1.57), which depends on the camera’s pose.

The optimization problem can be represented as:

∑
i

∑
j

min
ŵj ,ĤW

cam,i(1)
,ĤW

cam,i(2)

|KĤW
cam,i(1)ŵj − ii(1),j|2 + |KĤW

cam,i(2)ŵj − ii(2),j|2 , (1.65)

where ŵj is the estimated 3D position of a feature j, ĤW
cam,i(1) is the estimated

extrinsic matrix of the camera at the first image of the pair i, ii(1),j is the actual 2D

coordinate of the feature j at the first image of the pair i, ĤW
cam,i(2) is the estimated

extrinsic matrix of the camera at the second image of the pair i, ii(2),j is the actual
2D coordinate of the feature j at the second image of the pair i.

The higher the number of matched features, the more data is available to the for-
mulation (1.65), which leads to higher accuracy in the estimations of the poses of
the camera/robot. Therefore, this work focuses on maximizing the visible features

22 CHAPTER 1. INTRODUCTION

of a precomputed map during a robot’s trajectory, aiming to achieve a high number
of matches and, consequently, more accurate robot localization.

23

Chapter 2

Technical Approach

The method developed in this thesis is an RRT*-GBO trajectory optimizer for free-
flying robots in SE(3). It accounts for motion constraints and avoids collisions while
trying to optimize energy consumption and visibility of features for localization pur-
poses. Figure 2.1 shows an overview of our method. RRT*-GBO is the main module,
which includes an optimizer to solve an optimization problem involving energy cost
and perception objective metrics, motion constraints, and collision avoidance. The
RRT*-GBO and the optimizer output an optimized trajectory and takes as inputs
the desired start and goal robot states, the RRT*-GBO tuning parameters, the
NLOpt’s [Joh07] optimization solver tuning parameters, the B-Spline parameters,
the robot dynamics properties and collision geometries, besides a feature map. The
feature map is a product of the SLAM module depicted in green, which uses the
camera parameters and images to output the map and robot localization estimation.
Lastly, the localization is compared to the real trajectory to find the magnitude of
the estimation error.

24 CHAPTER 2. TECHNICAL APPROACH

RRT*-GBO

Optimizer (SQLSP)

Perception
objective metric

Collision
avoidance

Energy cost
metric

Motion
constraints

Feature
map

Collision
geometries

Robot
dynamics

Trajectory

SLAM

Start/goal
states

RRT*
params

NLopt
params

B-Spline
params

Camera
parameters

Camera
images

Localization

Error estimation

Figure 2.1: Overview of the method developed in this thesis. Square shapes represent
modules, and round shapes represent inputs and outputs. The green shapes are
related to SLAM.

2.1. OPTIMIZATION PROBLEM 25

2.1 Optimization problem

The following optimization problem must be solved:

p∗
free = argmin

pfree

Γ(pfree),

s.t.: h(pfree) ≤ 0
(2.1)

where Γ(·) is the cost function, h(·) is the set of inequality constraints, and pfree are
the nfree free control vertices of a B-Spline s(t) subject to boundary conditions

s(k)(t0) = bt0,i, k = 0, . . . , l (2.2)

s(k)(tf) = btf ,i, k = 0, . . . , l (2.3)

as introduced in Sec. 1.4.4.
Whenever the free control vertices pfree assume new values, the B-Spline trajectory
and its derivatives s(k)(t), k = 0, . . . , l are updated and sampled at time instants ti,
i = 1, . . . , nsamples to check constraint satisfaction and compute the components of
the cost function.
The optimized robot trajectory must consume the least possible amount of energy
while maximizing the number of visual features observable by the camera. A mixed
cost function with weighted energy and perception terms encodes that.

2.1.1 Energy cost function

The energy cost function Γenergy reflects the energy spent by the robot during the
trajectory. It is designed as a sum of the instantaneous power (1.26) produced at
the sampled time instants ti:

Γenergy =

nsamples∑
i=1

u(ti) · v(ti). (2.4)

2.1.2 Perception objective function

Given a sparse feature map of the environment, the perception objective function
Γperception quantifies the features the robot’s camera sees along a trajectory. Gener-
ally, it can be defined as:

Γperception =

nsamples∑
i=1

γ(HW
cam, i), (2.5)

where

γ(HW
cam, i) =

nfeatures∑
j=1

h(i, j). (2.6)

26 CHAPTER 2. TECHNICAL APPROACH

is the summed feature visibility function for the robot’s camera pose at a time
instant ti (represented by the extrinsics matrix HW

cam, i), and the function h(i, j)
is the visibility score of an individual feature j at that instant. Two alternative
implementations of the perception objective function Γperception are introduced next:
the feature count function and the relaxed visibility function. After that, a method
to interpolate the summed visibility function offline to save computation time is
presented.

Feature count

A straightforward approach is to count the number of visible features at each time
step.
The 2D projection ii,j of a 3D feature wj onto the camera plane at a time instant ti
can be obtained using the projection matrix Pi = KHW

cam, i from (1.58) with

ii,j = Piwj = αi,j ·

ui,j

vi,j
1

 (2.7)

Considering the image width W, the image height H, and the identity αi,j = zcami

from (1.64), the visibility of a projected feature can be represented by:

hFC(ii,j) =

{
1, if 0 ≤ ui,j ≤ W and 0 ≤ vi,j ≤ H and αi,j = zcami > 0
0, otherwise

(2.8)

Which composes the feature count objective function

ΓFC =

nsamples∑
i=1

γFC(H
W
cam, i), (2.9)

where

γFC(H
W
cam, i) =

nfeatures∑
j=1

hFC(ii,j) (2.10)

A clear downside of this approach is that the function hvisible is discontinuous, which
is unsuitable for gradient computation. As an alternative, Murali et al. [MSGK19]
present a (continuous) relaxed visibility function, which is further explored by Bar-
tolomei et al. [BTC20].

Relaxed visibility

The relaxed visibility function quantifies the visibility of a feature with a real number
between 0 and 1 (where 1 is complete visibility). It does that by modeling the camera
view frustum as vectors from the camera’s optical center to the vertices of the image
plane:

2.1. OPTIMIZATION PROBLEM 27

vtr =

W − px
−py
f

 (2.11)

vtl =

−cx−cy
f

 (2.12)

vlr =

W − px
H − py

f

 (2.13)

vll =

 −pxH − py
f

 (2.14)

This set of vectors is used to compute the visibility operator

o(fi, j) =



1

2

(
1 + tanh

(
(vtr × vlr) · fi, j

s

))
1

2

(
1 + tanh

(
(vtl × vtr) · fi, j

s

))
1

2

(
1 + tanh

(
(vlI × vtl) · fi, j

s

))
1

2

(
1 + tanh

(
(vlr × vll) · fi, j

s

))
1

2

(
1 + tanh

(
f · ez · fi, j

s

))


, (2.16)

where ez =
[
0 0 1

]T
, fi, j = HW

cam, iwj is the position of a feature j w.r.t to the
camera frame at a timestep ti, and s is a tuning parameter. Instead of tuning s,
as in [MSGK19], this thesis presents a variation of the relaxed visibility function by
normalizing the frustum vectors, obtaining the vector

o′(fi, j) =



1

2

(
1 + tanh

(
(vtr × vlr) · fi, j
|vtr × vlr|

))
1

2

(
1 + tanh

(
(vtl × vtr) · fi, j
|vtl × vtr|

))
1

2

(
1 + tanh

(
(vlI × vtl) · fi, j

vlI × vtl

))
1

2

(
1 + tanh

(
(vlr × vll) · fi, j

vlr × vll

))
1

2
(1 + tanh (ez · fi, j))


. (2.17)

28 CHAPTER 2. TECHNICAL APPROACH

Finally, the relaxed visibility function is

hRV(o
′(fi, j)) =

5∏
k=1

(o′(fi, j))k, (2.18)

the summed feature visibility for a camera pose i is

γRV
(
HW

cam,i

)
=

nfeatures∑
j=1

hrelaxed(o
′(fi, j)), (2.19)

and the relaxed visibility objective function ΓRV adds up to

ΓRV =

nsamples∑
i=1

γRV
(
HW

cam,i

)
. (2.20)

Summed feature visibility interpolation

The computation of (2.5) means nsamples ·nfeatures evaluations of the visibility function
h for each iteration of the optimizer. To put it in numbers, we take an example of
nsamples = 60, and nfeatures = 500, which can be interpreted as a sampling rate of
1Hz for a 60s-trajectory using a map with few features. It results in 30.000 function
evaluations per iteration of the optimizer, which incurs elevated computation times.
The solution adopted in this thesis is to perform an offline, multi-dimensional in-
terpolation of the summed feature visibility function γ (2.6) over all the possible
robot camera poses. Considering that the camera’s pose (represented as the camera
extrinsics matrix HW

cam) is a function of the robot’s pose

s =
[
x y z ξx ξy ξz

]T
, (2.21)

a six-dimensional grid in the robot’s pose parameters is generated to compute the
summed feature visibility function

γ
(
HW

cam

([
x y z ξx ξy ξz

]T
m

))
(2.22)

at each grid point m, and interpolate between the grid points to generate a contin-
uous, approximated summed feature visibility function

γ̂(x, y, z, ξx, ξy, ξz), (2.23)

defined for any pose in the robot’s workspace. The open-source library Btwxt
[Sof24] was chosen to perform the multidimensional interpolation using cubic splines
(Catmull-Rom). At the gridpoints m,

γ̂
([

x y z ξx ξy ξz
]T
m

)
= γ

(
HW

cam

([
x y z ξx ξy ξz

]T
m

))
, (2.24)

2.1. OPTIMIZATION PROBLEM 29

and if the resolution of the input grid is high enough, we can assume

γ̂ ≈ γ. (2.25)

That finally brings us to the interpolated perception objective function

Γ̂perception =

nsamples∑
i=1

γ̂(s(ti)), (2.26)

which means nsampless function evaluations at each iteration of the optimizer, instead
of the nsamples · nfeatures function evaluations from the original perception objective
function.

2.1.3 Weighted cost function

The weighted cost function mixes the energy cost function and the perception ob-
jective function with the formulation

Γweighted = wenergy

(
Γenergy

Γenergy,max

)
+ (1− wenergy)

(
1− Γperception

Γperception,max

)
, (2.27)

where
0 ≤ wenergy ≤ 1, (2.28)

Γenergy,max = nsamples · umax · vmax, (2.29)

Γperception,max = nsamples · nfeatures, (2.30)

where umax is the maximum actuation effort and vmax is the maximum velocity
achievable by the robot.

2.1.4 Constraints

The robot is subject to a few constraints that must be satisfied at every time instant.

