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Abstract

The purpose of this thesis is to explore the use of Transformer Neural Network (T-
NN) to model complex system dynamics, to evaluate their potential for use in modern
control techniques, and to investigate their applicability in a Model Predictive Control
(MPC) controller for the Solar Tower Power Plant Julich (STJ) at the Deutsches Zentrum
fur Luft- und Raumfahrt e. V. (German Aerospace Center, DLR) in Julich.

The multi-step ahead prediction capability of a Neural Network (NN) with trans-
former architecture is used to model the dynamics of the nonlinear multivariable sys-
tem of the receiver based on real data. By incorporating information about future dis-
turbances or setpoint changes, the predictive behavior of the model facilitates coun-
teracting expected external influences. This property isthen applied in a MPC through
an Optimal Control Problem (OCP) formulation.

To solve the OCP, the PyTorch and SciPy libraries are tested with different optimiz-
ers. The first, while being an unconstrained optimizer, is used to solve the constrained
problem by means of proposed barrier functions to explore its potential.

Itis also observed that despite the state of the art NN, its accuracy depends on the
training data and that interpolation outside the training region leads to inaccurate or
unexpected predicted dynamics.

In this work, the PyTorch approach provides similar solutions to constrained op-
timizers while having faster computational times and better performance based on
simulation results.

Within the distribution of data on which the NN was trained, it is shown that the
proposed Transformer Neural Network (T-NN) enabled MPC controller is capable of
tracking the reference while satisfying the constraints and rejecting disturbances or
setpoint changes in the proposed test scenarios and in the presence of measurement
noise. Moreover, prediction errors are fitted in a Gaussian Process Regressor (GPR)
to obtain Uncertainty Quantification (UQ) information insights to be displayed to the
operator of the system.

For our application, the results show the feasibility of this type of data-based con-
troller and its potential to increase the efficiency and resilience of the system. In-situ
test campaigns are needed to confirm these results.
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Kurzfassung

Zieldieser Arbeitist es, die Verwendung neuartiger kiinstlicher Neuronaler Netze (NN)
zur Modellierung komplexer Systemdynamiken zu erforschen, ihr Potenzial fur den
Einsatz in modernen Regelungstechniken zu bewerten und ihre Anwendbarkeit in ei-
nem modellpradiktiven Regler (MPC) fir das Solarturmkraftwerk (STJ) des Deutschen
Zentrums fur Luft- und Raumfahrt (DLR) in Julich zu untersuchen.

Die mehrschrittige Vorhersagefahigkeit eines NN mit Transformer-Architektur wird
genutzt, um die Dynamik des nichtlinearen multivariablen Systems des Strahlungs-
empfangers auf der Basis realer Daten zu modellieren. Durch die Einbeziehung von In-
formationen uber zukUnftige Storungen oder Sollwertanderungen erleichtert das Vor-
hersageverhalten des Modells die Kompensation erwarteter externer Einflusse. Diese
Eigenschaft wird in einem MPC verwendet.

Zur Berechnung des MPC werden die Bibliotheken PyTorch und SciPy mit verschie-
denen Optimierern getestet. Die erstgenannte Bibliothek wird, obwohl es sich um ei-
nen unbeschrankten Optimierer handelt, zur Losung des beschrankten Problems mit
Hilfe der vorgeschlagenen Schrankenfunktionen verwendet, um sein Potential zu er-
kunden.

In dieser Arbeit liefert der PyTorch-Ansatz ahnliche Losungen wie die beschrank-
ten Optimierer, hat aber schnellere Berechnungszeiten und eine bessere Leistung ba-
sierend auf den Simulationsergebnissen. Innerhalb der Datenverteilung, auf der das
NN trainiert wurde, wird gezeigt, dass der vorgeschlagene NN-gesteuerte MPC in der
Lage ist, den Sollwert zu verfolgen, die Nebenbedingungen zu erfullen und Storungen
oder Sollwertanderungen in den vorgeschlagenen Testszenarien abzulehnen. Zudem
werden Vorhersagefehler in einem Gaussian Process Regressor (GPR) angepasst, um
Uberdie Unsicherheitsquantifizierung (UQ) Information zu gewinnen, die dem System-
bediener angezeigt werden.

Fur unsere Anwendung zeigen die Ergebnisse die Machbarkeit dieses datenba-
sierten Reglers und sein Potenzial, um die Effizienz und Widerstandsfahigkeit des Sy-
stems zu erhohen. Testkampagnen vor Ort sind erforderlich, um diese Ergebnisse zu
bestatigen.
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Notation

Numbers and Arrays

a A scalar (integer or real)
a Avector
a* An optimal vector
a:n A sequence of vectors from 1 to N, such that aj;.n] =
(ai,...,an)
ap.n = (ai,...,an)
A A matrix
A Atensor
E A sequence embedding
I Identity matrix with dimensionality implied by context
C Context window
P Prediction horizon
w Look-back window
Q A vector product of a matrix vector multiplication
w A neural network weights matrix
b; A neural network bias
Sets and Graphs
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a;

Aset

The set of real numbers

The set containing 0 and 1

The set of all integers between 0 and n

The real interval including a and b

Element i of vector a, with indexing starting at 0
Last elements of vector a except for element
Element i, j of matrix A

Row i of matrix A

Column i of matrix A

Element (i, j, k) of a 3-D tensor A

2-D slice of a 3-D tensor

Dimension of vector

Linear Algebra Operations

AT

AGB

Transpose of matrix A

Element-wise (Hadamard) product of A and B

Probability and Information Theory

P(a)
P(ab)

a~P

A probability distribution over a given b
A probability distribution over a discrete variable

Random variable a has distribution P



Exwplf(z)] Expectation of f(z) with respect to P(x)

o?(f(z)) Variance of f(z) under P(x)
Cov(f(x),g(x)) Covariance of f(z) and g(x) under P(x)
N(z; p, ) Gaussian distribution over & with mean p and covari-
ance X
Functions
f(x;0) A function of « parametrized by 6.
NN (x) A neural network mapping function
log Natural logarithm of =
O'(.’I:) LOg|St|C SlngId, H-Tp(_x)
||| |? L? norm of
MSE(y,9) Mean squared error between y and y
RMSE(y,y) Root mean squared error betweeny and g

Datasets and Distributions

Pdata The empirical distribution defined by the training set
X A set of training examples

D The dataset with measured values
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Chapter 1

Introduction

The purpose of this thesis is to explore the use of Transformer Neural Network (T-NN)
to model complex system dynamics, evaluate their potential for use in modern control
techniques, and investigate their applicability in an Model Predictive Control (MPC)
controller for the Solar Tower Power Plant Julich (STJ) at the Deutsches Zentrum fur
Luft- und Raumfahrt e. V. (German Aerospace Center, DLR) in Julich.

1.1 Context and motivation

In response to the current global energy demands and pressing concerns regarding
Greenhouse Gas (GHG) emissions and climate change driven by rising global tempera-
tures [1], there has been a growing interest in promoting the use of Renewable Energy
Sources (RESs) [2]. In 2023, Germany, for instance, achieved a reduction of Carbon
Dioxide (CO2) emissions by 10.1%, according to the Umwelt Bundesamt (German En-
vironment Agency, UBA) [3]. Besides the decrease in fossil fuel use as energy sources
and an overall reduction in energy consumption, an increase in RESs has played an
important role in achieving this result.

Despite these contributions, some technologies, although mature enough to prove
economic viability for energy production, have the potential for increased efficiency
that would enable scaled production and a higher market share. One such technology
is Concentrated Solar Power (CSP) plants.

Solar thermal power, or CSP, primarily works by heating a Heat Transfer Medium
(HTM) which can be used in an electric steam generator or in thermal storage. Solar
irradiance is concentrated using tracking mirrors called heliostats to focus sunlight
onto a receiver. Due to the high process temperatures that can be achieved, CSP can
also be used for other industrial processes or to produce hydrogen or synthetic fuels,
thus further contributing to sector decarbonization in addition to electric power gen-
eration.
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According to the International Energy Agency (IEA), CSP plants are expected to re-
main 100% policy-driven until 2028 [2]. In its World Energy Outlook 2023 report, IEA
calculates CSPsto represent 0.18% (16 TWh) of the world’s total RES generation (8,599
TWh), and 0.19% (7 GW) of the world’s total RES capacity (3,629 GW) [4]. This reflects a
niche for further development that could make CSP more economically attractive and
promote wider adoption by reducing the Levelized Cost of Electricity (LCOE) as an ef-
fect of increasing the number of suppliers in the energy market and improving overall
system efficiency.

Ultimately, as remarked by the World Bank in its Concentrating Solar Power re-
port, CSP with energy storage can absorb more energy from low-cost RESs, contribut-
ing overall to a lower-cost energy mix while increasing flexibility compared to Photo-
voltaics (PVs) [5]. An additional increase in the use of RESs can contribute to the Euro-
pean Union’s 2050 long-term strategy to reach carbon neutrality [6], as well as to the
United Nations Paris Agreement’s goals [7].

To contribute to technology development, improving the efficiency and reliability
of these systems is crucial. Modern control techniques can enhance disturbance re-
jection, improve set-point tracking of the HTM temperature, and enforce operational
constraints. One such approach is Model Predictive Control (MPC).

MPC is an advanced process control method that uses a model of the system’s dy-
namics and information about future state values, including possible future distur-
bance predictions. This makes it an appropriate candidate for research in solar ther-
mal power plants. However, one of the main difficulties with this approach is that,
although a sufficiently accurate model using first principles can be obtained, its com-
plexity grows rapidly, and so does the computation time needed to obtain a numerical
result.

Research has predominantly used simplified system modelsto addressthese chal-
lenges. Yet, only a few studies have explored data-based approaches, such as Ma-
chine Learning (ML) with NNs. Even fewer empirical investigations have tested these
methods on real plants.

