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Abstract

The purpose of this thesis is to explore the use of Transformer Neural Network (T-
NN) to model complex system dynamics, to evaluate their potential for use in modern
control techniques, and to investigate their applicability in a Model Predictive Control
(MPC) controller for theSolar TowerPowerPlant Jülich (STJ) at theDeutschesZentrum
für Luft- und Raumfahrt e. V. (German Aerospace Center, DLR) in Jülich.

The multi-step ahead prediction capability of a Neural Network (NN) with trans-
former architecture is used tomodel the dynamics of the nonlinear multivariable sys-
tem of the receiver based on real data. By incorporating information about future dis-
turbances or setpoint changes, the predictive behavior of the model facilitates coun-
teracting expected external influences. This property is then applied in aMPC through
an Optimal Control Problem (OCP) formulation.

To solve the OCP, the PyTorch and SciPy libraries are tested with different optimiz-
ers. The first, while being an unconstrained optimizer, is used to solve the constrained
problem bymeans of proposed barrier functions to explore its potential.

It is also observed that despite the state of the art NN, its accuracy depends on the
training data and that interpolation outside the training region leads to inaccurate or
unexpected predicted dynamics.

In this work, the PyTorch approach provides similar solutions to constrained op-
timizers while having faster computational times and better performance based on
simulation results.

Within the distribution of data on which the NN was trained, it is shown that the
proposed Transformer Neural Network (T-NN) enabled MPC controller is capable of
tracking the reference while satisfying the constraints and rejecting disturbances or
setpoint changes in the proposed test scenarios and in the presence ofmeasurement
noise. Moreover, prediction errors are fitted in a Gaussian Process Regressor (GPR)
to obtain Uncertainty Quantification (UQ) information insights to be displayed to the
operator of the system.

For our application, the results show the feasibility of this type of data-based con-
troller and its potential to increase the efficiency and resilience of the system. In-situ
test campaigns are needed to confirm these results.

vii





Kurzfassung

Ziel dieser Arbeit ist es, die Verwendungneuartiger künstlicherNeuronalerNetze (NN)
zur Modellierung komplexer Systemdynamiken zu erforschen, ihr Potenzial für den
Einsatz in modernen Regelungstechniken zu bewerten und ihre Anwendbarkeit in ei-
nemmodellprädiktiven Regler (MPC) für das Solarturmkraftwerk (STJ) des Deutschen
Zentrums für Luft- und Raumfahrt (DLR) in Jülich zu untersuchen.

DiemehrschrittigeVorhersagefähigkeit einesNNmit Transformer-Architekturwird
genutzt, um die Dynamik des nichtlinearen multivariablen Systems des Strahlungs-
empfängers auf der Basis realer Daten zumodellieren. Durch die Einbeziehung von In-
formationen über zukünftige Störungen oder Sollwertänderungen erleichtert das Vor-
hersageverhalten desModells die Kompensation erwarteter externer Einflüsse. Diese
Eigenschaft wird in einemMPC verwendet.

Zur BerechnungdesMPCwerdendie BibliothekenPyTorch undSciPymit verschie-
denen Optimierern getestet. Die erstgenannte Bibliothek wird, obwohl es sich um ei-
nen unbeschränkten Optimierer handelt, zur Lösung des beschränkten Problems mit
Hilfe der vorgeschlagenen Schrankenfunktionen verwendet, um sein Potential zu er-
kunden.

In dieser Arbeit liefert der PyTorch-Ansatz ähnliche Lösungen wie die beschränk-
ten Optimierer, hat aber schnellere Berechnungszeiten und eine bessere Leistung ba-
sierend auf den Simulationsergebnissen. Innerhalb der Datenverteilung, auf der das
NN trainiert wurde, wird gezeigt, dass der vorgeschlagene NN-gesteuerte MPC in der
Lage ist, den Sollwert zu verfolgen, die Nebenbedingungen zu erfüllen und Störungen
oder Sollwertänderungen in den vorgeschlagenen Testszenarien abzulehnen. Zudem
werden Vorhersagefehler in einem Gaussian Process Regressor (GPR) angepasst, um
überdieUnsicherheitsquantifizierung (UQ) Information zugewinnen, diedemSystem-
bediener angezeigt werden.

Für unsere Anwendung zeigen die Ergebnisse die Machbarkeit dieses datenba-
sierten Reglers und sein Potenzial, umdie Effizienz undWiderstandsfähigkeit des Sy-
stems zu erhöhen. Testkampagnen vor Ort sind erforderlich, um diese Ergebnisse zu
bestätigen.
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Chapter 1

Introduction

The purpose of this thesis is to explore the use of Transformer Neural Network (T-NN)
tomodel complex systemdynamics, evaluate their potential for use inmodern control
techniques, and investigate their applicability in an Model Predictive Control (MPC)
controller for the Solar Tower Power Plant Jülich (STJ) at the Deutsches Zentrum für
Luft- und Raumfahrt e. V. (German Aerospace Center, DLR) in Jülich.

1.1 Context andmotivation

In response to the current global energy demands and pressing concerns regarding
GreenhouseGas (GHG) emissions and climate change driven by rising global tempera-
tures [1], there has been a growing interest in promoting the use of Renewable Energy
Sources (RESs) [2]. In 2023, Germany, for instance, achieved a reduction of Carbon
Dioxide (CO2) emissions by 10.1%, according to the Umwelt Bundesamt (German En-
vironment Agency, UBA) [3]. Besides the decrease in fossil fuel use as energy sources
and an overall reduction in energy consumption, an increase in RESs has played an
important role in achieving this result.

Despite these contributions, some technologies, althoughmature enough to prove
economic viability for energy production, have the potential for increased efficiency
that would enable scaled production and a highermarket share. One such technology
is Concentrated Solar Power (CSP) plants.

Solar thermal power, or CSP, primarily works by heating a Heat Transfer Medium
(HTM) which can be used in an electric steam generator or in thermal storage. Solar
irradiance is concentrated using tracking mirrors called heliostats to focus sunlight
onto a receiver. Due to the high process temperatures that can be achieved, CSP can
also be used for other industrial processes or to produce hydrogen or synthetic fuels,
thus further contributing to sector decarbonization in addition to electric power gen-
eration.
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CHAPTER 1. INTRODUCTION

According to the International Energy Agency (IEA), CSP plants are expected to re-
main 100% policy-driven until 2028 [2]. In its World Energy Outlook 2023 report, IEA
calculatesCSPs to represent 0.18% (16TWh) of theworld’s total RESgeneration (8,599
TWh), and 0.19% (7 GW) of theworld’s total RES capacity (3,629GW) [4]. This reflects a
niche for further development that couldmake CSPmore economically attractive and
promote wider adoption by reducing the Levelized Cost of Electricity (LCOE) as an ef-
fect of increasing the number of suppliers in the energy market and improving overall
system efficiency.

Ultimately, as remarked by the World Bank in its Concentrating Solar Power re-
port, CSPwith energy storage can absorbmore energy from low-cost RESs, contribut-
ing overall to a lower-cost energy mix while increasing flexibility compared to Photo-
voltaics (PVs) [5]. An additional increase in the use of RESs can contribute to the Euro-
pean Union’s 2050 long-term strategy to reach carbon neutrality [6], as well as to the
United Nations Paris Agreement’s goals [7].

To contribute to technology development, improving the efficiency and reliability
of these systems is crucial. Modern control techniques can enhance disturbance re-
jection, improve set-point tracking of the HTM temperature, and enforce operational
constraints. One such approach is Model Predictive Control (MPC).

MPC is an advanced process control method that uses amodel of the system’s dy-
namics and information about future state values, including possible future distur-
bance predictions. This makes it an appropriate candidate for research in solar ther-
mal power plants. However, one of the main difficulties with this approach is that,
although a sufficiently accuratemodel using first principles can be obtained, its com-
plexity grows rapidly, and so does the computation time needed to obtain a numerical
result.

Researchhaspredominantlyusedsimplifiedsystemmodels toaddress thesechal-
lenges. Yet, only a few studies have explored data-based approaches, such as Ma-
chine Learning (ML) with NNs. Even fewer empirical investigations have tested these
methods on real plants.

1.2 Objectives, scope, and contribution

The purpose of this thesis is to explore the use of novel artificial Neural Network (NN)
architectures to model complex system dynamics and to evaluate their potential for
use in modern control techniques. This is then utilized in the Solar Tower Power Plant
Jülich (STJ)at theDeutschesZentrumfürLuft-undRaumfahrte. V. (GermanAerospace
Center, DLR) in Jülich to investigate feasible efficiency and robustness improvements.

To achieve this goal, a NN with a Transformer architecture is used to predict the
system dynamics for a certain prediction horizon in the future. The NN will then be
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used as a model of the system in an MPC controller. An attempt to find an optimal
combination of parameters for theMPC formulation ismade by training with different
prediction horizon and look-back window values.

The controller seeks to remedy the influence of external factors such as cloud cov-
erage by using solar irradiance predictions. Lack of predictive behavior during dis-
turbances could damage thematerials or cause stresses in the receiver by driving the
systemoutside safe operating conditions, such asmaximum receiver surface temper-
ature or allowable change of surface temperature. For instance, these issues can be
caused by sudden changes in solar power during a cloud transition.

The aim of the controller is to provide a stable HTM temperature around a desired
set point by controlling the inputs in a predictive manner in the presence of distur-
bances or changes in the set point while satisfying operation constraints.

To assess the performance of the controller, a second NN is trained with different
initial conditions and randomly distributed training data to be used as the simulated
true plantmodel in a software-in-the-loop analysis. Metrics on constraints violations,
set-point Root Mean Squared Error (RMSE), total effort, and change of enthalpy are
quantified to assess the results, based on four different testing scenarios.

Theworkalsocompares theuseofconstrained (SciPyminimize)andunconstrained
(PyTorch) optimizers, and in addition to its primary focus, it provides a brief introduc-
tion to Gaussian Processes within the context of CSP control. While the UQ values will
not be directly part of the design of theMPC controller, they aim to inform the operator
and serve as an option to further investigate the feasibility and potential application
of Gaussian Processes in this domain.

The raw data from the results cannot be disclosed directly. However, the results
are presented in a normalized format for interpretation.

The key research question of this study is to explore the potential of Transformer
Neural Networks to model system dynamics and investigate their applicability in an
MPC controller for the Solar Tower Power Plant Jülich (STJ).

1.3 Structure

The overall structure of the thesis takes the form of nine chapters, including this in-
troductory chapter. This work first provides in Chapter 2 an overview of CSPs, explain-
ing the fundamentals of the Solar Tower Power Plant Jülich (STJ), the experimental
setup, and the data used for this research. Chapter 3 illustrates the related state of
the art. The following Chapter 4 offers a theoretical framework for Neural Networks
(NNs), subsequently Model Predictive Control (MPC), and Uncertainty Quantification
(UQ). Chapter 5 discusses the NNs architecture used and its components within an
MPC controller. It is followed by Chapter 6, where the MPC controller is studied as a
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CHAPTER 1. INTRODUCTION

solution to the OCP with constrained and unconstrained optimization tools. As a brief
introduction to the topic, in Chapter 7, Gaussian processes are proposed as a tool for
uncertainty quantification applied to solar thermal power plants. Finally, the Conclu-
sions gives a brief summary and critique of the findings, followed by identifying and
citing areas for further research in the Outlook.

The organization of this thesis is structured to resemble the progression of re-
search, workflow, and findings that occurred during the development of this work.
Hence, starting fromChapter 5, each subsequent chapter will outline itsmethods and
present its findings.
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Chapter 2

Experimental Setup

This chapter provides a brief overview of CSP plants and the fundamentals of the STJ,
which is the core focus of this thesis. It also describes the experimental setup used
for the research.

2.1 Concentrated solar power

Solar thermal power, or CSP, operates by heating a HTM using reflected solar irradi-
ance. The heated HTM can then be used in an electric steam generator cycle, thermal
storage, or industrial processes. Overall, examples of HTMs are molten salts, gases,
solid particles and liquid metals, to name a few. The solar irradiance is concentrated
onto a focal point or focal line using tracking mirrors called heliostats or reflectors
depending in the system, and they focus or reflect the sunlight onto a receiver or ab-
sorber. The heat generated by the concentrated solar power is then transferred to the
HTM as it passes through the receiver.
From the different types of solar thermal power plants that exist, Figure 2.1 depict the
three most widely used [8]: solar tower (e.g. Figure 2.1a), parabolic trough (e.g. Fig-
ure 2.1b) and Linear Fresnel Reflector (LFR) systems (e.g. Figure 2.1c). In their own
configuration, their core components are highlighted: Receiver or absorber, and he-
liostat or reflector.

An optional yet very advantageous element of CSPs is the Thermal Energy Stor-
age (TES). Such a system stores thermal energy instead of electric energy, which is
cheaper compared to other energy storages [4]. During operation, part or excess of the
HTM’s energy can be passed through the TES to store energy for later use. This con-
tributes to the energy supply security and flexibility, since it enables the plant to oper-
ate during non-solar radiation periods using the energy stored. Because they can ad-
just power generation to demand flexibly, solar thermal power plants are also known
as adjustable power plants [8].
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(a) Solar Tower CSP. (b) Parabolic Trough CSP.

(c) Linear Fresnel Reflector.
Figure 2.1: Different types of concentrated solar power plants. DLR [8].

(a) Surround field. Gemasolar, Spain. (b) Polar field. STJ, Germany.
Figure 2.2: Heliostat field layouts. Adobe Stock (left), DLR (right).

2.2 Solar tower power plant Jülich

The research facility in Jülich is operatedby the Institut fürSolarforschung (Instituteof
Solar Research, SF) at the Deutsches Zentrum für Luft- und Raumfahrt e. V. (German
Aerospace Center, DLR). It is a solar thermal power with a solar tower configuration,
thus the reflection of the solar irradiance is done by sun tracking heliostats. These
mirrors have typically a 2-Degrees of Freedom (DOF) kinematic structure to direct the
sunlight onto the receiver’s surface.

Heliostats are placed and arranged with respect to the tower in two major config-
urations depicted in Figure 2.2: surround field (e.g. Figure 2.2a) like in Gemasolar CSP
in Spain, and polar (e.g. Figure 2.2b), which is the configuration present at the STJ.
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This heliostat field operating at the STJ is composed of over 2000 heliostats, each
with a surface of 8.3 m2. They are controlled by an in-house system called ”HeliOS”,
where the target points are directed towards the receiver at a height of 55 m.

For HTM, the STJ utilizes ambient air to absorb the energy collected by the receiver
and it is transported to either a thermal storage unit or a steam generator. This is pos-
sible thanks to theporousstructureof the receiver’smaterialswhichallowthemedium
to flow through, absorbing the energy, hence the name of Open Volumetric Receiver
(OVR).

Amongdifferentsolar towerCSPsconfigurations, themostwidelyadopted receivers
arebe tubular or openvolumetric. Thematerial of these receivers canbeamongothers
made of ceramic or metallic materials [9]. The system described in this work utilizes
an open volumetric receiver,made of 1080 ceramic absorber cups, with a total surface
of 22.7m2 [10].

Figure 2.3a show the assembly between the ceramic cups and the mounting sur-
face of the receiver, as well as its different parts and the air interaction. The ambient
fluid is drawn towards inside the cups due to the negative pressure created by a com-
pressor in the system, while at the same time, the reflected incident solar flux heats
the body of the ceramic cups. As the HTM passes through the receiver, it absorbs en-
ergy and is carried to the output of the receiver into the system through the orifice of
the mounting apparatus.

The tower’s design considers air temperature reuse to increase performance. This
is achieved by recirculating air back towards the receiver’s forefront through gaps be-
tween the absorber modules as shown in Figure 2.3a. This approach attempts higher
extraction of residual exergy inherentwithin theHTM. Isworth tonotice, that the expo-
sureof the fluid toambient conditions facilitatedirect interactionwith thesurrounding
atmosphere thus make it susceptible to energy losses due to weather conditions.

The complete assembly of the tower’s receiver is depicted in Figure 2.3b. It is com-
posed of 4 quadrants with 10 holding frames each, where single cups mounted in a
connecting stainless-steel pipe are connected to each frame in a 3 by 9 arrangement.
Due to its ceramic materials, limitations on temperature gradients have to be consid-
ered for means of control. From a modelling perspective, the receiver’s surface ma-
terial, the structure of the porous absorbing cups, its assembly and the number of
elements translate into a complex systemof algebraic andOrdinary Differential Equa-
tions (ODEs) [15].

With thekeycomponentsof aCSPdescribed, inparticular thoseof theSTJ, anover-
all system description can be done. In Figure 2.4, the heliostat field, the receiver, the
actuating compressor and the downstream processes are depicted. A heat storage
and steam generation stages are shown for completion, but they are not directly part
of the scope of this thesis, hence, the elements inside the dotted line are part of this
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(a) Receiver cups construction. [11]

(b) Receiver assembly and surface. Adaptation. [12], [13], DLR [10].
Figure 2.3: Solar Tower Power Plant Jülich (STJ) receiver.

work.
One main component of this thesis is to explore the feasibility to model the STJ as a
simplified system and estimate states based on direct and indirect measurements.
Therefore, five variables are selected and explored in this thesis, shown in Figure 2.4:
receiver’s surface temperature Tsurface , receiver’s surface apparent brightness IQ̇, hot
air temperature Thot air , cold air temperature Tcold air , and air mass flow ṁair .

2.3 Measured data

The plant is equipped with a variety of sensors and cameras whose data is captured
and stored in a central system for both online or offline use, allowing the data to be
used for researchpurposes. Control andperipherals integrationhappenwithinanOPC
UA system.

With respect to the measured variables that are used to model the system, the
plant is equipped with air mass flow and temperature sensors. In particular, to in-
directly measure the solar irradiance reflected by the heliostats onto the receiver the
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Figure 2.4: Diagram of solar tower power plant Jülich with open volumetric receiver.
Adaptation. DLR, Pabst [14].

tower uses an optical gray-scale camera system pointing to the receiver. This gives
the receiver’s surface apparent brightness. These images can be used to make an
estimated measurement of the irradiated flux density based on the apparent pixel
brightness taken from the imagesof the surface [16]. Another important part is the re-
ceiver’s surface temperaturemeasurement system, which is composed by an Infrared
(IR) camera.

In Figure 2.5a a sample image of the gray-scale camera system is shown. Images
have 12-bit precision values and a resolution of 1392x1040 pixels. In Figure 2.5b a
384x288 resolution IR image of the receiver’s surface temperature is shown along a
scale bar. For later use, images are first rectified, stabilized and cut to the receiver’s
edges. Then pixels groups are averaged for a final image resolution of 30 by 36, equal
to the number of ceramic absorbers in the receiver’s surface.

For the variables IQ̇and Tsurface , measured by the gray-scale and IR camera sys-
tems respectively, image-based methods offer an easier and cost-effective way to
take themeasurements compared to installing individual sensors directly aroundor in
front each absorber cup. Additionally, temperature sensors are placed only behind a
number of absorber cups. While the surface temperature could bemeasured directly,
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(a) Receiver’s gray-scale wrapped image

(b) Receiver’s IR wrapped imagewith temperature
bar

Figure 2.5: Solar Tower Power Plant Jülich (STJ) receiver. DLR.

the irradiated solar power is technically not viable and operational not feasible, since
this will mean placing the instruments in between the heliostats and receiver.
To circumvent this issue, Thelen [16] developed an indirect measurement technique
based on the receiver’s reflection or brightness captured in gray-scale images. With
the absorber and irradianceparameters a calibration process is performed. Measure-
ments show correlation compared to direct techniques like Gardon and Kendall ra-
diometers and Suncatch calorimeters, showing the viability of this measuring tech-
nique. In this thesis, the system’s measured irradiance in [W/m2] in not directly used
since it is purpose of study to explore the use of indirect measurements data as in-
put to the NN. Instead, the mean of the pixels raw values (intensity, brightness) of the
rectified images is considered. This is done as well for the surface temperature, with
the difference that the values of the pixels correspond to the temperature directly. For
the indirectlymeasured irradiation intensity (receiver’smeansurfaceapparentbright-
ness) IQ̇, the value is divided by the exposure time of the camera, and for the receiver
surface temperature Tsurface the value is taken as is.
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Tomeasure the hot air temperature Thot air , 10% of the receiver’s cups have a tem-
perature probe, backed by a redundant system after the receiver’s mounting mod-
ules junction with a number of sensors, allowing for direct measurement of the hot
air after the receiver. Hence, this work uses the redundant system as they reflect the
temperature of the HTM after passing through the complete receiver. The difference
between the measured temperatures in the different zones of the receiver surface is
outside the scope of this thesis as the irradiation distribution is considered to be uni-
form across the surface. Cold air Tcold air is measured in a similar way. With a fixed
number of sensors, air returning from the steam or storage process is measured be-
fore being exhausted towards the receiver surface in between the gaps as presented
before. For training purposes, each series of hot and cold air measurements are aver-
aged individually to make a single array of values for the NN input. Last, the air mass
flow ṁair driven by the system’s compressor is measured using a flow indicating sen-
sor. Therefore when measured, the five variables of interest (receiver’s surface tem-
perature Tsurface , receiver’s Receiver’s mean surface apparent brightness IQ̇, hot air
temperature Thot air , cold air temperature Tcold air , and air mass flow ṁair ) are scalars
organized as time-series data or unidimensional arrays. Values are read and stored
at a frequency of 1 [Hz].

Related to the receivermodel, a short-termsolar irradiance forecast systemcalled
”Nowcasting” is available [17], [18]. Composed of All-sky imagers (ASIs), pyrheliome-
ters andweather stations, the system provides Direct Normal Irradiance (DNI) predic-
tions considering the observed clouds for up to 60 minutes ahead. This data will later
be used in the MPC as part of NN input to exploit the predictive behavior of the model
in the controller formulation.