Kinodynamic constraints

The kinodynamic constraints can be represented as a series of box constraints defined
for every time instant ti. Following the notation from Sec. 1.4.3, the translational
position constraint is defined as

tmin ≤ t(ti) ≤ tmax, (2.31)

the translational and rotational velocity constraint is defined as

vmin ≤ v(ti) ≤ vmax, (2.32)

and the force and torque actuation constraint is defined as

umin ≤ u(ti) ≤ umax (2.33)

30 CHAPTER 2. TECHNICAL APPROACH

Collision avoidance constraint

The Open Dynamics Engine (ODE) library [Smi04] is used for the collision avoidance
constraint. The robot and the nobj static objects in the environment are modeled
as simple, convex geometries consisting of combinations of spheres and capsules.
At each time instant ti of the trajectory, the robot’s collision geometry has its pose
updated and gets compared to every other collision geometry (of the static objects)
to obtain the penetration depths PDj, for j = 1, . . . , nobj.
Given that the metric PDj indicates how deep two collision geometries intersect, the
collision avoidance constraint is defined as

PDj(ti) ≤ 0 (2.34)

2.1.5 Solver

The gradient-based local optimization algorithm SQLSP [Kra94] from the NLOpt
library [Joh07] is used to solve the presented optimization problem. First-order
forward finite differences are used to obtain the required gradient information for
the cost function and constraints in the form:

∇f(x) ≈ f(x+∆x)− f(x)

∆x
, (2.35)

where ∇f(x) is the gradient of an arbitrary function f : Rn 7→ R and ∆x ∈ Rn is
the gradient step for a variable x ∈ Rn. By default, we choose ∆x = 1e−6. In the
context of this thesis, f is either the cost Γ or a constraint h, and x is pfree.
The solver works with termination conditions that dictate when the execution should
finish. These conditions include a maximum execution time tmax, a maximum num-
ber of iterations nmaxiter, the cost function variation ∆Γ from one iteration to the
next, and the optimization parameters variation ∆pfree from one iteration to the
next. The relative variations ∆Γrel = ∆Γ/Γ and ∆pfree,rel = ∆pfree/pfree can also be
used.

2.2. RRT*-GBO 31

2.2 RRT*-GBO

There is no guarantee of convexity in the optimization problem described so far;
therefore, the results found can only be seen as local minima. The RRT*-GBO
algorithm [SL14] is employed to explore non-convex regions and search for global
minima. Due to its stochastic nature, it explores several solutions on different local
minima and provides an overall better optimization result.
RRT*-GBO extends the classic RRT* algorithm by blending gradient-based opti-
mization (GBO) into it. There are two main additions: first, RRT*-GBO solves re-
duced optimization problems (using simplified B-Splines) for building edges. These
edges are called GBO edges. Second, when a path of edges from the root to the goal
node is found, it goes through a smoothing step: the edges B-Splines are merged
into one B-Spline, which is then used as an initial guess for the original optimization
problem.

2.2.1 Algorithm steps

root

goal

root root smooth

(1)

(3) (4)

root
(2)

connect
to goal

sample

neighborhood query

rewire goal

goal

goal

Figure 2.2: RRT*-GBO steps.

The main steps of the algorithm [SL14] are depicted in Fig. 2.2. At each iteration,
the algorithm starts by trying to connect the last added node to the goal node with
a GBO edge (connect to goal). If it is successful, the obtained path of edges
goes through the smoothing step mentioned above to deliver a possible solution
(smooth). The next step is to sample a new node in the search space (sample).
For every existing node in the “neighborhood” of the sampled node, a GBO edge
from the neighboring node to the sampled node is attempted to be built. The
successfully built edges are compared, and the cheapest one is chosen to attach the
sampled node to the existing tree (neighborhood query). The newly attached

32 CHAPTER 2. TECHNICAL APPROACH

node is used in the rewiring step to check if any nodes in the previously defined
neighborhood should have their incoming edge replaced by an edge departing from
the new node, in case that reduces the cost to get to the neighboring node (rewire).
The algorithm finishes when certain stopping criteria are met, such as a maximum
number of solutions found or a maximum execution time.
Pseudo-code for the algorithm is presented in Appendix A.

2.2.2 Tuning parameters

The algorithm contains some parameters that must be tuned: rball, rprune and rconnect.
The parameter rball has a dual function. First, a newly sampled node has to be at
most at a rball distance away from the node that is closest to it. In case the sampled
node is located further than rball away from the closest node, a “steering” step must
be conducted: the vector that unifies both gets scaled down to have a norm of rball,
and the sampled node location gets updated accordingly. Second, it dictates the
size of the neighborhood, i.e., nodes at a maximum distance of rball are checked in
the neighborhood query step.
The parameter rprune is the minimum distance allowed between a newly sampled
node and any other node in the existing tree. The sampled node gets pruned away
if it is too close to another node, and a new node is sampled.
The parameter rgoal is the maximum distance that a node can be away from the goal
node such that an attempt to connect both is made in the “connect to goal” step.

2.2.3 Distance metrics in SE(3)

Since the RRT*-GBO nodes are in SE(3), handling translational and rotational
distances is necessary. For the translational part (R3), the Euclidean distance metric
is used:

ϕtranslation, 1−→2 = ||t2 − t1||. (2.36)

The Geodesic on the Unit Sphere metric from [Huy09] is chosen to represent the
distance between two rotations (SO(3)). It is defined as

ϕrotation, 1−→2(R1,R2) = || log(R1R2)|| = ||ξ1−→2|| = θ1−→2, (2.37)

where R1 and R2 are the two rotations represented as rotation matrices and log(·)
is the logarithmic mapping introduced in (1.11). Therefore, the distance metric
consists of the angle in the angle-axis representation of rotations adopted in this
thesis.
As a consequence, the three parameters rball, rprune, and rconnect turn into six pa-
rameters: rball, translation, rball, rotation, rprune, translation, rprune, rotation, rconnect, translation and
rconnect, rotation.
In the RRT*-GBO algorithm, it is desirable to compute the generalized distance
between two nodes as a single scalar value, which requires the derivation of a unified
distance metric

2.2. RRT*-GBO 33

ϕunified(ϕtranslation, ϕrotation) =
ϕtranslation

rball, translation
+

ϕrotation

rball, rotation
. (2.38)

The adaptations on the RRT*-GBO algorithm for the SE(3) distance metrics are
presented next.
For each node Ni, i = 1, . . . , nnodes, the index of closest node to the sampled node
is computed with:

iclosest = argmin
i

ϕunified(ϕtranslation, i−→sampled, ϕrotation, i−→sampled). (2.39)

The steering step becomes:

tsampled = tclosest + rball,translation
tsampled − tclosest

ϕtranslation, closest−→sampled

(2.40)

ξsampled = ξclosest + rball,rotation
ξclosest, sampled

ϕrotation, closest−→sampled

. (2.41)

A sampled node gets discarded if

ϕunified(ϕtranslation, closest−→sampled, ϕrotation, closest−→sampled) < rprune, unified (2.42)

where
rprune, unified = ϕunified(rprune, translation, rprune, rotation). (2.43)

A node Ni is part of the neighborhood of the sampled node if

ϕtranslation, i−→sampled ≤ rball, translation, (2.44)

ϕrotation, i−→sampled ≤ rball, rotation, (2.45)

ϕunified(ϕtranslation, i−→sampled, ϕrotation, i−→sampled) ≥ rprune, unified. (2.46)

Finally, an attempt to build an edge between the sampled node Nsampled and the
goal node Ngoal is made if

ϕtranslation, sampled−→goal ≤ rconnect, translation, (2.47)

ϕrotation, sampled−→goal ≤ rconnect, rotation. (2.48)

2.2.4 GBO edges creation

Each GBO edge is a B-Spline sedge(t) with fewer free control vertices and shorter
duration than the full trajectory B-Spline s(t):

nfree, edge < nfree, (2.49)

∆tedge < ∆t. (2.50)

Its initial and final poses comprise the translation and rotation components of the
parent and child nodes, respectively. The initial and final velocities, accelerations,
and jerks are set to zero. The free control vertices pfree, edge are obtained by solving
the optimization problem (2.1) for the B-Spline sedge(t) using the weighted cost
function Γweighted.

34 CHAPTER 2. TECHNICAL APPROACH

2.2.5 Smoothing

The smoothing step consists of transforming a path of GBO edges from the root to
the goal node sjedge(t), j = 1, . . . , nedges in an initial guess of free control vertices of
a single B-Spline from the root to the goal that gets optimized by the solver.
First, the duration ∆tedge of each edge B-Spline must be scaled by a factor λ such
that their summed duration matches the chosen duration ∆t of the full trajectory
B-Spline:

λ =
∆t

nedges ·∆tedge
(2.51)

Then, the sequence of edge B-Splines is sampled at the sampling times ti, i =
1, . . . , nsamples of the full trajectory B-Spline. That requires identifying which edge
B-Spline sj(t) spans the time ti and sampling this B-Spline at its ”local” time tji =
ti − λ ·∆tedge · (j − 1). The samples are stored in a matrix S ∈ R6×nsamples .
The optimization problem (2.1) is then solved using a least-squares cost function to
fit the full trajectory B-Spline to the edge B-Splines samples, with

Γ = ΓLS =

nsamples∑
i=0

||S1:6, i − s(ti)||. (2.52)

The resulting free control vertices pfree, LS are then used as an initial guess to the
original optimization problem (2.1) using the weighted cost function Γweighted, which
outputs the final optimized free control vertices pfree, smoothed.

2.3 Mapping and localization

Our method requires a feature map of the environment as an input for the opti-
mization problem and a way to assess the robot localization accuracy for different
trajectories. The open-source, state-of-the-art algorithm ORB-SLAM3 [CEG+21]
suits both requirements. All it needs is a model of the camera (intrinsics matrix)
and a sequence of pictures of the environment taken by the robot.
While the robot follows a trajectory in the environment, its camera captures images
that ORB-SLAM3 processes to perform a 3D reconstruction (feature map) of the
regions the robot has visited and estimate the trajectory followed by the robot.
The resulting estimated map points (features) f̂0,j and estimated camera poses T̂cam,i

cam,0

are relative to the (known) camera pose at the start of the image collection Tcam,0
W ,

and can be represented in the world frame with

f̂W, j = (Tcam,0
W)−1f̂0, j, (2.53)

T̂cam,i
W = (Tcam,0

W)−1T̂cam,i
cam,0. (2.54)

2.3. MAPPING AND LOCALIZATION 35

However, f̂W, j and T̂cam,i
W (for the translations) are not correctly scaled since the

employed ORB-SLAM3 variant is purely visual and monocular. Our approach to
retrieve the correct scaling factor β is to run a least-squares optimization

β∗ = argmin
β

nsamples∑
i=0

||t̂cam,scaled(ti)− tcam(ti)||, (2.55)

where
t̂∗cam(ti) = tcam(0) + β · (t̂cam(ti)− tcam(0)) (2.56)

are the real-scale estimated camera translations and tcam(ti) are the planned camera
translations computed from the robot poses s(ti) using Tcam

CoM .
The real-scale estimated features are computed with

f̂∗W, j = (Tcam,0
W)−1 ·


β 0 0 0
0 β 0 0
0 0 β 0
0 0 0 1

 · f̂0, j, (2.57)

36 CHAPTER 2. TECHNICAL APPROACH

37

Chapter 3

Evaluation

Section 3.1 shows the foundational results of the developed method. Energy-optimal
motion planning is performed in distinct scenarios with multiple local minima, and
the exploration capability of the Monte Carlo and RRT*-GBO methods is evaluated.
Section 3.2 introduces perception-aware motion planning. It compares the designed
perception metrics, highlights the advantages of the offline multi-dimensional inter-
polation, and illustrates the influence of the cost terms weighting parameter wenergy.
Section 3.3 evaluates the complete method for an Astrobee rendezvous experiment
in the ISS, and Sec. 3.3 does the same for a satellite capture experiment using DLR’s
OOS-SIM.