1.2 Objectives, scope, and contribution

The purpose of this thesis is to explore the use of novel artificial Neural Network (NN)
architectures to model complex system dynamics and to evaluate their potential for
use in modern control techniques. This is then utilized in the Solar Tower Power Plant
Julich (STJ) atthe Deutsches Zentrum fur Luft- und Raumfahrte. V. (German Aerospace
Center, DLR) in Julich to investigate feasible efficiency and robustness improvements.

To achieve this goal, a NN with a Transformer architecture is used to predict the
system dynamics for a certain prediction horizon in the future. The NN will then be
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used as a model of the system in an MPC controller. An attempt to find an optimal
combination of parameters for the MPC formulation is made by training with different
prediction horizon and look-back window values.

The controller seeks to remedy the influence of external factors such as cloud cov-
erage by using solar irradiance predictions. Lack of predictive behavior during dis-
turbances could damage the materials or cause stresses in the receiver by driving the
system outside safe operating conditions, such as maximum receiver surface temper-
ature or allowable change of surface temperature. For instance, these issues can be
caused by sudden changes in solar power during a cloud transition.

The aim of the controller is to provide a stable HTM temperature around a desired
set point by controlling the inputs in a predictive manner in the presence of distur-
bances or changes in the set point while satisfying operation constraints.

To assess the performance of the controller, a second NN is trained with different
initial conditions and randomly distributed training data to be used as the simulated
true plant model in a software-in-the-loop analysis. Metrics on constraints violations,
set-point Root Mean Squared Error (RMSE), total effort, and change of enthalpy are
quantified to assess the results, based on four different testing scenarios.

The work alsocomparesthe use of constrained (SciPy minimize) and unconstrained
(PyTorch) optimizers, and in addition to its primary focus, it provides a brief introduc-
tion to Gaussian Processes within the context of CSP control. While the UQ values will
not be directly part of the design of the MPC controller, they aim to inform the operator
and serve as an option to further investigate the feasibility and potential application
of Gaussian Processes in this domain.

The raw data from the results cannot be disclosed directly. However, the results
are presented in a normalized format for interpretation.

The key research question of this study is to explore the potential of Transformer
Neural Networks to model system dynamics and investigate their applicability in an
MPC controller for the Solar Tower Power Plant Julich (STJ).

1.3 Structure

The overall structure of the thesis takes the form of nine chapters, including this in-
troductory chapter. This work first provides in Chapter 2 an overview of CSPs, explain-
ing the fundamentals of the Solar Tower Power Plant Julich (STJ), the experimental
setup, and the data used for this research. Chapter 3 illustrates the related state of
the art. The following Chapter 4 offers a theoretical framework for Neural Networks
(NNs), subsequently Model Predictive Control (MPC), and Uncertainty Quantification
(UQ). Chapter 5 discusses the NNs architecture used and its components within an
MPC controller. It is followed by Chapter 6, where the MPC controller is studied as a
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solution to the OCP with constrained and unconstrained optimization tools. As a brief
introduction to the topic, in Chapter 7, Gaussian processes are proposed as a tool for
uncertainty quantification applied to solar thermal power plants. Finally, the Conclu-
sions gives a brief summary and critique of the findings, followed by identifying and
citing areas for further research in the Outlook.

The organization of this thesis is structured to resemble the progression of re-
search, workflow, and findings that occurred during the development of this work.
Hence, starting from Chapter 5, each subsequent chapter will outline its methods and
present its findings.



Chapter 2

Experimental Setup

This chapter provides a brief overview of CSP plants and the fundamentals of the STJ,
which is the core focus of this thesis. It also describes the experimental setup used
for the research.

2.1 Concentrated solar power

Solar thermal power, or CSP, operates by heating a HTM using reflected solar irradi-
ance. The heated HTM can then be used in an electric steam generator cycle, thermal
storage, or industrial processes. Overall, examples of HTMs are molten salts, gases,
solid particles and liquid metals, to name a few. The solar irradiance is concentrated
onto a focal point or focal line using tracking mirrors called heliostats or reflectors
depending in the system, and they focus or reflect the sunlight onto a receiver or ab-
sorber. The heat generated by the concentrated solar power is then transferred to the
HTM as it passes through the receiver.

From the different types of solar thermal power plants that exist, Figure 2.1 depict the
three most widely used [8]: solar tower (e.g. Figure 2.1a), parabolic trough (e.g. Fig-
ure 2.1b) and Linear Fresnel Reflector (LFR) systems (e.g. Figure 2.1c). In their own
configuration, their core components are highlighted: Receiver or absorber, and he-
liostat or reflector.

An optional yet very advantageous element of CSPs is the Thermal Energy Stor-
age (TES). Such a system stores thermal energy instead of electric energy, which is
cheaper compared to other energy storages [4]. During operation, part or excess of the
HTM’s energy can be passed through the TES to store energy for later use. This con-
tributes to the energy supply security and flexibility, since it enables the plant to oper-
ate during non-solar radiation periods using the energy stored. Because they can ad-
just power generation to demand flexibly, solar thermal power plants are also known
as adjustable power plants [8].
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Figure 2.1: Different types of concentrated solar power plants. DLR [8].

(a) Surround field. Gemasolar, Spain. (b) Polar field. STJ, Germany.
Figure 2.2: Heliostat field layouts. Adobe Stock (left), DLR (right).

2.2 Solartower power plant Jiilich

Theresearch facility in Julich is operated by the Institut fur Solarforschung (Institute of
Solar Research, SF) at the Deutsches Zentrum fur Luft- und Raumfahrte. V. (German
Aerospace Center, DLR). It is a solar thermal power with a solar tower configuration,
thus the reflection of the solar irradiance is done by sun tracking heliostats. These
mirrors have typically a 2-Degrees of Freedom (DOF) kinematic structure to direct the
sunlight onto the receiver’s surface.

Heliostats are placed and arranged with respect to the tower in two major config-
urations depicted in Figure 2.2: surround field (e.g. Figure 2.2a) like in Gemasolar CSP
in Spain, and polar (e.g. Figure 2.2b), which is the configuration present at the STJ.
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This heliostat field operating at the STJ is composed of over 2000 heliostats, each
with a surface of 8.3 m2. They are controlled by an in-house system called "HeliOS”,
where the target points are directed towards the receiver at a height of 55 m.

For HTM, the STJ utilizes ambient air to absorb the energy collected by the receiver
and itis transported to either a thermal storage unit or a steam generator. This is pos-
sible thankstothe porous structure of the receiver’'s materials which allow the medium
to flow through, absorbing the energy, hence the name of Open Volumetric Receiver
(OVR).

Amongdifferent solar tower CSPs configurations, the most widely adopted receivers
are be tubularor openvolumetric. The material of these receivers can be amongothers
made of ceramic or metallic materials [9]. The system described in this work utilizes
an open volumetric receiver, made of 1080 ceramic absorber cups, with a total surface
of 22.7 m? [10].

Figure 2.3a show the assembly between the ceramic cups and the mounting sur-
face of the receiver, as well as its different parts and the air interaction. The ambient
fluid is drawn towards inside the cups due to the negative pressure created by a com-
pressor in the system, while at the same time, the reflected incident solar flux heats
the body of the ceramic cups. As the HTM passes through the receiver, it absorbs en-
ergy and is carried to the output of the receiver into the system through the orifice of
the mounting apparatus.

The tower’s design considers air temperature reuse to increase performance. This
is achieved by recirculating air back towards the receiver’s forefront through gaps be-
tween the absorber modules as shown in Figure 2.3a. This approach attempts higher
extraction of residual exergy inherent within the HTM. Is worth to notice, that the expo-
sure ofthe fluid toambient conditions facilitate direct interaction with the surrounding
atmosphere thus make it susceptible to energy losses due to weather conditions.

The complete assembly of the tower’s receiver is depicted in Figure 2.3b. Itis com-
posed of 4 quadrants with 10 holding frames each, where single cups mounted in a
connecting stainless-steel pipe are connected to each framein a 3 by 9 arrangement.
Due to its ceramic materials, limitations on temperature gradients have to be consid-
ered for means of control. From a modelling perspective, the receiver’s surface ma-
terial, the structure of the porous absorbing cups, its assembly and the number of
elements translate into a complex system of algebraic and Ordinary Differential Equa-
tions (ODEs) [15].

With the key components of a CSP described, in particular those of the STJ, an over-
all system description can be done. In Figure 2.4, the heliostat field, the receiver, the
actuating compressor and the downstream processes are depicted. A heat storage
and steam generation stages are shown for completion, but they are not directly part
of the scope of this thesis, hence, the elements inside the dotted line are part of this
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(a) Receiver cups construction. [11]

(b) Receiver assembly and surface. Adaptation. [12], [13], DLR [10].
Figure 2.3: Solar Tower Power Plant Julich (STJ) receiver.

work.

One main component of this thesis is to explore the feasibility to model the STJ as a
simplified system and estimate states based on direct and indirect measurements.
Therefore, five variables are selected and explored in this thesis, shown in Figure 2.4:
receiver’s surface temperature Ty face , receiver’s surface apparent brightness IQ, hot
air temperature Thot air » cold air temperature Teoq air » @and air mass flow rigj, .

2.3 Measured data

The plant is equipped with a variety of sensors and cameras whose data is captured
and stored in a central system for both online or offline use, allowing the data to be
used forresearch purposes. Controland peripherals integration happen withinan OPC
UA system.

With respect to the measured variables that are used to model the system, the
plant is equipped with air mass flow and temperature sensors. In particular, to in-
directly measure the solar irradiance reflected by the heliostats onto the receiver the
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Figure 2.4: Diagram of solar tower power plant Julich with open volumetric receiver.
Adaptation. DLR, Pabst [14].

tower uses an optical gray-scale camera system pointing to the receiver. This gives
the receiver’s surface apparent brightness. These images can be used to make an
estimated measurement of the irradiated flux density based on the apparent pixel
brightness taken from the images of the surface [16]. Anotherimportant partisthe re-
ceiver’s surface temperature measurement system, which is composed by an Infrared
(IR) camera.