To present the structure of the dataset, Figure 2.6 shows an extract of the data col-
lected which is available for this thesis. Values are normalized for visualization pur-
poses. The measurements shown were captured on May 31st, 2023. During this pe-
riod, a constant ṁair (green line) was attainedwhile the IQ̇(purple line) was varied. For
each change in IQ̇, a change in themeasured hot air temperature (Thot air , orange line)
is observed. At a later stage, the IQ̇is kept constant and ṁair is changed to explore the
influence in Thot air . Different configurations of variables were tested and logged to try
to capture a variety of system dynamics to be modelled by the NN. The fulfillment of
a persistence of excitation requirement in the dataset is not part of this thesis, and
therefore it is assumed that sufficient data is available to model the dynamic to some
extent. To account for irradiation dynamics, the number of heliostats reflecting to the
receiver is controlled. The heliostat(s) that are then manipulated to either focus or
defocus are selected in a randommanner froma pool of available heliostats. In differ-
ence to an homogeneous selection of mirror(s), the randomized selection decreases
the influence of cloud shadows over the heliostat field by distributing the disturbance
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Figure 2.6: STJ normalized measured data.

across a random amount of heliostats and the available surface. For technical rea-
sons unrelated to this work, more true measured data was not available for training.

In the following, the values of air mass flow ṁair , cold air temperature Tcold air and
receiver’s surface apparent brightness IQ̇are considered as state variables of the sys-
tem. Receiver’s surface temperatureTsurface andhot air temperatureThot air the output
variables. This is summarized in Table 2.1

Table 2.1: Solar tower Jülich model variables

Variable Description Units Type

ṁair Air mass flow [kg/s] controlled variable

Tcold air Cold air temperature [°C] state variable

IQ̇ Receiver’s mean surface apparent
brightness

[1/s] state variable

Tsurface Receiver’s mean surface infrared
temperature

[°K] output variable

Thot air Hot air temperature [°C] output variable
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In the context of NNs, these variables are visited again in Chapter 5. For the MPC,
the variable air mass flow ṁair is considered as the controlled variable and its use is
further explained in Chapter 6.
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Chapter 3

State of the Art

This chapter reviews the current advancements and ongoing challenges in CSP found
in the literature. Key areas include Heat Transfer Medium (HTM), receiver configura-
tions, systemmodeling, control techniques and uncertainty quantification methods.

3.1 Concentrated solar power

In the field of CSPs, research continuously contributes to topics such as HTMs, re-
ceiver arrangement and material, system modeling, and heliostat online control. For
example, Yerudkar et al. [19] and the DLR [8] extensively present the different types of
available technologies and offer a global energy-market-oriented perspective, focus-
ing on the potential of CSPs plants and their economic viability as a driver for further
technical development. However, these discussions often lack specifics on modeling
and control techniques.

3.2 Heat transfer medium, materials, and receiver configura-
tion

To address this, Merchán et al. [9] review technological advances in HTMs, solar re-
ceiver materials and configurations, as well as options for TES. This is shown in the
work of Ding and Bauer [20], who analyze current and new research on HTM materi-
als. Thesematerials are studied in the context of ”next generation” CSP plants, where
higher process temperatures can be achieved, leading to higher thermal efficiencies.
More research is needed to reliably compare these materials and their viability. Di-
rectly related to theSTJ, Capuanoet al. [21] examineceramicabsorbers on thesurface
of the receiver and provide a baseline mathematical model of this solar tower plant.
The study highlights the influence of variable environmental conditions on themodel’s
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accuracy compared to real data, leaving room for further analysis and suggesting the
mitigation of numerical complexity due to higher-order models.

3.3 Modeling and control

To enhance system efficiency through control, an accurate system model is needed.
Thismodel should account for systemdynamics aswell as disturbances. In CSPs, dis-
turbances mainly come in the form of passing clouds that obstruct sunlight reaching
the reflecting mirrors, thus reducing the reflected irradiated solar power. Since the
nominal operation of a plant is usually planned in advance, the desired set point can
also be inferred. Another disturbance or time-variant influence could be the energy
demand of the grid, but it is considered decoupled thanks to the use of TES. There-
fore, it can be considered negligible for the controllers but may affect the cold side
of the HTM. Additionally, all plants have inherent minimum and maximum operating
conditions for safe operation. A control mechanism that can use this information is
beneficial for increasing system efficiency by extending the lifetime of parts, reduc-
ing maintenance and operation costs, and stabilizing energy generation. Literature
related to CSPs control can be divided into two groups: receiver model control and ir-
radiance aim point control.

Receiver model control

Given this context, Hirsch et al. [22] and Gall et al. [15] model the dynamics of the
STJ using the modeling language Modelica. They introduce the use of Differential-
Algebraic Equation (DAE) solving software in combination with anMPC controller. The
main limitationof thesestudies is the lackofdetail in theirmathematicalmethodsand
OCP formulation. The latter considers a linear MPC, and full nonlinear model analysis
was left open.

Another example in this area of research can be found in Popp et al. [23], where a
reducedmodel of a CSP receiver withmolten salt asHTM is studied. However, this pa-
per considers only a traditional Proportional-Integral-Derivative (PID) controller, and
the model accuracy is limited to this type of material. Later, with advances in compu-
tation power, software capabilities, and modern technologies, novel approaches re-
visited and tried to combine CSP dynamicmodels with control techniques. In his later
work, Popp et al. [24] compares the PID controller against an MPC formulation using
the simplified model and the HTMmass flow as a single controlled variable.

Inanewapproach, Idingetal. [25]proposedasingleabsorber cupsimplifiedmodel
based on Gall et al. [15], combined with an MPC to control the HTM temperature,
showing good validation results against real data from the STJ. The model was then
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extended to all receiver cups, but although the results showed significantlyworse per-
formance, it highlighted the importanceof the inhomogeneousparameter set andsys-
tem complexity.

Aim point optimization techniques and control

Surveys such as those conducted by García et al. [26], [27] delve into heliostat aim
point control and related solar irradiance on the receiver based on amodel published
bySánchez-González [28]. Theseworksproposeacontrol loopmethodologyandgroup
subsets of heliostats as controlled variables in both steady state [26] and transients
[27]. In the realm of dynamic aiming, Zhu and Dong [29] compare a particle swarm
optimization algorithm as a control strategy against an MPC formulation.

Similar to Belhomme et al. [30], where the heliostat’s aim point is explored as a
controlled variable, Geschonneck [31]maximizes the receiver’s absorptionpower inan
OCP formulation based on previousmodels. The irradiated power, as a function of the
heliostat aim point, is then controlled by anMPC in response to the measured states,
specifically the receiver’s surface temperature and the HTM outlet temperature.

Likewise, Ostermann [32] extends the work of Geschonneck [31] by including the
HTM temperature directly in the MPC control objective as a second controlled vari-
able. To account for the simplifiedmodelmismatch, the author uses aMovingHorizon
Estimator (MHE) that minimizes the difference between the simplified model and the
measured states. Despite these advances, in-situ experiments are still needed to val-
idate the results, and the parameters of the MHE are subject to tuning.

Regardingmodelingandconsidering theadditionalbenefitsofmoderncontrol tech-
niques, the addition of predicted state values in the model can be achieved. Samu et
al. [17] extend cloud and solar irradiance prediction, which Geschonneck [31] inte-
grates into an MPC controller. Geschonneck evaluates the performance of this sys-
tem in proposed test cloud shadowing scenarios, considering both accurate and in-
accurate predictions. The results demonstrate the potential to enhance the overall
efficiency and reliability of CSPs.

3.4 Data-based control

Despitebreakthroughs inCSPcontrol strategies, researchconsistently shows thecom-
plexity and required balance between computation time andmodel accuracy. Until re-
cently, few studies have explored the connection between solar thermal power plants
and data-driven control systems, which aim to identify the system and describe its
dynamics based on real data. Ruiz Moreno [33] demonstrates one such integration,
where data from a solar parabolic-trough plant with an MPC controller is collected.
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This data is later used to train anMultilayer Perceptron (MLP) NN to learn the policies
of the controller, thus reducing computation time with comparable mean results.

Another approach is shown in Pargmann et al. [34], where heliostat calibration
data is used in a Self-normalizing Neural Network (SNN) to improve the calibration
method. Results show an increase in calibration accuracy compared to current algo-
rithms.

More literature can be found outside data-driven control applied to CSPs. For in-
stance, Wong et al. [35] explore the use of an Recurrent Neural Network (RNN) to
model a pharmaceutical manufacturing process described as a Continuous Stirred-
Tank Reactor (CSTR) tomakemultiple single-step-ahead predictions (multiple shoot-
ing) of the systemand control it using anMPC. However, aweakness of the study is the
use of a numerical model of the equations to generate training data, deviating from
the use of real process data and falling short in the study of its applicability. Utama et
al. [36] take a similar approach to RuizMoreno [33], where theMPC controller policies
are usedas training data for a deep learningNN in an energymanagement system test
case. The key difference lies in the use of Explainable Artificial Intelligence (XAI), pro-
viding insights on how the NN arrived at a given result through a series of techniques.

An attempt to explore the use of Long Short-Term Memory (LSTM) NNs as a sys-
temmodel in an MPC controller is made by Jung et al. [37], where the focus is on the
impact of different solvers and differentiation algorithms used in the OCP formulation
in an extensive analysis. Compared to otherML architectures, this type of NN showed
good performance in representing the systemdynamics against ODEmodels of a two-
tankproblemandCSTRstudy cases. Challenging theperformance results of the LSTM
architecture and with the growing adoption in NNs of the Self-Attention mechanism
presentedbyVaswani et al. [38], Park et al. [39] explore andmeasure theperformance
of a T-NN in three study cases. These report better performance compared to other
types of architectures. The paper also highlights the exploitable capability of T-NNs
to make Multi Step-Ahead (MSA) predictions, reducing computation time in compar-
ison to recursive approaches like LSTM and RNN models, while also addressing the
vanishing gradients problem.

3.5 Uncertainty quantification andmodel predictive control

Previous publications have not addressed the inherent problem of model uncertainty,
which arises when assumptions and simplifications are made in mathematical mod-
els. This is especially true in NNs, where the architecture is adapted to the training
data, but an accurate generalization of a system is not achieved and its representa-
tion is highly depending on the regions at which it was trained, making it potentially
unreliable outsideof thedatadistribution. Therefore, there is increasing interest inUQ

18



3.5. UNCERTAINTY QUANTIFICATION ANDMODEL PREDICTIVE CONTROL

methodsand their possible integrationwithML.UQseeks to characterizeandquantify
the discrepancy between themodel and the true observed data. The sources of uncer-
tainties may vary, from its presence in the model parameters, modelling and simplifi-
cations, measurement and output noise, delays, disturbances, among others [40].

Different UQ methods are applied to various fields of study, types of data, and ex-
periments. In this work, interest is focused on time series values, as they constitute
the core component of the data-driven control method used. One UQ technique that
has gained high interest and adoption in research is Bayesian optimization, particu-
larly Gaussian Processes, which have proven to be a useful non-parametric tool that
fits a regression with mean and standard deviation as a function of its kernel.

Gaussian processes

Thepapers of Kocijan et al. [41]–[43] and Likar andKocijan [44] introduce aGP-based
MPC model. This is later extended to demonstrate how this method can be used for
data-based system identification and dynamic system control [45].

Regarding the use of UQ applied to CSPs plants, little research has been done. One
example is presented by Luo [46], who performs amulti-objective robust optimization
of a molten salt thermal solar power plant under uncertainty using a model approxi-
mation and solved by aMonte Carlo simulation and simulated annealing. On the other
hand, Mohammadzadeh et al. [47] use UQ in a stochastic mixed integer linear pro-
gram formulation to dispatch electrical energy and maximize expected profit with a
CSP plant as a generator.

Despite the lack of literature in this area, possible approaches can be explored
in other fields of engineering. For example, Torrente et al. [48] use a first-principles
model of a quadrotor, where the discrepancies of the model are fitted with a GPR and
used in an MPC for trajectory control. Eckel [49] explores its applicability for control-
ling towing kites, where the dynamics of the system are modeled both online and of-
fline depending on the flying regime and conditions. Elsheikh and Engell [50] propose
a hybridMPCapproach consisting of first-principles anddata-basedmodels. Training
regions are identified using a support vector machine, and an online GP model error
model is addedwhen the controller is outside of that region. A significant limitation of
the previous works is that the authors’ methods do not consider the use of the stan-
dard deviation or variance information that the UQ method provides, but rather only
the mean of the model error. Lastly, in an attempt to take UQ a step further and inte-
grate it intoNNs, Fiedler et al. [51] present aNNwith aBayesian last layer and explore
its extrapolation capabilities. This enables direct quantification of the output uncer-
tainty, addressing the increasing complexity of fitting a GP for large datasets.
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Stochastic model predictive control

Another approach to leveraging UQ to account for model mismatch involves its appli-
cation within an OCP formulation that results in an Stochastic Model Predictive Con-
trol (S-MPC). Currently, no publications investigate the use of S-MPC in CSP plants,
but much can be learned from other areas of study where this is applied. Langåker
[52] uses a GP to model a four-tank system and a car system for obstacle avoidance.
Hewing et al. [53], [54] and Kabzan et al. [55] explore its use in autonomous systems
based on first-principles models, the first in an embedded system for miniature race
cars and the latter for competition racing. Bradford et al. [56] design an MPC con-
trolled withMonte Carlo samples of an offline GPR for constraint tightening in a semi-
batch bioprocess case study. Additionally, model prediction sub-setting by stochastic
admissible solutions is proposed by Wabersich and Zeilinger [57], and Mesbah et al.
[58] conduct extensive research into ML-enabled MPC under uncertainty. For trajec-
tory control, Polczetal. [59]use thisapproach tocontrol a roboticarm, andFiedler and
Lucia [60] present a multi-step prediction S-MPC using a linear state-space system
in combination with a GP. Conversely, an approximation of data-based dynamics can
be expressed as Linear Time-Invariant (LTI) systems by calculating the Henkel matrix.
This is later transformed to a state-space representation, where the mean and stan-
dard deviation of theGP can be used in anS-MPC fashion, as shownby Pan et al. [61].
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Chapter 4

Fundamentals

This chapter introduces the theoretical background for artificial neural networks as
black-box systemdynamicsmodels, alongwith thenecessary elements for this thesis.
It also covers the theory behindModel Predictive Control (MPC), which forms the basis
for the methods used in this study, and briefly introduces Uncertainty Quantification
(UQ) methods.

4.1 Neural networkmodels

There are different approaches to create models of dynamic systems: first-principles
models (white-box models), typically defined by ODEs or state-space representation,
gray-box models, and black-box models. Black-box models identify the dynamics us-
ingsystemdataby fitting thebest combinationofparameters. Approaches likenonlin-
ear ARX (auto-regressive exogenous) (NARX) and Hammerstein-Wiener are available
[62], but they have limitations in fitting certain dynamics [50], [63]. In these cases, a
MLmodel, particularly a Neural Network (NN) model, can be beneficial [64], [65].

ThedatasetDused in thesystem identificationstepwill be fit toa regressionmodel.
D consists ofX andY [65]. X contains pairs of states xk ∈ Rx and inputs uk ∈ Ru, and
Y contains outputs yk ∈ Ry with k = {0, 1, . . . , p}. The systems this work aims to iden-
tify are nonlinear discrete-time systems of the form [66]:

xk+1 = f(xk, uk), (4.1a)

yk = h(xk, uk) (4.1b)

A NN is a mathematical function that approximates data values from X = {x, u}
by mapping and estimating the output ŷ. The model can be written in compact form
as ŷk = NN(xk, uk, w), where NN(·) is the function represented by the neural net-
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work and w the vector of parameters [67]. The perceptron, first introduced by Rosen-
blatt [68], was inspired by the behavior of neurons in the humanbrain (synapses). This
perceptronemulatesactivation throughactivation functions, learning the relationship
(mapping) of the inputs to represent an output. The equation of a single layer percep-
tron is [67]:

ŷ = ϕ(b0 +

n∑
i=1

wiui) (4.2)

where ŷ is the output of the perceptron, ϕ(·) is the activation function, b0 is the bias
term, wi are the weights associated with the input features ui, and n is the number of
input features. Weights and biases wi, b0 ∈ R are model parameters that are learned
during training by back-propagation [69].

Activation functions introducenon-linearity intoneuralnetworks, enabling the learn-
ing of complex patterns [64], [67]. In literature, commonly used activation functions
ϕ(·) include Sigmoid [67], [69], hyperbolic tangent (tanh) [67], Rectified Linear Unit
(ReLU) [70], and Softmax[38], [71]. These are defined as:

σ(x) =
1

1 + e−x
, (4.3a)

tanh(x) =
ex − e−x

ex + e−x
, (4.3b)

ReLU(x) =

 x if x ≥ 0

0 otherwise
, (4.3c)

Softmax(xi) =
exi∑n
j=1 e

xj
. (4.3d)

The sigmoid function (Equation 4.3a)maps the input to a value between 0 and 1, while
the tanh function (Equation 4.3b) maps the input to a value between -1 and 1. On the
other hand, theReLU function (Equation 4.3c) outputs the input directly if it is positive;
otherwise, it outputs zero. The Softmax function (Equation 4.3d) is used in the output
layer of a classifier to represent a categorical probability distribution.

In this context, several layers and configurations of perceptrons can be cascaded
to increase accuracy and learn more complex dynamics [72]. This is described as
multi-layer perceptron [67]. As research progressed, NNs emerged and evolved be-
yond multi-layer perceptrons in diverse architectures to address a broader spectrum
of problems such as regression and classification [64].

For black-boxmodels, data is typically stored in a timed or sequential manner, im-
plying that the current system state is a function of previous states [73]. To learn the
effectof this sequentialbehaviorandmakea regression thatbetter fits thedata, RNNs
were created. RNN is an architecture that interconnects ”cells” that interact with past
cells. The hidden state hk uses the input at time k to make predictions yk+1. It then
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passes the prediction at time k + 1 in a recurrent manner through sequentially con-
nected cells to propagate the state up to a certain time in the future k + p, where p is
the number of recurrent cells. This is defined as [74], [75]:

hk = ϕhidden layer(WRNN · hk−1 +WU · xk + bh), (4.4a)

ŷk = ϕoutput layer(Wy · hk + by), (4.4b)

with xk (input at discrete time step k), hk (hidden state),WRNN (weight matrix for the
recurrent connections),WU (weight matrix for the input connections),Wy (weight ma-
trix for the output connections), bh (bias term for the hidden state), and by (bias term
for the output).
The drawback of this approach is the loss of information during training in the form of
vanishinggradients,whichworsenswith longer recurrentnetworks [76]. Anattempt to
overcome this challenge was implemented in Long Short-TermMemory (LSTM) neural
networks, a variation of RNNs. This architecture introduces cells that deliberately for-
get short-term information tostore long-termdependencies insequential data. This is
achievedwith amemory cell structure composed of three gates: the input gate, forget
gate, and output gate, along with a cell state. The LSTMmodel presented by Staude-
meyer andMorris [77] is given by:

Ck = fk ⊙ Ck−1 + ik ⊙ C̃k, (4.5a)

ik = ϕ(Wxixk +Whihk−1 + bi), (4.5b)

fk = ϕ(Wxfxk +Whfhk−1 + bf ), (4.5c)

C̃k = tanh(Wxcxk +Whchk−1 + bc), (4.5d)

ok = ϕ(Wxoxk +Whohk−1 + bo), (4.5e)

ŷk = hk = ok ⊙ tanh(Ck), (4.5f)

with Ck (cell state at discrete time step k), ik (input gate output), fk (forget gate out-
put), C̃k (new candidate values to be added to the cell state), ok (output gate output),
hk (hidden state/output), xk (input at discrete time step k),Wxi,Whi,Wxf ,Whf ,Wxc,
Whc,Wxo,Who (weight matrices for input, hidden state, and output connections), and
bi, bf , bc, bo (bias terms for input, forget, candidate, and output gates)[75].

Although these architectures are extensively used as surrogate models, they are
limited by their memory and sequential structure [78]. To exploit parallel computa-
tion and include context information, the Transformer Neural Network (T-NN) archi-
tecture using the ”Attention mechanism” was created [38]. This is further detailed in
Section 4.3.
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4.2 Residual connection and persistencemodel

In traditional neural network architectures, each layer learns a mapping from its in-
put to its output. However, as networks become deeper, as in the case of some RNNs,
where deeper layers are needed to include more information, they can become more
difficult to train due to the vanishing or exploding gradient problems. This means that
gradientsdiminishor take large valuesas theypropagate through the layersof thenet-
work, losing information needed to update the parameters andweights of early layers
effectively during back-propagation [79].

Residual connections alleviate this issue by introducing interconnections or short-
cuts that allow the gradient to bypass certain layers, enabling the network to learn
functions more directly. This approach uses the difference between the input and the
output of a layer, also called residuals, rather than trying to learn the entire mapping.
The approach arises from the observation that certain architectures or layers of a net-
work benefit from learning the residual mapping instead of the full mapping. He et al.
[79] introduced this approach in deep neural networks for image recognition.

Figure 4.1 shows a generalized structure and the connection shortcutmade by the
residual connection. An application of this is shown in Section 4.3. Let F (·) be the
function ormapping done by the layer i to n of the neural network. x is the input of the
function, G(x) the output of the last layer, and F (x) the output of the function block.
Without residual connection (e.g. Figure 4.1 left), the output F (x) of the function F (·)
is equal toG(x) = F (x). If F (·)makes a perfect representation of x, then it is equal to
F (x), but if there is a deviation in thismapping, there is no element to account for this
residual. In other words, F (·) has to learn F (x). Instead, with a residual connection
(e.g. Figure 4.1 right), the output F (x) of the function F (·) is equal toG(x) + x. There-
fore, F (·) has to learn G(x) = F (x) − x, facilitating the identity mapping F (x) = x to
adjust the weights and biases inside the layer(s).

