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Abstract—Shared control enables users with motor
impairments to control high-dimensional assistive robots
with low-dimensional user interfaces. The challenge is to
simultaneously 1) provide support for completing daily living
tasks 2) enable sufficient freedom of movement to foster user
empowerment 3) ensure that shared-control support precludes
the robot from running into kinematic limitations such as
obstacles, unreachable areas, or loss of manipulability due to
joint limits.

In this letter, we propose a framework that performs feasibility
checks before executing a shared-control task. We activate shared
control only if a task is deemed feasible, and refine the task
regions by excluding paths that are infeasible, e.g. due to obstacles
or kinematic limitations. This reduces task failures, whilst still
ensuring freedom of movement. We evaluate our framework on
a set of daily living tasks with our wheelchair-based mobile
manipulator EDAN.

Index Terms—Telerobotics and Teleoperation; Physically
Assistive Devices.

I. INTRODUCTION

USING a low-dimensional input device to control an
assistive robot with many degrees of freedom – for

instance our wheelchair-based mobile manipulator EDAN [1]
– can be challenging, at times even frustrating. Shared control
facilitates the use of such robots for activities of daily living.

As users with motor impairments express satisfaction when
being empowered to control the robot [2], [3] – rather than the
robot executing the task autonomously – they should have as
much freedom of movement as possible. For instance, shared
control should keep a bottle tip over a glass while pouring
to avoid spilling. But it should not predetermine the approach
direction or the amount of water that is poured by following
a predetermined path.
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Fig. 1: Summary of our approach. Shared control is only
activated after its feasibility with respect to obstacles and
kinematic constraints has been confirmed. If it is feasible, TSR
constraints are refined, and shared control is instantiated with
the refined TSR constraints.

Shared control should, on the other hand, assist the user by
excluding motions that would lead to task failure, including
collisions and kinematic limitations. To do so, previous works
have proposed methods that apply constraints locally during
the movement [4], [5], [6], [7]. In this article, we propose
a framework that performs feasibility checks that detect
kinematic limitations before shared control for the task is
activated. If a task is deemed infeasible – i.e. not one path
was found which achieves the task – shared control is not
activated for the task, as illustrated in Fig. 1. The user is thus
averted from having to ascertain the task’s infeasibility during
its execution.

In principle, motion planning could compute one feasible
path that solves the task, and guide the user along this
predetermined path [8]. However, this would not satisfy the
freedom-of-movement requirement for user empowerment. We
therefore use Task Space Regions (TSRs) [9] to represent
all feasible paths. In our approach, TSRs are refined such
that obstacle collisions and unreachable zones are excluded
from the region. The resulting TSR is then used to instantiate
a Shared Control Template [10], which aims at providing
freedom of movement whilst still respecting kinematic
limitations and safety considerations.

The main contribution of this paper is to propose a shared-
control framework that: 1) checks the feasibility of conducting
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a task with shared control before it is executed; 2) does not
activate shared control if the task is deemed infeasible (the
user is thus kept from starting the execution of tasks that
are predicted to fail eventually); 3) refines the shared-control
constraints for feasible tasks, if necessary in the current task
context (this further supports the user in avoiding kinematic
limitations during the assisted task).

This paper is structured as follows: After presenting related
work and SCTs in the next two sections, we describe how our
shared-control framework has been extended with TSRs in
Section IV. We describe the procedures for feasibility checks
and constraint refinement in Section V. After presenting and
discussing the experimental evaluation in Section VI, we
conclude with Section VII.

II. RELATED WORK

In the context of teleoperation, the term kinematic
limitations has been used to describe a variety of
movement limitations that arise during teleoperation due to
obstacles, virtual walls, joint limits, singularities, or reduced
manipulability [11].

Our approach aims at checking the kinematic feasibility of
a task before it is executed (which is common in autonomous
robots) rather than during the task (which is common in
shared control). These two approaches are complementary, and
determine the structure of this section.

a) Avoiding kinematic limitations during shared control:
A common and effective method to signal proximity to
kinematic limitations during shared control is haptic cues
from force feedback [4], [5], [6]. As this modality is not
available on our assistive system – it is controlled through
electromyography [1] or with a joystick so as to tailor it to
the needs of the target group – we do not include this modality
in the work described in this paper.