In Figure 2.5a a sample image of the gray-scale camera system is shown. Images
have 12-bit precision values and a resolution of 1392x1040 pixels. In Figure 2.5b a
384x288 resolution IR image of the receiver’s surface temperature is shown along a
scale bar. For later use, images are first rectified, stabilized and cut to the receiver’s
edges. Then pixels groups are averaged for a final image resolution of 30 by 36, equal
to the number of ceramic absorbers in the receiver’s surface.

For the variables IQand Tsurface » Measured by the gray-scale and IR camera sys-
tems respectively, image-based methods offer an easier and cost-effective way to
take the measurements compared to installing individual sensors directly around orin
front each absorber cup. Additionally, temperature sensors are placed only behind a
number of absorber cups. While the surface temperature could be measured directly,
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(a) Receiver’s gray-scale wrapped image
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(b) Receiver’s IR wrapped image with temperature
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Figure 2.5: Solar Tower Power Plant Julich (STJ) receiver. DLR.

the irradiated solar power is technically not viable and operational not feasible, since
this will mean placing the instruments in between the heliostats and receiver.

To circumvent this issue, Thelen [16] developed an indirect measurement technique
based on the receiver’s reflection or brightness captured in gray-scale images. With
the absorberand irradiance parameters a calibration process is performed. Measure-
ments show correlation compared to direct techniques like Gardon and Kendall ra-
diometers and Suncatch calorimeters, showing the viability of this measuring tech-
nique. In this thesis, the system’s measured irradiance in [W/m?] in not directly used
since it is purpose of study to explore the use of indirect measurements data as in-
put to the NN. Instead, the mean of the pixels raw values (intensity, brightness) of the
rectified images is considered. This is done as well for the surface temperature, with
the difference that the values of the pixels correspond to the temperature directly. For
the indirectly measured irradiation intensity (receiver’s mean surface apparent bright-
ness) Iy, the value is divided by the exposure time of the camera, and for the receiver
surface temperature Ty, race the value is taken as is.

10
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To measure the hot air temperature Thot air » 10% of the receiver’s cups have a tem-
perature probe, backed by a redundant system after the receiver’s mounting mod-
ules junction with a number of sensors, allowing for direct measurement of the hot
air after the receiver. Hence, this work uses the redundant system as they reflect the
temperature of the HTM after passing through the complete receiver. The difference
between the measured temperatures in the different zones of the receiver surface is
outside the scope of this thesis as the irradiation distribution is considered to be uni-
form across the surface. Cold air Teogair IS measured in a similar way. With a fixed
number of sensors, air returning from the steam or storage process is measured be-
fore being exhausted towards the receiver surface in between the gaps as presented
before. For training purposes, each series of hot and cold air measurements are aver-
aged individually to make a single array of values for the NN input. Last, the air mass
flow g, driven by the system’s compressor is measured using a flow indicating sen-
sor. Therefore when measured, the five variables of interest (receiver’s surface tem-
perature Tsyrface » receiver’s Receiver’s mean surface apparent brightness IQ, hot air
temperature Thot air » cold air temperature Ty g 4ir » @nd air mass flow my;, ) are scalars
organized as time-series data or unidimensional arrays. Values are read and stored
at a frequency of 1 [Hz].

Related to the receiver model, a short-term solar irradiance forecast system called
"Nowcasting” is available [17], [18]. Composed of All-sky imagers (ASls), pyrheliome-
ters and weather stations, the system provides Direct Normal Irradiance (DNI) predic-
tions considering the observed clouds for up to 60 minutes ahead. This data will later
be used in the MPC as part of NN input to exploit the predictive behavior of the model
in the controller formulation.

To present the structure of the dataset, Figure 2.6 shows an extract of the data col-
lected which is available for this thesis. Values are normalized for visualization pur-
poses. The measurements shown were captured on May 31st, 2023. During this pe-
riod, a constant r,;, (green line) was attained while the IQ(purple line) was varied. For
each changein IQ, achange in the measured hot air temperature (Thot 4ir , Orange line)
is observed. At a later stage, the IQis kept constant and . is changed to explore the
influence in Thet 4ir - Different configurations of variables were tested and logged to try
to capture a variety of system dynamics to be modelled by the NN. The fulfillment of
a persistence of excitation requirement in the dataset is not part of this thesis, and
therefore it is assumed that sufficient data is available to model the dynamic to some
extent. To account for irradiation dynamics, the number of heliostats reflecting to the
receiver is controlled. The heliostat(s) that are then manipulated to either focus or
defocus are selected in a random manner from a pool of available heliostats. In differ-
ence to an homogeneous selection of mirror(s), the randomized selection decreases
the influence of cloud shadows over the heliostat field by distributing the disturbance

11
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Figure 2.6: STJ normalized measured data.

across a random amount of heliostats and the available surface. For technical rea-
sons unrelated to this work, more true measured data was not available for training.

In the following, the values of air mass flow g, , cold air temperature To\q air 2nd
receiver’s surface apparent brightness Iyare considered as state variables of the sys-
tem. Receiver’s surface temperature Ty face @nd hot air temperature Tt 4ir the output
variables. This is summarized in Table 2.1

Table 2.1: Solar tower Julich model variables

Variable Description Units Type

Mair Air mass flow [kg/s] controlled variable

Toold air Cold air temperature [°C] state variable
IQ Receiver’'s mean surface apparent  [1/s] state variable

brightness
Tsurface Receiver’'s mean surface infrared [°K] output variable
temperature
Thot air Hot air temperature [°C] output variable

12
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In the context of NNs, these variables are visited again in Chapter 5. For the MPC,
the variable air mass flow 1, is considered as the controlled variable and its use is
further explained in Chapter 6.

13
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Chapter 3

State of the Art

This chapter reviews the current advancements and ongoing challenges in CSP found
in the literature. Key areas include Heat Transfer Medium (HTM), receiver configura-
tions, system modeling, control techniques and uncertainty quantification methods.

3.1 Concentrated solar power

In the field of CSPs, research continuously contributes to topics such as HTMs, re-
ceiver arrangement and material, system modeling, and heliostat online control. For
example, Yerudkar et al. [19] and the DLR [8] extensively present the different types of
available technologies and offer a global energy-market-oriented perspective, focus-
ing on the potential of CSPs plants and their economic viability as a driver for further
technical development. However, these discussions often lack specifics on modeling
and control techniques.

3.2 Heat transfer medium, materials, and receiver configura-
tion

To address this, Merchéan et al. [9] review technological advances in HTMs, solar re-
ceiver materials and configurations, as well as options for TES. This is shown in the
work of Ding and Bauer [20], who analyze current and new research on HTM materi-
als. These materials are studied in the context of next generation” CSP plants, where
higher process temperatures can be achieved, leading to higher thermal efficiencies.
More research is needed to reliably compare these materials and their viability. Di-
rectly related to the STJ, Capuano et al. [21] examine ceramic absorbers on the surface
of the receiver and provide a baseline mathematical model of this solar tower plant.
The study highlights the influence of variable environmental conditions on the model’s
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accuracy compared to real data, leaving room for further analysis and suggesting the
mitigation of numerical complexity due to higher-order models.

3.3 Modeling and control

To enhance system efficiency through control, an accurate system model is needed.
This model should account for system dynamics as well as disturbances. In CSPs, dis-
turbances mainly come in the form of passing clouds that obstruct sunlight reaching
the reflecting mirrors, thus reducing the reflected irradiated solar power. Since the
nominal operation of a plant is usually planned in advance, the desired set point can
also be inferred. Another disturbance or time-variant influence could be the energy
demand of the grid, but it is considered decoupled thanks to the use of TES. There-
fore, it can be considered negligible for the controllers but may affect the cold side
of the HTM. Additionally, all plants have inherent minimum and maximum operating
conditions for safe operation. A control mechanism that can use this information is
beneficial for increasing system efficiency by extending the lifetime of parts, reduc-
ing maintenance and operation costs, and stabilizing energy generation. Literature
related to CSPs control can be divided into two groups: receiver model control and ir-
radiance aim point control.

Receiver model control

Given this context, Hirsch et al. [22] and Gall et al. [15] model the dynamics of the
STJ using the modeling language Modelica. They introduce the use of Differential-
Algebraic Equation (DAE) solving software in combination with an MPC controller. The
main limitation of these studiesis the lack of detailin their mathematical methods and
OCP formulation. The latter considers a linear MPC, and full nonlinear model analysis
was left open.

Another example in this area of research can be found in Popp et al. [23], where a
reduced model of a CSP receiver with molten saltas HTM is studied. However, this pa-
per considers only a traditional Proportional-Integral-Derivative (PID) controller, and
the model accuracy is limited to this type of material. Later, with advances in compu-
tation power, software capabilities, and modern technologies, novel approaches re-
visited and tried to combine CSP dynamic models with control techniques. In his later
work, Popp et al. [24] compares the PID controller against an MPC formulation using
the simplified model and the HTM mass flow as a single controlled variable.

Inanewapproach, Idingetal. [25] proposed a single absorber cup simplified model
based on Gall et al. [15], combined with an MPC to control the HTM temperature,
showing good validation results against real data from the STJ. The model was then
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extended to all receiver cups, but although the results showed significantly worse per-
formance, it highlighted the importance of the inhomogeneous parameter set and sys-
tem complexity.