Residual connections simplify the learning process in deep networks by focusing
on the residuals. When these residuals are zero, the network essentially performs
identity mapping, meaning the input is directly transferred to the output without al-
teration. Consequently, this leads to the natural development of persistence in the
network’s behavior. If the residuals are zero, the network’s output matches its input,
aligning with the persistence model’s idea of maintaining consistency.

While a residual connection attempts to improve learning across deep networks,
a baseline is needed to check if a model has learned the dynamics of the system. In
the context of NNmodels, a persistencemodel refers to a simple baseline model that
predicts future values in a time series based only on the current or previous values,
effectively using the persistence effect seen when residuals equal zero. This is also
known as the naive approach [80].
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Figure 4.1: Feed-forward neural network layers with (right) and without (left) residual
connection

A persistence model is defined as ŷk+1 = yk, where ŷk+1 is the predicted value at
time step k + 1, and yk is the observed value at time step k. After training a NN, a
persistencemodel can be used as a reference to compare the performance of trained
models. If a trained NN has a lower loss value than the persistencemodel, it suggests
that the network has learned from the data beyond what can be captured by simple
persistence.

4.3 Transformer neural network

Driven by the limited memory scalability of recurrent neural networks and their vari-
ant LSTM NNs in the context of Large Language Models (LLMs), Vaswani et al. [38]
introduced a new architecture in 2017 named Transformer. This NN was built upon
the ”Attention mechanism” proposed by Bahdanau et al. [81]. Initially, it was used
for language translation, but its context awareness soon found applications in other
fields, including LLMs and Generative Pre-trained Transformers (GPTs) based on Nat-
ural Language Processing (NLP).
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Figure 4.2: The Transformer - model architecture. Vaswani et al. [38]

The term ”Transformer” reflects the model’s ability to transform representations
during training by adapting its weights to include contextual information in its input.
In this way, the predictions carry a refined representation of what the value should be
based on the context. With this approach, a full memory of the input is not needed.
Instead, the NN updates its prediction by adding a change that better encodes the
context [82]. As an added benefit, the formulation of the ”Attention Pattern” computes
a prediction for each element of the input, meaning that a Multi Step-Ahead (MSA)
prediction is possible as a single forward pass in the network [39].

Figure 4.2 shows the original ”Transformer model architecture” as presented by
Vaswani et al. [38]. It consists of an encoder-decoder structure. Inside each encoder,
input is encoded intoembeddings E⃗i and fed intoagivennumberof transformerblocks
added sequentially, each composed of a ”multi-head attention” layer, a residual con-
nection, and a pass through a feed-forward layer. This structure also makes use of a
positional encoding to embed positional information into the embeddings. The output
of this architecture gives the probabilities relation between the embeddings.

In NLP and GPTs, the length of the input and therefore the number of embeddings
i is variable, but in this work, it is assumed to be constant. Since the whole length of
the input is considered, the context window C is equal to the number of embeddings i.
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Additionally, in LLM, words are said to be embedded or ”transformed” into vectors of a
higher-dimensional space, represented as elements ofRde , where de is the dimension
of the embedding space. This enables the model to learn a higher number of distinct
ways to represent the input. In thecaseof time-seriespredictionsandphysical system
dynamics regression used in this thesis, the dimension of the embedding spaceRde is
equal to the number of variables.

The key contribution of the T-NN architecture is the attentionmechanism, also re-
ferred to as scaled dot-product attention. It decomposes the embedded input into
query, key, and value vectors (Q⃗i, K⃗i, and V⃗i), which together represent the contextual
influence of the surrounding embeddings. The attention mechanism is given by the
following equation [38]:

Attention(Q,K, V ) = softmax

(
QKT√
dqk

)
V (4.6)

with Q (query matrix), K (key matrix), V (value matrix), dqk (query-key space dimen-
sion), and softmax(·) (softmax function).

The querymatrixQ is used to compute attention scores indicating the relevance of
each element in the keymatrixK with respect to the queries inQ. In other words, how
much the embeddings E⃗i of the keys ”attend to” the embeddings E⃗i of the queries, or
where the queries are focusing on based on the input.
These attention scores represent the probability of an embedding E⃗ influencing an-
other; a contextualmeaning. They are then used toweigh the corresponding elements
in the value matrix V , producing the output of the attention mechanism.

MatricesQ,K, and V are the horizontal concatenation of the query, key, and value
vectors Q⃗i, K⃗i, and V⃗i respectively (Equations 4.7). These vectors are obtained bymul-
tiplying the corresponding weight matricesWQ,WK , andWV by each of the embed-
dings E⃗i. The weight matrices are parameters of the network, and their values are
calculated during training via back-propagation.

Q[1:i], (4.7a)

K[1:i], (4.7b)

V[1:i], (4.7c)

Q⃗i = WQ E⃗i, Q⃗i ∈ Rdqk , (4.7d)

K⃗i = WK E⃗i, K⃗i ∈ Rdqk , (4.7e)

V⃗i = WV E⃗i, V⃗i ∈ Rdv (4.7f)

withWQ
i ∈ Rdqk ,WK

i ∈ Rdqk ,W V
i ∈ Rdv (query, key, and value weight matrices).
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An important component of Equation (4.6) is the softmax function. This can be
interpreted as the calculation of the probability of an event (or embedding E⃗) given
the other. This can be written as [38]:

Attention(Q,K, V ) = P (K | Q)V, (4.8a)

P (K | Q) = softmax

(
QKT√
dqk

)
, (4.8b)

where, softmax(·) = P (zi) =
ezi∑C
j=1 e

zj
(4.8c)

The scaled dot-product attention (Equation (4.8b)) is one approach to the attention
mechanism. It refers to the dot-product of Q and K (or written in compact form as
QKT ) divided by

√
dqk for numeric stability. It is called ”self-attention” when Q,K, V

are all from the same sequence of embeddings [38], in contrast to ”cross-attention”
where the matrices come from different sequences [81].
When the embeddings E⃗i of the keys ”attend to” the embeddings E⃗i of the queries, the
dot-product results in a positive value, suggesting that the vectors are related. If the
value is zero, the vectors are unrelated, and if negative, they are opposite. The result,
afterbeingnormalizedandmapped intoadistribution function, is called the ”attention
score.” Presented in a matrix form, it is also known as the ”attention pattern.” A rep-
resentation of this pattern is shown in Figure 4.3, before normalization and softmax(·)
for simplicity.

Query Key Pair E⃗1 E⃗2 ... E⃗j

E⃗1 Q⃗1 · K⃗1 Q⃗1 · K⃗2 ... Q⃗1 · K⃗j

E⃗2 Q⃗2 · K⃗1 Q⃗2 · K⃗2 ... Q⃗2 · K⃗j

E⃗3 Q⃗3 · K⃗1 Q⃗3 · K⃗2 ... Q⃗3 · K⃗j

... ... ... ... ...

E⃗i Q⃗i · K⃗1 Q⃗i · K⃗2 ... Q⃗i · K⃗j

Figure 4.3: Attention pattern. In self-attention, the sequences and corresponding em-
beddings are the same, therefore i = j and de 1 = de 2. When using cross-attentions,
the sequences are different from one another, therefore i ̸= j and de 1 ̸= de 2.

As the last part of the attention head, this score is multiplied by thematrix V . This
results in the weighted sum of the contributions of each embedding to themeaning of
the others. In the literature, the result of the attention layer is written as thematrixZ,
which is then fed to the feed-forward NN.
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Each feed-forward layer applies a linear transformation followed by a non-linear
activation function to capture the nonlinear dynamics. This is done by projecting the
embeddings into a higher-dimensional space, applying a non-linear activation func-
tion, andprojecting the result back into theoriginal dimension. This processenhances
themodel’s ability to extract meaningful features and relationships from themore re-
fined representation of the embedding coming from the preceding attention head.

In the context of time series predictions and physical systems, T-NNutilize ”mask-
ing” to prevent future embeddings E⃗ from influencing the computation of attention
scores for preceding ones. Thismasking occurswithin the attentionpattern computa-
tion, where elements corresponding to future values are set to−∞ before calculating
attention scores. By masking future embeddings, the model ensures that each em-
bedding attends only to past or current embeddings, facilitating the capture of tem-
poral dependencies sequentially without being influenced by future information.

The advantage of the T-NN architecture is that it achieves parallelization through
its self-attention mechanism and feed-forward networks, which is multiplied by the
number of attention heads h in the network. This multi-head attention allows the
model to learn different representations and is given by:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W 0, (4.9a)

where, headi = Attention(QWQ
i ,KWK

i , VW V
i ) (4.9b)

withWQ
i ,W

K
i ,W

V
i (query, key, and value weight matrices for each attention head i),

Q, K, and V (query, key, and value matrices for each attention head i), andW 0 (output
matrix) [38].

The self-attention mechanism inside each head allows embeddings of the input
sequence to attend to each other in a concurrent fashion. This enables parallel com-
putation across all of the embeddings facilitated by thematrix vector multiplications.
Additionally, the architecture inherently supportsmakingpredictions for each embed-
ding in parallel up to C. This is better captured in Figure 4.3. By allowing each em-
bedding to attend to all others and incorporating multiple layers of self-attention and
feed-forward networks, the Transformer model generates predictions for every token
simultaneously [82].

The feed-forward networks within each layer operate independently on the final
embeddings coming from theattention heads. This parallelization allows efficient use
of computational resources, resulting in faster training and inference timeswhile cap-
turing complex system dynamics across the input sequence more effectively [82].

Finally, the adapted architecture proposed by Park et al. [39] does not include the
explicit use of positional encoding. The literature has shown that transformers can
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still produce accurate predictionswhen usedwith casualmasking for time series pre-
diction [83], [84].

4.4 Constrained and unconstrained optimization

Optimization is the process of finding an optimal solution from a set of feasible solu-
tions subject to an objective function f(x) and its decision variables. In most cases,
solving optimization problems analytically is impractical. Therefore, iterative algo-
rithms are used in practice. These start with an initial guess and generate further
iterations to improve the cost function until a stopping criterion is met. For iterative
methods, there are twomain types: directmethods, which rely solely on function eval-
uations, and indirect methods, which use gradient information [85], [86].

Optimization problems can be either constrained or unconstrained. The objective
function is expressed mathematically as the goal that the optimizer should achieve,
typically minimization written as minimizef(x). The decision variable is then opti-
mized to reach the goal of the objective function (e.g., x in f(x)) [87]. The uncon-
strained optimization problem is therefore written as:

minimize
x

f(x) (4.10)

Depending on the problem formulation, there are different algorithms to solve a par-
ticular optimization problem, including linear and non-linear problems, integer and
continuous variables, among others [85].

Unconstrainedoptimizationproblemsseek tominimizeanobjective functionwith-
out any constraints. Common methods for solving these problems include gradient
descent (1st order derivative), Newton’s method (2nd order derivative approximation),
andQuasi-NewtonmethodssuchasBroyden–Fletcher–Goldfarb–Shanno (BFGS) [88].

Constrained optimization problems involveminimizing the objective function sub-
ject to constraints. These constraints can be equality or inequality constraints, ex-
pressed as h(x) = 0 and g(x) ≤ 0 respectively [87]. Equation (4.10) is then rewritten
as:

minimize
u

f(x) (4.11a)

subject to: hj(x) = 0, j = 1, . . . , p (4.11b)

gi(x) ≤ 0, i = 1, . . . ,m (4.11c)

Methods to solve these problems include Linear Programming (LP), Quadratic Pro-
gramming (QP), and Non-linear Programming (NLP) [85], [89]. The solution u of the
problem is called feasible if it satisfies all constraints and conditions (Equations 4.11b
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and 4.11c). For some problems, there might exist more than one feasible solution.
These solutions then form the feasible set of inputs U = {u ∈ Rm}. Moreover, the
solution is called optimal u∗ if[87]:

f(x∗) ≤ f(x) ∀x ∈ X

such that: g(x) ≤ 0, h(x) = 0.
(4.12)

4.4.1 Barrier functions

While iterative algorithmsmay handle equality constraints as a set of algebraic equa-
tions inside the optimization loop, the analytical solution of inequality constraints re-
quires a different approach. To solve them, constrained optimizers are extended to
handle these inequalitiesbymethodssuchas interiorpoint (trust-region), barrier func-
tions, active set, linear approximation, or projection-based methods, to name a few
[90].

Barrier functions, for example, add a penalty to the objective function for violating
constraints. They lead the gradient of the solution away from the constraint, trans-
formingaconstrainedproblem intoanequality-constrainedoneorenablinganuncon-
strained solver to deal with constraints. Thus, the constrained optimization problem
shown in Equation (4.11) can be reformulated as:

minimize
x

f(x) +

m∑
i=1

ϕ(gi(x)) (4.13a)

subject to: hj(x) = 0, j = 1, . . . , p (4.13b)

gi(x) ≤ 0, i = 1, . . . ,m (4.13c)

where ϕ(·) is a barrier function for g(x) [86].

Barrier functionsapproximatean indicator function I_(v). This is apiecewise func-
tion of the form:

I_(v) =

 0 if v ≤ 0,

+∞ otherwise.
(4.14)

The indicator function introducesa largepenalty (approaching infinity) asv approaches
zero from the negative side, thus enforcing the constraints indirectly bymaking infea-
sible regions where I_(v) ≥ 0 have an increasing cost relative to the objective func-
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Figure 4.4: Examples of logarithmic, exponential, and scaled Softplus barrier func-
tions.

tion[87]. For numerical stability reasons, a continuous function approximation is pre-
ferred over a piecewise function [85]. Examples of barrier functions are:

Logarithmic barrier: Î_(v) = −(1/λ) log(−v) (4.15a)

Exponential barrier: Î_(v) = e(T+vγ) (4.15b)

Scaled Softplus barrier: Î_(v) = (1/T )
1

β/T
log(1 + exp(

βv

T
)) (4.15c)

withparametersT (function temperature), andλandγ (approximationqualityof Î_(v)).
A depiction of the barrier functions is shown in Figure 4.4.

The parameters of the barrier functionsmust be carefully tuned to ensure the val-
ues remain smaller relative to the objective function. This helps prevent the solution
fromdeviating from the optimum [86], [90]. In summary, both unconstrained and con-
strainedoptimization techniques, including theuseof barrier functions tohandle con-
straints, constitute the basis for implementing advanced control strategies such as
MPC, which uses optimization to predict and optimize future system dynamics [91].

4.5 Model predictive control

Model Predictive Control (MPC) is an optimal control approach that determines an in-
put sequence u(t) to minimize an objective function J(·) while satisfying constraints,
formulatedasanOptimalControl Problem (OCP) [91]. Thebenefits of this controller in-
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cludeenhancedcontrol performanceandefficiency throughconstraintshandling, due
to its predictive capability given by the described system model [91]. Based on opti-
mization, MPC can handle Multiple Input Multiple Output (MIMO) and non-linear sys-
tems [92]. State-of-the-art formulations also address robustnessbymanagingmodel
uncertainties [93].

Considering the nonlinear discrete-time system in Equation (4.1), we define the
MPC problem with prediction horizon p as:

minimize
u[k+1:k+p]

J(x(k),u(k)) (4.16a)

subject to: x(k + 1) = f(x(k),u(k)), (4.16b)

x(0) = x0, (4.16c)

hk(x(k),u(k)) = 0, (4.16d)

gk(x(k),u(k)) ≤ 0, (4.16e)

∀k ∈ {k, . . . , p− 1},

u(k) ∈ U, x(k) ∈ X

with x(k) and u(k) (states and control inputs at time k), J(x(k),u(k)) (cost function),
x(k + 1) (next state), f(x(k),u(k)) (system’s model), x0 (initial state), hk(·) (equality
constraints), gk(·) (inequality constraints). For this thesis, since the data available are
discrete observed values, the discrete time form k is used.

The problem is solved at eachdiscrete time-step k iteratively by an optimizer, given
the observed (or estimated) states x, the initial state value x0, and the systemmodel
f(x(k),u(k)) [94]. The solution is an optimal sequence of input variables u∗

[k:k+p−1]

given the predicted system states x∗
[k:k+p] and the optimal inputs.

In Figure 4.5, a representation of the MPC algorithm is depicted. At time k=0, with
information onpastmeasured or estimated states up to look-backwindoww, and cur-
rent states (initial state x0), the optimal sequence of input variables u∗ is iteratively
calculated in a closed-loop up to prediction horizon p, where the predicted system
states x∗ show the behavior of the system as a function of the optimal sequence [91].

For the closed-loop control application, the first element of the sequence of inputs
u∗ is applied to the system or plant. In summary, anMPC controller calculates the op-
timal control input sequenceu considering (or predicting) how the systemwill behave
in the future using the system model and the states x. Such a closed loop of a MPC
controller is depicted in Figure 4.6, and its implementation is described in Algorithm1.

The objective of the MPC is to minimize the cost function J(x(k),u(k)) given the
optimization variables and the future states up to the prediction horizon p of the sys-
tem given the model. The formulation of this function is done as a quadratic problem

33



CHAPTER 4. FUNDAMENTALS

Figure 4.5: MPC system control algorithm example. Adaptation. Grüne [93].

Algorithm 1MPC Closed-Loop Algorithm
1: Initialize k ← 0, system state x(0), and desired output yref.
2: while control loop is active do
3: Provide yref(k) to MPC controller.
4: Predict future states x(k+1) using plant model and current system state x(0).
5: Initialize optimizer iteration i← 0.
6: while not converged & k < p− 1 do
7: Iteration i: Calculate candidate control input sequence ui(k).
8: Evaluate cost function J(x,ui).
9: Evaluate constraints.
10: Update control input sequence ui(k).
11: i← i+ 1
12: end while
13: Set u∗(k) as the optimal control input sequence from the optimizer.
14: Apply the first element of u∗(k) to the real plant.
15: Measure output y(k) from the real plant.
16: Feed y(k) back to the MPC controller.
17: Update plant model with the new state x(k + 1).
18: k ← k + 1
19: end while
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Figure 4.6: Control closed-loop with a MPC. Adaptation. Schwenzer et al. [95].

that describes a convex functionandcanconsider different effects suchas regulation,
tracking,minimumtime, andeconomic [87]. For thiswork, the cost functiondescribed
in Equation (4.16a) considers the reference tracking effect, which takes the form:

J(x,u,∆u) =

p−1∑
k=0

(l(x(k),u(k)) + r(∆u(k))), (4.17a)

where, l(x(k),u(k)) = f ′(x(k),u(k))⊤Qf ′(x(k),u(k)), (4.17b)

r(∆u(k)) = ∆u(k)⊤R∆u(k), (4.17c)

∆u(k) = u(k)− u(k − 1), (4.17d)

f ′(x(k),u(k)) = x(k + 1)− xref (k + 1) (4.17e)

withQ (tracking gain), andR (control effort gain). Tracking effect is divided into two
parts: the stage cost l(x(k),u(k)) and the control effort cost r(∆u(k)). Since the OCP
is formulated as aminimization problem, the goal of the former is to penalize the dis-
tance to a reference or desired value (Equation (4.17b)), while the latter penalizes the
rate of change in the control inputs (Equation (4.17c)). The convex quadratic formula-
tion of the reference tracking MPC is then redefined as follows:

minimize
u[k+1:k+p]

J(x,u,∆u) (4.18a)

subject to: 4.16b, 4.16c, 4.16d, 4.16e

Theuseofequalityand inequality constraints (Equation (4.16d)andEquation (4.16e))
aims to consider operation limits or safety conditions during the state’s evolution of
the system. They can represent input constraints u(·) ∈ U, state constraints x(·) ∈ X,
boundary conditions, and system dynamics.
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Input constraints capture limitations in actuators or controlled variables, such as
amotor’s angular velocity, valve opening, among others. The setU is usually described
as a compact set since the parameters of the actuators are known, e.g., the mini-
mum and maximum angular velocity of a compressor or the rate of change of a mo-
tor. As this set is considered to be closed and bounded, the input constraints usually
take the form of inequality constraints, described as box constraints for the inputs as
U = {u ∈ Rm | ulb ≤ u(k) ≤ uub}, or for the inputs rate of change∆U = {∆u ∈ Rm |
∆ulb ≤ u(k + 1) − u(k) ≤ ∆uub}, where uub,∆uub and ulb,∆ulb are the upper and
lower bounds respectively [87].

State constraints represent physical limitations of the system, safety restrictions,
or quality parameters, among others [86]. The first refer to the physical properties or
capabilities of the system,while the latter ensure that the systemoperateswithin safe
and acceptable boundaries. An example of this can be temperature limits or rates of
change in temperature. The set of state constraints X is considered to form a single,
uninterrupted region in the state space, with no disjoints in the feasible set X = {x ∈
Rm | xlb ≤ x(k) ≤ xub} [87].

Boundary conditions encompass initial conditions and terminal constraints, and
system dynamics path and output constraints. For certain formulations, soft con-
straints can also be used to allow some flexibility in constraint satisfaction in the op-
timization by introducing penalty terms in the cost function for constraint violations
[85]. This is done by adding slack variables ϵ. For input constraints, for example, it is
formulated such thatulb ≤ u(k)− ϵ ≤ uub, where the difference is then penalized and
included as a part of the cost function. Therefore, the OCP from Equation (4.17a) can
be rewritten as:

J(x,∆u, ϵ) =

p−1∑
k=0

(l(x(k),u(k)) + r(∆u(k))) + ρ∥ϵ∥2 (4.19)

where ϵ represents the slack variables and ρ is a penalty weight.
For state-space, ODE, and some NN system models, the predictions are a single

future prediction, also known as One Step-Ahead (OSA) prediction. To get the full sys-
tem’s path x∗, a recursive iteration needs to be implemented. This may lead to two
disadvantages: more computational time to solve theoptimizationproblem isneeded,
whichmight be relevant in real-timeapplications [91]. Additionally, simplifiedmodels,
directmultiple shooting approaches or those that do not account for uncertainties are
prone to have deviated predictions from the true plant dynamics. These approaches
also do not consider past data other than the current state and the vanishing/explod-
ing gradients problem.