38 CHAPTER 3. EVALUATION

3.1 Energy-optimal trajectory planning

This section presents trajectory optimization (using the energy cost function (2.4))
in increasingly complex scenarios, starting from an unconstrained trajectory in R3

up to a constrained trajectory in a cluttered scenario in SO(3). Local minima are
discussed and RRT*-GBO’s performance with different hyperparameter combina-
tions is assessed as an alternative to a Monte Carlo search method.
The Astrobee dynamics properties are used, namely the mass

m = 9.58 [kg] (3.1)

and the inertia tensor

I =

0.153 0 0
0 0.143 0
0 0 0.162

 [kg ·m2]. (3.2)

3.1.1 Motion in R3 (3D translations)

We start by optimizing trajectories in R3, i.e., 3D translations of the robot. Each of
the three dimensions of a trajectory from a root position troot to a goal position tgoal
is parameterized with a B-Spline of degree p = 3, with nfree = 10 free control vertices,
and duration tf = 120 [s]. The cost and constraint functions are evaluated at 120
sampled points of the trajectory (one per second). For a provided initial guess (either
randomly generated or from RRT*-GBO), the optimization solver from Sec. 2.1.5
runs until it meets any of the stopping criteria: ∆Γrel = 1e−8, ∆pfree,rel = 1e−8,
tmax = 240 [s].

Unconstrained trajectory

For troot =
[
1 1 0.5

]T
and tgoal =

[
0.5 5 1

]T
, Figures 3.1 and 3.2 shows the

energy-optimal trajectory resulting from optimizing the free control vertices pfree of
each dimension’s B-Spline, without any motion constraints. Figure 3.1 shows that
the trajectory is a straight line between the root and goal positions. Figure 3.2 shows
the B-Splines for each of the 3 spatial dimensions, including the control vertices, the
time parametrization, and the first and second derivatives (velocity and accelera-
tion). It is noticeable that the velocities assume a bell-shaped profile, starting and
finishing at zero and peaking at the middle of the trajectory.
The initial guess of pfree for this optimization problem is unimportant since there is
a well-defined global minimum and no constraints.

3.1. ENERGY-OPTIMAL TRAJECTORY PLANNING 39

Figure 3.1: Unconstrained trajectory in R3 (Point-to-point trajectory)

40 CHAPTER 3. EVALUATION

Figure 3.2: Unconstrained trajectory in R3 (B-Splines and derivatives)

3.1. ENERGY-OPTIMAL TRAJECTORY PLANNING 41

Constraints, obstacles, and local minima

Motion constraints and obstacles are now included. The position t, velocity v, and
force F are constrained to00

0

 ≤ t ≤

1.56.4
1.7

 ,

−0.1−0.1
−0.1

 ≤ v ≤

0.10.1
0.1

 ,

−0.849−0.406
−0.486

 ≤ F ≤

0.8490.406
0.486

 . (3.3)

Three spheres of radius 0.25 [m] are placed in the central region of the workspace,
and the geometry of the robot is also represented as a sphere of 0.25 [m]. This
scenario is referred to as “Three Spheres”.
The choice of spheres (plus capsules, in the following sections) is due to the continuity
of their surfaces. In contrast, a cube’s edges and corners make the cube’s surface
discontinuous, which causes issues in the computation of the gradients of the collision
avoidance constraints.
The energy-optimal trajectory the optimizer finds now depends on the provided ini-
tial guess of the free control vertices pfree. The optimizer might even not converge to
a solution, which means that the trajectory does not satisfy the constraints (i.e., it
is not feasible) when any one of the optimizer’s stopping criteria is met. Figure 3.3
shows the 934 trajectories that converged to a solution out of 1000 randomly gener-
ated initial guesses (Monte Carlo approach). The trajectories are grouped by cost
and fall into the cost bins from the histogram in Fig. 3.4. Since the unconstrained
optimal solution (straight line from root to goal) collides with the central sphere,
all solutions found follow an arch pattern to deviate from the sphere. The “arch-
ing direction” depends on the initial guess. The blue solutions arching to the left
(direction −x) in Fig. 3.3 have the lowest costs, falling into the first cost bin from
Fig. 3.4. They also are the most commonly found solutions, considering the 800
hits on the first cost bin (out of the total 934 solutions found).

42 CHAPTER 3. EVALUATION

Figure 3.3: Local minima for the Three Spheres scenario (from to viewing angles).

3.1. ENERGY-OPTIMAL TRAJECTORY PLANNING 43

Figure 3.4: Cost histogram for the Three Spheres scenario.

44 CHAPTER 3. EVALUATION

More obstacles, more local minima

The previous analysis is repeated for a scenario with more obstacles, which causes a
larger variety of local minima. This scenario is referred to as the “Cluster” scenario.
The robot’s geometry is momentarily treated as a point to highlight the active
collision avoidance constraints.
Figure 3.5 shows the cost histogram of the solutions found, this time with a larger
number of bins to help identify the different local minima.
Figure 3.6 shows only the most recurring solutions, i.e., the ones that fall into cost
bins with over ten solutions (for better visibility). In contrast to Fig, 3.3, the pattern
of the solutions is less clear here. The blue solution arching toward +x and −z has
the lowest cost, and the orange solution arching toward −x and +z occurs most
often. That evidences how only a few “good” initial guesses lead to the lowest-cost
solution and thus motivates using RRT*-GBO to provide those, in contrast to the
“brute force” Monte Carlo approach.

Figure 3.5: Cost histogram for the Cluster scenario.

3.1. ENERGY-OPTIMAL TRAJECTORY PLANNING 45

Figure 3.6: Local minima for the Cluster scenario (from two viewing angles).

46 CHAPTER 3. EVALUATION

RRT*-GBO to handle local minima

Figure 3.7 shows a result of applying the RRT*-GBO algorithm described in Sec. 3.7
to Cluster scenario. The edge B-Spline has a degree p = 2, with nfree = 1 free control
vertex, and duration tf = 30 [s]. The tuning parameters

rprune = 0.5 (3.4)

rball = 2 (3.5)

rconnect = 3 (3.6)

are used.
Figure 3.7(a) shows the (randomly colored) tree of edges constructed by the algo-
rithm, which contains a path of edges from the root (black circle marker) to the goal
(black “x” marker). This path changes throughout the iterations of the algorithm,
having its edges replaced by cheaper ones. Figure 3.7(a) shows this path at a given
algorithm iteration in blue, which is fed to the optimizer to find an optimized tra-
jectory/solution in orange. The optimization from the blue trajectory to the orange
trajectory is the smoothing step described in Sec. 2.2.5.
The following sections explore how RRT*-GBO performs with various tuning pa-
rameter combinations in different scenarios.

3.1. ENERGY-OPTIMAL TRAJECTORY PLANNING 47

(a) Tree of edges.

(b) Path of edges from root to goal and smoothed solution.

Figure 3.7: RRT*-GBO example in the Cluster scenario.

48 CHAPTER 3. EVALUATION

RRT*-GBO performance analysis

For the trajectory optimization in the Cluster scenario, the following experiment is
conducted: 50 random initial guesses of the free control vertices pfree are optimized
by the solver until any one of the stopping criteria is met. The converged solutions
(feasible trajectories) are collected. The total computation time taken by the op-
timizer for all 50 guesses is used as the maximal execution time for a run of the
RRT*-GBO algorithm with a given choice of the tuning parameters rball and rprune.
The time-limited RRT*-GBO execution is repeated for various choices of the tuning
parameters. The converged solutions are collected for each of them. The whole
procedure is repeated 10 times for statistical consistency, and the results are shown
in Figures 3.8 and 3.9. The abbreviation “MC” stands for Monte Carlo, referring
to the randomly generated initial guesses, “rb” for rball and “rp” for rprune.
Figure 3.8(b) shows that the Monte Carlo approach finds more solutions, but
Fig. 3.8(a) shows that RRT*-GBO finds the best solution (i.e., the one with the
lowest cost) faster when choosing a parameter combination of rball = 4 and rprune =
0.5 (purple bar). The choice of rball = 2 and rprune = 1.5 (olive green bar) appears to
find the best solution even faster. However, Fig. 3.9 shows the best solution found
by each case across all the 10 repetitions and reveals that the overall best solution
found by the rball = 2 and rprune = 1.5 case (again in olive green) is a local minimum
belonging to the cost bin number 10 from Figures 3.5 and 3.6. All the other cases
find the lowest-cost solution in the first cost bin from Figures 3.5 and 3.6.
Therefore, the case rball = 4 and rprune = 0.5 (purple) provides better results than
Monte Carlo and other parameter combinations.

3.1. ENERGY-OPTIMAL TRAJECTORY PLANNING 49

(a) Average time to find the best solution (in seconds).

(b) Average number of solutions found

Figure 3.8: Monte Carlo and RRT*-GBO statistics in the Cluster scenario.

50 CHAPTER 3. EVALUATION

Figure 3.9: Monte Carlo an RRT*-GBO best solutions in the Cluster scenario.

3.1. ENERGY-OPTIMAL TRAJECTORY PLANNING 51

The same statistical analysis done in the Cluster scenario is conducted in a new

“Flowers” scenario shown in Fig. 3.10, with troot =
[
1 0.2 0.2

]T
and tgoal =[

0.5 6 1
]T
. The results are shown in Figures 3.11 and 3.12. Again, 3.11(b) shows

that Monte Carlo finds more solutions and Fig. 3.11(a) shows that RRT*-GBO finds
the best solution (i.e., the one with the lowest cost) faster when choosing a parameter
combination of rball = 2 and rprune = 1.5 (olive green bar). Furthermore, Fig. 3.12
shows that every case’s overall best solution is the same.
Thus, the case rball = 2 and rprune = 1.5 (olive green) provides better results than
Monte Carlo and other parameter combinations.

52 CHAPTER 3. EVALUATION

Figure 3.10: Flowers scenario (from two viewing angles).

3.1. ENERGY-OPTIMAL TRAJECTORY PLANNING 53

(a) Average time to find the best solution (in seconds).

(b) Average number of solutions found

Figure 3.11: Monte Carlo an RRT*-GBO statistics in the Flowers scenario.

54 CHAPTER 3. EVALUATION

Figure 3.12: Monte Carlo and RRT*-GBO best solutions in the Flowers scenario.

3.1. ENERGY-OPTIMAL TRAJECTORY PLANNING 55

3.1.2 Motion in SE(3)

Rotations in SO(3) are now introduced, being parameterized by three additional B-
Splines using the angle-axis representation. The rotation B-Splines have the same
properties as the translation B-Splines presented in Sec. 3.1.1, apart from the degree
protation = 2 in contrast to ptranslation = 3.
Further motion constraints−0.1−0.1

−0.1

 ≤ ω ≤

0.10.1
0.1

 ,

−0.0849−0.0406
−0.0486

 ≤ τ ≤

0.08490.0406
0.0486

 (3.7)

are added.
Figures 3.13 and 3.14 show the energy-optimal trajectory from a root pose

sroot =
[
1 0.2 0.2 0 0 0

]T
, (3.8)

to a goal pose

sgoal =
[
0.5 6 1 π/2 π/2 π/2

]T
, (3.9)

in the absence of obstacles. The red, green, and blue dashes are the x, y, and z
basis vectors of a frame attached to the robot’s center of mass, depicting the robot’s
orientation along the trajectory.
Figure 3.15 shows the translation B-Splines and Figure 3.16 shows the rotation
B-Splines, both having a bell-shaped velocity profile.

56 CHAPTER 3. EVALUATION

Figure 3.13: Trajectory in SE(3) (first viewing angle).

3.1. ENERGY-OPTIMAL TRAJECTORY PLANNING 57

Figure 3.14: Trajectory in SE(3) (second viewing angle).

58 CHAPTER 3. EVALUATION

Figure 3.15: Trajectory in SE(3) (Translation B-Splines and derivatives).

