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= Current trends in Machine Learning are relying more and more on end-to-end architectures
» This might increase the performance but decreases the explainability of the reasoning

* In mobility applications, systems must be certified before being released
= Difficult due to black-box nature of E2E architectures
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= Current trends in Machine Learning are relying more and more on end-to-end architectures
» This might increase the performance but decreases the explainability of the reasoning

* In mobility applications, systems must be certified before being released
= Difficult due to black-box nature of E2E architectures

= |n this work, we...
= revisit some classical approaches in Machine Learning for time series classification,

= show how functional decomposition naturally introduces more transparency using a-priori
knowledge,

= derive easy explanations to localize the source of errors, and
= apply these concepts to a use case in the railway domain, showing their effectiveness.

Thies de Graaff, DLR, 2024-07-18




Outline #
DLR

General Methodology

Case Study
= Application

Evaluation

Explanations

Thies de Graaff, DLR, 2024-07-18




General Methodology
DLR

. Chunk . Classification
[InputSequence }—) Chunking ——» —> Classification —»  Aggregation Result

Thies de Graaff, DLR, 2024-07-18




General Methodology

DLR
. Processing Chunk . Classification
Input Sequence Chunking ———» Modules > Classification —» Aggregation Result
A
( \
Reducing Decompositions Restructuring Decompositions

Thies de Graaff, DLR, 2024-07-18




General Methodology
DLR

Classification

. Processing Chunk .
Input Sequence Chunking ———> "1 > Classification > /9gregation Result

A
\

Restructuring Decompositions

Reducing Decompositions

10
8
. -".
s* . -. L)
.. l ‘: °
o é. 0009 °AL* 2D o
. .
cJat A o0 e,s ”, e
> ‘.'.-o‘oo'.-' * % e +
tehee wlon®s o ¢ o o %)
{ o TR AN
..' r 0% e o0 ¢ e “: 'l ’
® oot 0.‘ Y e - %% ’- e 4
L :"!..'.\_x LR R 2l
LRLLRE o, g rer o7 Y,
v 63 . - ~
. . LY
“«g% ® e < .
.. %

Thies de Graaff, DLR, 2024-07-18




General Methodology

DLR

. Processing Chunk . Classification
Input Sequence Chunking ———>» Modules > Classification —»  Aggregation Result

A

Reducing Decompositions Restructuring Decompositions

6
.
.
L A . - ° .
10 - .
e ® e8 p
. ® .‘ > LT i
8 2 ™ V:" h '.
3 o £ MY .' . . F
o . 5 %%°e o0 ® g0
oo e . ..;'..\’ ﬁ.‘- o 00 °* =
t ‘s o‘. o ",
) e “witr . ) e 4 Faxs X 7
./ . A ® o % ° $8f J A
0% 2 ‘0 . % - " . % co:lo PR Y -
S . .
\ '.t" ‘ﬁ-. LRI .. ® 0% %3¢ 9 , °° s b
2 OOy 1A . % “ess N, o -
el ." F) 2 e TS P .
o ' ."ll ol ',." ¢ oS & LY IR
. - . L
is e’ .;-‘ . =, '..0 it .
- -4 . . ee o %o
.: ’
o
- °
-6
.
-8
10 8 -6 2 0

Thies de Graaff, DLR, 2024-07-18




Case Study

Railway domain

= Detection of train types based
on axle counters
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Case Study

Railway domain

= Detection of train types based
on axle counters

Collecting real data is difficult
» Implementation of simulator

= Development of vehicle and
train catalogues

= Enabling generation of fast
and diverse datasets
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Table 1. Results of NN¢jassification ON its training/validation/test datasets.

accuracy | precision | recall
Train ciass 0.9835 0.9695 0.9836
Validation ciass | 0.9623 0.9618 0.9291
Test ciass 0.9886 0.9777 0.9902
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achieves 0.93% relative error

I\INveIocity
Formula achieves 0.56% relative error
But |\INvelocity

Hybrid Velocity estimator switches between both models based on a threshold at ~49 km/h
= — 0.35% relative error

IS better at higher velocities, while the formula favors lower velocities
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Table 2. Results of the robustness analysis for the different normalization methods
and different sources of axle velocities.

Class of Train

Aggregation

NN classification
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noTrMiinear normgctual

accuracy | precision | recall | accuracy | precision | recall
GT 0.9541 0.9591 0.9073 1 0.9667 |0.9649 |0.9389
formula | 0.9538 | 0.9588 0.9066 | 0.9660 |0.9644 |0.9374
NN 0.9544 | 0.9583 0.9090 | 0.9657 |0.9628 | 0.9382
hybrid |[0.9539 |0.9587 0.9072|0.9662 |0.9643 |0.9380
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Table 3. Results of full train classifiers on 7est Tyqins

Method accuracy

E2E | LSTM 0.8963
FCN 0.9197

Ours | none 0.9378
speed 0.9378
azles 0.9984
azles-speed | 0.9984
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Explanations

» Due to chunking, localization of errors is free
= No need of approaches like LEAM or Grad-CAM to extract heatmaps

= Enables an attribution of errors for further investigation
= Here: Detection of a labeling error in the train database «— Mixed train labeled as freight train
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Conclusion ‘#7
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Functional decomposition enables easily understandable architectures involving Al modules

Components can be analyzed individually and in combination, leading to better insights into the
system’s behavior

Further, post-hoc explanations for error localization can easily be derived

In our case study, such a system can even outperform end-to-end architectures
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