In comparison, there exist some data-based approaches like T-NN whose archi-
tecture enables Multi Step-Ahead (MSA) predictions up to the prediction horizon p as
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part of the model itself [38], [78], and include information further into the past up to
the look-backwindoww. With this, MPC can be enhanced and its relevance as amod-
ern control method improved. Due to its disturbance rejection enabled by its model
predicted behavior and the handling of constraints, it is a suitable tool for controlling
the STJ receiver.

4.6 Uncertainty quantification

While data-based approaches offer benefits over first-principlesmodels, uncertainty
in the models often accompany the resulting black-box models. Sources of uncer-
tainty include parametric variations, unmodeled dynamics or simplifications, distur-
bances,measurement andcommunicationnoise, linearization errors, and time - vary-
ing parameters, among others [96]. Addressing this uncertainty is crucial for improv-
ing control [97].

Uncertainty Quantification (UQ) involves identifying, characterizing, andmanaging
uncertainty inmathematicalmodelsand theirposteriorpredictionsas regressors [98].
Commonapproaches toaddressuncertainty includeprobabilisticmethods,whichmodel
uncertainty using probability distributions. Examples include Monte Carlo simula-
tions, Bayesian inference, and Gaussian Processes (GPs) [98].

This chapter demonstrates how GPs can incorporate UQ methods into NN, which
usually donot includeprobabilistic data in their predictions [45], [49]. Themain objec-
tive is toprovideoperatorswith valuableprobabilistic insights regarding theprediction
accuracy of the regression model, thereby improving reliability and aiding decision-
making. This implementation examines both the practicality and advantages of utiliz-
ing GPs in this context. Although a comprehensive overview of GP and UQ techniques
is provided for context, the focus remains on practical application rather than detailed
theoretical exploration. The goal is to demonstrate the motivation and encourage rig-
orous theoretical analysis for future work.

4.6.1 Gaussian processes

Among approaches for uncertainty quantification, GP regressors are used in state-of-
the-art control techniques due to their flexibility thanks to the non-parametric solu-
tion leveraged by kernels and theoretical probabilistic modeling [45], [48], [54].

Probabilistic regression using GPs extended from the linear regression problem
and considers a normally distributed additive noise. The linear approximation yk in
Equation 4.1b is rewritten in compact form as [98], [99]

y = xTw + ϵ (4.20a)
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where w ∈ Ri is the vector of parameters and ϵ ∼ N (µ, Σ). In this case, the mean
value µ of the normal distribution N (·) is assumed to be 0, and that the distribution
has a covarianceΣ ∈ Ri×i.

In the literature, thereare twomethods toapproximatenonlinear functionsasmap-
pings between the inputs x and outputs y. The first is using a set of basis functions
with nonlinear features ϕ(x) = [ϕ1(x), . . . , ϕi(x)]

T , which are linearly combined to ap-
proximate the function [45]. The second uses kernelmethods [100], which utilize sim-
ilarity functions to find the modeling relations based on observed data.

Kernel functions that describe the similarity of the observed data are defined as
k(x,x′) [100]. A commonly used kernel function in the literature is the Radial Basis
Function (RBF) kernel [48], [101]. The advantage of the kernel method is that it avoids
the calculation of basis functions and instead relies on training data to estimate the
parameters [45].

To solve the regression in a probabilistic fashion, the uncertainty in the prediction
of y for every new observed valuex ∈ Z̃ ismodeled as the predictive distributionP (y |
z). The likelihood of observing the model output y subject to the given parametersw
is given by:

P (y | w) = N (y; Z̃w,Σ(w)) (Likelihood) (4.21)

The approach also assumes a previous known information on the parameters that fol-
low a normal distribution such that:

P (w) = N (w; 0,Σ(w)) (Prior) (4.22)

where distribution is defined as a normal distribution N (µ, Σ) with mean µ = 0 and
covarianceΣ [98], [99].

UtilizingBayes’ theorem, theprobability of theparameters of themapping function
given the observed data, called the posterior, is calculated as:

P (w | y) = P (y | w)× P (w)

P (y)
= N (w;E(w),Σ(w)) (4.23a)

Posterior =
Likelihood× Prior
Marginal likelihood

(4.23b)

where P (w) is the prior information on the distribution of the parameters, P (y | w) is
the likelihood of the observed data given the parameters, and P (y) is the probability
of observing the data (marginal likelihood) [45], [99].
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Defined in the literature as ”a collection of random variables” [45], a GP is a dis-
tribution of multivariate normal distribution functions f(w; z) that describe observed
points z [100]. Formally, a GP is denoted as [97]:

f(x) ∼ GP(m(x), k(x,x′))

withm(x) (mean), and k(x,x′) (covariance) [102]. The solution to theproblem is solved
byminimization of the negative log likelihood (MaximumLikelihood Estimation (MLE))
or by the maximization of the posterior subject to the parameters (Maximum A Pos-
teriori estimation (MAP)). The solution can be formulated for both the basis functions
and kernel formulations, based on the assumption of a normal distribution given as:

P (x) =
1

σ
√
2π

e−
(x−µx)2

2σ2 (4.24)

This results in a predicted y with a mean µ and covariance Σ as a function of the
parameters w of the basis functions f or hyperparameters of the kernels.

Assuming that theparameters describing thenoise ϵare calculated, themodel can
be used to make predictions based on the inputs. This is described as ŷ = x̂Tw, and
the probability of the predicted value as [99]:

P (ŷ | y = z) = N (ŷ; x̂TE(w), x̂TΣ(w)x) (4.25)
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Chapter 5

Artificial Neural Network Dynamic
Models

Looking to research the applicability of data-basedmodels withmodern control tech-
niques, this work explores the use of a TransformerNeural Network (T-NN)withModel
Predictive Control (MPC). OurNN is based on themodel presented in the paper by Park
et al. [39]. Therefore, this chapter presents the methods and results of using T-NNs
applied to twocasestudies. Thescopeof this chapter includes thestructureand train-
ing processes of the NNs used, demonstrating their application in MPC scenarios.

5.1 Transformerneural networkarchitectureand trainingdata
stucture

Figure 5.1 show the Transformer Neural Network (T-NN) architecture used in this the-
sis. The implementation is based on the approach presented by Park et al. [39]. The
network consists of an encoder-decoder structure. Inside each encoder, input is en-
coded into embeddings E⃗i and fed into a given number of transformer blocks added
sequentially, each composed of a ”multi-head attention” layer, a residual connection,
and a pass through a feed-forward layer.

The datasetDused for trainingwas adapted to have a specific structure to be used
in the T-NN time-seriesmodel. For this thesis, theMulti Step-Ahead (MSA) prediction
capability of the architecture is explored. The input X, containing pairs of states xk ∈
Rx and inputs uk ∈ Ru with k = {0, 1, . . . , n}, takes the form of a three-dimensional
array called a tensor X. The set Y, with outputs yk ∈ Ry, is also added to the tensor X.
In the context of NNs, the first dimension of the tensor represents the batch, which is
the number of samples in the tensor. This will be used during training and evaluation.
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Figure 5.1: Transformer Neural Network (T-NN) architecture.

The latter two dimensions of the tensor correspond to the length of the time win-
dowand the number of embedding dimensions de. The timewindow forwhich the net-
work will be used is also known as the context size C. This time window is considered
to be constant, and its length is equal to the length of the look-backwindoww plus the
prediction horizon p. The size of the embedding dimension de is equal to the number
of variables in the system as R(y,u,x). For simplicity of representation, the latter two
dimensions of the tensor will be used for defining the equations and examples.

Furthermore, the attention mechanism present in the T-NN architecture has data
requirements in the tensor X. This is due to the T-NN using contextual information
from both future and past embeddings. For time-series predictions, this behavior
must be modified. When used as a regressor, the model must prevent future values
from influencing past ones. This is called masking or causal masking. As presented
in Section 4.3, one approach to achieve this effect is by setting the corresponding val-
ues inside the attention pattern to−∞. Another approach, as presented by Park et al.
[39], is to make all the output values y for future time steps equal to yk. As an anal-
ogy, this serves as labels l for the NN to predict those values given the inputs, where
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STUCTURE

Table 5.1: Data structure for T-NNmodel. Note repetition of yk in y′ from time t = k to
t = k + p. u is the optimization variable.

Context window at time t

Description Size k − w + 1 . . . k k + 1 . . . k + p

NN output Y p× l y yk+1 . . . yk+p

NN input X (w + p)× de

y′ yk−w+1 . . . yk yk . . . yk

u uk−w+1 . . . uk uk+1 . . . uk+p

x xk−w+1 . . . xk xk+1 . . . xk+p

dim(l) = dim(y). With this, the mathematical equations for the data structure are
given as:

Y = (yk+1, . . . , yk+p) ∈ Rp×l, (5.1a)

X =


(yk−w, . . . , y

′
k+1, . . . , y

′
k+p)

(uk−w, . . . , uk+p),

(xk−w, . . . , xk+p)

 ∈ R(w+p)×de , (5.1b)

where: y′k+i = yk, i = 1, . . . , p (5.1c)

Table 5.1 describes the structure of both the input X and outputY tensors for the T-
NNmodel, detailing their respective components anddimensions. TheNNoutput ten-
sor Y consists of predicted values for future time steps (yk+1, . . . , yk+p) with a size of
p× l. The inputX contains both the prior and posterior context from k = 0, represented
by sequences of states (xk−w+1, . . . , xk+p) and control inputs (uk−w+1, . . . , uk+p) over
a window size (w + p). Moreover, X includes the current output value yk−w, . . . , y

′
k+1,

. . . , y′k+p for future steps. This structure enables themodel to use historical datawhile
preventing future information leakage and influencing past values.

For the following sectionsandduring the evaluation of thiswork, theparameters of
theNNare shown in Table 5.2. Moreover, themethodology presented in this chapter is
based on that presented by Park et al. [39]. The dataset and source code are available
at https://github.com/BYU-PRISM/Transformer_MPC.

Taking advantage of the T-NN structure and its MSA prediction capabilities, it is
possible to includepastmeasurements to try tobetterpredict the futurestates. Known
as the look-back windoww, this enables themodel to include past dynamics to better
model future ones up to the prediction horizon p.
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Table 5.2: Options for Neural Network Model Configuration

Name Type Description

Embedding dimension de int Features/variables in input X

Feed-forward dimension int Feed-forward NN dimension

w int Look-back window

p int Prediction horizon

Attention heads int Number of heads in the mul-
tihead attention

Transformer layers int Number of sequential trans-
former layers

Dropout % float Dropout percentage in evalu-
ation mode

Output dimension l int Features/variables to be
fit/predicted. Output Y

Optimizer Literal[’Adam’, ’AdamW’] Optimizer used for training

Learning rate float Optimization learning rate

Residual connection bool Enables last layer residual
connection

Persistence model bool Enables persistence model.
Serves as baseline

While the use of masking for the attention head is important for the predicted vari-
ables, it can be reformulated to achieve predictive behavior in the states. Future val-
ues can be added in states variables as predictions of possible future changes or dis-
turbances, hence enabling the model to better predict how the system will behave,
thereby leveraging MPC.

To program and train NNs, Python 3.11 [103] is used in this work. While Park et
al.[39]usedTensorFlow [104] for theNN,ourapproachwasbasedonPyTorch2.11 [105]
and PyTorch Lightning 2.1.3 [106]. TensorBoard 2.16.2 was used as logger.
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Table 5.3: First order plus dead-time neural network parameter configuration

Name Value Name Value

Embedding dimension de 2 Dropout 20%

w 5 Output dimension l 1

p 10 Optimizer Adam

Attention heads 2 Learning rate 1e-4

Transformer layers 3

Trainable parameters 1888

5.2 First order plus dead-timemodel

To explore the use of T-NN as dynamic models, the dataset from the First-Order Plus
Dead-Time (FOPDT)model described in Park et al. [39] is used. Its dynamics aremath-
ematically expressed as:

ẏ(t) = (1/τp)(−y(t) +Kpu(t− θp)) (5.2)

withKp = 1 (process gain), τp = 2 (time constant), and θp = 0 (dead time).

In an attempt to reproduce the NN architecture presented by Park et al. [39], the
implementation in PyTorch was adapted to have a number of trainable parameters
close to that reportedby the authors of the paper. In thiswork, the number of trainable
parameters was 1888 for the FOPDTmodel. In contrast, the TensorFlow implementa-
tion shown in the paper has a total of 1758 trainable parameters. Moreover, the last
layer residual connection was disabled to replicate the paper’s architecture. The pa-
rameters of the NN are described in Table 5.3. As described in the paper, the dataset
was created using simulation for random inputs u for a length of 1600 data points.

Using the validation set and its Mean Squared Error (MSE) as early stopping cri-
teria, the T-NN achieved on average a test loss value of 1.537 × 10−3 (σ = 5.35 × 10−4

with 5 experiments), and 3.639×10−3 (σ = 2.65×10−4with 5 experiments)with 0%and
10% noise respectively. Noise is added directly to themeasurements as a percentage
of the standard deviation of the dataset. These values are obtained for the complete
dataset.

Figure 5.2 shows an example of the T-NN model of the FOPDT system model, and
an ODE simulation for the same input u. The graph shows that theNNmodel has been
capable of capturing the dynamics of the system to a certain extent. In this example,
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Figure 5.2: Example of FOPDT and T-NNmodel output y for a given input u

the MSE is equal to 0.027066. Although the accuracy of the model depends on the
region of validity atwhich themodelwas trained, and themodel deviated from theODE
simulation, it shows the capability to model system dynamics. The model accuracy
can be further enhanced with extended training, improved parameter selection, and
model structure.

5.3 Solar tower Jülichmodel

The Solar Tower Power Plant Jülich (STJ) NN model was trained using the dataset D
shown in Chapter2. The total length of the dataset consists of 109,821measured data
points, obtained during 6 days of data acquisition in May and June 2023. Using the
TensorBoard library, MSE values were logged for ŷ, as well as for Tsurface and Thot air

individually.
The parameters of the NN that were kept fixed are described in Table 5.4.

5.3.1 Data pre-processing and filtering

The datasets and the resulting sequences for the input tensor X are a function of the
look-back windows w and the prediction horizon p. In this approach these values are
considered constant and set for the training. Dataset are then divided into training,
validation and test subsets in a ratio of 70%-20%-10%. The training sequences were
designed to be non-overlapping by creating arrays of validation and test sequence in-
dices. These arrays were extended to include adjacent sequence indices (plus or mi-
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Table 5.4: Solar tower Jülich neural network parameter configuration

Name Value Name Value

Embedding dimension de 5 Dropout 20%

Output dimension l 2 Optimizer Adam

Attention heads 5 Transformer layers 3

Trainable parameters 1888

nus one). If the training sequence index was found in these arrays, it was removed
from the training sequence to maintain exclusivity between the datasets. This struc-
ture ensured that the subsets were mutually exclusive, eliminating any potential for
information leakage that could lead to optimistic performance estimates. While this
approachprevents information leakage, it reduces the lengthof the trainingsequence.

As loss function, the Mean Squared Error (MSE) for training, validation and test
were logged throughout the training process. The validationMSEwas used as an early
stop criterion. Early stopping was configured in ’minimum’mode with a patience of 30
epochs to avoid overfitting.

In thecaseof theFOPDTmodel, thedatasetprovidedassumedequally spaceddata
points, thanks to the ODE system formulation and the numerical simulation. In the
case of the Solar Tower Power Plant Jülich (STJ), the dataset requires pre-processing
and filtering due to its real-world nature.
At the facility, the integrated sensor system is programmed tomakemeasurements at
a frequency of 1 Hz. For this work, the dataset was reduced to the five variables of in-
terest shown inpreviously 2.1: receiver’smeansurface temperatureTsurface , receiver’s
mean surface apparent brightness IQ̇, hot air temperature Thot air , cold air tempera-
ture Tcold air , and air mass flow ṁair .

Due to the data structure needed to train and evaluate the NN, the dataset needs
to fulfill the following requirements: window overlap ≥ 50%, X̂ = (X− µ(X))/σ(X),
X̂ ∈ R(w+p)×de , NaN /∈ X̂, set window overlapping. The first condition requires a se-
quence overlap greater or equal to 50%. The second describes that the input ten-
sor X is normalized and written as X̂. The second condition requires that from the
109,821 available data points, they need to be divided into sequences of shape (w +

p) × de. Last, X̂ must have a value at every position. This also means that measure-
mentsshouldbeequallydistantat1-second intervals. Algorithm2describes thesteps
for pre-processing and sequencing:
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Figure 5.3: Tsurface noisy data and comparison of different filters. Note step offsets in
the measurements attributed to camera’s auto-calibration.

Algorithm 2 Data pre-processing and sequencing

1: X← Dataset {Read and load data to tensor}
2: X̂← X−µ(X)

σ(X) {Normalize}

3: X̂← Filter X̂ {Apply desired filtering}
4: stride← ⌊(1−window overlap%)× (w + p)⌋ {Calculate stride}
5: for i← 0, total_length, stride do
6: X̂i ← X̂[i : i+ w + p] {Extract sequence}
7: Check X̂i continuous at 1 Hz and noNaNs. {Check sequence}
8: end for
9: return X̂i

In the dataset, measurement artifacts and noise are observed, particularly for the
Tsurface values obtained from the IR camera. To filter the data, two approaches are
used: Direct data filtering and spectrogram analysis.

In the firstmethod, different typesof signal filters like exponential smoothing, Sav-
itzky - Golay, low-pass, and combinationswere tested. Filters are passed forward and
backward to reduce phase delay. Figure 5.3 shows a snapshot of the normalized re-
ceiver’s mean surface temperature data, where different filters are applied for com-
parison.

In the second procedure, we calculate the spectrogram of the entire Tsurface mea-
surements. We sum the intensities across all frequencies and then normalize them.
We mark peaks where the summed intensities exceed a threshold, indicating regions
with noise due to higher frequency components. Figure 5.4 shows a graph of this anal-
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ysis before and after filtering for comparison. In the upper graph, Tsurface data is plot-
ted. The middle graph shows the spectrogram applied to the filtered data, and the
bottom graph shows the added normalized intensity with detected peaks. All three
graphs highlight the regions of noise around the peaks. The identified regions are dis-
carded from the dataset and not used during training and inference. For the following,
this is referred to as denoising. The firstmethodhelpswith directmeasurement noise,
while the second helps identify regions in the data that are not suitable for training.

Results for the data filtering in Figure 5.3 show that there has been a marked de-
crease in the apparent noise in the datawhile preserving the trendwith no observable
phase delay for all filters tested. Observing the data points, measurement temporal
offsets are observed. These are revealed as offset shifts in the data which are dis-
played as sudden steps in the measurements. In the graph, four of these offset ef-
fects are shown. These were later attributed to the IR camera auto-calibration, and
the effect of these were not filtered. These remain open for future work.

For the purpose of training and inference, the low-pass filter is selected for its im-
plementation simplicity. After applying the filter to the Tsurface dataset, the measure-
ments showed an Signal-to-Noise Ratio (SNR) increase of 23.40 dB and a correlation
factor of 99.77%. An SNR above 0 dB implies that the signal power is higher than the
noise power, suggesting lower noise influence. Additionally, with a correlation factor
closer to 1, it suggests that the filtered signal retainsmost of the information from the
original signal.

Furthermore, Figure 5.4b shows a sharp reduction in the frequency components
in the spectrogram (middle graph). What stands out in this figure is the dominance of
frequency components in the lower ends of the normalized values (in the region of -2.5
in the y-axis). These artifactswere later found to be related to themeasurement range
of the IR camera system. These represent the measured values at ambient tempera-
ture before the operation of the solar tower. With a measuring range beginning at 300
°C, measurements below this value are not reliable and prone to high measurement
error. With this in mind, the method of finding regions of high noise in the dataset by
means of spectrogram analysis offers a systematic approach.

For the training of the T-NNwith the STJ dataset, various parameter combinations
were tested. Unlike the approach by Park et al. [39] with the FOPDTmodel, we investi-
gated the use of longer look-backwindoww values compared to the prediction horizon
p. For this study, p = {10, 20, . . . , 60} and w = {30, 45, . . . , 120}were tested.

For reference in the length of available training sequences, using datawith filtered
measurements and deleted regions with high noise, the total number of dataset se-
quences results in 427 for w = 120 and p = 300. After splitting, the number of se-
quences in the trainingdataset drops from298 to 136. Validation sequences therefore
are 85 elements long, and 44 for test.
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(a) Tsurface unfiltered

(b) Tsurface filtered
Figure 5.4: Tsurface data spectrogram. Unfiltered data (left). Filtered data with low-
pass filter with critical frequency at 0.05Hz (right). Note drop in normalized noise sig-
nal intensity and less components in frequency domain while preserving data struc-
ture.
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Figure 5.5: Unfiltered data receiver’s mean surface temperature Tsurface learning
curve. TensorBoard logger sample.

Initially, the unfiltered dataset was used for training. During training, it was ob-
served that the learning curve of the Tsurface showed apparent peaks in the loss. Log-
ging values are captured and plotted with the TensorBoard library. This effect is de-
picted in Figure 5.5 as an extract of the logging board. Contrary to a decreasing learn-
ing curve, the graphshowedsomeepochswith loss valueshigher than the initial value.
This unexpected behavior was subject to analysis.