3.1. ENERGY-OPTIMAL TRAJECTORY PLANNING 59

Figure 3.16: Trajectory in SE(3) (Rotation B-Splines and derivatives).

60 CHAPTER 3. EVALUATION

Obstacles

The robot geometry is momentarily modeled as a capsule to show that the opti-
mizer finds solutions in which the robot’s orientation is fundamental for feasibility.
Capsule-shaped obstacles are included, and this scenario is called the Narrow Pas-
sage scenario.
Figure 3.17 shows the straight-line initial guess of the trajectory from a root pose

sroot =
[
1 0.2 0.2 0 0 0

]T
, (3.10)

to a goal pose

sgoal =
[
1 6 1 0 0 0

]T
, (3.11)

which causes collisions and it is not feasible. Figures 3.18 and 3.19 show the feasible,
energy-optimal solution found by the optimizer.

3.1. ENERGY-OPTIMAL TRAJECTORY PLANNING 61

Figure 3.17: Initial guess for a trajectory in the Narrow Passage. The robot is
depicted in blue for different instants of the trajectory.

62 CHAPTER 3. EVALUATION

Figure 3.18: Optimized trajectory in the Narrow Passage (first view). The robot is
depicted in blue for different instants of the trajectory.

3.1. ENERGY-OPTIMAL TRAJECTORY PLANNING 63

Figure 3.19: Optimized trajectory in the Narrow Passage (second view). The robot
is depicted in blue for different instants of the trajectory.

64 CHAPTER 3. EVALUATION

RRT*-GBO performance analysis

A hard, cluttered scenario, referred to as the Maze scenario, is now used to evalu-
ate RRT*-GBO exploration capability compared to the “brute force” Monte Carlo
approach.
We define

rconnect = rball, (3.12)

and a dynamic edge B-Spline duration

tf,edge = 10 · rball,translation + 30 [s] (3.13)

.
For

sroot =
[
1.25 0.2 0.2 0 π/2 0

]T
, (3.14)

sgoal =
[
0.25 0.2 1.5 0 π/2 0

]T
, (3.15)

a trajectory duration
tf = 200 [s], (3.16)

and the tuning parameters
rball,translation = 2, (3.17)

rprune,translation = 0.5, (3.18)

rball,rotation = π/2, (3.19)

rprune,rotation = π/12, (3.20)

Fig. 3.20 shows an RRT*-GBO tree of edges (black stretches for translation between
nodes, red-green-blue dashes for the orientation at the nodes) built in the Maze
scenario. Fig. 3.21 shows the smoothing of a path of edges from the root to the goal
(in black) into the final solution (in orange). Fig. 3.22 shows the robot along the
final solution.

3.1. ENERGY-OPTIMAL TRAJECTORY PLANNING 65

(a) View 1

(b) View 2

Figure 3.20: Maze Scenario: RRT*-GBO tree of edges.

66 CHAPTER 3. EVALUATION

(a) View 1

(b) View 2

Figure 3.21: Maze Scenario: RRT*-GBO smoothing. The path of edges from root
to goal is in black, and the final solution is in orange.

3.1. ENERGY-OPTIMAL TRAJECTORY PLANNING 67

(a) View 1

(b) View 2

Figure 3.22: Maze Scenario: RRT*-GBO solution. The robot is depicted in orange
for different instants of the trajectory.

68 CHAPTER 3. EVALUATION

For the Maze scenario, a Monte Carlo approach with 2000 random initial guesses
is tested, using the following stopping criteria: ∆Γrel = 1e−6, ∆pfree,rel = 1e−6,
nmaxiter = 1500. The 2000 runs took a total computation time of 39h41m16s (over
one and a half days). Out of those, a single feasible trajectory was found on the
604th trial, after 12h00min45s.
As a comparison, RRT*-GBO with different tuning parameter combinations gets
executed for 30 minutes, 10 times. The statistical results over the 10 ”batches”
are shown in Figures 3.23 to 3.27. Figure 3.28 shows the best solutions for each
parameter combination, which follow a similar pattern. The abbreviation “rbt”
stands for rball, translation, “rbr” for rball, rotation, “rpt” for rprune, translation, and “rpr” for
rprune, rotation.
We focus on the combination

rball, translation = 3,

rball, rotation = 180◦,

rprune, translation = 1,

rprune, rotation = 30◦,

shown in dark red for a deeper analysis. Figure 3.27 shows that it finds at least a
solution for every run of the algorithm. Figure 3.26 shows that it finds more than 3
solutions in a run, on average (the best average among all cases). Figure 3.25 shows
that the best solution found is cheaper than the one found in every other case,
on average. Figure 3.23 shows that it takes an average of ∼ 700 seconds (∼ 11.5
minutes) to find the first solution, which is a ∼ 1.4 factor of the lowest time among
all cases (light orange bar). Figure 3.24 shows that it takes an average of ∼ 1400
seconds (∼ 23 minutes) to find the best solution, which is (again) a ∼ 1.4 factor of
the lowest time among all cases (light blue bar).
The dark red combination provides above-average results compared to the other
parameter combinations evaluated. Compared to Monte Carlo, it achieves a 62-times
computation time reduction to find a solution (12 hours against 11.5 minutes).

3.1. ENERGY-OPTIMAL TRAJECTORY PLANNING 69

Figure 3.23: RRT*-GBO in the Maze scenario: average time taken to find the first
solution (in seconds).

Figure 3.24: RRT*-GBO in the Maze scenario: average time taken to find the best
solution (in seconds).

70 CHAPTER 3. EVALUATION

Figure 3.25: RRT*-GBO in the Maze scenario: average cost of the best solution
found.

Figure 3.26: RRT*-GBO in the Maze scenario: average number of solutions found
in a run.

3.1. ENERGY-OPTIMAL TRAJECTORY PLANNING 71

Figure 3.27: RRT*-GBO in the Maze scenario: number of runs that found at least
one solution (out of 10).

72 CHAPTER 3. EVALUATION

(a) View 2

(b) View 2

Figure 3.28: RRT*-GBO best solutions in the Maze scenario.

3.2. PERCEPTION-AWARENESS 73

3.2 Perception-awareness

This section evaluates the designed perception objective functions for perception-
aware motion planning.
Figure 3.29 shows a model of the Astrobee (as an orange sphere) in a mock-up
feature map (as magenta markers). The robot’s body frame and camera frame are
represented. The gray plane represents the camera plane, and the black dots are
the projections of the visible features onto it. This visualization of the features
projections shows exactly what the robot sees at a given pose.
Figure 3.30 shows a reduced map keeping only the features on the right wall (x≈ 1.5 [m])
and a straight point-to-point trajectory used as an initial guess for the perception-
aware optimization performed in the following sections.

74 CHAPTER 3. EVALUATION

Figure 3.29: Feature projection in a mock-up feature map. Astrobee is represented
as an orange sphere, features are represented as magenta markers, and the gray
plane is the camera plane with feature projections as black dots.

3.2. PERCEPTION-AWARENESS 75

Figure 3.30: Reduced mock-up map and example trajectory.

76 CHAPTER 3. EVALUATION

3.2.1 Feature count vs. relaxed visibility

In this section, the trajectory from Fig. 3.30 is optimized to maximize Γperception

(without energy considerations) for Γperception = ΓFC and Γperception = ΓRV.
As discussed in Sec.2.1.2, the feature count objective function ΓFC (2.9) is discon-
tinuous and thus unsuitable for the gradient computations (2.35). For instance, a
small gradient step ∆s applied to a robot’s pose si may not cause any change in the
count of features the robot sees, resulting in a gradient ∇ΓFC = 0 at every iteration.
That is the case with the default gradient step ∆s = 1e−6

The proposed solution is gradually increasing the gradient step ∆s until gradients
∇ΓFC ̸= 0 are obtained. A gradient step of ∆s = 1e−3 achieves that.
Figure 3.31 shows the optimized trajectory for Γperception = ΓFC and ∆s = 1e−3 .
The robot correctly starts off by taking distance from the right wall (to have more
features in view) and focusing on the densest region of features at y ≈ 1 [m] but
quickly turns to not informative regions.
In contrast, the relaxed visibility objective function ΓRV (2.20) is continuous and
suitable for gradient computation with the default gradient step ∆s = 1e−6 (or any
other gradient step).
Figure 3.32 shows the optimized trajectory for Γperception = ΓRV. Throughout the
entire trajectory, the robot stays far from the right wall (constrained by the upper
left edge of the workspace box) and focuses on the densest region of features at
y ≈ 1 [m].
Therefore, the relaxed visibility objective function shows superior results for the
chosen scenario.

3.2. PERCEPTION-AWARENESS 77

Figure 3.31: Optimized trajectory using the feature count objective function (from
two viewing angles).

78 CHAPTER 3. EVALUATION

Figure 3.32: Optimized trajectory using the relaxed visibility objective function
(from two viewing angles). It takes 1641 [s] to converge.

3.2. PERCEPTION-AWARENESS 79

3.2.2 Interpolated perception objective function

The interpolated perception function presented in Sec. 2.1.2 is now evaluated. It
can be equally applied to the feature count method to obtain Γ̂FC or to the relaxed
visibility objective method to obtain Γ̂RV (2.20). Besides reducing computation
times (as explained in Sec. 2.1.2), the interpolated feature count objective function
Γ̂FC also has the advantage of being continuous, and thus, suitable for gradient
computation, in contrast to the original function ΓFC.
The first step is to define a grid of robot poses to be interpolated. For the scenario
in Fig. 3.30, the following grid is chosen:

• x: 5 linearly space points in the range [0; 1.5].

• y: 10 linearly space points in the range [0; 6.4].

• z: 5 linearly space points in the range [0; 1.7].

• ξx: 19 linearly space points in the range [0; π].

• ξy: 19 linearly space points in the range [0; π].

• ξz: 10 linearly space points in the range [0; π].

The summed feature visibility function γ (γFC or γRV) is evaluated at each of the
5×10×5×19×19×19 = 1714750 grid points. The function’s values are interpolated
across the grid points using cubic splines (Catmull-Rom) from Btwxt [Sof24] to
obtain the corresponding interpolated perception objective function Γ̂perception (Γ̂FC

or Γ̂RV).
Figure 3.33 shows the optimized trajectory using the interpolated feature count
objective function Γ̂FC. Compared to the trajectory using the original feature count
function in Fig. 3.31, the robot now has a good view of the features during the entire
trajectory.
Figure 3.34 shows the optimized trajectory using the interpolated relaxed visibility
objective function Γ̂RV. It is practically identical to the trajectory using the originals
relaxed visibility function in Fig. 3.32. The difference is that the trajectory opti-
mization using the interpolated function takes 169 [s] to converge to the solution,
while the not interpolated function takes 1641 [s]. That consists of approximately a
10-times reduction in the optimization time.
At the grid points xi, the interpolated summed visibility function γ̂ equals the
original perception function γ. However, errors occur between the grid points. Fig-
ure 3.35 assesses the magnitude of the errors. For both the feature count and the
relaxed visibility methods, it shows the average relative errors (in percent) for points
in the middle of two gridpoints (xi + 0.5∆x), points at 1/4 of the distance between
two consecutive gridpoints (xi+0.25∆x), and points at 3/4 of the distance between
two consecutive gridpoints (xi + 0.75∆x). As expected, the largest errors occur in

80 CHAPTER 3. EVALUATION

the middle of two grid points (xi + 0.5∆x) since that is the most distant position
from any grid point. Furthermore, the interpolated relaxed visibility function shows
higher fidelity to the original function, with errors 4 times smaller than the inter-
polated feature count function. That may be explained by the discontinuous aspect
of the feature count function, which is hard to fit in the interpolator’s continuous,
smooth cubic spline function.