Aim point optimization techniques and control

Surveys such as those conducted by Garcia et al. [26], [27] delve into heliostat aim
point control and related solar irradiance on the receiver based on a model published
by Sanchez-Gonzéalez [28]. These works propose a control loop methodology and group
subsets of heliostats as controlled variables in both steady state [26] and transients
[27]. In the realm of dynamic aiming, Zhu and Dong [29] compare a particle swarm
optimization algorithm as a control strategy against an MPC formulation.

Similar to Belhomme et al. [30], where the heliostat’s aim point is explored as a
controlled variable, Geschonneck [31] maximizes the receiver’s absorption powerinan
OCP formulation based on previous models. The irradiated power, as a function of the
heliostat aim point, is then controlled by an MPC in response to the measured states,
specifically the receiver’s surface temperature and the HTM outlet temperature.

Likewise, Ostermann [32] extends the work of Geschonneck [31] by including the
HTM temperature directly in the MPC control objective as a second controlled vari-
able. To account for the simplified model mismatch, the author uses a Moving Horizon
Estimator (MHE) that minimizes the difference between the simplified model and the
measured states. Despite these advances, in-situ experiments are still needed to val-
idate the results, and the parameters of the MHE are subject to tuning.

Regarding modelingand considering the additional benefits of modern control tech-
niques, the addition of predicted state values in the model can be achieved. Samu et
al. [17] extend cloud and solar irradiance prediction, which Geschonneck [31] inte-
grates into an MPC controller. Geschonneck evaluates the performance of this sys-
tem in proposed test cloud shadowing scenarios, considering both accurate and in-
accurate predictions. The results demonstrate the potential to enhance the overall
efficiency and reliability of CSPs.

3.4 Data-based control

Despite breakthroughsin CSP control strategies, research consistently shows the com-
plexity and required balance between computation time and model accuracy. Until re-
cently, few studies have explored the connection between solar thermal power plants
and data-driven control systems, which aim to identify the system and describe its
dynamics based on real data. Ruiz Moreno [33] demonstrates one such integration,
where data from a solar parabolic-trough plant with an MPC controller is collected.
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This datais later used to train an Multilayer Perceptron (MLP) NN to learn the policies
of the controller, thus reducing computation time with comparable mean results.

Another approach is shown in Pargmann et al. [34], where heliostat calibration
data is used in a Self-normalizing Neural Network (SNN) to improve the calibration
method. Results show an increase in calibration accuracy compared to current algo-
rithms.

More literature can be found outside data-driven control applied to CSPs. For in-
stance, Wong et al. [35] explore the use of an Recurrent Neural Network (RNN) to
model a pharmaceutical manufacturing process described as a Continuous Stirred-
Tank Reactor (CSTR) to make multiple single-step-ahead predictions (multiple shoot-
ing) of the system and control it using an MPC. However, a weakness of the study is the
use of a numerical model of the equations to generate training data, deviating from
the use of real process data and falling short in the study of its applicability. Utama et
al. [36] take a similar approach to Ruiz Moreno [33], where the MPC controller policies
are used as training data foradeep learning NN in an energy management system test
case. The key difference lies in the use of Explainable Artificial Intelligence (XAl), pro-
viding insights on how the NN arrived at a given result through a series of techniques.

An attempt to explore the use of Long Short-Term Memory (LSTM) NNs as a sys-
tem model in an MPC controller is made by Jung et al. [37], where the focus is on the
impact of different solvers and differentiation algorithms used in the OCP formulation
in an extensive analysis. Compared to other ML architectures, this type of NN showed
good performance in representing the system dynamics against ODE models of a two-
tank problem and CSTR study cases. Challenging the performance results of the LSTM
architecture and with the growing adoption in NNs of the Self-Attention mechanism
presented by Vaswani et al. [38], Park et al. [39] explore and measure the performance
of a T-NN in three study cases. These report better performance compared to other
types of architectures. The paper also highlights the exploitable capability of T-NNs
to make Multi Step-Ahead (MSA) predictions, reducing computation time in compar-
ison to recursive approaches like LSTM and RNN models, while also addressing the
vanishing gradients problem.

3.5 Uncertainty quantification and model predictive control

Previous publications have not addressed the inherent problem of model uncertainty,
which arises when assumptions and simplifications are made in mathematical mod-
els. This is especially true in NNs, where the architecture is adapted to the training
data, but an accurate generalization of a system is not achieved and its representa-
tion is highly depending on the regions at which it was trained, making it potentially
unreliable outside of the data distribution. Therefore, thereisincreasinginterestin UQ
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methods and their possible integration with ML. UQ seeks to characterize and quantify
the discrepancy between the model and the true observed data. The sources of uncer-
tainties may vary, from its presence in the model parameters, modelling and simplifi-
cations, measurement and output noise, delays, disturbances, among others [40].

Different UQ methods are applied to various fields of study, types of data, and ex-
periments. In this work, interest is focused on time series values, as they constitute
the core component of the data-driven control method used. One UQ technique that
has gained high interest and adoption in research is Bayesian optimization, particu-
larly Gaussian Processes, which have proven to be a useful non-parametric tool that
fits a regression with mean and standard deviation as a function of its kernel.

Gaussian processes

The papers of Kocijanetal. [41]-[43]and Likar and Kocijan [44] introduce a GP-based
MPC model. This is later extended to demonstrate how this method can be used for
data-based system identification and dynamic system control [45].

Regarding the use of UQ applied to CSPs plants, little research has been done. One
example is presented by Luo [46], who performs a multi-objective robust optimization
of a molten salt thermal solar power plant under uncertainty using a model approxi-
mation and solved by a Monte Carlo simulation and simulated annealing. On the other
hand, Mohammadzadeh et al. [47] use UQ in a stochastic mixed integer linear pro-
gram formulation to dispatch electrical energy and maximize expected profit with a
CSP plant as a generator.

Despite the lack of literature in this area, possible approaches can be explored
in other fields of engineering. For example, Torrente et al. [48] use a first-principles
model of a quadrotor, where the discrepancies of the model are fitted with a GPR and
used in an MPC for trajectory control. Eckel [49] explores its applicability for control-
ling towing kites, where the dynamics of the system are modeled both online and of-
fline depending on the flying regime and conditions. Elsheikh and Engell [50] propose
a hybrid MPC approach consisting of first-principles and data-based models. Training
regions are identified using a support vector machine, and an online GP model error
model is added when the controller is outside of that region. A significant limitation of
the previous works is that the authors’ methods do not consider the use of the stan-
dard deviation or variance information that the UQ method provides, but rather only
the mean of the model error. Lastly, in an attempt to take UQ a step further and inte-
grateitinto NNs, Fiedleretal. [51] present a NN with a Bayesian last layer and explore
its extrapolation capabilities. This enables direct quantification of the output uncer-
tainty, addressing the increasing complexity of fitting a GP for large datasets.
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Stochastic model predictive control

Another approach to leveraging UQ to account for model mismatch involves its appli-
cation within an OCP formulation that results in an Stochastic Model Predictive Con-
trol (S-MPC). Currently, no publications investigate the use of S-MPC in CSP plants,
but much can be learned from other areas of study where this is applied. Langaker
[52] uses a GP to model a four-tank system and a car system for obstacle avoidance.
Hewing et al. [53], [64] and Kabzan et al. [65] explore its use in autonomous systems
based on first-principles models, the first in an embedded system for miniature race
cars and the latter for competition racing. Bradford et al. [56] design an MPC con-
trolled with Monte Carlo samples of an offline GPR for constraint tightening in a semi-
batch bioprocess case study. Additionally, model prediction sub-setting by stochastic
admissible solutions is proposed by Wabersich and Zeilinger [57], and Mesbah et al.
[58] conduct extensive research into ML-enabled MPC under uncertainty. For trajec-
tory control, Polcz etal. [59] use thisapproach to controlarobotic arm, and Fiedler and
Lucia [60] present a multi-step prediction S-MPC using a linear state-space system
in combination with a GP. Conversely, an approximation of data-based dynamics can
be expressed as Linear Time-Invariant (LTI) systems by calculating the Henkel matrix.
This is later transformed to a state-space representation, where the mean and stan-
dard deviation of the GP can be used in an S-MPC fashion, as shown by Pan et al. [61].
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Chapter 4

Fundamentals

This chapter introduces the theoretical background for artificial neural networks as
black-box system dynamics models, along with the necessary elements for this thesis.
It also covers the theory behind Model Predictive Control (MPC), which forms the basis
for the methods used in this study, and briefly introduces Uncertainty Quantification
(UQ) methods.

41 Neural network models

There are different approaches to create models of dynamic systems: first-principles
models (white-box models), typically defined by ODEs or state-space representation,
gray-box models, and black-box models. Black-box models identify the dynamics us-
ing system data by fitting the best combination of parameters. Approaches like nonlin-
ear ARX (auto-regressive exogenous) (NARX) and Hammerstein-Wiener are available
[62], but they have limitations in fitting certain dynamics [60], [63]. In these cases, a
ML model, particularly a Neural Network (NN) model, can be beneficial [64], [65].

The dataset D used inthe systemidentification step will be fitto a regression model.
D consists of X and Y [65]. X contains pairs of states x;, € R* and inputs u; € R%, and
Y contains outputs y;, € RY with k = {0,1,...,p}. The systems this work aims to iden-
tify are nonlinear discrete-time systems of the form [66]:

Tpy1 = f(og, up), (4.1a)

yr = h(xg, ug) (4.1b)

A NN is a mathematical function that approximates data values from X = {z,u}
by mapping and estimating the output §. The model can be written in compact form
as g = NN (zk,ur, w), where NN(-) is the function represented by the neural net-

21



CHAPTER 4. FUNDAMENTALS

work and w the vector of parameters [67]. The perceptron, first introduced by Rosen-
blatt [68], was inspired by the behavior of neurons in the human brain (synapses). This
perceptron emulates activation through activation functions, learning the relationship
(mapping) of the inputs to represent an output. The equation of a single layer percep-
tronis [67]:

§=o(bo+ Y _ wiu) (4.2)
=1

where 7 is the output of the perceptron, ¢(-) is the activation function, by is the bias
term, w; are the weights associated with the input features w;, and n is the number of
input features. Weights and biases w;, by € R are model parameters that are learned
during training by back-propagation [69].