An alternative is to provide the user with constraints, either
with a static environment (e.g. created using perception [12])
or with reactive approaches during task execution [4], [5],
[6], [7]. As an example within our application domain, Iregui
et al. [7] prevent the robot from kinematic limitations by
reactively adapting task-specific constraints while the robot
is controlled with a low-dimensional interface (based on a
framework for reactive constraint adaption [13]).

b) Feasibility checks before task execution: In our
approach, we check kinematic limitations before the shared-
control task starts. It is thus complementary to the approaches
above; checking beforehand does not preclude also checking
during task execution. This is indeed exemplified by our work,
in which we do feasibility checks beforehand, but also use
a whole-body Cartesian impedance controller to reactively
extend the workspace [14]. Furthermore, reactive checking
during the task does not guarantee the existence of task
solutions, e.g. the user may still guide the robot EE into
configurations that preclude task completion, for instance due
to competing constraints.

In assistive robotics, a common aproach is to generate
a policy that takes kinematic limitations into account, for

instance with motion planning, and to blend user commands
with policy commands [15], [16], [17].

Our main inspiration for the feasibility checks comes
from autonomous robotic planning in domains such as space
missions [18], industrial manufacturing [19] and daily living
environments [20]. These approaches check the feasibility of
an action before it is incorporated in a task plan.

As our approach checks kinematic feasibility before task
execution, it does not take dynamic obstacles into account.
To do so, our approach could be combined with methods that
do [13], [4], [5], [6], [7].

c) Affordance-based task-space representations: Our
approach includes a representation of the solution space of
tasks, based on TSRs [9]. Apart from TSRs and manifold
representations such as [13], our work is also inspired by
the manipulation or grasp-planning communities, in concepts
such as shape-templates [22] or grasp manifolds [23]. Our
work explores the EE yaw angle symmetry while grasping
cylindrical objects, as also explored in [24], [25].

III. BACKGROUND: SHARED CONTROL TEMPLATES

This section summarizes previous work on Shared Control
Templates (SCTs) [10]. An SCT is a template for providing
shared control for a specific task (e.g. pouring water from a
bottle into a container) that is instantiated with specific objects
in a given context, e.g. pouring water from the bottle in the
robot’s hand (with id=238) into the red cup to the left of
it (with id=301). The name derives from shared control and
Action Templates for autonomous robots [26]. As this paper
builds on the SCT approach, we now describe them in more
technical detail.

SCTs extend Active Constraints (ACs), which are virtual
fixtures that block the end-effector from going into certain
regions [8]. In SCTs, ACs are represented as linear constraints
or volumetric primitive constraints. Proxy-based methods are
used to enforce these constraints [8], by projecting an end-
effector (EE) pose that violates a constraint to the nearest point
that does not. For example, an AC may set height limits to
the EE whilst grasping. If a pose is higher than a threshold, it
is projected to the threshold itself, thus respecting the height
boundary. Another example is the orientation support to grasp:
if the EE yaw angle with respect to the object is larger than
a threshold, it is projected back to the boundary as well.
Therefore, in practice the EE always points towards the object
to be grasped1.

The pose after applying the ACs is provided to a spherical
linear interpolator [27], which ensures EE constraints are
resolved smoothly and with velocity limits for safety. Finally,
the interpolated poses are given to the robot Cartesian whole-
body impedance controller [14].

Tasks usually consist of multiple phases, each requiring
different constraints. SCTs for a task are therefore Finite State
Machines, in which each phase is a state, and each state applies

1For examples of SCTs for everyday tasks, we refer to the video recording
of the winning entry (https://youtu.be/EoER 5vYZsU) of the Assistance Robot Race (https:

//cybathlon.ethz.ch/en/event/disciplines/rob) of the 2023 CYBATHLON Challenges [21].

https://youtu.be/EoER_5vYZsU
https://cybathlon.ethz.ch/en/event/disciplines/rob
https://cybathlon.ethz.ch/en/event/disciplines/rob


ACs relevant to that phase. Transitions between states are
based on events such as distance thresholds (e.g. between the
EE and an object frame) or interaction forces.

The activation of SCTs is determined by the distance of the
end-effector to objects for which SCTs have been defined. In
the default control mode, the user switches between controlling
either EE translations or EE rotations with mode switches [28].
If the distance drops below a threshold, the first state of the
SCT is activated. Our world representation continually updates
a list of symbolic representations of perceived objects along
with their geometric location, see [1] for details. Hierarchies
of object classes are stored in the Object Database [26], and
the perception pipeline is based on [29].