3.2. PERCEPTION-AWARENESS 81

Figure 3.33: Optimized trajectory using the interpolated feature count objective
function (from two viewing angles).

82 CHAPTER 3. EVALUATION

Figure 3.34: Optimized trajectory using the interpolated relaxed visibility objective
function (from two viewing angles). It takes 169 [s] to converge.

3.2. PERCEPTION-AWARENESS 83

(a) Relaxed visibility

(b) Feature count

Figure 3.35: Interpolation errors comparison.

84 CHAPTER 3. EVALUATION

3.2.3 Weighted metric analysis

Figures 3.36 to 3.39 show how the weighting term wenergy from the weighted cost
function (2.27) affects the optimized trajectories. A mock-up feature map of the
satellite model in DLR’s OOS-SIM facility [ADSR+15] (in magenta) is used to opti-
mize the trajectory of the servicer robot end-effector. The LWR robot is represented
in orange. Again, features are projected as black dots in the camera’s image plane,
represented by the gray plane. When wenergy = 0, energy consumption is disre-
garded, and the robot goes as far as possible from the features (constrained by
the upper anterior edge of the workspace box) to ensure all of them are seen. As
wenergy gradually increases, the motions become less aggressive. The straight-line,
energy-optimal solution is found when wenergy = 1.

3.2. PERCEPTION-AWARENESS 85

Figure 3.36: Optimized trajectory using the weighted cost function with wenergy = 0
for a mock-up OOS-SIM scenario.

86 CHAPTER 3. EVALUATION

Figure 3.37: Optimized trajectory using the weighted cost function with wenergy =
0.8 for a mock-up OOS-SIM scenario.

3.2. PERCEPTION-AWARENESS 87

Figure 3.38: Optimized trajectory using the weighted cost function with wenergy =
0.85 for a mock-up OOS-SIM scenario.

88 CHAPTER 3. EVALUATION

Figure 3.39: Optimized trajectory using the weighted cost function with wenergy = 1
for a mock-up OOS-SIM scenario.

3.3. ASTROBEES RENDEZVOUS EXPERIMENT 89

3.3 Astrobees rendezvous experiment

The complete method is now evaluated for the rendezvous between two Astrobee
robots in the ISS (in simulation). The experiment takes inspiration from MIT’s
video [Aer], which is part of the experiments from [ASM+22].
A simulation environment in Gazebo is designed for this thesis. 3D models provided
by NASA are used, namely a model of the US module of the ISS and a model of the
Astrobee. A trajectory commander is designed using ROS to allow the Astrobee to
follow any SE(3) trajectories. The simulated Astrobee camera streams images to
a ROS topic, which can be visualized/processed in real-time. Fig. 3.40 shows the
simulation environment.
The simulated camera mimics the real Astrobee camera. It employs the pinhole
model from Sec. 1.4.6 with the following parameters: focal length f = 607, principal
point offset px = 625, py = 515, image width W = 1250, image height H = 1030.
Therefore, the intrinsics matrix is

K =

607 0 625
0 607 515
0 0 1

 . (3.21)

The transformation matrix from Astrobee’s center of mass to its camera is

Tcam
CoM =


0 0 1 0.1177
−1 0 0 −0.0422
0 −1 0 −0.08260
0 0 0 1

 , (3.22)

and, therefore, the extrinsics matrix is[
HW

cam,c

0 0 0 1

]
= (Tcam

CoM)−1 (TCoM
W

)−1
, (3.23)

for a commanded pose of the robot‘s center of mass TCoM
W .

Astrobee’s dynamic properties from (3.1) and (3.2) are used. The robot’s geometry
is modeled as a sphere of radius 0.225 [m] to cover the corners of the robot’s real
cubic geometry of size 0.32×0.32×0.32 [m]. The motion constraints from (3.3) and
(3.7) are used, except from the position boundaries −2.7−0.75

0.6

 ≤ t ≤

 1.6
0.75
2.1

 (3.24)

90 CHAPTER 3. EVALUATION

(a) Gazebo simulator.

(b) Camera feed from Gazebo. Transmitted via ROS, visualized in RViz.

Figure 3.40: ISS/Astrobees simulation environment.

3.3. ASTROBEES RENDEZVOUS EXPERIMENT 91

3.3.1 Mapping and perception metric interpolation

Figure 3.41: Simulated ISS’s US module mapping. On the left: camera view with
green markers for features. On the right: SLAM map features (red dots) and camera
localization (crossed rectangles.)

A map of the simulated environment is obtained by commanding the Astrobee to
move forward slowly inside the US module. The process is illustrated in Fig. 3.41.
The map is downsampled by a factor of 5, resulting in 923 features.
The perception metric is interpolated for this feature map as in (2.26). The following
grid is used:

• x: 20 linearly space points in the range [−3; 3].

• y: 5 linearly space points in the range [−0.75; 0.75].

• z: 5 linearly space points in the range [0.6; 2.1].

• ξx: 19 linearly space points in the range [0; π].

• ξy: 19 linearly space points in the range [0; π].

• ξz: 10 linearly space points in the range [0; π].

92 CHAPTER 3. EVALUATION

3.3.2 Trajectory planning and execution

A second Astrobee was added to the simulation. The task is to bring the first
Astrobee (chaser) to the back of the second Astrobee (target) with

sroot =
[
−2.5 0 1.4 0 0 0

]T
, (3.25)

sgoal =
[
1 0 1.4 0 0 π

]T
, (3.26)

tf = 60 [s]. (3.27)

An energy-optimal and a perception-aware trajectory are compared to evaluate the
localization accuracy. In both cases, a straight-line initial guess is fed to the opti-
mizer, skipping the RRT*-GBO edges construction part.
The optimizer’s stopping criteria are set to ∆Γrel = 1e−6 and ∆pfree,rel = 1e−6.

Energy-optimal

The trajectory in Fig. 3.42 is planned by optimizing only the energy spent by the
robot (i.e., wenergy = 1, wperception = 0). As the robot executes the planned trajectory,
the camera view with detected features and the SLAM map and camera localization
are shown in Fig. 3.43 and Fig. 3.44.
The chaser Astrobee deviates minimally from the straight-line optimal trajectory
only to avoid colliding with the target Astrobee. Consequently, it has a close view
of the left wall.

3.3. ASTROBEES RENDEZVOUS EXPERIMENT 93

(a) (b)

(c) (d)

(e) (f)

Figure 3.42: Planned energy-optimal Astrobee trajectory. The consecutive robot
poses over time are shown.

94 CHAPTER 3. EVALUATION

(a)

(b)

(c)

Figure 3.43: SLAM on the first half of the energy-optimal Astrobee trajectory.

3.3. ASTROBEES RENDEZVOUS EXPERIMENT 95

(a)

(b)

(c)

Figure 3.44: SLAM on the second half of the energy-optimal Astrobee trajectory.

96 CHAPTER 3. EVALUATION

Perception-aware

The trajectory in Fig. 3.45 is planned using a weighted perception-aware cost metric
(wenergy = 0.9, wperception = 0.1). As the robot executes the planned trajectory, the
camera view with detected features and the SLAM map and camera localization are
shown in Fig. 3.46 and Fig. 3.47.
The chaser Astrobee makes a large arch away from the left wall to observe a large
number of features during its trajectory.

3.3. ASTROBEES RENDEZVOUS EXPERIMENT 97

Figure 3.45: Planned perception-aware Astrobee trajectory. The consecutive robot
poses over time are shown.

98 CHAPTER 3. EVALUATION

(a)

(b)

(c)

Figure 3.46: SLAM on the first half of the perception-aware Astrobee trajectory.

3.3. ASTROBEES RENDEZVOUS EXPERIMENT 99

(a)

(b)

(c)

Figure 3.47: SLAM on the second half of the perception-aware Astrobee trajectory.

100 CHAPTER 3. EVALUATION

Localization error comparison

Figure 3.48 compares the resulting localization errors for the energy-optimal and
the perception-aware trajectories for the Astrobee rendezvous task. The perception-
aware localization is 37% more accurate than the energy-optimal one, with an RMS
error of 5.2331 [cm] versus 8.2946 [cm].
It is also noticeable that the generated feature map in the perception-aware case
is more dispersed and representative. In contrast, the one from the energy-optimal
case concentrates most of the features on the left wall around x = 0 [m].

3.3. ASTROBEES RENDEZVOUS EXPERIMENT 101

(a) Energy-optimal. RMS error: 8.2946 [cm]

(b) Perception-aware. RMS error: 5.2331 [cm]

Figure 3.48: Astrobee rendezvous localization error comparison. The real trajectory
is shown in black, and the trajectory estimated by SLAM is shown in magenta.

102 CHAPTER 3. EVALUATION

3.3.3 RRT*-GBO solutions

The complete RRT*-GBO planner is now employed for the task at hand. The
following set of tuning parameters is chosen:

rball,translation = 2, (3.28)

rconnect,translation = 2, (3.29)

rprune,translation = 0.5, (3.30)

rball,rotation = π/2, (3.31)

rconnect,rotation = π, (3.32)

rprune,rotation = π/12, (3.33)

And he edges B-Splines have a duration tf,edges = 60 [s].
The algorithm runs until 32 solutions are found, resulting in the dense tree of edges
shown in Fig. 3.49. Figure 3.50 shows all the found solutions, which fall into the
usual pattern of bringing the robot to the limits of the translational constraints to
ensure its camera views the largest possible number of features.
The solutions are color-coded by the costs according to the colormap in Fig. 3.50(c).
They can be put together into a few distinct groups. One trajectory is sampled from
the lower-left corner group (dark blue: best solutions), one from the upper-right
corner group (medium shades of blue: good solutions), and one from the lower-right
corner group (light blue, green and yellow: average solutions). The robot poses over
time for the selected solutions/trajectories are shown in Fig. 3.50.
The ensuing localization errors from executing them with SLAM are shown in
Fig. 3.52. As expected, the localization in the upper-right corner solution (Fig. 3.52(b))
is better than in the lower-right corner solution (Fig. 3.52(c)), and both are better
than in the baseline energy-optimal trajectory (Fig. 3.48(a)). However, the lower-left
trajectory (Fig. 3.52(a)), which has the lowest optimized cost, shows a localization
error even larger than in the baseline energy-optimal trajectory (Fig. 3.48(a)). The
camera view during the execution of the lower-left trajectory (Fig. 3.53) provides
some insight into the unexpected result. The robot looks at the panels with wires
and electronic components on the right wall, which have the highest density of fea-
tures in the environment. However, it does it by following an aggressive trajectory
with large rotations. Thus, it is likely that even the best view of the features cannot
compensate for the difficulty of estimating such an aggressive trajectory. This hy-
pothesis is reinforced by comparing Fig. 3.48(b) to Fig. 3.52(b). Both trajectories
reach the goal by following an arch towards the upper-right corner. The RRT*-
GBO trajectory has a larger (more aggressive) arch and results in a slightly less
accurate localization. If the hypothesis stands true, a finer tuning of the cost terms
weighting factor wenergy or additional motion constraints could help avoid aggressive
trajectories.

3.3. ASTROBEES RENDEZVOUS EXPERIMENT 103

(a) Side view

(b) Top view

Figure 3.49: Astrobee rendezvous RRT*-GBO tree. Randomly colored.

104 CHAPTER 3. EVALUATION

(a) Side view

(b) Front view

(c) Colormap (dark blue for best cost, dark red for worst cost).