Activation functionsintroduce non-linearity into neural networks, enabling the learn-
ing of complex patterns [64], [67]. In literature, commonly used activation functions
¢(+) include Sigmoid [67], [69], hyperbolic tangent (tanh) [67], Rectified Linear Unit
(RelLU) [70], and Softmax[38], [71]. These are defined as:

1

O-(‘T) = 1+ e,wv (438)
et —e T
tanh(z) = ——— 4.3b
anh(z) = S, (4.30)
z ifz>0
RelLU(z) = , (4.3c)
0 otherwise
Softmax(z;) = = (4.3d)

D€

The sigmoid function (Equation 4.3a) maps the input to a value between 0 and 1, while
the tanh function (Equation 4.3b) maps the input to a value between -1 and 1. On the
other hand, the ReLU function (Equation 4.3c) outputs the input directly if it is positive;
otherwise, it outputs zero. The Softmax function (Equation 4.3d) is used in the output
layer of a classifier to represent a categorical probability distribution.

In this context, several layers and configurations of perceptrons can be cascaded
to increase accuracy and learn more complex dynamics [72]. This is described as
multi-layer perceptron [67]. As research progressed, NNs emerged and evolved be-
yond multi-layer perceptrons in diverse architectures to address a broader spectrum
of problems such as regression and classification [64].

For black-box models, datais typically stored in a timed or sequential manner, im-
plying that the current system state is a function of previous states [73]. To learn the
effect of this sequential behavior and make a regression that better fitsthe data, RNNs
were created. RNN is an architecture that interconnects "cells” that interact with past
cells. The hidden state hy uses the input at time k to make predictions yx11. It then

22



4.1. NEURALNETWORK MODELS

passes the prediction at time k + 1 in a recurrent manner through sequentially con-
nected cells to propagate the state up to a certain time in the future k& + p, where p is
the number of recurrent cells. This is defined as [74], [75]:

hi, = ¢nidden tlayer(WRNN - he—1 + Wo - 21 + ), (4.4a)
Uk = ¢output layer(Wy “hg + by)7 (4.4b)

with z;, (input at discrete time step k), hy (hidden state), Wrnn (weight matrix for the
recurrent connections), Wy (weight matrix for the input connections), W, (weight ma-
trix for the output connections), by, (bias term for the hidden state), and b, (bias term
for the output).

The drawback of this approach is the loss of information during training in the form of
vanishing gradients, which worsens with longer recurrent networks [76]. An attempt to
overcome this challenge was implemented in Long Short-Term Memory (LSTM) neural
networks, a variation of RNNs. This architecture introduces cells that deliberately for-
getshort-term information to store long-term dependenciesin sequential data. Thisis
achieved with a memory cell structure composed of three gates: the input gate, forget
gate, and output gate, along with a cell state. The LSTM model presented by Staude-
meyer and Morris [77] is given by:

Ck = fx ©®Ch—1 +ir © Cy, )

it = ¢(Waizg + Whihi—1 + b;), )

fro = oWy + Whphip—1 + by), (4.5¢)
Cr = tanh(Waexy, + Wiehp—1 + be), )
o = ¢(Waotp + Whohp—1 + bo), )

Uk = hi, = o ® tanh(Cy), (4.51)

with Cy (cell state at discrete time step k), 45 (input gate output), f; (forget gate out-
put), Cy, (new candidate values to be added to the cell state), o, (output gate output),
hy, (hidden state/output), z, (input at discrete time step k), Wai, Whi, War, Wi, Wae,
Whes Waeo, Whe (wWeight matrices for input, hidden state, and output connections), and
bi, by, be, b, (bias terms for input, forget, candidate, and output gates)[75].

Although these architectures are extensively used as surrogate models, they are
limited by their memory and sequential structure [78]. To exploit parallel computa-
tion and include context information, the Transformer Neural Network (T-NN) archi-
tecture using the "Attention mechanism” was created [38]. This is further detailed in
Section 4.3.
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4.2 Residual connection and persistence model

In traditional neural network architectures, each layer learns a mapping from its in-
put to its output. However, as networks become deeper, as in the case of some RNNs,
where deeper layers are needed to include more information, they can become more
difficult to train due to the vanishing or exploding gradient problems. This means that
gradientsdiminish or take large values as they propagate through the layers of the net-
work, losing information needed to update the parameters and weights of early layers
effectively during back-propagation [79].

Residual connections alleviate this issue by introducing interconnections or short-
cuts that allow the gradient to bypass certain layers, enabling the network to learn
functions more directly. This approach uses the difference between the input and the
output of a layer, also called residuals, rather than trying to learn the entire mapping.
The approach arises from the observation that certain architectures or layers of a net-
work benefit from learning the residual mapping instead of the full mapping. He et al.
[79] introduced this approach in deep neural networks for image recognition.

Figure 4.1 shows a generalized structure and the connection shortcut made by the
residual connection. An application of this is shown in Section 4.3. Let F(-) be the
function or mapping done by the layer i to n of the neural network. x is the input of the
function, G(x) the output of the last layer, and F(z) the output of the function block.
Without residual connection (e.g. Figure 4.1 left), the output F(z) of the function F(-)
isequalto G(x) = F(x). If F(-) makes a perfect representation of z, then it is equal to
F(z), butif thereis a deviation in this mapping, there is no element to account for this
residual. In other words, F(-) has to learn F(z). Instead, with a residual connection
(e.g. Figure 4.1 right), the output F(z) of the function F(-) is equal to G(z) + z. There-
fore, F'(-) has to learn G(z) = F(x) — z, facilitating the identity mapping F'(z) = z to
adjust the weights and biases inside the layer(s).

Residual connections simplify the learning process in deep networks by focusing
on the residuals. When these residuals are zero, the network essentially performs
identity mapping, meaning the input is directly transferred to the output without al-
teration. Consequently, this leads to the natural development of persistence in the
network’s behavior. If the residuals are zero, the network’s output matches its input,
aligning with the persistence model's idea of maintaining consistency.

While a residual connection attempts to improve learning across deep networks,
a baseline is needed to check if a model has learned the dynamics of the system. In
the context of NN models, a persistence model refers to a simple baseline model that
predicts future values in a time series based only on the current or previous values,
effectively using the persistence effect seen when residuals equal zero. This is also
known as the naive approach [80].
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x>

F()
F()

Residual connection (Identity)

G(x)

G(x)

F(x) F(x) = G(x) + x

Figure 4.1: Feed-forward neural network layers with (right) and without (left) residual
connection

A persistence model is defined as gx+1 = yx, where g1 is the predicted value at
time step k + 1, and yy is the observed value at time step k. After training a NN, a
persistence model can be used as a reference to compare the performance of trained
models. If atrained NN has a lower loss value than the persistence model, it suggests
that the network has learned from the data beyond what can be captured by simple
persistence.

4.3 Transformer neural network

Driven by the limited memory scalability of recurrent neural networks and their vari-
ant LSTM NNs in the context of Large Language Models (LLMs), Vaswani et al. [38]
introduced a new architecture in 2017 named Transformer. This NN was built upon
the "Attention mechanism” proposed by Bahdanau et al. [81]. Initially, it was used
for language translation, but its context awareness soon found applications in other
fields, including LLMs and Generative Pre-trained Transformers (GPTs) based on Nat-
ural Language Processing (NLP).
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Figure 4.2: The Transformer - model architecture. Vaswani et al. [38]

The term "Transformer” reflects the models ability to transform representations
during training by adapting its weights to include contextual information in its input.
In this way, the predictions carry a refined representation of what the value should be
based on the context. With this approach, a full memory of the input is not needed.
Instead, the NN updates its prediction by adding a change that better encodes the
context [82]. As an added benefit, the formulation of the "Attention Pattern” computes
a prediction for each element of the input, meaning that a Multi Step-Ahead (MSA)
prediction is possible as a single forward pass in the network [39].

Figure 4.2 shows the original "Transformer model architecture” as presented by
Vaswani et al. [38]. It consists of an encoder-decoder structure. Inside each encoder,
inputisencoded into embeddings E; and fed into a given number of transformer blocks
added sequentially, each composed of a "multi-head attention” layer, a residual con-
nection, and a pass through a feed-forward layer. This structure also makes use of a
positional encoding to embed positional information into the embeddings. The output
of this architecture gives the probabilities relation between the embeddings.

In NLP and GPTs, the length of the input and therefore the number of embeddings
iis variable, but in this work, it is assumed to be constant. Since the whole length of
the inputis considered, the context window C is equal to the number of embeddings i.
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Additionally, in LLM, words are said to be embedded or "transformed” into vectors of a
higher-dimensional space, represented as elements of R%, where de is the dimension
of the embedding space. This enables the model to learn a higher number of distinct
ways torepresenttheinput. Inthe case of time-series predictions and physical system
dynamics regression used in this thesis, the dimension of the embedding space R% is
equal to the number of variables.

The key contribution of the T-NN architecture is the attention mechanism, also re-
ferred to as scaled dot-product attention. It decomposes the embedded input into
query, key, and value vectors (62-, K;, and V;), which together represent the contextual
influence of the surrounding embeddings. The attention mechanism is given by the
following equation [38]:

_ QKT
Attention(Q, K, V) = softmax | — | V (4.6)
gk
with @ (query matrix), K (key matrix), V (value matrix), dg, (Query-key space dimen-
sion), and softmax(-) (softmax function).

The query matrix @ is used to compute attention scores indicating the relevance of
each elementin the key matrix K with respect to the queries in Q. In other words, how
much the embeddings E; of the keys "attend to” the embeddings E; of the queries, or
where the queries are focusing on based on the input.