Advantages of SCTs include: 1) automating transitions
between task phases, which avoids ‘mode switching’ between
simultaneous control of all translations and of all rotations, a
key problem for users of assistive robotic arms in terms of
cognitive load and time spent [28]. 2) providing users with
assistance while they remain empowered. For instance, users
determine the speed of movement [2], [3], and tasks are never
completed autonomously without an explicit request by the
user to do so. 3) being object-centric and time-independent
means SCTs can be readily applied to different objects and
robots [30], [31].

Limitations of SCTs include: 1) Not taking into account
obstacles and robot kinematics whilst enforcing ACs. The
user can thus collide into objects or run into the joint limits
or singularities of the robotic arm, reducing manipulability.
2) SCTs are activated based on distance thresholds alone, and
do not take obstacles or kinematic limitations into account
which may preclude interaction with objects in practice.
3) Representing the constraints as projection functions means
the constraints are not represented explicitly.

This paper addresses limitations 1 and 2 by taking obstacles
into account by running feasibility checks (Section V), and
limitation 3 by using TSRs as an intermediate representation
for the ACs in a SCT, as described in the next section.

IV. TASK SPACE REGIONS FOR SHARED CONTROL

In this section, we explain the steps depicted in Fig. 1. The
ultimate aim is to refine the constraints in the SCT, so that
it precludes users from colliding with obstacles or run into
kinematic issues, and avoids the activation of SCTs altogether
if no collision-free paths are available.

A. Background: Task Space Regions

TSRs is a well-established constraint representation for
motion planning [9]. A TSR S describes an end-effector
constraint (subset of SE(3)) given by the allowed motion of a
coordinate frame w′ in the TSR origin w. Formally, it consists
of three parts,

S = { T0
w, Bw ,Tw′

e }, (1)

where T0
w is the fixed transform from the world origin 0 to

w, Tw′
e is a fixed frame (called an end-effector offset) in the

coordinates of w′, and Bw is a 6 × 2 matrix of bounds for

the allowed movement of w′ in the coordinates of w, using a
Roll-Pitch-Yaw Euler angle convention:

Bw =

[
xmin ymin zmin ψmin θmin ϕmin
xmax ymax zmax ψmax θmax ϕmax

]⊺
(2)

Bw defines a region of constrained poses ∈ SE(3). We can
take samples from the region by obtaining values from the
ranges of Bw. A sample is a vector

b′i =
[
xi yi zi ψi θi ϕi

]⊺
(3)

which can be converted to a transform Tw
w′

i
= f(b′i), as

described in [9]. Then the corresponding EE pose sample T0
ei

is obtained with

T0
ei = T0

w Tw
w′

i
Tw′

e with Tw
w′

i
= f(b′i) compare Eq. (1) (4)

where T0
w and Tw′

e are independent of the samples taken
from Bw. Fig. 2a illustrates the relevant coordinate frames of
a TSR, and two samples taken from the TSR with Eq. (4).
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(a) Illustration of two samples
of the TSR for grasping a
cylindrical container (top
view). Exploiting the vertical
symmetry, the frame w′ (not
shown) can rotate around the
vertical axis of w.
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(b) SCTs may have multiple
subsequent states, for instance
from the entry to the pregrasp,
and from the pregrasp to the
grasp. This is represented by a
chain of transformations in the
TSR.

Fig. 2: TSRs and chains of TSRs.

B. Representing Active Constraints in SCTs with TSRs

As the SCTs represent active constraints implicitly as
projection functions, they do not provide a suitable (explicit)
search space within which to conduct feasibility checks
(Section III). Therefore, we propose to represent these ACs
explicitly with TSRs, as one of the main motivations behind
TSRs is to provide such an explicit search space [9].