Figure 3.50: Color-coded astrobee rendezvous RRT*-GBO solutions.

3.3. ASTROBEES RENDEZVOUS EXPERIMENT 105

(a) (b)

(c) (d)

(e) (f)

Figure 3.51: Three selected trajectories found with RRT*-GBO for the Astrobee
rendezvous task. The consecutive robot poses over time for the three trajectories
are shown simultaneously.

106 CHAPTER 3. EVALUATION

(a) Lower-left corner solution.
RMS error: 9.0482 [cm]

(b) Upper-right corner solution.
RMS error: 5.51 [cm]

(c) Lower-right corner solution. RMS error: 7.1168 [cm]

s

Figure 3.52: Localization error comparison for three selected trajectories found with
RRT*-GBO for the Astrobee rendezvous task.

3.3. ASTROBEES RENDEZVOUS EXPERIMENT 107

(a) (b)

(c) (d)

(e) (f)

Figure 3.53: Camera view with features during the execution of the lower-left corner
solution found with RRT*-GBO for the Astrobee rendezvous task.

108 CHAPTER 3. EVALUATION

3.4 Satellite capture experiment

Lastly, the complete method is evaluated using real hardware. An on-orbit satel-
lite capture experiment is conducted using DLR’s OOS-SIM experimental facility
[ADSR+15] shown in Fig. 3.54. Two large industrial manipulators (Kuka KR120)
are used to simulate zero-gravity dynamics for a servicer (on the left) and a client (on
the right), The servicer simulates an autonomous spacecraft and has a lightweight
manipulator (Kuka LWR) with a camera attached to it. The client simulates a satel-
lite. The task for this experiment is to have the lightweight manipulator grasp the
handle on the rim of the satellite mock-up. We optimize the approaching trajectory
of the servicer toward the client, which is executed by moving the KR120 while the
LWR has a fixed joint configuration.

Figure 3.54: DLR’s OOS-SIM experimental facility.

According to the pinhole model from Sec. 1.4.6, the OOS-SIM robot camera has
the following parameters: focal length f = 683.9, principal point offset px = 266.6,
py = 229.7, image width W = 528, image height H = 406. Therefore, the intrinsics
matrix is

K =

683.9 0 266.6
0 683.9 229.7
0 0 1

 . (3.34)

The camera extrinsics matrix is[
HW

cam

0 0 0 1

]
= (Tcam

KR120EE (qLWR))
−1 ·

(
TKR120EE

W

)−1
, (3.35)

3.4. SATELLITE CAPTURE EXPERIMENT 109

for a commanded pose of the KR120’s end-effector TKR120EE
W . For the LWR’s joint

configuration qLWR shown in Fig. 3.54.

Tcam
KR120EE (qLWR) =


1 −0.05 0.02 0.02

−0.05 −1 0.12 0.73
0.02 −0.12 −1 0.61
0 0 0 1

 . (3.36)

The robot’s dynamic properties and motion constraints are the same as those used
for the Astrobee in the experiment from Sec. 3.3, except the position boundaries
(for the KR120 end-effector).  0

−0.75
1.5

 ≤ t ≤

 1.5
0.75
3

 (3.37)

3.4.1 Mapping and perception metric interpolation

A map of the OOS-SIM is obtained by commanding the Servicer KR120 to perform
small translations on a plane parallel to the front of the satellite mock-up (golden
reflexive surface), as illustrated in Fig. 3.55. The obtained map is downsampled by
a factor of 3, resulting in 366 features.
The perception metric is interpolated for this feature map as in (2.26). The following
grid is used:

• x: 6 linearly space points in the range [0; 1.5].

• y: 6 linearly space points in the range [−0.75; 0.75].

• z: 6 linearly space points in the range [1.5; 3].

• ξx: 19 linearly space points in the range [0; π].

• ξy: 19 linearly space points in the range [0; π].

• ξz: 10 linearly space points in the range [0; π].

110 CHAPTER 3. EVALUATION

Figure 3.55: OOS-SIM mapping. On the left: camera view with green markers
for features. On the right: SLAM map features (red dots) and camera localization
(crossed rectangles).

3.4. SATELLITE CAPTURE EXPERIMENT 111

3.4.2 Trajectory planning and execution

The task is to bring the servicer KR120 close enough to the servicer KR120 to allow
the LWR to grasp the rim of the satellite mock-up, with

sroot =
[
0.5 0 2 0 0 −π

]T
, (3.38)

sgoal =
[
1.32 0.05 2.26 −0.18 0.23 −1.51

]T
, (3.39)

tf = 60 [s]. (3.40)

As in the Astrobee rendezvous experiment (Sec. 3.3), an energy-optimal and a
perception-aware trajectory are compared to evaluate the localization accuracy. In
both cases, a straight-line initial guess is fed to the optimizer, skipping the RRT*-
GBO edges construction part.
The optimizer’s stopping criteria are set to ∆Γrel = 1e−4 and ∆pfree,rel = 1e−4. This
choice makes the optimizer stop earlier, which is necessary to ensure the trajectory
is conservative enough to be executed by the KR120 manipulator.

Energy-optimal

The trajectory in Fig. 3.56 is planned by optimizing only the energy spent by the
robot (i.e., wenergy = 1, wperception = 0). In fact, it is exactly the straight-line initial
guess since it is already optimal for this case.
The trajectory execution on the OOS-SIM facility is shown in Fig 3.57. The camera
view with detected features and the SLAM map and camera localization are shown
in Fig. 3.58.
Following the energy-optimal trajectory, the camera only sees the floor and, later,
the white cylinder on the satellite mock-up from above. Therefore, few features are
detected, and the mapping and localization initialization is delayed.

112 CHAPTER 3. EVALUATION

(a) (b)

(c) (d)

Figure 3.56: Planned energy-optimal OOS-SIM trajectory. The consecutive robot
poses over time are shown.

3.4. SATELLITE CAPTURE EXPERIMENT 113

Figure 3.57: Energy-optimal trajectory execution on the OOS-SIM. The consecutive
robot configurations over time are shown.

114 CHAPTER 3. EVALUATION

Figure 3.58: SLAM on the energy-optimal OOS-SIM trajectory.

3.4. SATELLITE CAPTURE EXPERIMENT 115

Perception-aware

The trajectory in Fig. 3.59 is planned using a weighted perception-aware cost metric
(wenergy = 0.9, wperception = 0.1).
The trajectory execution on the OOS-SIM facility is shown in Fig 3.60. The camera
view with detected features and the SLAM map and camera localization are shown
in Fig. 3.61.
Following the perception-aware trajectory, the manipulator’s end-effector tilts back
and goes up so that the camera sees a major part of the satellite mock-up while ap-
proaching it for the grasp. Therefore, many features are detected, and the mapping
and localization are soon initialized.

116 CHAPTER 3. EVALUATION

(a) (b)

(c) (d)

Figure 3.59: Planned perception-aware OOS-SIM trajectory. The consecutive robot
configurations over time are shown.

3.4. SATELLITE CAPTURE EXPERIMENT 117

Figure 3.60: Perception-aware trajectory execution on the OOS-SIM. The consecu-
tive robot configurations over time are shown.

118 CHAPTER 3. EVALUATION

Figure 3.61: SLAM on the energy-optimal OOS-SIM trajectory.

3.4. SATELLITE CAPTURE EXPERIMENT 119

Localization error comparison

Figure 3.62 shows that the energy-optimal trajectory leads to a late localization
initialization which estimates only a minimal fraction of the robot’s trajectory. In
contrast, the perception-aware trajectory has the localization initialized in an ac-
ceptable time and accurately estimates the real robot trajectory. As a side-product,
the feature map resulting from the perception-aware trajectory is more representa-
tive than the one from the energy-optimal case.

120 CHAPTER 3. EVALUATION

(a) Time to start localization: 24.6036 [s].

(b) Time to start localization: 13.9631 [s]. RMS error: 2.027 [cm]

Figure 3.62: Satellite capture localization error comparison. The real trajectory is
shown in orange, and the trajectory estimated by SLAM is shown in blue.

121

Chapter 4

Discussion

Section 3.1 exposes local minima that prevent gradient-based optimization from
finding the global minimum or even converging to a feasible solution for the im-
posed constraints. Different initial guesses provided to the optimizer converge to
different local minima, which justifies exploring various initial guesses. A Monte
Carlo approach takes random samples from the space of initial guesses. In infinite
time, all possible initial guesses are attempted, and the best solution is found. In
practice, time is limited, and a more clever method to search initial guesses is de-
sirable. The method chosen is RRT*-GBO which verifiably finds informed initial
guesses that lead to optimal solutions faster than Monte Carlo. The discrepancy
is proportional to the complexity of the motion planning task, reaching a 62-fold
computation time reduction in a very cluttered SE(3) scenario (Maze from 3.1.2).
For future work, warm-starting the optimizer via look-up tables could achieve even
higher time savings, as shown in [SBL23, LNTC+11].

It is also clear from Section 3.1 that the performance of the RRT*-GBO in a given
scenario depends on the choice of its tuning parameters. Manually adjusting the
parameters can be time-consuming, which motivates an automated way to search
optimal parameters such as Optuna [ASY+19], a popular hyperparameter optimiza-
tion framework. The energy-weighting term from (2.27) could also benefit from
it, exploring the trade-off between energy- and perception-optimality evaluated in
Sec. 3.2.3.

The perception-optimal solutions shown in Section 3.2 prove that the designed per-
ception functions (2.10) and (2.19) correctly model the visibility of the environment
features. The solutions assimilate a human-like, intuitive behavior of moving away
from the features to have a better overview while focusing on the most descriptive
region (with the highest density of features). A limitation in the perception func-
tions (2.10) and (2.19) is that they do not take into account feature occlusion which
may occur in a scenario where an obstacle blocks the camera view of certain features.
Ray-tracing methods could help model the occlusion of features.

A 10-fold reduction in the optimizer’s convergence time is achieved by performing
an offline multidimensional cubic spline interpolation of the perception functions.

122 CHAPTER 4. DISCUSSION

Additionally, it makes the discontinuous feature count function (2.10) suitable for
gradient computation. The same could be applied to other discontinuous functions,
which could then be optimized by the gradient-based solver.
The Astrobee rendezvous experiment in Sec. 3.3 establishes that energy-weighted
perception-aware trajectory planning results in 1.6 times higher localization accuracy
than the energy-only optimal trajectory. Furthermore, the usage of RRT*-GBO joins
the findings of Sections 3.1 and 3.2 to provide informed initial guesses to energy-
weighted perception-aware optimization.
Real-world validation is obtained for a satellite capture task using DLR’s OOS-SIM
experimental facility in Sec. 3.4. Perception-aware trajectory planning achieved
accurate robot localization in contrast to practically complete localization failure
for the energy-only optimal trajectory.

123

Chapter 5

Conclusion

This thesis presents a novel application of perception-aware trajectory optimization
for on-orbit servicing tasks, targeting free-flying robots in SE(3).
All six translation and rotation degrees of freedom of the robot are explored to
plan perception-optimized trajectories that contribute to accurate robot localization
during the trajectory execution. The perception metric employed by the optimizer
makes the robot behave in an intuitive manner during its trajectory: look at the
most visually descriptive regions while maintaining enough distance from them to
have a broader overview.
Major time savings are obtained by pre-computing an interpolation of the perception
metric that can be efficiently queried for the planning of distinct robot trajectories.
An extensive analysis is performed on the multiple possible solutions for a trajectory
optimization task and the dependency on the initial guess provided. Different exper-
iments highlight the substantial time savings in the use of the RRT*-GBO algorithm
to explore promising initial guesses that lead to globally optimal solutions.
Experiments performed in a realistic simulation of the Astrobees in the ISS and
also in the physical DLR’s OOS-SIM facility validate this thesis’ method and clearly
show the improvement of robot localization accuracy.
In the future, the method could be tested for the real Astrobee robots inside the
International Space Station and, finally, for the autonomous execution of a satellite
servicing task in outer space.