Observing the data as shown in Figure 5.3 and Figure 5.4b, the dataset presented
data points with highmeasurement noise. This concluded that filtering themeasure-
ment of the Tsurface was needed for the complete scope of the work.

After selecting a low-pass filter as the standard filter, and removing regions of high
noise from training (Subsection5.3.1), theMSE in the validation stepwas reduced. Us-
inga test samplewithw = 30, p = 20andw = 120, p = 20, andmeasuring theMSEdur-
ing validation, the loss value decreased for Tsurface from 6.743× 10−3 and 4.449× 10−3

respectively before filtering, to 9.8 × 10−4 and 1.369 × 10−3 respectively after filter-
ing. This represents an 85.46% and 69.23% reduction in the loss value for validation
respectively.

5.3.2 Last layer residual connection

Following the results in Section 5.2, the structure of the T-NN was analyzed and im-
proved. A last layer residual connection was added to the NN as seen in Section 4.2,
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Figure 5.6: Last layer residual connection prediction comparison of receiver hot air
temperature Thot air prediction.

whose structure is depicted in Figure 5.1. After learning the additional residuals, the
trained NN showed better performance.

With parameters w = 120, p = 20, Figure 5.6 shows a sample of the measured
dataset and the NN prediction for Thot air .

On the left, the NN does not have a last layer residual connection. Comparing both
graphs, it is clear that the residual connection improved the prediction capabilities.
This is observed in the discrepancy between the measured values and the predicted
values, where the T-NN with a residual connection captures the dynamics of the sys-
tem more accurately. For instance, the RMSE of the measurement and prediction
without a residual connection has a value of 1.798 × 10−1, compared to 1.09 × 10−2

with a residual connection, considering unnormalized values.

This discrepancy was observed in other training sequences as well. Using a test
sample with w = 30, p = 20 and w = 120, p = 20, and measuring the MSE for Thot air
during validation, the loss value decreased from 1.711× 10−3 and 2.95× 10−3 respec-
tively without a residual connection, to 9.0 × 10−5 and 7.6 × 10−5 respectively with a
residual connection. This represents a 94.74% and 97.42% or 2 order of magnitude
reduction in the loss value for validation respectively.

Although not investigated, the discrepancy between the ODE and NN model ob-
served in Figure 5.2 is considered capable of reductionwhenusing a last layer residual
connection.

To assess the impact of both infrared measurement filtering, data denoising, and
the last layer residual connection, a comparative analysis was made. Using a persis-
tence model as described in Section 4.2, the validation loss value was contrasted.

A total of 5 NNswere trained and tested for each combination of parameters. With
w = {30, 120} and p = 20 as selected parameter variations, the MSE loss value for
validationand testingwasobtained forThot air andTsurface . Thiswas repeated for each

52



5.3. SOLAR TOWER JÜLICHMODEL

combination of residual connection and filtering enabled. Last, the same values were
captured fromapersistencemodel with the sameparameter combinations. When the
test MSE value of the trained NN is lower than the persistence model, it is marked as
”Y”.

As shown in Table 5.5, the results demonstrate that without the last layer residual
connection and filtering on Tsurface measurements, the trained NN only learned the
dynamics of the receiver’s mean surface temperature, but not for the hot air.

The table also shows that with the last layer residual connection alone, the trained
T-NNwascapableof learningbothThot air andTsurface better thanapersistencemodel,
suggesting effective learning from the data. When testing data filtering alone without
residuals, the comparison fails, suggesting that themodel did not learn the dynamics
of Tsurface .

While the residual connection enabled the model to learn both dynamics, using
data filtering in parallel reduced the loss value further. Even more, while the combi-
nation improved the model overall, the reduction of the loss value was greater in the
surface temperature dynamics. Thus, the overall MSE for both variables is calculated
to account for their influence.
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Table 5.5: Validation loss value and persistence model comparison table for w, p, residual connection and filtering parameters

w p Residual Filtering
MSE validation loss Persistencemodel test MSE comparison

connection Sum Tsurface Thot air Sum Tsurface Thot air

30 20 N N 4.227× 10−3 6.743× 10−3 1.711× 10−3 Y Y N

120 20 N N 3.700× 10−3 4.449× 10−3 2.950× 10−3 Y Y N

30 20 Y N 2.676× 10−3 5.262× 10−3 9.000× 10−5 Y Y Y

120 20 Y N 1.789× 10−3 3.503× 10−3 7.600× 10−5 Y Y Y

30 20 N Y 7.210× 10−4 9.800× 10−4 4.620× 10−4 Y N Y

120 20 N Y 1.526× 10−3 1.369× 10−3 1.682× 10−3 Y N Y

30 20 Y Y 1.850× 10−4 3.090× 10−4 6.100× 10−5 Y Y Y

120 20 Y Y 1.910× 10−4 3.150× 10−4 6.800× 10−5 Y Y Y
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With the results obtained, it is concluded that a last layer residual connection and
measurement filtering are needed for the T-NNmodel to increase the accuracy of the
predictions and therefore improve the efficiency of the MPC controller.

5.3.3 Hyperparameters: Look-back window and prediction horizon

After finding that the model prediction error was reduced by using filters in the mea-
sureddata andadding a last layer residual connection to the T-NN, it was of interest to
findwhich combination of parametersw (look-backwindow) and p (prediction horizon)
offered higher prediction accuracy. Additionally, the set of valuesw and pwas adapted
to explore the use of longer prediction horizons due to the observed slow dynamics of
the system.

To obtain prediction accuracy insights, 5 NNs for each combination p = {60, 120,
. . . , 300} and w = {30, 60, . . . , 120} were trained, for a total of 20 combinations, and
100 trained NNs.

Tomakeequivalentcomparisons,MSE lossvalues for training, validation, and test-
ing were obtained for each prediction horizon value. This was calculated as:

Training lossNN(w,p) =

MSE(yk, ŷk) ∀k ∈ {0, . . . , i}, if i ≤ p,

1 otherwise.
(5.3)

Figure 5.7 illustrates Equation 5.3. Consider three NNs trained with a look-back
windoww and three distinct prediction horizons p. Predictions ŷ1, ŷ2 and ŷ3 of the real
output y are distinct from each other. The prediction deviation from the true value
is expected to increase for higher values of k. Calculating the MSE for the complete
prediction sequence of length k = {0, . . . , p} for each NN{1,2,3}, the values are at most
15% distinct from each other and in the same order of magnitude. The value for each
NN does not distinguish if the first predictions are closer to the true value since the
overall loss is calculated with values close to each other.

In contrast, if the MSE is calculated for the minimum prediction horizon p (in the
example graph p = 60), a NNwith better prediction accuracy (lowerMSE) for that time
window can be found. In our example, this is the case for NN3(p = 180) ŷ3. This is
beneficial and applicable since we assume that theMPC utilizes themodel where the
first optimal control inputs are used before reevaluating the model.

In this example, theMSEp=60 values are 22.0×10−3 and 7.6×10−3 for NN1 andNN3

respectively. This represents a reduction of the MSE loss value of 14.4× 10−3 or 65%.
Themethod described in Equation 5.3 is used to select theNNs thatwill be used in the
MPC.
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Figure 5.7: Example of neural network mean squared error comparison for different
prediction horizons p

Parameters such as the look-back window w and prediction horizon p are impor-
tant for capturing temporal dependencies and ensuring accurate future state predic-
tions. For this purpose, loss values were obtained for each of the 100 NN trained.
Surfaces were created using interpolation and analyzed to provide insights into the
optimization surface present during neural network training at different parameter
values.

Considering that the receiver hot air Thot air will be used for tracking MPC, the ob-
tainedMSE lossvaluesare rankedatp = 60 for that variable (sort oncolumnThot air,p=60).

Looking at Table 5.6, it was found that NN28(w = 60, p = 120) has the lowest MSE
validation loss at 3.01 × 10−4. For this reason, and considering the slow dynamics
present at the STJ plant, w = 60 and p = 120 are selected as fixed parameters for the
following chapters. For a simulated real plant that will be used in a software-in-the-
loop simulation, the trained neural network NN28 is selected. For the model present
in the MPC controller, neural network NN25 is chosen as it has the same parameter
combinationwhile havingworse prediction performance. Having differentmodels and
using those with worse performance is intended to explore the influence of dynamic
discrepancies in the controller.

It is also noteworthy that theMSE loss value of Thot air is at least one order ofmag-
nitude smaller than that of Tsurface .

For reference, using data with filtered measurements and deleted regions with
high noise, the total number of dataset sequences results in 1062 for w = 60 and
p = 120. After splitting, the number of sequences in the training dataset drops from
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Table 5.6: Lowest 10 mean squared error validation loss for w and p combinations
ranked at p = 60

NN w p
MSE validation loss

Sum Sump=60 Thot air , p=60 Tsurface , p=60

28 60 120 0.001702 0.000741 0.000301 0.001182

06 60 60 0.000738 0.000737 0.000308 0.001167

92 90 300 0.005142 0.000714 0.000321 0.001107

07 60 60 0.000835 0.000835 0.000322 0.001347

04 30 60 0.001000 0.001000 0.000324 0.001677

29 60 120 0.001889 0.000801 0.000326 0.001276

27 60 120 0.001815 0.000781 0.000337 0.001225

25 60 120 0.001853 0.000798 0.000339 0.001257

16 120 60 0.000699 0.000699 0.000351 0.001047

94 90 300 0.006895 0.000815 0.000352 0.001277

743 to 372. Validation sequences therefore are 212 elements long, and107 for testing.
Additionally, with the above-mentioned parameter configuration, the model presents
a total of 219,915 trainable parameters.

As opposed to the learning curves obtained for unfiltered data as shown in Fig-
ure 5.5, the corresponding MSE loss values during training and validation did not ex-
hibit the same noise artifacts described. For reference, Figure 5.8a shows the logged
values for p = 60 during training, while Figure 5.8b shows the values for validation.

Regarding the corresponding loss surfaces, a 2-dimensional interpolation fit was
done for all the values. The resulting surface contour plots are obtained as well. Us-
ing the calculated surface interpolation values, the minimum z value (MSE loss) was
obtainedwith its correspondingw and p. Figure 5.9 shows the surface contour plot for
training, validation, and testing at p = 60 using the values of Table 5.6 (Figure 5.9a,
Figure 5.9b and Figure 5.9c respectively). Measured values are added as scattered
points in the graphmarked in red.

The graphs show that there is no apparent correlation in the loss surfaces. What
is interesting in this figure is the difference between them. Three behaviors were ex-
pected to be observed: similar contours with relatively equal gradients and orders of
magnitude, similar or closer minimums, and higher MSE loss at greater values of p.
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(a) Training (b) Validation
Figure 5.8: MSE loss curves at p = 60

The first pointwasnotmet, as lowerandhigher valuesbetween thecontoursdonot
match, and the isolines dividing the values are located in different locations. Surface
minimum values are 4.0× 10−4, 4.5× 10−4, and 6.4× 10−4 for training, validation, and
testing respectively. In the sameorder, surfacemaximumvalues are 32.0×10−4, 15.0×
10−4, and 12.8× 10−4.

Second, surfaceminimumsare locatedatdifferent combinationsofw and p. These
are located at w ≈ 81, p = 60 for training, w = 120, p = 60 for validation, and w =

30, p = 300 for testing. The loss value for eachminimum is 4.42×10−4, 5.94×10−4, and
6.57× 10−4 respectively.

Last, while training and validation MSE surface contours show a clear increase in
the loss value for higher values of p, testing does not.

It is then concluded that, due to the difference between training, validation, and
testing MSE loss and their surfaces, a global optimum around the combinations of w
and p tested was found. This effect may be due to the size of the dataset, dynamics
present in the dataset, or the prevalence of measurement noise. This also opens the
lineof inquiry tooptimize theNNstructure tobetter capture thedynamicsandpossibly
find a suitable combination of parameters.

Training, validation, and testing MSE loss value tables can be found in the Ap-
pendix, Chapter C. The corresponding loss surfaces are also available in the Appendix,
Chapter B.
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(a) Training (b) Validation

(c) Testing
Figure 5.9: MSE loss surface contour at p = 60
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Chapter 6

Neural NetworkModel Predictive
Control

This chapter presents the use of NN dynamic models, with a focus on Model Predic-
tive Control (MPC). WhileMPC relies on accuratemodels, some dynamics can be chal-
lenging to formulate for complex systems. NNs, particularly novel structures such as
TransformerNeural Network (T-NN), adopt a data-driven approach tomodel these dy-
namics. The captured nonlinearities, also possible for MIMO systems, are thus ex-
pressed in a model that can be leveraged by the controller.

This research explores how neural network-based MPC can be implemented and
tested in various scenarios. The goal is to demonstrate the applicability ofMPC in con-
trolling complex systems, specifically within the context of solar power plants like the
Solar Tower Power Plant Jülich (STJ). Additionally, the research investigates the use of
optimization algorithms commonly found in NN training applications to solve the OCP
presented by the MPC.

Similar to Chapter 5, the First-Order Plus Dead-Time (FOPDT) model presented by
Park et al. [39] and the Solar Tower Power Plant Jülich (STJ) model were used. While
the first case was used to explore application feasibility, the second employs a more
rigorous qualitative methodology. For both models, it is assumed that all states are
observable and that the systems are completely controllable in all described control
scenarios.

Closed-loop simulations were done and performance of the controller subject to
the given models was measured. Such a closed-loop is depicted in Figure 4.6, Sec-
tion 4.5.
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6.1 First oder plus dead-timeMPC

To simulate the FOPDTmodel for testing and performance evaluation, a change in the
setpoint yref was introduced in an unconstrained MPC formulation as in the work of
Park et al. [39]. While the paper’s authors used TensorFlow [104] for the NN and SciPy
library [107] for the OCP, we compared the performance using PyTorch 2.1.1 [105] and
replicate using Scipy 1.11.4. These libraries were used with Python 3.11 [103].

The formulation of theMPCwas implementedasdescribed inPark et al.[39], which
is given by:

minimize
∆u[k+1:k+p]

p−1∑
k=0

(l(x(k),u(k)) + r(∆u(k))), (6.1a)

subject to: x(k + 1) = f(x(k),u(k)), (6.1b)

where, l(x(k),u(k)) = f ′(x(k),u(k))⊤Qf ′(x(k),u(k)), (6.1c)

r(∆u(k)) = ∆u(k)⊤R∆u(k), (6.1d)

∆u(k) = u(k)− u(k − 1), (6.1e)

f ′(x(k),u(k)) = x(k + 1)− xref (k + 1) (6.1f)

For the FOPDT model, a single step k was simulated to explore the behavior of the
MPC controller. A change in the set point value yref was set from its initial condition
at y = 0.5 to y = 1.0 using the NNmodel described in Chapter 5. For comparison, the
simulation was also performed using an ODEmodel.

To compare the solution between the first-principles model and the data-based
approach, 3 simulation results are obtained: ODEMPC using SciPy’s numeric integra-
tor, a T-NN MPC using SciPy as optimizer, and a T-NN MPC using the PyTorch Adam
optimizer. Results are shown in Figure 6.1.

For the ODE simulation, the MPC problem was solved using SciPy’s minimize Se-
quential Least SQuares Programming (SLSQP) optimizer (eps=1e-6, ftol=1e-3). The
second simulation was solved with the same approach. The PyTorch simulation was
solved using the Adam optimizer (learning rate=0.0238, eps=1e-3). Figure 6.1a shows
the output variable y and its simulated dynamics for the 3 simulations. From the
graph, we can see that there is a difference between the ODEmodel and the dynamics
described by the T-NN model. In contrast, there is no significant difference between
the results obtained using SciPy and PyTorch. Furthermore, while there is a difference
between themodels, the values converge at step k = 3. It is worth noting the discrep-
ancy between the ODE and NNmodels, which accounts for up to 12.5% at time k = 2.
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(a) Model output y (b) MPC controlled input variable u
Figure 6.1: FOPDT response model y at time k = 1 for change in setpoint given MPC
control input u∗. Results replicate reported findings by Park et al. [39]. Note different
u∗ and y values at k = 1 due to model differences.

On the other hand, Figure 6.1b shows the value of the controlled variable u∗ over
time obtained by theMPC.While the initial guess of the optimizer is initializedwith the
same value across the simulations, the optimal solution at k + 1 is different between
the ODE and NNmodels. This is believed to be due to the model’s accuracy. Addition-
ally, and unlike the previous graph, the final value of u∗ is also different.

Results obtained also replicate those obtained by Park et al. [39] for the ODE and
SciPy cases.

The final value of the cost function demonstrates a clear difference between the
first-principles and NN models. With the specified optimizer parameters, the final
value of the cost function was 3.5224, 25.9760, and 25.9593 for the ODE-SciPy, T-
NN-SciPy, and T-NN-PyTorchmodels, respectively. These observationswere notmen-
tioned in the paper by Park et al. [39], but they do suggest that improvements to the
model are needed to achieve higher prediction accuracy and potentially reduce the
difference in the cost function due to difference in modeled dynamics.

What stands out in both figures is the different solution times of the MPC cycle.
While ODE simulations are typically faster, the difference between the SciPy and Py-
Torch approaches is significant. On average, the PyTorch approach took 50% less time
than using the constrained optimizer in SciPy. While this is partially attributed to the
calculation of the gradients for each optimizer, it was not the subject of research in
this work.

In this context, the SciPy library uses numerical methods to calculate gradients.
Specifically, it computes the gradient using first-order one-sided differences. While
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Figure 6.2: STJ motivation scenario for MPC

second-ordermethods are available, they are typically computationally expensive. On
the other hand, PyTorch uses a technique called automatic differentiation using Py-
Torch’s Autogradmodule. Moreover, the use of tensor-based libraries and parallel NN
architectures such as Transformer can further reduce the solution times, especially
when improved by using GPUs.
Findings on the applicability of T-NN as dynamicsmodels and the fasterMPC compu-
tation timecompared toconstrainedoptimizersextended the interest of usingPyTorch
in the STJ case.

6.2 Solar tower JülichMPC

The STJ is subject to operational constraints in the following parameters: hot air tem-
perature (Thot air ), air mass flow (ṁair ), and surface temperature (Ṫsurface ). The first of
these constraints is related to themaximumoperating temperature in theHTM,which
is defined as the temperature at which degradation or failure of different components
along the fluid’s path may occur. The second constraint is associated with the max-
imum and minimum angular velocity of the compressor that actuates the air in the
system. The third constraint is related to temperature gradients. Higher temperature
changes than those permitted could damage the receiver’s ceramic cups due to inter-
nal stresses.

The evolution of the system, variables and cloud disturbances as well as the ap-
pearance of these constraints over time are depicted in Figure6.2. From time t0 to t1,
the system is in a steady state. At time t1, a cloud blocks the heliostat field, resulting
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in a decline in the apparent receiver’s surface brightness IQ̇ and surface temperature
Tsurface that persists until time t2. At this point, the controller attempts to mitigate
the disturbance by reducing the controlled variable ṁair , thereby restoring the hot air
temperature Thot air to its setpoint. At time t3, the cloud passes and the irradiation re-
turn to their previous levels, while the air massflow remain constant. This presents a
risk scenario in which a change in the ṁair occurs at a later time. At time t3, a sudden
increase in IQ̇translates into a higher surface and hot air temperatures. Depending on
the disturbance, this increase in surface temperature could also violate the temper-
ature gradients constraints. Consequently, the rise in the temperature of the hot air
could reach levels above the maximum safe operational point. This is where the ad-
vantages of the MPC could be exploited, by allowing the controller to find a controlled
variable trajectory that rejects the disturbances while tracking the setpoint.

6.2.1 Testing scenarios

Based on the values observed in the Solar Tower Power Plant Jülich (STJ) plant mea-
sureddata , four different testing scenarioswere created, divided into two groups. The
first group focuses onassessing theMPC in operation regimes close to the constraints
(C.V.). The goal of the second group is to obtain insights into nominal operation condi-
tions (N.O.). Each scenario has its initial values.

Tosimulatechangingconditions, 7consecutivestepswereconsidered. For the first
group, each step has a length of 5 minutes, while the second group has steps of 15
minutes. The initial conditionsofbothscenariosareshown inTableA.1,while the time-
variant step values are shown in Table A.2, both in the Appendix, Chapter Datasheets.
Direct publication of the raw data from the findings is not permissible. Nonetheless,
results are shown in a normalized manner.

Constraint violation and nominal operation scenarios 1 describe a Thot air track-
ing MPC controller simulation at constant IQ̇for different values of Thot air . In con-
trast, while having the Thot air tracking behavior, its value was kept constant in con-
straint violation and nominal operation scenarios 2. Additionally, these scenarios ex-
hibit changes in IQ̇to emulate the influence of solar irradiation disturbances such as
cloud passes.

In the case of scenario C.V. 2, disturbances were emulated during steps 2, 4, and 6
by a change in IQ̇of -50%, +50%, and -70% relative to the initial value. For scenario
N.O. 2, disturbances are simulated in a similar fashion, with -25%, -50%, and -70%
relative to the initial value.

Operating constraints are described as lower and upper bounds (L.B. and U.B., re-
spectively) for ṁair . Thesamewasset forThot air , butwithdifferentupperboundvalues
depending on the testing scenario, being lower in the constraint violation scenarios.
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Figure 6.3: Nominal operation test scenario 1. Hot air Thot air temperature tracking at
constant solar irradiation IQ̇. MPCmoving windoww+ p in solid line. Future values in
dashed line.

Lastly, a constraint on the receiver’s surface temperature gradients Ṫsurface is imposed
to avoid damage to the ceramic material due to rapid heating and cooling. These con-
straints are shown in Appendix, Table A.3.