As an example, when approaching a cylindrical container,
T0

w centers the frame of references on the container, and Tw
e

projects from the bottle to the end-effector2. Bw would then
represent that (a) the container can be approached from any
yaw angle, i.e. ϕ ∈ [−2π, 2π]; (b) the relative roll and pitch

2These example tasks are used in the evaluation, are shown in the video
attachment, and will be illustrated in Section VI.



angle of the end-effector to the bottle is fixed, i.e. ψ = θ = 0;
and (c) the appropriate height of the end-effector depends on
the height of the bottle z ∈ [zmin, zmax]. Bw would thus be

Bw =

[
0 0 zmin 0 0 −2π
0 0 zmax 0 0 2π

]⊺
. (5)

As another example, when grasping a drawer with a long
horizontal handle, the end-effector can be placed anywhere
along the handle, but the x and z coordinates are fixed, as
well as the orientation:

Bw =

[
0 ymin 0 0 0 0
0 ymax 0 0 0 0

]⊺
. (6)

SCTs consist of multiple states with different active
constraints. For the running example for instance, a pre-grasp
and a grasp are also represented and traversed in sequence
in the different states, see Fig. 2b. To represent this with a
TSR, the standard TSR representation in Eq. (1) is extended
by adding n ≥ 0 transformations to the TSR as subsequent
EE offsets, i.e.

S∗ = { T0
w, Bw , {Tw′

e1 ,T
e1

e2 , . . . ,T
en−1

en }}. (7)

Given a sample b′i from Bw which is converted to Tw
w′

i
,

the first pose in the chain is computed with Eq. (4), i.e.
T0

e1i
= T0

wT
w
w′

i
Tw′

e1 , and all subsequent poses in the chain
are computed with:

T0
eji

= T0
e1i

j∏
k=2

Tek−1

ek . (8)

In the above, T0
eji

refers to the transformation from the

origin to the jth viapoint and ith random sample from Bw,
as illustrated in Fig. 2b for 3 viapoints and 2 samples.

C. Instantiating an SCT from a (refined) TSR

In our approach, an SCT is a template in which the
active constraints are instantiated from a TSR. The procedure
explained in this section applies to unrefined and refined TSRs
alike, which we will leverage to instantiate refined active
constraints in Section V-B.

The bounds Bw of the TSR define a region in end-effector
space. This region is converted to a projection function that
transforms poses outside of the region to poses on the region
boundary, a common approach for active constraints [8]. This
is straight-forward, as the boundaries of the region are linear,
e.g. z > zmin, see Fig. 3 for an illustration.

Note that the first state is also responsible for guiding the
end-effector from the activation pose to Tw′

e1 , see the dashed
line. From Tw′

e1 onwards, the user moves freely within the AC.
The subsequent frames of reference {Te1

e2 ,T
e2

e3 , . . . } define
ACs in the subsequent SCT states.
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Fig. 3: Schematic of an instantiated SCT for opening a drawer.
The active constraints bring the robot from the activation pose
to ymax, and enable the user to move freely in the xy plane
(top view), but fix the EE height (side view). xy not drawn to
scale. A refined constraint (dark red) added from the refined
TSR blocks paths that were determined to be infeasible during
the feasibility checks. Once the user is close enough to the
handle (defined by a distance to Te1

e2 ) the transition to state
2 happens. Further states complete the grasp and open the
drawer, as explained in detail in Section VI.

V. FEASIBILITY CHECKING AND CONSTRAINT
REFINEMENT FOR SHARED CONTROL

TSRs are object-centric. Thus, if the object is moved, the
coordinate frame w moves as well, and thus all derived frames.
However, due to being only object-centric, TSRs as described
so far do not take kinematic limitations into account. Thus,
not all sampled end-effector poses T0

eji
(for a sample b′i) may

be reachable in practice, for instance due to obstacles or joint
limits. The SCT instantiated from such a TSR would thus have
ACs that do not preclude the user from violating kinematic
limitations, which is to be avoided.

We therefore refine the matrix Bw
ref ⊆ Bw, such that samples

taken from b′i ∼ Bw
ref result in paths (through all viapoints

T0
ej=1...n
i

) that do not violate kinematic limitations given the
current task context. This section describes the algorithm for
acquiring Bw

ref from Bw, which results in a refined TSR:

S∗
ref = { T0

w, Bw
ref ⊆ Bw, {Tw′

e1 ,T
e1

e2 , . . . ,T
en−1

en }}. (9)

This algorithm is run before activating shared control, and
consists of two main parts (illustrated in Fig. 4): A) Finding
one path that does not violate kinematic limitations. If there
is no such path, shared control is not activated. B) If there
is one path, find further paths that do not violate kinematic
limitations. Use them to compute Bw

ref for the refined TSR
S∗

ref. Then instantiate an SCT with the refined TSR S∗
ref, and

activate the refined SCT to provide shared-control support.
These two parts are described in subsections A and B of this
section, respectively.