124 CHAPTER 5. CONCLUSION

125

Appendix A

RRT*-GBO Pseudo-code

Algorithm 1 shows the main loop for the RRT*-GBO iterations, composed by Al-
gorithms 2 to 5, which, in turn, employ Algorithms 6 and 7.

Algorithm 1 main()

tree ← Tree(root, goal) ▷ global variable
while stopping criteria are not reached do

connect to goal() ▷ Algorithm 2
new node ← sample() ▷ Algorithm 3
neighboring nodes ← neighborhood query(new node) ▷ Algorithm 4
rewire(neighboring nodes) ▷ Algorithm 5

end while

Algorithm 2 connect to goal()

if distance(tree.last added node, tree.goal node) > r connect then
return

end if
new edge ← build edge(tree.last added node, tree.goal node) ▷ GBO
if not new edge.feasible then

return
end if
if tree.goal node.incoming edge ̸= nothing then

new total cost ← tree.last added node.cost to go + new edge.cost
if new total cost ≤ tree.goal node.cost to go then

return
end if

end if
tree.add edge(new edge)
smooth() ▷ Algorithm 6

126 APPENDIX A. RRT*-GBO PSEUDO-CODE

Algorithm 3 sample()

sampled ← Node()
while true do ▷ repeat until a feasible sample is returned

sampled.t ← sample position uniformely() ▷ random, within position limits
sampled quaternion ← sample SO3() ▷ Yer+10 [YLM10]
sampled.ξ ← quaternion to angle axis(sampled quaternion)
closest node ← find closest in tree(sampled)
sampled ← steer(closest node, sampled) ▷ Algorithm 7
if distance(node, sampled) ≥ r prune and not causes collision(sampled) then

return sampled
end if ▷ else, re-sample

end while

Algorithm 4 neighborhood query(new node)

neighboring nodes ← []
best edge ← nothing
for node in tree.nodes do

if r prune ≤ compute distance(node, new node) ≤ r ball then
edge ← build edge(node, new node) ▷ GBO
if not edge.feasible then

continue
end if
neighboring nodes.add(node)
if edge.cost < best edge.cost or best edge == nothing then

best edge ← edge
end if

end if
end for
tree.add(best edge)
return neighboring nodes

127

Algorithm 5 rewire(neighboring nodes)

for node in neighboring nodes do
edge ← build edge(tree.last added node, node) ▷ GBO
if not edge.feasible then

return
end if
if tree.last added node.cost to go + edge.cost < node.cost to go then

delete node.incoming edge
tree.add edge(edge)
path to goal ← get path to node(tree.goal node)
if node in path to goal then

smooth() ▷ Algorithm 6
end if

end if
end for

Algorithm 6 smooth()

bsplines ← []
path to goal ← get path to node(tree.goal node)
for node in path to goal do

bsplines.add(node.outgoing edge.bspline)
end for
unified bspline ← fit into one bspline(bsplines) ▷ least-squares at sampled times
smoothed trajectory ← optimize(complete bspline) ▷ GBO (original problem)
save solution(smoothed trajectory)

Algorithm 7 steer(from node, to node)

if translation distance(from node.t, to node.t) > r ball translation then
relative translation ← to node.t - from node.t
capped translation ← normalized(relative translation)*r ball translation
to node.t ← from node.t + capped translation

end if
if rotation distance(from node.ξ, to node.ξ) > r ball rotation then

relative rotation ← compute relative rotation(from node.ξ, to node.ξ)
capped rotation ← normalized(relative rotation)*r ball rotation
to node.ξ ← apply rotation(from node.ξ, capped rotiation)

end if
return to node

128 APPENDIX A. RRT*-GBO PSEUDO-CODE

LIST OF FIGURES 129

List of Figures

1.1 On-orbit servicing task showing a robot interacting with a satellite in
space [Wol11]. 5

1.2 Motion planning problem. The magenta triangles are visual features
that the robot uses for localization. Since the lowest (and closest)
obtacle is poor in features, the planner quickly makes the robot look
to regions with higher feature density. 7

1.3 Two Astrobee robots inside the ISS [DLR]. Credit: NASA. 8

1.4 Camera projection model. 20

2.1 Overview of the method developed in this thesis. Square shapes rep-
resent modules, and round shapes represent inputs and outputs. The
green shapes are related to SLAM. 24

2.2 RRT*-GBO steps. 31

3.1 Unconstrained trajectory in R3 (Point-to-point trajectory) 39

3.2 Unconstrained trajectory in R3 (B-Splines) 40

3.3 Three Spheres scenario local minima. 42

3.4 Three Spheres scenario cost histogram. 43

3.5 Cluster scenario cost histogram. 44

3.6 Cluster scenario local minima. 45

3.7 RRT*-GBO example in the Cluster scenario. 47

3.8 Monte Carlo an RRT*-GBO statistics in the Cluster scenario 49

3.9 Monte Carlo and RRT*-GBO best solutions in the Cluster scenario . 50

3.10 Flowers scenario. 52

3.11 Monte Carlo an RRT*-GBO statistics in the Flowers scenario 53

3.12 Monte Carlo and RRT*-GBO best solutions in the Flowers scenario . 54

3.13 Trajectory in SE(3) (first viewing angle). 56

3.14 Trajectory in SE(3) (second viewing angle). 57

3.15 Trajectory in SE(3) (Translation B-Splines). 58

3.16 Trajectory in SE(3) (Rotation B-Splines). 59

3.17 Narrow Passage initial guess . 61

3.18 Narrow Passage optimized . 62

3.19 Narrow Passage optimized . 63

130 LIST OF FIGURES

3.20 Maze RRT*-GBO Tree. 65
3.21 Maze RRT*-GBO smoothing. 66
3.22 Maze RRT*-GBO solution. 67
3.23 Maze time to first . 69
3.24 Maze time to best . 69
3.25 Maze cost of best . 70
3.26 Maze number of solutions. 70
3.27 Maze at least one solution. 71
3.28 RRT*-GBO best solutions in the Maze scenario 72
3.29 Mock-up map. 74
3.30 Reduced mock-up map and example trajectory. 75
3.31 Feature count. 77
3.32 Relaxed visibility. 78
3.33 Interpolated feature count. 81
3.34 Interpolated Relaxed Visibility. 82
3.35 Interpolation errors comparison. 83
3.36 Weighted cost function (wenergy = 0). 85
3.37 Weighted cost function (wenergy = 0.8). 86
3.38 Weighted cost function (wenergy = 0.85). 87
3.39 Weighted cost function (wenergy = 1). 88
3.40 Simulation environment . 90
3.41 ISS Mapping. 91
3.42 Planned energy-optimal Astrobee trajectory. 93
3.43 SLAM on the first half of the energy-optimal Astrobee trajectory. . . 94
3.44 SLAM on the second half of the energy-optimal Astrobee trajectory. . 95
3.45 Planned perception-aware Astrobee trajectory. 97
3.46 SLAM on the first half of the perception-aware Astrobee trajectory. . 98
3.47 SLAM on the second half of the perception-aware Astrobee trajectory. 99
3.48 Astrobee rendezvous localization error comparison. 101
3.49 Astrobee rendezvous RRT*-GBO tree. 103
3.50 Astrobee rendezvous RRT*-GBO solutions. 104
3.51 Three selected trajectories found with RRT*-GBO for the Astrobee

rendezvous task. 105
3.52 Localization error comparison for RRT*-GBO for the Astrobee ren-

dezvous task. 106
3.53 Camera view for RRT*-GBO lower-left corner solution for the As-

trobee rendezvous task . 107
3.54 DLR’s OOS-SIM . 108
3.55 Mapping the OOS-SIM. 110
3.56 Planned energy-optimal OOS-SIM trajectory. The consecutive robot

poses over time are shown. 112
3.57 Energy-optimal trajectory execution on the OOS-SIM. 113
3.58 SLAM on the energy-optimal OOS-SIM trajectory. 114

LIST OF FIGURES 131

3.59 Planned perception-aware OOS-SIM trajectory. 116
3.60 Perception-aware trajectory execution on the OOS-SIM. 117
3.61 SLAM on the energy-optimal OOS-SIM trajectory. 118
3.62 Satellite capture localization error comparison. 120

132 LIST OF FIGURES

BIBLIOGRAPHY 133

Bibliography

[ADSR+15] Jordi Artigas, Marco De Stefano, Wolfgang Rackl, Roberto Lam-
pariello, Bernhard Brunner, Wieland Bertleff, Robert Burger, Oliver
Porges, Alessandro Giordano, Christoph Borst, and Alin Albu-
Schaeffer. The oos-sim: An on-ground simulation facility for on-
orbit servicing robotic operations. In 2015 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 2854–2860, 2015.
doi:10.1109/ICRA.2015.7139588.

[Aer] AeroAstroMIT. How to reach a tumbling target in space. Vis-
ited on August 2, 2024. URL: https://youtu.be/IsEpmzFGFh8?si=
e37BhvTOiSRgKIcb.

[AOS+21] Keenan Albee, Charles Oestreich, Caroline Specht, Antonio Espinoza,
Jessica Todd, Ian Hokaj, Roberto Lampariello, and Richard Linares.
A robust observation, planning, and control pipeline for autonomous
rendezvous with tumbling targets. Frontiers in Robotics and AI, 8, 09
2021. doi:10.3389/frobt.2021.641338.

[ASM+22] Keenan Albee, Caroline Specht, Hrishik Mishra, Charles Oestreich,
Bernhard Brunner, Roberto Lampariello, and Richard Linares. Au-
tonomous rendezvous with an uncertain, uncooperative tumbling tar-
get: The tumbledock flight experiments. 06 2022.

[ASY+19] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and
Masanori Koyama. Optuna: A next-generation hyperparameter op-
timization framework. In Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, 2019.

[BM08] Luigi Biagiotti and Claudio Melchiorri. Trajectory Planning for Auto-
matic Machines and Robots. Springer Publishing Company, Incorpo-
rated, 1st edition, 2008.

[BTC20] Luca Bartolomei, Lucas Teixeira, and Margarita Chli. Perception-aware
path planning for uavs using semantic segmentation. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 5808–5815, 2020. doi:10.1109/IROS45743.2020.9341347.

https://doi.org/10.1109/ICRA.2015.7139588
https://youtu.be/IsEpmzFGFh8?si=e37BhvTOiSRgKIcb
https://youtu.be/IsEpmzFGFh8?si=e37BhvTOiSRgKIcb
https://doi.org/10.3389/frobt.2021.641338
https://doi.org/10.1109/IROS45743.2020.9341347

134 BIBLIOGRAPHY

[CEG+21] Carlos Campos, Richard Elvira, Juan J. Gómez, José M. M. Montiel,
and Juan D. Tardós. ORB-SLAM3: An accurate open-source library
for visual, visual-inertial and multi-map SLAM. IEEE Transactions on
Robotics, 37(6):1874–1890, 2021.