Given the constraints, the test scenarios are designed to drive the MPC towards
and outside the bounds to test the controller’s performance and constraint violation
rejection. This is done by setting Thot air setpoints greater than or equal to the upper
bound constraint. The simulation steps at which this situation occurs are marked in
bold in Table A.1 and Table A.2.

For purposes of comparison, Figure 6.3 depicts the timegraph for the normal oper-
ation scenario 1 (N.O. 1). This graph depicts the hot air temperature setpoint Thot air, ref
for the controller and the values for statesx and outputs y. While outputs, states, and
inputs are shown, they illustrate the initial conditions. The scenario is initiated at time
t = 0, and the solid line depicts the data used as the input sequence in the tensorX.
The dashed lines represent future values, which are updated during the simulation.
Vertical lines at time t = w and t = w + p are also depicted to illustrate the moving
window of the MPC. A graph for all testing scenarios can be found in the Appendix,
Chapter B.
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Table 6.1: Optimizers used in the MPC formulation

Library Optimizer

PyTorch Adam AdamW Yogi L-BFGS

SciPy Trust-constr COBYLA SLSQP

6.2.2 Barrier functions constrainedMPC

This work also tested the performance of newer optimization algorithms to solve the
OCP.WhilePark et al. [39] usedSLSQP (Kraft [108]) as theoptimizer algorithmwith the
SciPy library (Virtanenetal. [107], SciPy1.11.4) toobtain theoptimal control sequence,
thisworkwasbasedonother tools. Using thePyTorch library, optimizers suchasAdam
(Kingma et al. [109]), AdamW (Loshchilov and Hutter [110]), Yogi (Zaheer et al. [111]),
and Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) (Schmidt [112])
were tested. The L-BFGS algorithm uses a low-rank Hessian approximation for the
line search.

While thementionedoptimizersarebuilt forunconstrained formulations, theywere
used for constrainedproblemsbymeansofbarrier functions. To compareagainst con-
strained optimizers, the SciPy library (Virtanen et al. [107]) is implemented using op-
timizers such as Constrained Optimization BY Linear Approximation (COBYLA) ( [113]–
[115]), Sequential Least SQuares Programming (SLSQP) ([108]), and trust-region inte-
rior point method (Trust-constr) ([116]).

Table 6.1 shows the list of optimizers used. For further detail, SciPy optimizer op-
tions are shown in Table A.6, and PyTorch optimizer options are shown in Table A.5.

The controller is programmed and implemented in the unconstrained case based
on Equation 6.2.
Forcompleteness, the formulationof thecost functionJ of theMPCfor theconstrained
case using unconstrained optimizers is defined as:

J(x,u,∆u) =

p−1∑
k=0

(l(x(k),u(k)) + r(∆u(k))) +
m∑
i=1

ϕ(gi(x)) (6.2a)

with: l(x(k),u(k)) = f ′(x(k),u(k))⊤Qf ′(x(k),u(k)), (6.2b)

r(∆u(k)) = ∆u(k)⊤R∆u(k), (6.2c)

ϕ(gi(x)) =

p−1∑
k=0

(Î_(vj(x))), j = [1, 6] (6.2d)
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where Î_(v(x)) represent the barrier function for the value function v.

Furthermore, the MPC gain matrices Q and R are selected consistently for each
study case to ensure equivalence across different scenarios. These are given as:

R =

[
1

]
(6.3a)

Q =

1 0

0 10

 (6.3b)

Considering 6 constraints in total, 3 variables (Thot air , ṁair , Ṫsurface ), and 2 bounds
each (lower and upper bound), the value functions vj(x) for the constrained formula-
tion are given as:

v1 = ˙̃mair − ṁair, U.B., (6.4a)

v2 = ṁair, L.B. − ˙̃mair, (6.4b)

v3 = T̃hot air − Thot air, U.B., (6.4c)

v4 = Thot air, L.B. − T̃hot air, (6.4d)

v5 =
˙̃Tsurface − Ṫsurface, U.B., (6.4e)

v6 = Ṫsurface, L.B. −
˙̃Tsurface (6.4f)

where the tilde variable represents the obtained value at each optimization iteration.
The tuning parameters β, γ, and T , each corresponding to the scaled Softplus and ex-
ponential barrier functions respectively are given in Appendix, Table A.4. While these
valuesweremanually tuned using all test scenarios to get a desired behavior, the pro-
cess is not considered part of this work and therefore the methodology is not further
detailed. For the following, the exponential barrier function is used.

6.2.3 Closed-loop controller

To measure controller performance in the STJ study case, metrics such as constraint
violation (C.V.), total effort

∑
∆u , surface temperature gradients Ṫsurface , tracking

RMSE Thot air, RMSE , and estimated heat flux
˙̃Hair were obtained in simulation. MPC so-

lution time was captured as well for reference and comparison, but nomajor analysis
was performed.
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To gain insights on the power output of the receiver, a reduced model of the outlet
air enthalpy flux is considered for result quantification based on the work of Oster-
mann [32]. This is given by the formula 6.5:

˙̃Hair = Cp, air(Thot air − Tcold air)ṁair (6.5)

with Cp, air = 1.005 (air specific heat [kJ/(kg °C)]).

Measured metrics are first normalized and then ranked. Two approaches were
implemented for ranking. The first evaluates the aggregated normalized values ra-
tio (Equation 6.6a), while the secondmakes a Softmax aggregated assessment of the
results (Equation 6.6b). Individual ranking values are given for sorting from smaller to
greater values, except for the estimated heat flux ˙̃Hair , where a higher value indicates
better performance due to a higher energy state.

Aggregated ratio ranking =(ṁair, U.B. C.V. + ṁair, L.B. C.V.

+ Thot air, U.B. C.V. + Thot air, L.B. C.V.

+
∑

Ṫsurface +
∑

∆u

+ Thot air, RMSE)/(
∑ ˙̃Hair)

(6.6a)

Softmax aggregated ranking =(Softmax(ṁair, U.B. C.V.) + Softmax(ṁair, L.B. C.V.)

+ Softmax(Thot air, U.B. C.V.) + Softmax(Thot air, L.B. C.V.)

+ Softmax(
∑

Ṫsurface) + Softmax(
∑

∆u)

+ Softmax(Thot air, RMSE))/(Softmax(
∑ ˙̃Hair))

(6.6b)

As mentioned in Chapter 5, two NNs were selected. One will model the dynamics
of the plant inside theMPC controller, while the second acts as the real plant. Consid-
ering the two models and the closed-loop diagram, the simulation is then carried out
as explained in Algorithm 3.
Finally, for the purpose of thiswork, each library (SciPy andPyTorch) computes its own
gradient information. Although theMPCusedPyTorch-basedNNs formost of the sim-
ulations, results are only obtained using the CPU.

6.2.4 Constraint violation case

One of the advantages of using MPC is its reported higher performance compared to
other approaches. This is particularly important for controlling the system in the pres-
ence of constraints. For this reason, theSTJ study casewas further analyzedusing the
four different test scenarios described in Section 6.2.
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Algorithm 3NN-basedMPC simulation closed-loop
1: Initialize datasetD
2: Define look-back windoww
3: Define prediction horizon p
4: Initialize time index k = 0
5: while Simulation do
6: X← x[k−w+1:k+p] fromD[k] (Get input from dataset at k),
7: repeat
8: Y←NNMPC plant model ← X (Evaluate NNmodel),
9: u∗

[k+1:k+p]←MPC (Calculate optimal control sequence)
10: until break condition
11: X′ ← X← u∗

[k+1:k+p] (Update tensor),
12: Y′ ←NNreal plant ← X′ (Evaluate real plant model),
13: D[k+1] ← Y′ (Update dataset at k+1),
14: k = k + 1 (Increment time index)
15: end while

In the analysis, both ranking methods (Softmax aggregated ranking and Aggre-
gated ratio ranking) yielded the same score results. Consequently, only the Softmax
aggregated ranking method is shown in the results. For reference, the aggregated ra-
tio ranking values can be found in the Appendix, Chapter C, Subsection Aggregated
ratio ranking results C.2.2.

To evaluate performance in testing scenarios prone to constraint violations, simu-
lationswere run using test scenarios C.V. 1 and 2. Each case imposes constraints, and
two approaches to solve the OCP were used: a constrained optimizer in SciPy and an
unconstrained optimizer in PyTorch with barrier functions to handle constraints.

The performance of the used optimizer from both approaches (SciPy and PyTorch)
were compared by ranking of themetrics. Table 6.2 (Appendix Table C.4) shows results
of simulations in test scenarios C.V. 1 and 2 for all optimizers. Zero value columns are
omitted for visualization purposes as they do not change the result.

This table reveals several key points. First, it directly compares the score for each
optimizer for the SciPy andPyTorch approaches, showing that PyTorch performedbet-
ter by having the lowest score overall. In this case, the lowest score among the SciPy
optimizers was 4.04 (Trust-constr) and 3.98 (COBYLA) for C.V. 1 and 2 respectively. Be-
tween PyTorch optimizers 3.71 (Adam) and 3.80 (L-BFGS) for the same scenarios.
The data indicates that for test scenario C.V. 1, the SciPy-based MPC violated the up-
per bound constraints in Thot air , an operation point which is undesirable. In addition,
the PyTorch-based MPC produced less temperature change in the surfaces, reducing
the gradients Ṫsurface overall.

The table also shows that the PyTorch approach reported a lower total effort
∑

∆u

in the controlled variable ṁair , representing softer transitions and control of the sys-
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tem. Similarly, this approach reduced the error between the desired reference hot air
temperatureThot air, ref and themeasured valueThot air , as indicatedby the lowerRMSE
value.

Unlike thepreviousmetrics,wherea lower valuemeansbetterperformance, ahigher
value of

∑ ˙̃Hair indicates a higher energy state in the system, translating to more en-
ergy available for downstream processes. The Adam optimizer in PyTorchmanaged to
control the system into a state of higher heat flux compared to Trust-constr. The final
ranking for C.V. 1 suggested that the PyTorch approach using Adam as the optimizer
performed the best overall, with a score of 3.71.

Ranking results observed in test scenario C.V. 1 also apply to C.V. 2. The interesting
aspect of this data is that in this scenario, both approaches violated the constraints.
Nevertheless, the amount of violation was significantly higher in the SciPy approach
compared to PyTorch. A metric at which constrained optimizers excelled in this sce-
nario was

∑
Ṫsurface , but with a probability difference no greater than 1%. Thus, the

final score of 3.80 suggests that the PyTorch approach performed better relative to
SciPy.

It is important to note that for C.V. scenario 2, the simulation time for the SciPy
approach using optimizer SLSQP took over 150 hours. This greatly reduced the per-
formance of this optimizer, since the simulated simulation time was only 35 minutes.

Despite these results, another relevant aspect of the investigation was the value
of the cost function when using unconstrained optimizers available in Python. This is
crucial since the values of the barrier functions are directly added to the cost function
J in the MPC. If the parameters are not chosen carefully, barrier function values may
exceed the stage cost and control effort, potentially driving the solution away from
the optimum. To address this, the cost function value at the end of each cycle in all
testingscenarioswascaptured. Particularly, theconstraint violation testingscenarios
were explored. Figure 6.4 shows the aggregated and disaggregated values of the cost
function for test scenario C.V.2. As seen in Table 6.2, both approaches violated the
constraints.

The plot consists of three graphs. The first graph shows the individual values over
the simulation for the objective function, the stageand control effort costs, andpenal-
ties (barriers).
The second graph shows the individual values of the stage and control effort costs.
In this scenario, the control effort was close to zero, while most of the cost went to
tracking the reference in the stage cost.

Fromthebottomgraph, eachbarrier function relative toeachconstraint isgraphed.
It can be seen that themajor component of the barrier is to drive the systemaway from
violating the upper bound constraint in the hot air temperature Thot air .
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Figure 6.4: PyTorch MPC costs on test scenario constraint violation 2
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Themost striking observation from the graph is the difference in the order ofmag-
nitude between the costs and the penalties. This is clear in the upper graph, where
the penalty values represent approximately 3% of the costs. These results were also
observed in all test scenarios.
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Table 6.2: Softmax aggregated ranking PyTorch vs SciPy results on test scenarios Constraint Violation (C.V.) 1 and 2 for all different
optimizers. Constrained violations in Thot air observed. PyTorch MPC showing better performance compared to SciPy.
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ṁ
ai
r
,L
.B
.C
.V
.

T
ho
ta
ir
,U
.B
.C
.V
.

R
an
k

T
ho
ta
ir
,L
.B
.C
.V
.

∑ Ṫ s
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y COBYLA 1.00 0.00 0.12 0.13 0.00 0.13 0.14 0.13 0.14 0.16 0.15 0.08 0.13 4.13

SLSQP 0.00 0.00 0.77 0.26 0.00 0.18 0.15 0.18 0.15 0.14 0.14 0.14 0.14 4.93

Trust-constr 0.00 0.00 0.04 0.12 0.00 0.15 0.14 0.15 0.14 0.15 0.14 0.11 0.14 4.04

P
yT
or
ch

Adam 0.00 0.00 0.00 0.12 0.00 0.13 0.14 0.13 0.14 0.14 0.14 0.17 0.15 3.71

AdamW 0.00 0.00 0.00 0.12 0.00 0.14 0.14 0.14 0.14 0.14 0.14 0.16 0.15 3.72

Yogi 0.00 0.00 0.01 0.12 0.00 0.15 0.14 0.15 0.14 0.14 0.14 0.17 0.15 3.79

LBFGS 0.00 0.00 0.07 0.13 0.00 0.12 0.14 0.12 0.14 0.14 0.14 0.17 0.15 3.71

C
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st
ra
in
tV
io
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on
2

S
ci
P
y COBYLA 0.00 1.00 0.07 0.13 0.00 0.12 0.14 0.09 0.13 0.13 0.14 0.10 0.14 3.98

SLSQP 0.00 0.00 0.30 0.17 0.00 0.24 0.16 0.16 0.15 0.25 0.16 0.21 0.15 4.13

Trust-constr 0.00 0.00 0.23 0.16 0.00 0.12 0.14 0.08 0.13 0.13 0.14 0.10 0.14 4.14

P
yT
or
ch

Adam 0.00 0.00 0.11 0.14 0.00 0.13 0.14 0.19 0.15 0.12 0.14 0.15 0.14 3.95

AdamW 0.00 0.00 0.09 0.14 0.00 0.13 0.14 0.19 0.15 0.12 0.14 0.15 0.14 3.94

Yogi 0.00 0.00 0.14 0.14 0.00 0.14 0.14 0.23 0.16 0.12 0.14 0.15 0.14 4.06

LBFGS 0.00 0.00 0.06 0.13 0.00 0.12 0.14 0.07 0.13 0.12 0.14 0.15 0.14 3.80
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6.2.5 Nominal operation case

Regarding testing scenarios with nominal operation regimes, Table 6.3 (Appendix Ta-
ble C.5) shows results of simulations in test scenariosN.O. 1 and2 to compare the per-
formance of the used optimizer from both approaches (SciPy and PyTorch) by ranking
of the metrics.

Interestingly, while the best performing optimizer in SciPy was Trust-constr for the
constraint violation scenarios, it wasno longer the case for the nominal operation sce-
narios. SLSQP performed best in N.O. scenarios while performingworst in C.V. scenar-
ios. Despite starting conditions away from constraints, none of the approaches drove
the system towards constraint violation regions for both nominal operation scenarios.

Closer inspection of the table shows that contrary to the constraint violation sce-
narios, the performance difference between both approaches was relatively smaller.
For instance, in nominal operation scenario 1, the SciPy approach obtained a lowest
score of 3.83 against 3.79 for PyTorch. This trend was also observed in scenario 2,
wherePyTorchhadabetterperformancewitha lowerscoreof3.85compared toSciPy’s
3.87.

Similar to the constraint violation test scenarios, the solutions obtained by the
PyTorch-enabled MPC had better performance relative to the SciPy approach. The
only metric where the best performing SciPy optimizer achieved a better result was
in Thot air, RMSE in test scenario N.O. 2, which might be due to the higher

∑
∆u in the

controlled variable.

These results can also be observed in the simulation graphs. While results for
nominal operation test scenarios 1 and 2 are presented in this chapter, all simula-
tion graphs and results can be found in the Appendix, Chapter B Graphs, Section B.2.
Values shown in the figures are normalized.
Figure 6.5 shows the simulation results for test scenario nominal operation 1. This
figure is composed of seven graphs.

The first graph shows the simulation values for the surface apparent brightness
IQ̇. For scenarios C.V. and N.O.1, this is kept constant.
In the second graph, the desired temperature value Thot air, ref is shown, along with the
system dynamics for both approaches while tracking the set point. The data shows
that both SciPy- and PyTorch-enabled MPC were able to track the desired setpoint,
albeit SciPy did so slightly slower in the first two steps. The model captured the dy-
namics in the domain of validity sufficiently, evident at each step change. Whenever
there is a higher Thot air, ref , controllers reduce ṁair to allow the receiver to give less en-
ergy to the HTM. This is visible in the drop in Thot air , which later increases to the lower
mass flow. The dynamics of the STJ and the predictive behavior of the controller en-
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Figure 6.5: PyTorch vs SciPy simulation results on test scenario nominal operation 1
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able the system to reach the new setpoint with little overshoot. During steady state,
the controller efficiently tracks Thot air, ref , keeping the Thot air, RMSE value close to zero.

The third graph shows the surface temperatureTsurfacemeasuredby the IR system,
with surface temperature gradients Ṫsurface shown in parallel, with a second Y-label.
This graphically demonstrates if the dynamicswere closer to the gradient constraints.
What stands out in this graph is the simulated increasing Tsurface of the system. This
result is somewhat counterintuitive. While expected during steps with increasing set-
points, the opposite was not observed during decreasing steps. This wouldmean that
the system’s energy is continuously increasing despite operating at lower points. A
reason for this result could also be due to the NN model and insufficient dynamics
data to reproduce the system accurately for Tsurface . Although the gradient graph in-
dicated higher values at setpoint changes and during steady-state regions, the ex-
pected behavior was for the surface temperature to converge to zero, suggestingmin-
imal changes.

The fourth graph shows the evolution of the controlled variable air mass flow ṁair

over the simulation, along with gradients on ṁair to get insights on the effort for the
whole test scenario. Gradients’ absolute values are added to get the total delta, or the
total rate of change, shownasmetric

∑
∆u in theprevious tables. The figure indicates

that the PyTorch approach reacted faster to setpoint changes.

The fifthgraphshows theheat flux ˙̃Hair of thesystemcalculatedaccording toEqua-
tion 6.5. Despite reaching higher hot air temperatures, the heat flux was lower due to
the constant IQ̇and the controller tracking only Thot air, ref . The system dynamics re-

quired lower air mass flow values to achieve higher temperatures, reducing ˙̃Hair .

The sixth graph depicts the RMSE over time between Thot air and Thot air, ref , shown
as Thot air, RMSE , illustrating the deviation from the setpoint. These values correlate
with setpoint changes, approaching zero when the system achieved steady-state.

Finally, the seventh graph shows the MPC cycle time for both approaches. No-
tably, a significant reduction in the MPC cycle time was achieved with the PyTorch
approach. On average, PyTorch computed the optimal solution of the OCP in 136.25,
107.20, 49.88, and 122.29 ms for test scenarios N.O. and C.V. 1 and 2, respectively. In
comparison, the best performing SciPy optimizer controller cycle time was 3649.12,
2193.44, 17694.68, and 29957.71 ms. This represents a change of up to two orders of
magnitude in the C.V. case and one order of magnitude in the N.O. case. This is much
more important when a plant is desired to be controlled in Real-Time. For the STJ, Py-
Torchoffers solutionsunder1second, lower than themeasuring frequency, potentially
enabling Real-Time operation. Although faster computation times can be achieved by
down-scaling the model and sampling the system at lower frequencies, these results
show a clear benefit of using PyTorch and Autograd gradient calculation.
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Themost surprising aspect of the data is theThot air, RMSE relation betweenboth ap-
proaches. While the system dynamics and control inputs might have followed differ-
ent trajectories, the relative equal value in this metric suggests that both approaches
followed the desired value Thot air, ref similarly on average. Additionally, the selection
of the parameters in the barrier functions for the PyTorch approach allowed the con-
troller to be closer to the constraints compared to SciPy.

In general, similar behavior can be seen in the simulation results for all test sce-
narios. The related figure shown in Appendix Section B.2 illustrates that PyTorch can
compute solutions similar to a constrained optimization approach based on SciPy.
Moreover, results demonstrate control with less effort and lower deviation from the
setpoint.

Another important aspect is the performance of both approaches in testing sce-
narios where disturbances are simulated as variations in IQ̇. For instance, Figure 6.6
(Appendix Figure B.11) shows the simulation results for this case.

It stands out that the controller effectively uses the prediction capabilities of the
T-NN model to reject most disturbances. The first two disturbances simulate cloud
passes with brightness reductions of 25% and 50%, respectively. In these cases, the
controller adjusts ṁair to track Thot air, ref , reducing Thot air, RMSE . However, the con-
troller struggled with the third disturbance, which simulates a cloud pass with a 70%
reduction in IQ̇. Under this condition, the system cannot track the reference due to
insufficient solar radiation to heat the receiver. This limitation is evident in the ṁair

value, which reaches its lower bound during the last disturbance.
The most surprising aspect of the graph is the system response after the distur-

bance. Even when IQ̇returns to the initial state, the controller did not track the ref-
erence. Moreover, the final simulation values show a clear reduction in the hot air
temperature. One reason for this behaviormight be theNNmodel, whichmaynot have
learned thedynamicsaccurately for this combinationof inputsdue to the trainingdata
points.
This is also highlighted in the Tsurface graph. The simulation shows an upward trend in
surface temperature, expected to drop when the system temperature dropped. This
remains open for further research.