A. Feasibility Checking

The aim of this part of the algorithm is to find one path
(in simulation) that does not violate kinematic limitations. To
describe its sub-steps, we use the abbreviation e1i . . . e

n
i to refer
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to the EE poses T0
e1i

. . .T0
eni

at the different viapoints, for a
given sample i.

Initialization: As a default control mode (see Section III)
the user controls either the EE translations or the EE rotations.
Whenever the EE is close within a certain distance of the
object (e.g. in the vicinity of a TSR first offset sample e1i ),
the feasibility checks algorithm is started. It is initialized with
the current EE pose, i.e., not with that TSR sample. Thus we
denote this activation pose as eactivation

entry .
Step A1: First, eactivation

entry (the activation pose) and e1entry (the
closest pose respecting the constraints in the TSR S∗) are
connected. In the running example for instance, the hand will
align towards the object; see “A1” in Fig. 4. In this paper,
“connecting” means finding paths between any eji and ej+1

i

in both EE and joint space, see the explanation after step A2.
If these paths violate kinematic limitations (collisions, out-of-
reach, etc.) the feasibility check fails.

Step A2: This step asserts that there is one solution to the
task, e.g. a path from the aligned hand to the object; see “A2”
in Fig. 4. We use Eq. (8) to compute all poses e2entry . . . e

n
entry

from e1entry. Then, we connect subsequent poses, first e1entry to
e2entry, then ejentry to ej+1

entry until enentry.
Connecting and checking: The EE path is generated with

the spherical linear interpolator approach used in SCTs [10],
[27], as mentioned in Section III. This is to ensure consistency
of the paths generated on the robot during shared control, and
those generated beforehand in simulation for the feasibility
checks.

We then perform a feasibility check on the corresponding
path in joint space, which is computed from the EE pose path
by solving the inverse kinematics locally using the Jacobian
pseudo-inverse. We use Damped Least Squares [32] to prevent
numerical instability near Jacobian singularities, and add joint
limit avoidance as a secondary target. We check if a resulting
joint-space path exists, or if it leads to joint limits or collisions.
For the latter we use the FCL library [33] and a 3D model
of the robot with all its links (not just the EE). FCL supports
obstacles in the form of primitive shapes (e.g., a box), a 3D

mesh or an Octomap [34] volume representation. We also
model expected collisions (e.g. between the fingers and an
object being grasped).

Infeasible tasks: We define a task as infeasible if either
Step 1 or 2 fail. If this happens, the SCT is not activated for
the user, and Step B3, B4, B5 are not executed.

Illustration: Feasibility checks are illustrated in the video
attachment, snapshots of which are included in Fig. 5. In
the starting position depicted, the previous approach would
activate shared control, as the EE is close to the bottle. This is
not intuitive however, as the sideboard of the shelf constitutes
an obstacle between the bottle and the shelf. The feasibility
checks identify this, and do not active shared control.
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Fig. 5: Illustration of the difference between shared-control
activation without (top) and with (bottom) feasibility checking.

B. Constraint Refinement and SCT Instantiation

If the task is deemed feasible in Part A of the algorithm,
its result is one path that connects eactivation

entry and enentry whilst
respecting kinematic violations. As the constraints in TSRs
and SCTs are regions rather than paths, the next step is to
determine the appropriate ranges for the region in the TSR,
by exploring further feasible paths from the one feasible path
determined in Part A of the algorithm. In Step B5 of the
algorithm, the refined regions in the TSR are converted to
refined constraints in the SCT. Hence we refer to this process
as ‘constraint refinement’, rather than ‘region refinement’.

Step B3: We grow a roadmap from the initial path, see step
B3 in Fig. 4. We first retrieve the vector b′entry, containing the
position and Euler-angle orientation of the entry pose e1entry
expressed in the coordinates of w (see Eq. (3)). Then, we
obtain a vector b′i in the vicinity of b′entry, within the bounds
of Bw. We perform two types of connections: first, we connect
the first offset in b′entry (i.e. e1entry) to the first offset in b′i (i.e,
e1i ). Second, we connect all offsets e1i . . . e

2
n, akin to Step A2.