[CER+21] Carlos Campos, Richard Elvira, Juan J. Gómez Rodŕıguez, José M.
M. Montiel, and Juan D. Tardós. Orb-slam3: An accurate open-source
library for visual, visualâinertial, and multimap slam. IEEE Trans-
actions on Robotics, 37(6):1874–1890, 2021. doi:10.1109/TRO.2021.

3075644.

[CFD+17] Gabriele Costante, Christian Forster, Jeffrey Delmerico, Paolo Valigi,
and Davide Scaramuzza. Perception-aware path planning, 2017. URL:
https://arxiv.org/abs/1605.04151, arXiv:1605.04151.

[CFM+16] Brian Coltin, Jesse Fusco, Zack Moratto, Oleg Alexandrov, and Robert
Nakamura. Localization from visual landmarks on a free-flying robot.
In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4377–4382, 2016. doi:10.1109/IROS.2016.

7759644.

[DLR] DLR. Mini robots practise grasping space debris. Visited on Au-
gust 1, 2024. URL: https://www.dlr.de/en/latest/news/2022/01/
20220322_mini-robots-practise-grasping-space-debris.

[Far23] Tommaso Faraci. Sensor-based optimal control for an astrobee-robot
on the iss. Master’s thesis, Technical University of Munich, 2023. URL:
https://mediatum.ub.tum.de/node?id=1747342.

[FFLS18] Davide Falanga, Philipp Foehn, Peng Lu, and Davide Scaramuzza.
Pampc: Perception-aware model predictive control for quadrotors,
2018. URL: https://arxiv.org/abs/1804.04811, arXiv:1804.

04811.

[fOSA] United Nations Office for Outer Space Affairs. Online index of objects
launched into outer space. Visited on August 1, 2024. URL: https:
//www.unoosa.org/oosa/osoindex/.

[GKSB10] Giorgio Grisetti, Rainer Kummerle, Cyrill Stachniss, and Wolfram Bur-
gard. A tutorial on graph-based slam. IEEE Intelligent Transporta-
tion Systems Magazine, 2(4):31–43, 2010. doi:10.1109/MITS.2010.

939925.

[Huy09] Du Q. Huynh. Metrics for 3d rotations: Comparison and analysis.
Journal of Mathematical Imaging and Vision, 35(2):155–164, 2009.
doi:10.1007/s10851-009-0161-2.

https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1109/TRO.2021.3075644
https://arxiv.org/abs/1605.04151
https://arxiv.org/abs/1605.04151
https://doi.org/10.1109/IROS.2016.7759644
https://doi.org/10.1109/IROS.2016.7759644
https://www.dlr.de/en/latest/news/2022/01/20220322_mini-robots-practise-grasping-space-debris
https://www.dlr.de/en/latest/news/2022/01/20220322_mini-robots-practise-grasping-space-debris
https://mediatum.ub.tum.de/node?id=1747342
https://arxiv.org/abs/1804.04811
https://arxiv.org/abs/1804.04811
https://arxiv.org/abs/1804.04811
https://www.unoosa.org/oosa/osoindex/
https://www.unoosa.org/oosa/osoindex/
https://doi.org/10.1109/MITS.2010.939925
https://doi.org/10.1109/MITS.2010.939925
https://doi.org/10.1007/s10851-009-0161-2

BIBLIOGRAPHY 135

[HZ04] Richard Hartley and Andrew Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2 edition, 2004.

[Joh07] Steven G. Johnson. The NLopt nonlinear-optimization package. https:
//github.com/stevengj/nlopt, 2007.

[KF11] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms
for optimal motion planning. The International Journal of Robotics
Research, 30(7):846–894, 2011. arXiv:https://doi.org/10.1177/

0278364911406761, doi:10.1177/0278364911406761.

[Kra94] Dieter Kraft. Algorithm 733: TOMP–fortran modules for optimal con-
trol calculations. ACM Transactions on Mathematical Software, 20:262–
281, 1994. doi:10.1145/192115.192124.

[LCS11] Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. Brisk:
Binary robust invariant scalable keypoints. In 2011 International Con-
ference on Computer Vision, pages 2548–2555, 2011. doi:10.1109/

ICCV.2011.6126542.

[LNTC+11] Roberto Lampariello, Duy Nguyen-Tuong, Claudio Castellini, Gerd
Hirzinger, and Jan Peters. Trajectory planning for optimal robot catch-
ing in real-time. In 2011 IEEE International Conference on Robotics
and Automation, pages 3719–3726, 2011. doi:10.1109/ICRA.2011.

5980114.

[Low04] David G. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60(2):91–110, Nov
2004. doi:10.1023/B:VISI.0000029664.99615.94.

[LP17] Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics,
Planning, and Control. Cambridge University Press, USA, 1st edition,
2017.

[MSGK19] Varun Murali, Igor Spasojevic, Winter Guerra, and Sertac Kara-
man. Perception-aware trajectory generation for aggressive quadrotor
flight using differential flatness. In 2019 American Control Conference
(ACC), pages 3936–3943, 2019. doi:10.23919/ACC.2019.8814697.

[NASa] NASA. Astrobee. Visited on August 1, 2024. URL: https://www.
nasa.gov/astrobee/.

[NASb] NASA. Astrobee guest science guide. Visited on August 1, 2024. URL:
https://www.nasa.gov/general/guest-science-resources/.

https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt
https://arxiv.org/abs/https://doi.org/10.1177/0278364911406761
https://arxiv.org/abs/https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1145/192115.192124
https://doi.org/10.1109/ICCV.2011.6126542
https://doi.org/10.1109/ICCV.2011.6126542
https://doi.org/10.1109/ICRA.2011.5980114
https://doi.org/10.1109/ICRA.2011.5980114
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.23919/ACC.2019.8814697
https://www.nasa.gov/astrobee/
https://www.nasa.gov/astrobee/
https://www.nasa.gov/general/guest-science-resources/

136 BIBLIOGRAPHY

[NP16] Huy Nguyen and Quang-Cuong Pham. Time-optimal path parame-
terization of rigid-body motions: Applications to spacecraft reorienta-
tion. Journal of Guidance, Control, and Dynamics, 39(7):1667–1671,
2016. arXiv:https://doi.org/10.2514/1.G001600, doi:10.2514/

1.G001600.

[PR97] F. C. Park and Bahram Ravani. Smooth invariant interpolation of
rotations. ACM Trans. Graph., 16(3):277–295, jul 1997. doi:10.1145/
256157.256160.

[RRKB11] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb:
An efficient alternative to sift or surf. In 2011 International Confer-
ence on Computer Vision, pages 2564–2571, 2011. doi:10.1109/ICCV.
2011.6126544.

[SBL23] Caroline Specht, Abhiraj Bishnoi, and Roberto Lampariello. Au-
tonomous spacecraft rendezvous using tube-based model predictive con-
trol: Design and application. Journal of Guidance, Control, and Dy-
namics, 46(7):1243–1261, 2023. arXiv:https://doi.org/10.2514/1.
G007280, doi:10.2514/1.G007280.

[Sca85] L. E. Scales. Introduction to non-linear optimization. Springer-Verlag,
Berlin, Heidelberg, 1985.

[SCSG19] Paolo Salaris, Marco Cognetti, Riccardo Spica, and Paolo Robuffo Gior-
dano. Online optimal perception-aware trajectory generation. IEEE
Transactions on Robotics, 35(6):1307–1322, 2019. doi:10.1109/TRO.

2019.2931137.

[SKCS22] Ryan Soussan, Varsha Kumar, Brian Coltin, and Trey Smith. Astroloc:
An efficient and robust localizer for a free-flying robot. In 2022 Inter-
national Conference on Robotics and Automation (ICRA), pages 4106–
4112, 2022. doi:10.1109/ICRA46639.2022.9811919.

[SL14] Samantha Stoneman and Roberto Lampariello. Embedding nonlinear
optimization in rrt* for optimal kinodynamic planning. In 53rd IEEE
Conference on Decision and Control, pages 3737–3744, 2014. doi:10.
1109/CDC.2014.7039971.

[Smi04] Russ Smith. Open dynamics engine (ode), 2004. URL: https://www.
ode.org/.

[Sof24] Big Ladder Software. Btwxt. https://github.com/bigladder/btwxt,
2024.

https://arxiv.org/abs/https://doi.org/10.2514/1.G001600
https://doi.org/10.2514/1.G001600
https://doi.org/10.2514/1.G001600
https://doi.org/10.1145/256157.256160
https://doi.org/10.1145/256157.256160
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://arxiv.org/abs/https://doi.org/10.2514/1.G007280
https://arxiv.org/abs/https://doi.org/10.2514/1.G007280
https://doi.org/10.2514/1.G007280
https://doi.org/10.1109/TRO.2019.2931137
https://doi.org/10.1109/TRO.2019.2931137
https://doi.org/10.1109/ICRA46639.2022.9811919
https://doi.org/10.1109/CDC.2014.7039971
https://doi.org/10.1109/CDC.2014.7039971
https://www.ode.org/
https://www.ode.org/
https://github.com/bigladder/btwxt

BIBLIOGRAPHY 137

[TH22] Jesus Tordesillas and Jonathan P. How. Panther: Perception-aware
trajectory planner in dynamic environments. IEEE Access, 10:22662–
22677, 2022. doi:10.1109/ACCESS.2022.3154037.

[TUI17] Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. Visual slam
algorithms: a survey from 2010 to 2016. IPSJ Transactions on Com-
puter Vision and Applications, 9(1):16, Jun 2017. doi:10.1186/

s41074-017-0027-2.

[Wol11] Thomas Wolf. Deutsche orbitale servicing mission. Astra, 2011.

[YLM10] Anna Yershova, Steven M. LaValle, and Julie C. Mitchell. Generating
Uniform Incremental Grids on SO(3) Using the Hopf Fibration, pages
385–399. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. doi:

10.1007/978-3-642-00312-7_24.

[ZS18] Zichao Zhang and Davide Scaramuzza. Perception-aware receding
horizon navigation for mavs. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 2534–2541, 2018.
doi:10.1109/ICRA.2018.8461133.

https://doi.org/10.1109/ACCESS.2022.3154037
https://doi.org/10.1186/s41074-017-0027-2
https://doi.org/10.1186/s41074-017-0027-2
https://doi.org/10.1007/978-3-642-00312-7_24
https://doi.org/10.1007/978-3-642-00312-7_24
https://doi.org/10.1109/ICRA.2018.8461133

138 BIBLIOGRAPHY

	Introduction
	Problem Statement
	Related Work
	Structure of the thesis
	Theoretical background
	Transformations matrices in SE(3)
	Angle-axis representation of rotations
	Robot dynamics
	Trajectory parameterization with B-Spline functions
	Gradient-based nonlinear optimization
	Camera model
	Mapping and localization

	Technical Approach
	Optimization problem
	Energy cost function
	Perception objective function
	Weighted cost function
	Constraints
	Solver

	RRT*-GBO
	Algorithm steps
	Tuning parameters
	Distance metrics in SE(3)
	GBO edges creation
	Smoothing

	Mapping and localization

	Evaluation
	Energy-optimal trajectory planning
	Motion in R3 (3D translations)
	Motion in SE(3)

	Perception-awareness
	Feature count vs. relaxed visibility
	Interpolated perception objective function
	Weighted metric analysis

	Astrobees rendezvous experiment
	Mapping and perception metric interpolation
	Trajectory planning and execution
	RRT*-GBO solutions

	Satellite capture experiment
	Mapping and perception metric interpolation
	Trajectory planning and execution

	Discussion
	Conclusion
	RRT*-GBO Pseudo-code
	List of Figures
	Bibliography