These attention scores represent the probability of an embedding E influencing an-
other; a contextual meaning. They are then used to weigh the corresponding elements
in the value matrix V, producing the output of the attention mechanism.

Matrices @, K, and V are the horizontal concatenation of the query, key, and value
vectors 6, K;, and V; respectively (Equations 4.7). These vectors are obtained by mul-
tiplying the corresponding weight matrices Wy, Wi, and Wy by each of the embed-
dings E.. The weight matrices are parameters of the network, and their values are
calculated during training via back-propagation.

Qi) (4.7a)

K., (4.7b)

Vi, (4.7¢)

Q; = WyE;, Q; cRM (4.7d)
K, = WxE,;, K;cRdr* (4.7¢)
V,=WyE;, V,cR% (4.7)

with W2 e R, WK ¢ Rar, WY e R% (query, key, and value weight matrices).
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An important component of Equation (4.6) is the softmax function. This can be
interpreted as the calculation of the probability of an event (or embedding E) given
the other. This can be written as [38]:

Attention(Q, K,V) = P(K | Q)V, (4.8a)
P(K | Q) = softmax (%) , (4.8b)

e

—_— (4.8¢)
ch':l e

where, softmax(-) = P(z) =

The scaled dot-product attention (Equation (4.8b)) is one approach to the attention

mechanism. It refers to the dot-product of @ and K (or written in compact form as
QKT) divided by \/@for numeric stability. It is called "self-attention” when Q, K,V
are all from the same sequence of embeddings [38], in contrast to "cross-attention”
where the matrices come from different sequences [81].
When the embeddings E; of the keys "attend to” the embeddings E; of the queries, the
dot-product results in a positive value, suggesting that the vectors are related. If the
value is zero, the vectors are unrelated, and if negative, they are opposite. The result,
afterbeing normalized and mapped into adistribution function, is called the "attention
score.” Presented in a matrix form, it is also known as the "attention pattern.” A rep-
resentation of this pattern is shown in Figure 4.3, before normalization and softmax(-)
for simplicity.

Query Key Pair | E; Ex |..| Ej
E Q;-Ki | Q- Ky Q. K
E; Q- Ki | Q2 Ko Q; - K;
E; Q; Ki | Q3 Ko Qs - K;

Figure 4.3: Attention pattern. In self-attention, the sequences and corresponding em-
beddings are the same, therefore i = j and de1 = des . When using cross-attentions,
the sequences are different from one another, therefore i # j and de 1 # deg 5.

As the last part of the attention head, this score is multiplied by the matrix V. This
results in the weighted sum of the contributions of each embedding to the meaning of
the others. In the literature, the result of the attention layer is written as the matrix Z,
which is then fed to the feed-forward NN.
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Each feed-forward layer applies a linear transformation followed by a non-linear
activation function to capture the nonlinear dynamics. This is done by projecting the
embeddings into a higher-dimensional space, applying a non-linear activation func-
tion, and projecting the result backinto the original dimension. This process enhances
the model’s ability to extract meaningful features and relationships from the more re-
fined representation of the embedding coming from the preceding attention head.

In the context of time series predictions and physical systems, T-NN utilize "mask-
ing” to prevent future embeddings E from influencing the computation of attention
scores for preceding ones. This masking occurs within the attention pattern computa-
tion, where elements corresponding to future values are set to —oo before calculating
attention scores. By masking future embeddings, the model ensures that each em-
bedding attends only to past or current embeddings, facilitating the capture of tem-
poral dependencies sequentially without being influenced by future information.

The advantage of the T-NN architecture is that it achieves parallelization through
its self-attention mechanism and feed-forward networks, which is multiplied by the
number of attention heads h in the network. This multi-head attention allows the
model to learn different representations and is given by:

MultiHead(Q, K, V') = Concat(heads, ..., head), )W, (4.9a)
where, head; = Attention(QW2, KWX vW)") (4.9b)

with W&, WX, WY (query, key, and value weight matrices for each attention head i),
Q, K, and V (query, key, and value matrices for each attention head i), and W° (output
matrix) [38].

The self-attention mechanism inside each head allows embeddings of the input
sequence to attend to each other in a concurrent fashion. This enables parallel com-
putation across all of the embeddings facilitated by the matrix vector multiplications.
Additionally, the architecture inherently supports making predictions for each embed-
ding in parallel up to C. This is better captured in Figure 4.3. By allowing each em-
bedding to attend to all others and incorporating multiple layers of self-attention and
feed-forward networks, the Transformer model generates predictions for every token
simultaneously [82].

The feed-forward networks within each layer operate independently on the final
embeddings coming from the attention heads. This parallelization allows efficient use
of computational resources, resulting in faster training and inference times while cap-
turing complex system dynamics across the input sequence more effectively [82].

Finally, the adapted architecture proposed by Park et al. [39] does not include the
explicit use of positional encoding. The literature has shown that transformers can
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still produce accurate predictions when used with casual masking for time series pre-
diction [83], [84].

4.4 Constrained and unconstrained optimization

Optimization is the process of finding an optimal solution from a set of feasible solu-
tions subject to an objective function f(z) and its decision variables. In most cases,
solving optimization problems analytically is impractical. Therefore, iterative algo-
rithms are used in practice. These start with an initial guess and generate further
iterations to improve the cost function until a stopping criterion is met. For iterative
methods, there are two main types: direct methods, which rely solely on function eval-
uations, and indirect methods, which use gradient information [85], [86].

Optimization problems can be either constrained or unconstrained. The objective
function is expressed mathematically as the goal that the optimizer should achieve,
typically minimization written as minimizef(z). The decision variable is then opti-
mized to reach the goal of the objective function (e.g., = in f(x)) [87]. The uncon-
strained optimization problem is therefore written as:

minimize f(x) (4.10)

Depending on the problem formulation, there are different algorithms to solve a par-
ticular optimization problem, including linear and non-linear problems, integer and
continuous variables, among others [85].

Unconstrained optimization problems seek to minimize an objective function with-
out any constraints. Common methods for solving these problems include gradient
descent (15t order derivative), Newton’s method (2"? order derivative approximation),
and Quasi-Newton methods such as Broyden—Fletcher-Goldfarb-Shanno (BFGS) [88].

Constrained optimization problems involve minimizing the objective function sub-
ject to constraints. These constraints can be equality or inequality constraints, ex-
pressed as h(z) = 0 and g(z) < 0 respectively [87]. Equation (4.10) is then rewritten
as:

minimize f(x) (411a)
subjectto: hj(z) =0, j=1,...,p (411b)
gi(x) <0, i=1,....,m (411c¢)

Methods to solve these problems include Linear Programming (LP), Quadratic Pro-
gramming (QP), and Non-linear Programming (NLP) [85], [89]. The solution u of the
problemis called feasible if it satisfies all constraints and conditions (Equations 4.11b
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and 4.11c). For some problems, there might exist more than one feasible solution.
These solutions then form the feasible set of inputs U = {u € R™}. Moreover, the
solution is called optimal w* if[87]:

fla®) < f(x) VxeX
suchthat: g(z) <0, h(z)=0.

(412)

4.41 Barrier functions

While iterative algorithms may handle equality constraints as a set of algebraic equa-
tions inside the optimization loop, the analytical solution of inequality constraints re-
quires a different approach. To solve them, constrained optimizers are extended to
handle these inequalities by methods such as interior point (trust-region), barrier func-
tions, active set, linear approximation, or projection-based methods, to name a few
[90].

Barrier functions, for example, add a penalty to the objective function for violating
constraints. They lead the gradient of the solution away from the constraint, trans-
forming a constrained problem into an equality-constrained one orenablingan uncon-
strained solver to deal with constraints. Thus, the constrained optimization problem
shown in Equation (4.11) can be reformulated as:

minimize  f(z) + > é(gi()) (4.13a)
=1

subjectto: hj(z) =0, j=1,...,p (4.13b)

gi(x) <0, i=1,....m (4.13c)

where ¢(+) is a barrier function for g(z) [86].

Barrier functions approximate an indicator function I_(v). Thisis a piecewise func-
tion of the form:
0 ifv <0,
I_(v) = (414)
+o0o otherwise.
Theindicator functionintroduces a large penalty (approachinginfinity) as v approaches
zero from the negative side, thus enforcing the constraints indirectly by making infea-
sible regions where I_(v) > 0 have an increasing cost relative to the objective func-
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Barrier Functions

—— Logarithmic Barrier A =1
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Figure 4.4: Examples of logarithmic, exponential, and scaled Softplus barrier func-
tions.

tion[87]. For numerical stability reasons, a continuous function approximation is pre-
ferred over a piecewise function [85]. Examples of barrier functions are:

Logarithmic barrier: I_(v) = —(1/A) log(—v) (4.15a)
Exponential barrier: I_(v) = T+ (4.15Db)
Scaled Softplus barrier:  I_(v) = (1/T)L log(1 + exp(ﬁv)) (4.15¢)

BT T
with parameters T (function temperature), and Aand ~ (approximation quality of I_(v)).
A depiction of the barrier functions is shown in Figure 4.4.

The parameters of the barrier functions must be carefully tuned to ensure the val-
ues remain smaller relative to the objective function. This helps prevent the solution
from deviating from the optimum [86], [90]. In summary, both unconstrained and con-
strained optimization techniques, including the use of barrier functions to handle con-
straints, constitute the basis for implementing advanced control strategies such as
MPC, which uses optimization to predict and optimize future system dynamics [91].

4.5 Model predictive control

Model Predictive Control (MPC) is an optimal control approach that determines an in-
put sequence u(t) to minimize an objective function J(-) while satisfying constraints,
formulated asan Optimal Control Problem (OCP) [91]. The benefits of this controllerin-
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clude enhanced control performance and efficiency through constraints handling, due
to its predictive capability given by the described system model [91]. Based on opti-
mization, MPC can handle Multiple Input Multiple Output (MIMO) and non-linear sys-
tems [92]. State-of-the-art formulations also address robustness by managing model
uncertainties [93].