If both types of connections are successful, we mark vector
b′i as feasible, and infeasible otherwise.

If b′i is feasible, we then keep growing the roadmap by
obtaining a new vector in its vicinity and repeating the
connections, continuing the procedure iteratively until finding
kinematic issues, obstacles, or heuristics, such as a maximum
TSR size.

Step B4: This step refines Bw into Bw
ref using the roadmap.

Bw
ref is the matrix containing the largest limits (min and max)

that surrounds the set of feasible vectors b′i in the roadmap,
but such that it does not contain any infeasible vector.



Step B5: In the final step, an SCT is instantiated with the
refined TSR with the procedure defined in Section IV-C. The
ACs of the instantiated SCT are refined, i.e. the constraint does
not include the simulated paths that were not feasible.

Illustration: Constraint refinement is illustrated in the video
attachment, snapshots of which are included in Fig. 6.

Workspace limits and singul-
arities limit approach angle

B C
A

Sidewall is obstacle

Joint angle limits
(shown in video)

Fig. 6: The photos left and right show kinematic limitations
that the user may run into without refined constraints. The
refined constraints that preclude this are highlighted by the
straight lines projecting from the cylindrical object in the
middle. The constraint labeled A arises from the failure of
paths colliding with the sidewall (right photo). B arises from
workspace constraints and singularities (left photo). C arise
from joint limits, highlighted only in the video. That these
constraints ensure task completion is also shown in the video
attachment. The white lines between the constraints B and C
show EE trajectories executed by the user, highlighting that
there is freedom of movement between the constraints.

VI. EXPERIMENTAL EVALUATION

In our experiments, we used the EDAN robot [1]. It consists
of a 8 degree-of-freedom robot arm with a three-fingered hand,
attached to the base of a wheelchair. A set of dynamic and
reactive virtual walls prevent the robot from getting close to
the user. Thus, the collision models we used include both the
robot and those virtual walls. As noted on each experiment,
we used either the real robot or a full dynamic simulation
including the controller [35].

Interface: in shared control, a 3D joystick interface was
used to control the robot EE, which was commanded by one
of the authors. When noted in some of the experiments below,
and to prevent bias, the EE was commanded instead by an
Automaton algorithm that automatically completes an SCT
task by issuing joystick commands [30].

Evaluation Tasks: Three tasks – highlighted in Fig. 7 –
were used in the evaluation: Container: grasping a tall,
cylindrical container; Mug: grasping a mug, i.e. a short and
cylindrical container; Drawer: grasping a drawer’s handle and
opening it. To test the feasibility checking, we intentionally
added sources of kinematic limitations, often leading to task
failure.

The TSRs for all tasks had EE offsets for entry (Tw′
e1 ),

pre-grasping (Te1

e2 ) and grasping (Te2

e3 ). The container tasks
(Mug and Container) had also a post-grasp transform
above the object (Te3

e4 ). The task Drawer had two variations:

opening a drawer with a horizontal handle (Drawer-H),
containing an EE offsets where the drawer is fully open and
the hand releases (Te3

e4 ), and another post-release one near
the handle (Te4

e5 ); and a more general variant for pulling a
vertical bar (Drawer-V) with only a post-grasp offset, where
the object is pulled (Te3

e4 ).
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TSR in Mug task

φ
m̂in φ̂max

ẑ
max 

ẑ
min 
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ŷ
max ŷ

min 
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[
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Fig. 7: The three TSRs used in the evaluation. For each
task we show a schematic of the TSR, the matrix Bw, and
a snapshot of a completed task in the real robot, and The
execution of all tasks is shown in the video submission.

A. Appropriate SCT Activation (simulation)

To what extent can our feasibility checks preclude
activation of SCTs that are infeasible? We ran 447 trials of
Drawer-V in the dynamic simulation, using a vertical bar
with no mass nor collision meshes as a dummy target. The
initial position of the bar varied in the yz plane with fixed x
values (we aggregated results for x = 0m & x = −0.15m).

On each trial, an SCT was activated with an EE position
sampled uniformly in the bounds of the TSR first offset
(TSR max length: 0.3m), and an EE orientation was sampled
uniformly from a fixed mean with pre-coded tolerances (±0.4
roll (r), ±1.15 pitch (p) ±1.5 yaw (y) rad;); a corresponding
robot configuration was sampled using conventional inverse
kinematics. Ground-truth trials were completed by the
Automaton [30]. A trial would be marked as failed if the
robot would have a self-collision or if the EE could not reach
the transitions frames projected from the active constraints
using pre-coded tolerances (±0.02m, 0.15rad), or successful
otherwise.