Additional graphs are also available to the reader. Constraint violation values are
graphed for all testing scenarios. These were not shown in the chapter as their final
values are captured in the tables but can be found in Appendix, Section B.2.
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Figure 6.6: PyTorch vs SciPy simulation results on test scenario nominal operation 2
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Table 6.3: Softmax aggregated ranking PyTorch vs SciPy results on test scenarios Nominal Operation (N.O.) 1 and 2 for all different
optimizers. No constraints violations observed. MPC using PyTorch scores lower showing better performance compared to SciPy.

Sc
en

ar
io

Li
br
ar
y

O
pt
im

iz
er

ṁ
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S
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y COBYLA 0.00 1.00 0.00 0.14 0.00 0.15 0.14 0.10 0.14 0.44 0.19 0.07 0.13 4.64

SLSQP 0.00 0.00 0.00 0.14 0.00 0.15 0.14 0.14 0.14 0.07 0.13 0.17 0.15 3.83

Trust-constr 0.00 0.00 0.00 0.14 0.00 0.14 0.14 0.13 0.14 0.18 0.15 0.11 0.14 4.17

P
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Adam 0.00 0.00 0.00 0.14 0.00 0.15 0.14 0.15 0.14 0.08 0.13 0.17 0.15 3.86

AdamW 0.00 0.00 0.00 0.14 0.00 0.15 0.14 0.14 0.14 0.09 0.13 0.15 0.14 3.91

Yogi 0.00 0.00 0.00 0.14 0.00 0.14 0.14 0.21 0.15 0.07 0.13 0.17 0.15 3.88

LBFGS 0.00 0.00 0.00 0.14 0.00 0.13 0.14 0.13 0.14 0.07 0.13 0.17 0.15 3.79
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y COBYLA 0.00 1.00 0.00 0.14 0.00 0.15 0.14 0.16 0.14 0.21 0.15 0.12 0.14 4.18

SLSQP 0.00 0.00 0.00 0.14 0.00 0.14 0.14 0.13 0.14 0.09 0.14 0.16 0.14 3.87

Trust-constr 0.00 0.00 0.00 0.14 0.00 0.16 0.14 0.10 0.14 0.26 0.16 0.10 0.14 4.28

P
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Adam 0.00 0.00 0.00 0.14 0.00 0.14 0.14 0.13 0.14 0.11 0.14 0.16 0.15 3.89

AdamW 0.00 0.00 0.00 0.14 0.00 0.15 0.14 0.12 0.14 0.14 0.14 0.15 0.14 3.97

Yogi 0.00 0.00 0.00 0.14 0.00 0.13 0.14 0.24 0.16 0.10 0.14 0.16 0.15 3.98

LBFGS 0.00 0.00 0.00 0.14 0.00 0.13 0.14 0.12 0.14 0.10 0.14 0.16 0.15 3.85
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6.2.6 Measurement noise

To emulate the influence of measurement noise, uniform random distribution noise
was added to themeasurements at time k = 0 in theMPCmodel. The amount of noise
is given as:

X[k=0,:] = X[k=0,:] + Noisemax · Noiserandom scale, (6.7a)

where: Noiserandom scale = 2 · N (X[k=0,:]; (0, 1])− 1, (6.7b)

Noisemax = Noise% ·max(D) (6.7c)

max(D) represents the maximum observed value in the dataset. For example, as-
sume a state-of-the-art Open Volumetric Receiver (OVR) with Heat Transfer Medium
(HTM) temperatures of up to 500 °C. A 5%measurement noise based on themaximum
valuemax(D) = 10°Cmeasurement errorwould represent over 2 orders ofmagnitude
higher inaccuracy than standard PT100 temperature sensors with tolerance class W
0.6, F type, according to DIN EN IEC 60751.

Figure 6.7 shows the results obtained from simulations with 0%and 5%measure-
ment noise. TheThot air graph shows that controller performancedecreased compared
tosimulationswithoutnoise. Furthermore, accuracydegraded in relation to theamount
of noise. Despite the influence, the controller follows the Thot air, ref trend, albeit with
higher oscillation in the presence of higher noise. This is also visible in the Thot air, RMSE
graph, where the effect is clearly visible. Quantitatively, a

∑
Thot air, RMSE of 812.98 and

621.88 with 5% and 0% noise respectively is observed. This represents up to 30.43%
higher total RMSE respectively.

Noise effect is also visible in the third graph, which reveals different Tsurface for
each case. The striking aspect of the graph is the gradients Ṫsurface , which also behave
different relative toeachother. For0%measurementnoise, valueswerestillwithin the
bounds, but this was close to the constraint in the case of 5% noise.

An increase in
∑

∆u is also observed in the ṁair graph. Similar effects were found
in ˙̃Hair . Most interestingly, MPC cycle times remained under 1 second on average, but
clear steps with 1 second solution times are observed.

Figure 6.8 presents experimental data on increasing measurement noise for met-
rics absolute total

∑
∆u and Thot air, RMSE. WithNoise% = [0%, 0.5%, 1.0%, 2.5%, 5.0%,

7.5%, 10%] results show a direct correlation. The increase in the metric value for in-
creasing values of simulated measurement noise is depicted.

At noise levels of 7.5% and 10%, metric values were not captured. This was due
to the NNmodel returning NaN or+ inf values in the output tensor Y, thus ending the
optimization cycle of the MPC due to non-convergence.
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Figure 6.7: PyTorch simulation with 0% and 5% measurement noise on test scenario
nominal operation 1
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(a)
∑

∆u (b) Thot air, RMSE
Figure 6.8: Metric value per noise % of maximum value.

Overall, these results suggest that a T-NN dynamic model can be used for MPC,
even in the presence of measurement noise. Additionally, the results indicate the vi-
ability of PyTorch as a constrained optimizer using barrier functions. This approach
performed better relative to an off-the-shelf constrained optimizer used in the litera-
ture. Results also show that the simplified T-NN dynamic model of the STJ system is
capable of Real-Time solutions.
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Chapter 7

Uncertainty Quantification

The primary objective of this research is to investigate the applicability of Transformer
Neural Network (T-NN) within Model Predictive Control (MPC). Additionally, this study
explores Uncertainty Quantification (UQ) using Kernel-based Gaussian Process Re-
gressor (GPR). By incorporating probabilistic information into themodel’s predictions,
this research aims to lay the groundwork for future applications in this domain.

Recent advances in the literature have introduced innovative approaches such as
incorporating a Bayesian final layer in neural networks, which allows these models to
infer probabilistic information intrinsically [51]. In contrast, similar to other existing
methodologies, our approach fits the model discrepancy between historical predic-
tions and actual measurements using GPR [48]–[50].

Toachieveaccurateand reliablepredictions, anonline trainingand inferencemech-
anism is employed, which augments prediction data by including the computedmean
(µ) and covariance (Σ). This study adopts the First-Order Plus Dead-Time (FOPDT)
model as proposed by Park et al.[39], utilizing the Gaussian Processes module from
theSciKit library1.3.2 [117]. TheuseofSolar TowerPowerPlant Jülich (STJ) casestudy
was also explored using the GPyTorch library 1.11 [118] in Python 3.11 [103].

Another advantage of using these libraries is their use of a Kernel approach, which
is flexible for testing combinations. The main disadvantage of this method is the lack
of theoretical analysis of theGP, and the parameters need to be computed every cycle,
posing a limitation for real-time applications. These remain subjects for future study.

This study uses stored NN predictions ŷ and true plant output measurements
ymeasured to calculate amodel error as ŷerror = ŷ−ymeasured. The online process inside
the MPC cycle is illustrated in Algorithm 4.

The GPR parameters for both Python libraries are in Appendix, Section A.3 GP pa-
rameters Table A.7.
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Algorithm 4 GPmodel error model fit
1: Initialize datasetD
2: Define look-back windoww
3: Define prediction horizon p
4: Initialize time index t = 0
5: Define model error model length l
6: Define Confidence IntervalsC.I.(σ)
7: Initialize ŷerror, [k=l,j=0:p], ŷstore, [k=l,j=0:p], ymeasured, [k=l,j=0:p]

8: while Simulation do
9: X← x[k−w+1:k+p] fromD (Get input from dataset)
10: ŷstore, [0,:] ← NN(X) (Store NNmodel predictions)
11: ymeasured, [0,:] ← Real P lant(X) (Measure real plant model outputs)
12: if t = l then
13: ŷerror, [0,:] ← ŷstore, [−1,:] − ymeasured, [−1,:] (Calculate prediction error)
14: ŷerror, [0,:] ∼ GP(µ, σ2) (Fit to a GP)
15: ŷ′ ← ŷ + µŷerror (Calculate adjusted predictions)
16: ŷ′ ± C.I. · σŷerror (Calculate prediction confidence regions)
17: end if
18: Shift ŷerror, ŷstore, ŷmeasured: [1 :, :]← [: −1, :]
19: Display Confidence Intervals from σ
20: t = t+ 1 (Increment time index)
21: end while

7.1 First order plus dead-timemodel

Similar to Section 5.2, the dataset from the FOPDTmodel described in Park et al. [39]
was used, with NN parameters as presented in Section 5.2. The kernel utilized for the
analysis was a product of a Constant and RBF kernels.

To simulate plant dynamics, the same random test scenario of inputs u used to
generate the data set was used to obtain theNN response and fit ŷerror. Figure B.23 in
Appendix, Section B.3, shows the test scenario for the FOPDT case. In addition, 5% of
σ(u) normally distributed random noise was added to the input of the NN to evaluate
the performance of the GPR in the presence of noise.

Figure 7.1 shows the result of the open-loop simulation for T-NN prediction at sim-
ulation time step t = 126. The upper graph shows the prediction from the T-NNmodel
ŷ, and the lower graph shows the prediction of theNNmodel plus the GPRmean µ and
with the confidence intervals (C.I.) of±3σ.

What stands out from the figure is that the true data ytruth is inside the confidence
intervals of the GPR and these intervals are narrow. In comparison, Figure 7.2 shows
the simulation result at time t = 77, where awider confidence region is evident. These
differences can be explained in part by the delay in the uncertainty quantification, re-
sulting from the model error being made of past measurements. This is especially
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Figure 7.1: FOPDT narrow confidence interval at test scenario time t = 126 with input
u andMPC sliding window. T-NNmodel (Top). T-NNmodel with GPmodel error model
regressorand±3σ confidence intervals (Bottom). Note thatdue to lowpredictionerror,
µGP is close to zero and the difference between the twomodels small.
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evident at points with higher changes in the input variables u or the desired setpoint
yref , as illustrated in the figure. This observation also highlights the inaccuracy of the
model and its potential for improvement.

An interesting result from the data is that despite the added noise, out of the 785
times forwhich theGPRwasevaluatedduring the test, ytruthwas inside theconfidence
interval of±3σ (99.7%) 93.50% (762 of 785) and±2.58σ (95%) 97.07% (762 of 785).

The effect of changes in the input u that contribute to wider confidence intervals
canalsobeseen inFigure7.3. Thisgraphshows theRMSEofbothmodels (ŷ and ŷerror).
From the graph, it is clear that the prediction that included themean of the GPRwors-
ened the prediction when changes in the setpoint occurred. In addition, no advantage
was found for the RMSE over the values obtained. Overall, the ŷerror model performed
14%worse than the ŷmodel, with a total ŷRMSE = 0.0300 and ŷerror, RMSE = 0.0342.

It is recommended that the GPR be analyzed in the STJ case study. The results of
the FOPDT model demonstrate that this approach is viable, with confidence regions
aligning with the predicted trends. These results could be incorporated into the pre-
dictions.

For reference, graphs with the calculatedmodel error ŷerror and its corresponding
GPR fit, as well as calculated ŷRMSE and ŷerror, RMSE at times t = 77 and t = 126, can
be found in Appendix, Section B.3 Uncertainty Quantification. See Figure B.25 and
Figure B.24, respectively.

7.2 Solar tower Jülichmodel

Anotherapplicationof interestwas the integrationof statistical information in thepre-
diction of dynamicmodels in closed-loop control. Focusing on theSTJ case to examine
the behavior of Gaussian Process (GP)model errorswas studied in conjunctionwith T-
NNmodels under optimal control inputs u∗. Similar to the FOPDTmodel, a product of
constant and RBF kernels was used.

To extend the scope ofUQmethods in thiswork, quantitativemeasureswere incor-
porated to evaluate the prediction accuracy of NN dynamic models. As an introduc-
tory experiment, initial simulations were performed according to the nominal opera-
tion scenario 1 (N.O. 1) described in Section 6.2.

Figure 7.4 illustrates the closed-loop simulation results at time step t = 338 for the
two variables predicted by the T-NN: Thot air and Tsurface.

Both graphs showpredictions by theNNmodel andmeasured states. An extended
model, combining the T-NN model predictions with the GP mean µGP , is also shown,
along with±3σ confidence intervals.

The results show that the GP model error model effectively quantifies prediction
covariance and captures the dynamic trend of the system. Notably, during steady-
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Figure 7.2: FOPDT wide confidence interval at test scenario time t = 77 with input u
and MPC sliding window. T-NN model (Top). T-NN model with GP model error model
regressor and ±3σ confidence intervals (Bottom). Note that due to higher prediction
error,µGP contribute to theNNpredictionswhile the confidence intervals iswider sug-
gesting lower certainty.
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Figure 7.3: Neural network and added Gaussian Processmodels prediction root mean
squared error

state conditions (no setpoint changes or rapid dynamics), themean±3σ over the pre-
dictionhorizonaccounts for only 1.78%ofTsurface and3.22%ofThot air at this timestep,
suggesting a high level of confidence in the predictions.

A significant contrast was found at later time steps in the simulation. Figure 7.5
shows the simulation results when a change in the hot air temperature Thot air, ref was
introduced (time t = 774).

Similar to the FOPDT model, the GP model exhibited a notable bias in response
to rapid setpoint changes. It is worth noting that the mean ±3σ over the prediction
horizon increased to only 2.62%of Tsurface and 10.87%of Thot air at this time step, sug-
gesting a lower confidence in the predictions.

As last finding, it was observed that µGP introduced an offset in the NN predic-
tions. This phenomenon can be attributed to the delayed effect of incorporating past
measurements and the incorporation ofmodel error in a closed-loop system. This dis-
tinction is particularly important. As Lucia explains: ”open-loop predictions are not
the same as closed-loop trajectories [...] because we are using a finite horizon” [119].
Open-loopcontrol systemsrelyonpredeterminedpredictionswithout integrating feed-
back for adjustments. In contrast, closed-loop control systems use continuous feed-
back to constantly refine andmodify control actions based on real-time data [120].

These results illustrate the feasibility of combining NN models with UQ methods
such as GP to include statistical information such as covariance. The findings sug-
gest that, although there are certain constraints, this methodology shows potential
for enhancing prediction accuracy and offer an overview in the uncertainty. Future
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Figure 7.4: Narrow confidence interval at STJ test scenario nominal operation 1 time
t = 338 with input u and MPC sliding window. T-NNmodel (Top). T-NNmodel with GP
model error model regressor and±3σ confidence intervals (Bottom). Note that due to
low prediction error, µGP is close to zero and the difference between the two models
small.
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Figure 7.5: Wide confidence interval at STJ test scenario nominal operation 1 time t =
774with inputuandMPCslidingwindow. T-NNmodel (Top). T-NNmodelwithGPmodel
error model regressor and±3σ confidence intervals (Bottom). Note that due to higher
prediction error, µGP contribute to the NN predictions while the confidence intervals
is wider suggesting lower certainty.
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investigations are suggested to mitigate these limitations and examine further appli-
cations of UQ within control systems.
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Chapter 8

Conclusions

This thesisexplores the integrationofModelPredictiveControl (MPC)withTransformer
Neural Network (T-NN) to model and control the Solar Tower Power Plant Jülich (STJ).
The aimwas to increase the efficiency of Concentrated Solar Power (CSP) plants. This
section evaluates the extent to which the study has achieved its goals. As mentioned
in the Introduction 1, the lateral focus is on meeting the global need for sustainable
Renewable Energy Sources (RESs). Furthermore, we present an analysis of the find-
ings’ relevance and potential impact.

Artificial Neural Networks

The present work was designed to explore the use of novel NNs to learn system dy-
namics. Motivated by the limitations of simplifiedmodels [25], [32], a data-based ap-
proach using T-NN was proposed [39]. Additionally, this work aimed to explore the
potential of employing NN dynamic models with an MPC controller, rather than opti-
mizing results for each system individually.

TheT-NNwas trained topredict thesystem’s futurestatesbasedonhistorical data.
This study demonstrated the importance of data integrity and its impact on the per-
formance of data-based models. During the training phase, measurement noise in
one of the states limited the NN’s ability to learn the system’s dynamics. By applying
filtering techniques, the model’s predictions were significantly improved, highlighting
the importance of data preprocessing and filtering to ensure the quality of the training
data.

Interestingly, no clear minimum was identified in the model’s prediction perfor-
mance when exploring the hyperparameter space of the look-back window and pre-
diction horizon. In order to select a suitable configuration, validationMSE valueswere
ranked based on the metric at the lowest value of the prediction horizon. This result
showed that training for longer prediction horizons drives the learning process to have
better performance for the first few steps in the study case presented.
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Another important contribution was the addition of a last-layer residual connec-
tion in the T-NN, which was absent in the work by Park et al. [39].The results demon-
strated enhanced prediction accuracy when compared to themodel without last layer
residual connection.

These results suggest that a NN with an attention mechanism, as introduced by
Vaswani et al. [38], can be used to model the dynamics of complex systems. The T-
NNmodel was able to learn the system dynamics and predict future states within the
region of validity. This opens up the possibility of using advanced NN architectures
with modern control techniques to further improve the performance of CSP plants.

Model Predictive Control

The MPC controller was selected due to its ability to handle complex systems and
MIMO configurations. Significantly, this controller enabled the system to operate un-
der constraints and incorporated predicted disturbances in the control strategy. Fo-
cusing on the application in CSP plants, the use of MPC with the STJ receiver system
was demonstrated. The key contribution was the use of T-NN to model the system
dynamics. This thesis has demonstrated that NN models can be used for MPC in the
STJ.

In the current study, a comparison was made between constrained and uncon-
strained optimization with barrier functions, which yielded interesting results. The
former, implemented in Python’s SciPy library as shown by Park et al. [39] and Jung et
al. [37], served as a reference for an optimal control solution. The primary objective
was to evaluate the performance of the MPC controller using different optimization
algorithms such as Adam and L-BFGS. It was demonstrated that the unconstrained
optimization approach was able to handle bound constraints using barrier functions
with tuned parameters. This approach exhibited significantly lower computational ef-
fort and superior performance in simulation tests compared to the constrained opti-
mization approach. These findings need to be confirmed for more testing scenarios
and other system dynamics.

It is noteworthy that in all proposed test scenarios, both approaches successfully
utilized a T-NNmodel to predict the system dynamics and control the system. The re-
sults demonstrated that theMPCcontrollerwas capable of tracking the set points and
maintaining the system within operational bounds near constraints and during nom-
inal operation scenarios. Another important finding was that the Multi Step-Ahead
(MSA) prediction capabilities of the T-NNmodel were leveraged by theMPC controller
to reject predicted disturbances. This was demonstrated in scenarios with simulated
varying solar irradiance. However, the observed model dynamic deviation at the end
of this scenario highlights the need for further research. The prediction accuracy was
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observed to decline outside the domain of validity of the training data, indicating the
necessity for the acquisition of more real plant data andmodel tuning.

The results on the PyTorch-basedMPC have important implications for developing
of real-time control applications. In our study, the computational time was found to
be significantly reduced in comparison to the SciPy-basedMPC. This difference could
be attributed to the use of different tools for gradient computation, which constitutes
an important area for future research.

An additional objective of this work was to explore the impact of measurement
noise on themodel dynamics and theMPC controller. In the STJ case study simulation
results showed that the system remained controllable andwas able to track the refer-
ence set points even under higher noise levels than typical industrial instrumentation
standards. However, the presence of noise in themeasurements led to a deterioration
in theperformanceof thecontroller andan increase in the trackingerror. Although this
was explored with a single case study, caution must be applied, as the findings might
not be transferable to all measured variables and regions of operation. Therefore, a
more robust analysis is required.

Uncertainty Quantification

With these results, it can be concluded that the addition of a Gaussian Process (GP)
has potential to overall enhance the prediction accuracy of the T-NN by uncertainty
information. What stands out is the matching confidence interval calculation when
compared to simulated true data, confirming that the probabilistic information pro-
vided by the covariance of the Gaussian Process Regressor (GPR) can be used. This
suggests that while the GP model error model did not improve overall accuracy of the
NN model, it was capable of quantifying the model prediction uncertainty, which is
valuable for future work.

Using the example proposed by Park et al. [39] while extending the architecture
andmethodology, wewere able to showcase the applicability of the Transformer Neu-
ral Network (T-NN) to learn and simulate nonlinear system dynamics. The model was
then usedwith real-world data from the Solar Tower Power Plant Jülich (STJ) tomodel
Concentrated Solar Power (CSP) system behavior. The importance of tuning parame-
ters is presented, and themodel is validated in simulation. Furthermore, the potential
of novel neural network architectures such as the ”Transformer” is demonstrated, il-
lustrating the possibility of using it in conjunctionwithModel Predictive Control (MPC)
to enhance the efficiency and reliability of Concentrated Solar Power (CSP) plants.

Results from thiswork contribute to address global challenges like climate change
by enhancing the efficiency and reliability of Renewable Energy Sources (RESs) tech-
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nologies such as CSP plants[4]. When energy storage is considered, the implications
can be extended and economic viability enhanced [2], [8]. This contributes to nar-
row the gap in the field of Renewable Energy Sources (RESs) model and control, and
aims to serve as an example to further motivate increasing investments in scientific
research.
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Outlook

In light of the scope of this thesis, areas for future research can further deepen on the
findings. Potential topics for future investigation include topicsondatapre-processing
andbroader test scenarios, alternative controlmethods andNNarchitectures, results
validation, optimization, MPC, UQ and real plant validation.