Considering the nonlinear discrete-time system in Equation (4.1), we define the
MPC problem with prediction horizon p as:

minimize J(x(k),u(k)) (4.16a)
Ulk+1:k+p]

subjectto: x(k+1) = f(x(k),u(k)), (4.16b)

x(0) = xo, (4.16¢0)

hi(x(k),u(k)) =0, (4.16d)

gr(x(k), u(k)) <0, (4.16€)

Vk e {k,...,p— 1},
u(k) e U, z(k)eX

with (k) and u(k) (states and control inputs at time k), J(x(k), u(k)) (cost function),
x(k + 1) (next state), f(x(k),u(k)) (system’s model), x¢ (initial state), hy(-) (equality
constraints), gx(+) (inequality constraints). For this thesis, since the data available are
discrete observed values, the discrete time form k& is used.

The problem is solved at each discrete time-step k iteratively by an optimizer, given
the observed (or estimated) states «, the initial state value x(, and the system model
f(x(k),u(k)) [94]. The solution is an optimal sequence of input variables (UM

given the predicted system states « and the optimal inputs.

k4
In Figure 4.5, a representation of[thepl}\/l PC algorithm is depicted. At time k=0, with
information on past measured or estimated states up to look-back window w, and cur-
rent states (initial state xg), the optimal sequence of input variables u* is iteratively
calculated in a closed-loop up to prediction horizon p, where the predicted system
states x* show the behavior of the system as a function of the optimal sequence [91].
For the closed-loop control application, the first element of the sequence of inputs
u* is applied to the system or plant. In summary, an MPC controller calculates the op-
timal control input sequence u considering (or predicting) how the system will behave
in the future using the system model and the states . Such a closed loop of a MPC
controller is depicted in Figure 4.6, and its implementation is described in Algorithm 1.

The objective of the MPC is to minimize the cost function J(x(k),u(k)) given the

optimization variables and the future states up to the prediction horizon p of the sys-
tem given the model. The formulation of this function is done as a quadratic problem
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Figure 4.5: MPC system control algorithm example. Adaptation. Grine [93].

Algorithm 1 MPC Closed-Loop Algorithm

1: Initialize k < 0, system state x(0), and desired output yyer.

2: while control loop is active do

3:  Provide yr(k) to MPC controller.

4. Predict future states x(k + 1) using plant model and current system state x(0).
5. Initialize optimizer iteration i < 0.

6: while notconverged &k < p—1do

7 Iteration i: Calculate candidate control input sequence u; (k).

8: Evaluate cost function J(x, u;).

9: Evaluate constraints.

10: Update control input sequence w;(k).
11: 1—1+1

12:  end while

13:  Setw*(k) as the optimal control input sequence from the optimizer.
14:  Apply the first element of u*(k) to the real plant.

15:  Measure output y(k) from the real plant.

16:  Feed y(k) back to the MPC controller.

17:  Update plant model with the new state x(k + 1).

18: k< k+1

19: end while
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Figure 4.6: Control closed-loop with a MPC. Adaptation. Schwenzer et al. [95].

thatdescribes a convex function and can consider different effects such as regulation,
tracking, minimum time, and economic [87]. For this work, the cost function described
in Equation (4.16a) considers the reference tracking effect, which takes the form:

p—1
J(x,u, Au) = Z(l(m(k), u(k)) + r(Au(k))), (4.17a)
k=0
where, i(z(k), u(k)) = f'(x(k), u(k) Qf (x(k), u(k)), (4.17b)
r(Au(k)) = Au(k )TRAu(k), (4.17c)
Au(k) = u(k) —u(k — 1), (4.17d)
(@), u(k)) =2k +1) — xpep(k+1) (417e)

with Q (tracking gain), and R (control effort gain). Tracking effect is divided into two
parts: the stage cost i(x(k), u(k)) and the control effort cost r(Awu(k)). Since the OCP
is formulated as a minimization problem, the goal of the former is to penalize the dis-
tance to a reference or desired value (Equation (4.17b)), while the latter penalizes the
rate of change in the control inputs (Equation (4.17¢)). The convex quadratic formula-
tion of the reference tracking MPC is then redefined as follows:

minimize J(x,u, Au) (4.18a)

Ulk41:k+p)

subjectto: 4.16b,4.16¢,4.16d,4.16e

The use of equality and inequality constraints (Equation (4.16d) and Equation (4.16e))
aims to consider operation limits or safety conditions during the state’s evolution of
the system. They can represent input constraints u(-) € U, state constraints z(-) € X,
boundary conditions, and system dynamics.
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Input constraints capture limitations in actuators or controlled variables, such as
amotor’s angular velocity, valve opening, among others. The set U is usually described
as a compact set since the parameters of the actuators are known, e.g., the mini-
mum and maximum angular velocity of a compressor or the rate of change of a mo-
tor. As this set is considered to be closed and bounded, the input constraints usually
take the form of inequality constraints, described as box constraints for the inputs as
U= {ueR"|uyp <u(k) <uy},orfor the inputs rate of change AU = {Au € R™ |
Aup < u(k+1) — u(k) < Auyy}, where uyp, Auy, and uy, Auy, are the upper and
lower bounds respectively [87].

State constraints represent physical limitations of the system, safety restrictions,
or quality parameters, among others [86]. The first refer to the physical properties or
capabilities of the system, while the latter ensure that the system operates within safe
and acceptable boundaries. An example of this can be temperature limits or rates of
change in temperature. The set of state constraints X is considered to form a single,
uninterrupted region in the state space, with no disjoints in the feasible set X = {x €
R™ |z, < x(k) < xyp} [87].

Boundary conditions encompass initial conditions and terminal constraints, and
system dynamics path and output constraints. For certain formulations, soft con-
straints can also be used to allow some flexibility in constraint satisfaction in the op-
timization by introducing penalty terms in the cost function for constraint violations
[85]. This is done by adding slack variables e. For input constraints, for example, it is
formulated such that u, < u(k) —e < uyp, where the difference is then penalized and
included as a part of the cost function. Therefore, the OCP from Equation (4.17a) can
be rewritten as:

p—1

J(@, Au,e) = (I(x(k),u(k)) + r(Au(k))) + plle| (4.19)
k=0

where € represents the slack variables and p is a penalty weight.

For state-space, ODE, and some NN system models, the predictions are a single
future prediction, also known as One Step-Ahead (OSA) prediction. To get the full sys-
tem’s path x*, a recursive iteration needs to be implemented. This may lead to two
disadvantages: more computational time to solve the optimization problem is needed,
which might be relevantin real-time applications [91]. Additionally, simplified models,
direct multiple shooting approaches or those that do not account for uncertainties are
prone to have deviated predictions from the true plant dynamics. These approaches
also do not consider past data other than the current state and the vanishing/explod-
ing gradients problem.

In comparison, there exist some data-based approaches like T-NN whose archi-
tecture enables Multi Step-Ahead (MSA) predictions up to the prediction horizon p as

36



4.6. UNCERTAINTY QUANTIFICATION

part of the model itself [38], [78], and include information further into the past up to
the look-back window w. With this, MPC can be enhanced and its relevance as a mod-
ern control method improved. Due to its disturbance rejection enabled by its model
predicted behavior and the handling of constraints, it is a suitable tool for controlling
the STJ receiver.

4.6 Uncertainty quantification

While data-based approaches offer benefits over first-principles models, uncertainty
in the models often accompany the resulting black-box models. Sources of uncer-
tainty include parametric variations, unmodeled dynamics or simplifications, distur-
bances, measurement and communication noise, linearization errors, and time - vary-
ing parameters, among others [96]. Addressing this uncertainty is crucial for improv-
ing control [97].

Uncertainty Quantification (UQ) involves identifying, characterizing, and managing
uncertainty in mathematical models and their posterior predictions as regressors [98].
Common approachestoaddress uncertainty include probabilistic methods, which model
uncertainty using probability distributions. Examples include Monte Carlo simula-
tions, Bayesian inference, and Gaussian Processes (GPs) [98].

This chapter demonstrates how GPs can incorporate UQ methods into NN, which
usually donotinclude probabilistic data in their predictions [45], [49]. The main objec-
tiveisto provide operators with valuable probabilistic insights regarding the prediction
accuracy of the regression model, thereby improving reliability and aiding decision-
making. This implementation examines both the practicality and advantages of utiliz-
ing GPs in this context. Although a comprehensive overview of GP and UQ techniques
is provided for context, the focus remains on practical application rather than detailed
theoretical exploration. The goal is to demonstrate the motivation and encourage rig-
orous theoretical analysis for future work.

4.6.1 Gaussian processes

Among approaches for uncertainty quantification, GP regressors are used in state-of-
the-art control techniques due to their flexibility thanks to the non-parametric solu-
tion leveraged by kernels and theoretical probabilistic modeling [45], [48], [54].

Probabilistic regression using GPs extended from the linear regression problem
and considers a normally distributed additive noise. The linear approximation g in
Equation 4.1b is rewritten in compact form as [98], [99]

Y= Q;T'w + € (4208)
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where w € R’ is the vector of parameters and e ~ N (u, ¥). In this case, the mean
value p of the normal distribution N/(+) is assumed to be 0, and that the distribution
has a covariance ¥ € R,

Inthe literature, there are two methods to approximate nonlinear functions as map-
pings between the inputs @ and outputs y. The first is using a set of basis functions
with nonlinear features ¢(x) = [¢1(z), ..., ¢;(z)]T, which are linearly combined to ap-
proximate the function [45]. The second uses kernel methods [100], which utilize sim-
ilarity functions to find the modeling relations based on observed data.