In parallel to SCT activation, the feasibility checking
algorithm (Step A1, A2) was run to predict whether the task
would succeed or not. Fig. 8 and Table I summarize the
prediction metrics of the feasibility checks as a function of the
bar location. We report accuracy as the ratio between correct
feasibility predictions and total feasibility predictions; recall
as the ratio between the number of trials correctly predicted to
fail and the total trials that failed; and precision as the ratio
between trials correctly predicted to fail and the total trials
predicted to fail. We emphasize these metrics correspond to
feasibility prediction, not task success.



Sources of kinematic limitations: low manipulability in
the selected workspace due to (i) proximity of the EE to the
robot origin and virtual walls (e.g. in y = 0.05m, z = 0.4m)
and (ii) reachability out of the workspace (e.g. y = 0.65m or
z = 1m); additionally: aleatory proximity to joint limits due
to randomly sampled start configurations.

B. Appropriate SCT Activation (real robot)

We ran 20 trials of the Mug task on the real robot. The
robot was initialized on an initial fixed seed configuration.
The mug position was fixed. The trials were started by the
experimenter driving the EE to an SCT activation pose nearby
the mug, with varying EE positions (but not orientations), and
were completed by the Automaton [30]. As ground truth, a
trial would be marked as successful if the robot would grasp
and lift the mug, regardless of any minor self-collision, and
failed otherwise. In parallel to SCT activation, the feasibility
checking algorithm (Step A1, A2) was run to predict task
failure. Fig. 9 illustrates the ground truth and predicted failures
and successes. Table I summarizes these results.

Sources of kinematic limitations: 10/20 trials were seeded
from a configuration between a joint limit and the virtual walls,
yielding low manipulability in the task direction. The other 10
were from a configuration with high manipulability in the task
direction.

Feasibility checks prediction
Experiment Trials(failed) Accuracy Recall Precision
Simulation 447(280) 0.76 0.89 0.76
Real robot 20(9) 0.80 0.89 0.73

TABLE I: Effectiveness of infeasibility prediction.

C. Computation Times Benchmark

To benchmark the computation time for the feasibility
checks and constraint refinement, we ran Steps A1-B5 for
different robot configurations, 20 in which the task was
infeasible, and 20 in which it was feasible. An EE position
was sampled uniformly in the bounds of the TSR (using the
first offset), and an EE orientation was sampled uniformly
from pre-coded boundaries (Mug & Container: r±0.8
p±0.2 y±0.3rad, Drawer-H: r±0.3 p±1.58 y0.3±rad);
a corresponding robot configuration was obtained using
conventional inverse kinematics. We note that no SCT
was instantiated for infeasible tasks. The experiment was
conducted with a 3.70GHz CPU. Table II summarizes the
computation times for the three tasks.

Mug Container Drawer-H
Steps A1-A2 (⇒infeas.) 0.43± 0.16 0.63± 0.45 0.48± 0.31
Steps A1-B4 (⇒feas.) 1.55± 0.40 2.86± 1.04 2.17± 0.55
Step B5 (⇒feas.) 0.07± 0.03 0.07± 0.04 0.08± 0.03

TABLE II: Computation (s), µ± σ over 20 trials.

D. Discussion and limitations

The results in Fig. 9 and Table I show that our algorithm has
high recall (0.89 in Table I), thus it can successfully prevent
activation and instantiation of infeasible SCTs. In the real

robot experiment, all but one of the overall failed trials (8
of 9) were successfully flagged by our feasibility checks as
infeasible. This means the user is averted from ascertaining
the infeasibility of these tasks through trial-and-error.

Our method does suffer from a number of false positives in
some regions of the workspace, i.e. deeming a trial infeasible,
even thought it is not. This results in relatively low aggregated
values of precision (0.73, 0.76) and accuracy (0.76, 0.8) in
Table I. In Fig. 9, for instance, 3 out of 20 trials were predicted
to fail when they did not. In the simulated experiment this
is most pronounced in the area of high task success y =
0.2, z = 0.5 (right graph in Fig. 8), where the robot has
large reachability. We believe that this is due to differences
between our kinematic model for connecting via-points and the
dynamic model of the robot, since the latter can dynamically
exploit the robot nullspace, and finds task solutions more often.