Data pre-processing and test scenarios

Further experiments exploring lower data-sampling rates could shed more light on
model prediction accuracy, control performance, and the computational cost of Op-
timal Control Problems (OCPs). Extending in model testing could be conducted by in-
corporating fast andmore dynamic disturbances. These could include variable ramps
and smooth transition, among other possibilities. An interesting open field rely on the
controller response in the presence of inaccurate disturbance predictions.

Alternative control methods and neural network architectures

A comprehensive review of alternative controllers such as PID and Linear Quadratic
Regulator could provide valuable insights. Additionally, a detailed comparison with
reinforcement learning and other neural network architectures such as LSTM NNs
could be pursued. Moreover, investigating replacing traditional multi-layer percep-
trons with Kolmogorov-Arnold Networks (KANs) [121] presents and interesting field
of study.

Results validation

Future studies might include a full discussion on uncertainty propagation, domain of
validity and stability, extending the findings of this work. If the research is to bemoved
forward, a better understanding of theoretical assumptions, noise disturbance and
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model uncertainty needs to be developed with theoretical tools such as sensitivity
analysis, among others.

Optimization

A greater focus on optimization tools could produce interesting findings that account
more for constrained optimization in tensor-enabled architectures. Penalty methods,
barrier functions, interior point methods implementation or constrained optimization
algorithms in PyTorch could be investigated. More research using SciPy and PyTorch
with shared gradient information is required to enable a systematic comparison. In
addition, more information on the OCP ill-conditioning would assist on establishing a
greater degree of accuracy on this area.

Model predictive control

The incorporation of an aim-point and solar irradiation control system is an intriguing
onewhich could beusefully explored in further research. Moreover, considerablymore
workwill need to be done to determine the applicability ofNNmodelswith uncertainty
quantification inMPC. Anatural progressionof thiswork is to analyzeaStochastic and
Robust MPC formulation, as well as the economic formulation of the objective func-
tion. Elements in theMPC formulation such as terminal cost, terminal set, a terminal
control law and recursive feasibility are presented as of particular interest to proof
controller stability.

Uncertainty quantification

Future research should aim to deepen the theoretical understanding of GPs to opti-
mize their application in differentmodeling scenarios. An extended theoretical analy-
sis will enhance understanding and improve the accuracy of NNmodels by leveraging
UQ methods. Designed operation regimes that account for limitations on added UQ
methods such as gradual setpoint, could contribute to increase the reliability of the
method.
Another UQ approaches applied to MPC such as NN Bayesian last layer [60], sparse
GP [54] or conformal prediction [122] offer opportunities for future research. The ad-
dition of UQ in themodel can enable the controller to be formulated as RobustMPC. In
particular, formulations such as Stochastic, Min-max, Tube-based, Scenario-based
MPC could be investigated.
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Real plant test validation, economic and environmental impact assessment

This research has thrown up many questions in need of further investigation. The
precise effect of the proposed T-NN MPC in the real STJ plant remains to be tested.
An extensive assessment of both economic and environmental impacts could provide
valuable insights to evaluate the advantages associated with the proposed MPC sys-
tem. This evaluation should incorporate analyses of cost-benefit scenarios as well as
potential reductions in greenhouse gas emissions. Finally, trials beyond CSP plants
could provide more definitive evidence on the findings.
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Appendix A

Datasheets

A.1 Parameters for MPC testing scenarios
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Scenario
Initial conditions

Thot air
Tsurface Thot air ṁair Tcold air IQ̇

˙̃Hair setpoint

C.V. 1 -0.9034 - 0.5696 -1.0215 0.9174 1.3900 -

C.V. 2 -0.9034 -0.5221 0.5696 -1.0215 - 1.3900 4.7484

N.O. 1 -0.9034 - 0.5696 -1.0215 0.9174 1.3900 -

N.O. 2 -0.9034 -0.5221 0.5696 -1.0215 - 1.3900 -0.5221

Table A.1: Initial conditions for each test scenario

Scenario Time
Step time variant value

Step Scenario
variant 1 2 3 4 5 6 7 duration duration

C.V. 1 Thot air -0.5221 -0.3112 0.1104 4.7484 -0.3112 -0.7329 -0.1847 5min 35min

C.V. 2 IQ̇ 0.9174 -0.4334 0.9174 2.2681 0.9174 -0.9737 0.9174 5min 35min

N.O. 1 Thot air -0.5221 -0.3112 0.1104 0.5320 -0.3112 -0.7329 -0.1847 15min 105min

N.O. 2 IQ̇ 0.9174 0.2420 0.9174 -0.4334 0.9174 -0.9737 0.9174 15min 105min

Table A.2: Step time variant values for each test scenario
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A.2 MPC parameters

Thot air
ṁair Ṫsurface

C.V. N.O.

Lower bound -1.9977 -1.9977 -1.4723 -0.0221

Upper bound -0.3112 1.3753 4.3616 0.0221

Table A.3: Bound constraints for each test scenario

Barrier Parameters
Value function v

function v1 v2 v3 v4 v5 v6

Scaled softplus T 0.010 0.001 0.010

β 5

Exponential T 1 1 0

γ 40 50 100

Table A.4: Barrier functions parameters

L-BFGS Adam AdamW Yogi

Option Value Option Value Option Value Option Value

lr 0.001 lr 0.01 lr 0.01 lr 0.025

history_size 10 amsgrad True

line_search_fn strong_wolfe

loss_threshold 1e-3

controlled_variable_loss_threshold 1e-3

Table A.5: PyTorch optimizer options
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Table A.6: SciPy optimizer options

Trust-contr COBYLA SLSQP

Option Value Option Value Option Value

jac 2-point rhobeg 1 jac 3-point

factorization_method SVDFactorization catol 2e-8 ftol 1e-3

initial_barrier_parameter 1e-2 tol 1e-4 maxiter 100

finite_diff_rel_step 1e-2 maxiter 1000 eps 1e-3

barrier_tol 1e-6

initial_tr_radius 1.5e0

xtol 1.5e0

gtol 1e-2

maxiter 100
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A.3 GP parameters

Table A.7: Kernel parameters for each case study

Case study Kernel Kernel(s) parameters

FOPDT

Constant kernel

constant_value 1.0

constant_value_bounds
(1e-5, 1e5)

”fixed”

RBF kernel

length_scale 1.0

constant_value_bounds
(1e-5, 1e5)

”fixed”

STJ

Constant kernel
outputscale_prior 1.0

outputscale_constraint Positive

RBF kernel

length_scale 1.0

eps 1e-6

lengthscale_constraint Positive
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Appendix B

Graphs

B.1 Artificial Neural Networks

Figure B.1: Neural networks trainingmean squared error surface forw and p combina-
tions ranked at p = 60
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Figure B.2: Neural networks training mean squared error surface contour for w and p
combinations ranked at p = 60

Figure B.3: Neural networks validation mean squared error surface for w and p com-
binations ranked at p = 60
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Figure B.4: Neural networks validation mean squared error surface contour forw and
p combinations ranked at p = 60

Figure B.5: Neural networks testingmean squared error surface forw and p combina-
tions ranked at p = 60
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Figure B.6: Neural networks testing mean squared error surface contour for w and p
combinations ranked at p = 60
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B.2 Model Predictive Control

Figure B.7: Nominal operation test scenario 1. Hot air Thot air temperature tracking at
constant solar irradiation IQ̇.

Figure B.8: Nominal operation test scenario 2. Hot air Thot air temperature tracking at
variant solar irradiation IQ̇.
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Figure B.9: Constraint violation test scenario 1. Hot air Thot air temperature tracking at
constant solar irradiation IQ̇.

Figure B.10: Constraint violation test scenario 2. Hot air Thot air temperature tracking
at variant solar irradiation IQ̇.

114



B.2. MODEL PREDICTIVE CONTROL

Figure B.11: Pytorch vs SciPy simulation results on test scenario nominal operation 1
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Figure B.12: Pytorch vs SciPy simulation constraint violation on test scenario nominal
operation 1
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Figure B.13: Pytorch MPC costs on test scenario nominal operation 1
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Figure B.14: Pytorch vs SciPy simulation results on test scenario nominal operation 2
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Figure B.15: Pytorch vs SciPy simulation constraint violation on test scenario nominal
operation 2
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Figure B.16: Pytorch MPC costs on test scenario nominal operation 2

120



B.2. MODEL PREDICTIVE CONTROL

Figure B.17: Pytorch vs SciPy simulation results on test scenario constraint violation 1
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Figure B.18: Pytorch vs SciPy simulation constraint violation on test scenario con-
straint violation 1
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Figure B.19: Pytorch MPC costs on test scenario constraint violation 1
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Figure B.20: Pytorch vs SciPy simulation results on test scenario constraint violation
2

124



B.2. MODEL PREDICTIVE CONTROL

Figure B.21: Pytorch vs SciPy simulation constraint violation on test scenario con-
straint violation 2
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Figure B.22: Pytorch MPC costs on test scenario constraint violation 2
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B.3 Uncertainty Quantification

Figure B.23: Test scenario input u for NN predictions with GP model error model re-
gressor
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Figure B.24: PyTorch MPC costs on test scenario constraint violation 2
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Figure B.25: PyTorch MPC costs on test scenario constraint violation 2
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Appendix C

Tables

C.1 Artificial Neural Networks
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Table C.1: Lowest 10 mean squared error training loss for w and p combinations ranked at p = 60. Filtered and denoised dataset.

NN w p
TrainingMSE loss

Sum Thot air Tsurface Sump=60 Thot air , p=60 Tsurface , p=60

28 120 60 0.002366 0.003513 0.001219 0.001144 0.001906 0.000382

06 60 60 0.000435 0.000487 0.000383 0.000435 0.000487 0.000383

92 300 90 0.005318 0.006526 0.004109 0.001517 0.002115 0.000918

07 60 60 0.000852 0.001334 0.000370 0.000852 0.001334 0.000370

04 60 30 0.000543 0.000814 0.000271 0.000543 0.000814 0.000271

29 120 60 0.002382 0.002796 0.001969 0.000874 0.001177 0.000572

27 120 60 0.001374 0.001868 0.000880 0.000720 0.000985 0.000455

25 120 60 0.001965 0.003029 0.000901 0.000826 0.001301 0.000352

16 60 120 0.000926 0.001186 0.000665 0.000926 0.001186 0.000665

94 300 90 0.005970 0.007213 0.004726 0.001541 0.002048 0.001033
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Table C.2: Lowest 10 mean squared error validation loss for w and p combinations ranked at p = 60. Filtered and denoised dataset.

NN w p
ValidationMSE loss

Sum Thot air Tsurface Sump=60 Thot air , p=60 Tsurface , p=60

28 60 120 0.001702 0.000831 0.002573 0.000741 0.000301 0.001182

06 60 60 0.000738 0.000308 0.001167 0.000737 0.000308 0.001167

92 90 300 0.005142 0.003787 0.006497 0.000714 0.000321 0.001107

07 60 60 0.000835 0.000322 0.001347 0.000835 0.000322 0.001347

04 30 60 0.001000 0.000324 0.001677 0.001000 0.000324 0.001677

29 60 120 0.001889 0.000895 0.002883 0.000801 0.000326 0.001276

27 60 120 0.001815 0.000958 0.002672 0.000781 0.000337 0.001225

25 60 120 0.001853 0.000943 0.002763 0.000798 0.000339 0.001257

16 120 60 0.000699 0.000351 0.001047 0.000699 0.000351 0.001047

94 90 300 0.006895 0.004835 0.008955 0.000815 0.000352 0.001277
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Table C.3: Lowest 10 mean squared error training loss for w and p combinations ranked at p = 60. Filtered and denoised dataset.

NN w p
TestingMSE loss

Sum Thot air Tsurface Sump=60 Thot air , p=60 Tsurface , p=60

28 120 60 0.002321 0.003647 0.000995 0.001021 0.001746 0.000296

06 60 60 0.000692 0.001064 0.000320 0.000692 0.001064 0.000320

92 300 90 0.005786 0.007517 0.004055 0.001187 0.001634 0.000741

07 60 60 0.000712 0.001116 0.000307 0.000712 0.001116 0.000307

04 60 30 0.000641 0.000943 0.000339 0.000641 0.000943 0.000339

29 120 60 0.002359 0.003593 0.001125 0.001034 0.001711 0.000357

27 120 60 0.002026 0.002937 0.001116 0.000891 0.001447 0.000334

25 120 60 0.002146 0.003263 0.001029 0.000946 0.001557 0.000335

16 60 120 0.000863 0.001284 0.000443 0.000863 0.001284 0.000443

94 300 90 0.007072 0.009616 0.004528 0.001213 0.001695 0.000730
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C.2 Model Predictive Control

C.2.1 Softmax aggregated ranking results
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Table C.4: Softmax aggregated ranking PyTorch vs SciPy results on test scenarios Constraint Violation (C.V.) 1 and 2 for all different
optimizers. Constrained violations in Thot air observed. PyTorch MPC showing better performance compared to SciPy.
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ṁ
ai
r
,U
.B
.C
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T
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.V
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∑ Ṫ s
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R
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k ∑ ∆
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T
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ir,
R
M
S
E

R
an
k ∑ ˙̃ H
ai
r

R
an
k

Sc
or
e

C
on
st
ra
in
tV
io
la
ti
on
1

S
ci
P
y COBYLA 1.00 0.00 0.12 0.13 0.00 0.13 0.14 0.13 0.14 0.16 0.15 0.08 0.13 4.13

SLSQP 0.00 0.00 0.77 0.26 0.00 0.18 0.15 0.18 0.15 0.14 0.14 0.14 0.14 4.93

Trust-constr 0.00 0.00 0.04 0.12 0.00 0.15 0.14 0.15 0.14 0.15 0.14 0.11 0.14 4.04

P
yT
or
ch

Adam 0.00 0.00 0.00 0.12 0.00 0.13 0.14 0.13 0.14 0.14 0.14 0.17 0.15 3.71

AdamW 0.00 0.00 0.00 0.12 0.00 0.14 0.14 0.14 0.14 0.14 0.14 0.16 0.15 3.72

Yogi 0.00 0.00 0.01 0.12 0.00 0.15 0.14 0.15 0.14 0.14 0.14 0.17 0.15 3.79

LBFGS 0.00 0.00 0.07 0.13 0.00 0.12 0.14 0.12 0.14 0.14 0.14 0.17 0.15 3.71

C
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ra
in
tV
io
la
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2

S
ci
P
y COBYLA 0.00 1.00 0.07 0.13 0.00 0.12 0.14 0.09 0.13 0.13 0.14 0.10 0.14 3.98

SLSQP 0.00 0.00 0.30 0.17 0.00 0.24 0.16 0.16 0.15 0.25 0.16 0.21 0.15 4.13

Trust-constr 0.00 0.00 0.23 0.16 0.00 0.12 0.14 0.08 0.13 0.13 0.14 0.10 0.14 4.14

P
yT
or
ch

Adam 0.00 0.00 0.11 0.14 0.00 0.13 0.14 0.19 0.15 0.12 0.14 0.15 0.14 3.95

AdamW 0.00 0.00 0.09 0.14 0.00 0.13 0.14 0.19 0.15 0.12 0.14 0.15 0.14 3.94

Yogi 0.00 0.00 0.14 0.14 0.00 0.14 0.14 0.23 0.16 0.12 0.14 0.15 0.14 4.06

LBFGS 0.00 0.00 0.06 0.13 0.00 0.12 0.14 0.07 0.13 0.12 0.14 0.15 0.14 3.80
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Table C.5: Softmax aggregated ranking PyTorch vs SciPy results on test scenarios Nominal Operation (N.O.) 1 and 2 for all different
optimizers. No constraints violations observed. MPC using PyTorch scores lower showing better performance compared to SciPy.
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S
ci
P
y COBYLA 0.00 1.00 0.00 0.14 0.00 0.15 0.14 0.10 0.14 0.44 0.19 0.07 0.13 4.64

SLSQP 0.00 0.00 0.00 0.14 0.00 0.15 0.14 0.14 0.14 0.07 0.13 0.17 0.15 3.83

Trust-constr 0.00 0.00 0.00 0.14 0.00 0.14 0.14 0.13 0.14 0.18 0.15 0.11 0.14 4.17

P
yT
or
ch

Adam 0.00 0.00 0.00 0.14 0.00 0.15 0.14 0.15 0.14 0.08 0.13 0.17 0.15 3.86

AdamW 0.00 0.00 0.00 0.14 0.00 0.15 0.14 0.14 0.14 0.09 0.13 0.15 0.14 3.91

Yogi 0.00 0.00 0.00 0.14 0.00 0.14 0.14 0.21 0.15 0.07 0.13 0.17 0.15 3.88

LBFGS 0.00 0.00 0.00 0.14 0.00 0.13 0.14 0.13 0.14 0.07 0.13 0.17 0.15 3.79

N
om

in
al
O
pe
ra
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on
2

S
ci
P
y COBYLA 0.00 1.00 0.00 0.14 0.00 0.15 0.14 0.16 0.14 0.21 0.15 0.12 0.14 4.18

SLSQP 0.00 0.00 0.00 0.14 0.00 0.14 0.14 0.13 0.14 0.09 0.14 0.16 0.14 3.87

Trust-constr 0.00 0.00 0.00 0.14 0.00 0.16 0.14 0.10 0.14 0.26 0.16 0.10 0.14 4.28

P
yT
or
ch

Adam 0.00 0.00 0.00 0.14 0.00 0.14 0.14 0.13 0.14 0.11 0.14 0.16 0.15 3.89

AdamW 0.00 0.00 0.00 0.14 0.00 0.15 0.14 0.12 0.14 0.14 0.14 0.15 0.14 3.97

Yogi 0.00 0.00 0.00 0.14 0.00 0.13 0.14 0.24 0.16 0.10 0.14 0.16 0.15 3.98

LBFGS 0.00 0.00 0.00 0.14 0.00 0.13 0.14 0.12 0.14 0.10 0.14 0.16 0.15 3.85
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C.2.2 Aggregated ratio ranking results

Table C.6: Aggregated ratio ranking Pytorch vs SciPy results on test scenarios Con-
straint Violation (C.V.) 1 and 2 for all different optimizers. Constrained violations in
Thot air observed. PyTorch MPC showing better performance compared to SciPy.
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S
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P
y COBYLA 1.00 0.00 0.12 0.00 0.13 0.08 0.16 0.08 6.01

SLSQP 0.00 0.00 0.77 0.00 0.18 0.23 0.14 0.14 9.24

Trust-constr 0.00 0.00 0.04 0.00 0.15 0.16 0.15 0.11 4.65

P
yT
or
ch

Adam 0.00 0.00 0.00 0.00 0.13 0.13 0.14 0.17 2.38

AdamW 0.00 0.00 0.00 0.00 0.14 0.12 0.14 0.16 2.42

Yogi 0.00 0.00 0.01 0.00 0.15 0.18 0.14 0.17 2.85

LBFGS 0.00 0.00 0.07 0.00 0.12 0.09 0.14 0.17 2.43

C
on
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tV
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2

S
ci
P
y COBYLA 0.00 1.00 0.07 0.00 0.12 0.09 0.13 0.10 3.89

SLSQP 0.00 0.00 0.30 0.00 0.24 0.16 0.25 0.21 4.62

Trust-constr 0.00 0.00 0.23 0.00 0.12 0.08 0.13 0.10 5.34

P
yT
or
ch

Adam 0.00 0.00 0.11 0.00 0.13 0.19 0.12 0.15 3.71

AdamW 0.00 0.00 0.09 0.00 0.13 0.19 0.12 0.15 3.58

Yogi 0.00 0.00 0.14 0.00 0.14 0.23 0.12 0.15 4.39

LBFGS 0.00 0.00 0.06 0.00 0.12 0.07 0.12 0.15 2.58
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Table C.7: Aggregated ratio ranking Pytorch vs SciPy results on test scenariosNominal
Operation (N.O.) 1 and 2 for all different optimizers. Constrained violations in Thot air
observed. PyTorch MPC showing better performance compared to SciPy.
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y COBYLA 1.00 0.00 0.00 0.00 0.15 0.10 0.44 0.07 10.38

SLSQP 0.00 0.00 0.00 0.00 0.15 0.14 0.07 0.17 2.14

Trust-constr 0.00 0.00 0.00 0.00 0.14 0.13 0.18 0.11 4.25

P
yT
or
ch

Adam 0.00 0.00 0.00 0.00 0.15 0.15 0.08 0.17 2.27

AdamW 0.00 0.00 0.00 0.00 0.15 0.14 0.09 0.15 2.50

Yogi 0.00 0.00 0.00 0.00 0.14 0.21 0.07 0.17 2.45

LBFGS 0.00 0.00 0.00 0.00 0.13 0.13 0.07 0.17 1.94

N
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O
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on
2

S
ci
P
y COBYLA 0.00 1.00 0.00 0.00 0.15 0.16 0.21 0.12 4.24

SLSQP 0.00 0.00 0.00 0.00 0.14 0.13 0.09 0.16 2.28

Trust-constr 0.00 0.00 0.00 0.00 0.16 0.10 0.26 0.10 5.25

P
yT
or
ch

Adam 0.00 0.00 0.00 0.00 0.14 0.13 0.11 0.16 2.41

AdamW 0.00 0.00 0.00 0.00 0.15 0.12 0.14 0.15 2.84

Yogi 0.00 0.00 0.00 0.00 0.13 0.24 0.10 0.16 2.97

LBFGS 0.00 0.00 0.00 0.00 0.13 0.12 0.10 0.16 2.13
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