In future work, we will aim to increase our algorithm
accuracy by using both dynamic and kinematic models in the
connection step. This is akin to our previous work on assembly
tasks [19], where feasibility checks are run first on a fast
kinematic layer and only if necessary on a more expensive
dynamic one.

Our connection algorithm explores the task region locally
from the activation point. This may lead to suboptimal search
spaces for the task, yielding small refined TSRs, or none. We
could obtain wider solution spaces if we would search globally,
e.g., bidirectionally between the goal and the start. However,
this contrasts with the affordance-based nature of constraints
in shared control in the related work [10], [13], [17], [12]. In
future work, we want to address fallback options with global
solutions in case a task is unfeasible, akin to backtracking in
task and motion planning [26].

We show in Fig. 6 how the refined constraints algorithm
incorporates different kinematic limitations due to obstacles
(the shelf sideboard), singularities, and joint limits. While a
skilled user may not need constraints to avoid the shelf, it may
be useful for novel users and for users with noisy interfaces
such as electromyography [1]. Also, in situations such as
Fig. 9, task failure is not immediately apparent, because joint
limits and virtual walls are invisible to the user. Thus, our
feasibility checks can help skilled users as well.

Finally, from Table II, we see that determining if a task
is infeasible took between 0.43-0.63 seconds on average.
Infeasible tasks can thus be excluded quickly. Instantiating the
SCT was also very fast, i.e. less than 100ms. The constraint
refinement in B3/B4 takes longest, as multiple paths must be
computed. In future work, we intend to decrease these times
by exploiting reachability maps. We will also consider the
initialization of shared control with the single path computed
in Step A1-A2, which is then replaced with the entire region
soon afterwards.

VII. CONCLUSION AND FUTURE WORK

In this letter we have proposed a novel shared-control
framework that performs feasibility checks before task
execution, and that computes refined constraints that take
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Fig. 8: A. Ground truth task success. The numbers in boxes indicate the amount of trials ran at each bar position in yz.
The color signifies task success (%). B. A snapshot of the robot simulation and the dummy target in a task. C. Evaluation of
feasibility predictions as a function of the bar position in yz with respect to the arm origin (coordinate frame in B).

Mug

Fig. 9: Summary of the results on the real robot. Left:
snapshot of the experimental setup. Right: success as a
function of EE activation positions.

kinematic limitations into account. We show our framework
in a set of experiments with the assistive robot EDAN,
demonstrating that infeasible tasks can be identified accurately,
averting users from having to discover the infeasibility through
trial-and-error.

In future work we will consider dynamic obstacles, and
improve explainability. We expect that explaining failed
feasibility checks to the user is especially useful in situations
where the kinematic limitations are not immediately obvious
to the user, such as loss of manipulability due to joint limits.
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based reactive framework for assistive robotics with adaptable levels
of autonomy,” IEEE Robotics and Automation Letters, 2021.

[8] S. A. Bowyer, B. L. Davies, and F. R. y Baena, “Active
constraints/virtual fixtures: A survey,” Transactions on Robotics, vol. 30,
no. 1, pp. 138–157, 2013.

[9] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions:
A framework for pose-constrained manipulation planning,” The Int’l
Journal of Robotics Research, vol. 30, no. 12, 2011.

[10] G. Quere, A. Hagengruber, M. Iskandar, S. Bustamante, D. Leidner,
F. Stulp, and J. Vogel, “Shared Control Templates for Assistive
Robotics,” in 2020 IEEE ICRA, Paris, France, 2020, p. 7.

[11] A. Campeau-Lecours and C. Gosselin, “An anticipative kinematic
limitation avoidance algorithm for collaborative robots: Two-
dimensional case,” in IROS 2016, 2016, pp. 4232–4237.

[12] M. Selvaggio, G. Notomista, F. Chen, B. Gao, F. Trapani, and
D. Caldwell, “Enhancing bilateral teleoperation using camera-based
online virtual fixtures generation,” in IEEE/RSJ IROS 2016, 2016.

[13] C. Vergara, S. Iregui, J. De Schutter, and E. Aertbeliën, “Generating
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