Kernel functions that describe the similarity of the observed data are defined as
k(x,x") [100]. A commonly used kernel function in the literature is the Radial Basis
Function (RBF) kernel [48], [101]. The advantage of the kernel method is that it avoids
the calculation of basis functions and instead relies on training data to estimate the
parameters [45].

To solve the regression in a probabilistic fashion, the uncertainty in the prediction
of y for every new observed value = € Z is modeled as the predictive distribution P(y |
z). The likelihood of observing the model output y subject to the given parameters w
is given by:

P(y | w) = N(y; Zw,%(w)) (Likelihood) (4.21)

The approach also assumes a previous known information on the parameters that fol-
low a normal distribution such that:

P(w) = N(w;0,%(w)) (Prior) (4.22)

where distribution is defined as a normal distribution A/(i, ) with mean p = 0 and
covariance X [98], [99].

Utilizing Bayes' theorem, the probability of the parameters of the mapping function
given the observed data, called the posterior, is calculated as:

Py | w) x P(w)

P(y)

. Likelihood x Prior
Posterior = L rainal likelihood (4.230)

Pw|y) = = N(w; E(w), X(w)) (4.23a)

where P(w) is the prior information on the distribution of the parameters, P(y | w) is
the likelihood of the observed data given the parameters, and P(y) is the probability
of observing the data (marginal likelihood) [45], [99].
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Defined in the literature as "a collection of random variables” [45], a GP is a dis-
tribution of multivariate normal distribution functions f(wj; z) that describe observed
points z [100]. Formally, a GP is denoted as [97]:

f(:l:) ~ QP(m(cc), k(:l?, .’13/))

withm(x) (mean), and k(x, ') (covariance) [102]. The solution to the problem is solved
by minimization of the negative log likelihood (Maximum Likelihood Estimation (MLE))
or by the maximization of the posterior subject to the parameters (Maximum A Pos-
teriori estimation (MAP)). The solution can be formulated for both the basis functions
and kernel formulations, based on the assumption of a normal distribution given as:

1 _ (a—pg)?

e~ 202 (4.24)

Ple) = oV 2T
This results in a predicted y with a mean i and covariance X as a function of the
parameters w of the basis functions f or hyperparameters of the kernels.
Assuming that the parameters describing the noise e are calculated, the model can
be used to make predictions based on the inputs. This is described as § = 7w, and
the probability of the predicted value as [99]:

P(y|y=z)=N(g:2"E(w), 2" S(w)z) (4.25)
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Chapter 5

Artificial Neural Network Dynamic
Models

Looking to research the applicability of data-based models with modern control tech-
niques, this work explores the use of a Transformer Neural Network (T-NN) with Model
Predictive Control (MPC). Our NN is based on the model presented in the paper by Park
et al. [39]. Therefore, this chapter presents the methods and results of using T-NNs
applied totwo case studies. The scope of this chapterincludes the structure and train-
ing processes of the NNs used, demonstrating their application in MPC scenarios.

5.1 Transformerneural network architecture and training data
stucture

Figure 5.1 show the Transformer Neural Network (T-NN) architecture used in this the-
sis. The implementation is based on the approach presented by Park et al. [39]. The
network consists of an encoder-decoder structure. Inside each encoder, input is en-
coded into embeddings E; and fed into a given number of transformer blocks added
sequentially, each composed of a "7multi-head attention” layer, a residual connection,
and a pass through a feed-forward layer.

The dataset D used for training was adapted to have a specific structure to be used
inthe T-NN time-series model. For this thesis, the Multi Step-Ahead (MSA) prediction
capability of the architecture is explored. The input X, containing pairs of states xy €
R* and inputs ux € R* with & = {0,1,...,n}, takes the form of a three-dimensional
array called a tensor X. The set Y, with outputs y;, € RY, is also added to the tensor X.
In the context of NNs, the first dimension of the tensor represents the batch, which is
the number of samples in the tensor. This will be used during training and evaluation.

41



CHAPTER 5. ARTIFICIAL NEURAL NETWORK DYNAMIC MODELS

| Decoder Output | T
...... )| AId | | Tanh |
A T
] T | Linear |
| Linear | | Linear | T
g | Flatten | | Dropout |
1| e .
| Dense | | Lir:ar |
c | Transformer Layer | ? | Concat |
'% E : | Add |<: g T +
g | e !
E | Transformer Layer | |Mu|ﬁ_Hea:Aﬁenﬁon | E Scaled Dot-Product Attention||| &
% ] : § y y y !
3 § | Transformer Layer | _________ Re5|dua|'._'. . | . | . |
E s A - |Linearu |Linearu |Linearu

o] fa Ak N

| Encoder Input |

Figure 5.1: Transformer Neural Network (T-NN) architecture.

The latter two dimensions of the tensor correspond to the length of the time win-
dow and the number of embedding dimensions de. The time window for which the net-
work will be used is also known as the context size C. This time window is considered
to be constant, and its length is equal to the length of the look-back window w plus the
prediction horizon p. The size of the embedding dimension dg is equal to the number
of variables in the system as R®%%)  For simplicity of representation, the latter two
dimensions of the tensor will be used for defining the equations and examples.

Furthermore, the attention mechanism present in the T-NN architecture has data
requirements in the tensor X. This is due to the T-NN using contextual information
from both future and past embeddings. For time-series predictions, this behavior
must be modified. When used as a regressor, the model must prevent future values
from influencing past ones. This is called masking or causal masking. As presented
in Section 4.3, one approach to achieve this effect is by setting the corresponding val-
ues inside the attention pattern to —oo. Another approach, as presented by Park et al.
[39], is to make all the output values y for future time steps equal to yx. As an anal-
ogy, this serves as labels [ for the NN to predict those values given the inputs, where
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STUCTURE

Table 5.1: Data structure for T-NN model. Note repetition of y; in ¢/ from time t = k to
t = k + p. uis the optimization variable.

Context window at time ¢

Description Size k—w+1 ... k k+1 ... k+p

NN outputY pxl Y Ykl -+ Yktp
Y Yk—wt1 - Yk Yk - Uk

NNinputX —(w+p) xde u  up_yir1 .. Uk Upsl ... Uggp
T Th—w+1 cee Tl Tyl .. Thap

dim(l) = dim(y). With this, the mathematical equations for the data structure are

given as:
Y = (Ykt1s- > Ytp) € RPX!, (5.14)
(yk—wa ceey y],ngla s ay;€+p)
X= (U - - - Uhsp)s c ]R(wﬂo)xde7 (51b)
(.%'k-fw, ey Q?k+p)
where: v i =uyk, i=1,...,p (5.1¢)

Table 5.1 describes the structure of both the input Xand output Y tensors for the T-
NN model, detailing their respective components and dimensions. The NN output ten-
sor Y consists of predicted values for future time steps (yx+1,- - -, Yr+p) With a size of
pxl. TheinputXcontains both the prior and posterior context from k = 0, represented
by sequences of states (xg—w+1,-- -, Zr4p) and control inputs (ug—y1, - - -, Uktp) OVEr
a window size (w + p). Moreover, X includes the current output value yr—w, - - -, Yj 11,
. y;Hp for future steps. This structure enables the model to use historical data while
preventing future information leakage and influencing past values.

Forthe following sections and during the evaluation of this work, the parameters of
the NN are shown in Table 5.2. Moreover, the methodology presented in this chapteris
based on that presented by Park et al. [39]. The dataset and source code are available
at https://github.com/BYU-PRISM/Transformer_MPC.

Taking advantage of the T-NN structure and its MSA prediction capabilities, it is
possibletoinclude past measurementstotry to better predict the future states. Known
as the look-back window w, this enables the model to include past dynamics to better
model future ones up to the prediction horizon p.
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Table 5.2: Options for Neural Network Model Configuration

Name Type Description
Embedding dimension dg int Features/variables in input X
Feed-forward dimension int Feed-forward NN dimension
w int Look-back window
P int Prediction horizon
Attention heads int Number of heads in the mul-
tihead attention
Transformer layers int Number of sequential trans-
former layers
Dropout % float Dropout percentage in evalu-
ation mode
Output dimension int Features/variables to be

Optimizer
Learning rate

Residual connection

Persistence model

Literal[Adam’, ’AdamW’]
float

bool

bool

fit/predicted. Output Y
Optimizer used for training
Optimization learning rate

Enables last layer residual
connection

Enables persistence model.
Serves as baseline

While the use of masking for the attention head is important for the predicted vari-

ables, it can be reformulated to achieve predictive behavior in the states. Future val-

ues can be added in states variables as predictions of possible future changes or dis-

turbances, hence enabling the model to better predict how the system will behave,

thereby leveraging MPC.

To program and train NNs, Python 3.11 [103] is used in this work. While Park et
al.[39] used TensorFlow [104] forthe NN, our approach was based on PyTorch 2.11 [105]
and PyTorch Lightning 2.1.3 [106]. TensorBoard 2.16.2 was used as logger.
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5.2. FIRST ORDER PLUS DEAD-TIME MODEL

Table 5.3: First order plus dead-time neural network parameter configuration

Name Value Name Value
Embedding dimension dg 2 Dropout 20%
w 5 Output dimension 1
D 10 Optimizer Adam
Attention heads 2 Learning rate Te-4
Transformer layers 3
Trainable parameters 1888

5.2 Firstorder plus dead-time model

To explore the use of T-NN as dynamic models, the dataset from the First-Order Plus
Dead-Time (FOPDT) model described in Park et al. [39] is used. Its dynamics are math-
ematically expressed as:

y(t) = (1/7p) (—y(t) + Kpult — bp)) (5.2)

with K, = 1 (process gain), 7, = 2 (time constant), and §,, = 0 (dead time).

In an attempt to reproduce the NN architecture presented by Park et al. [39], the
implementation in PyTorch was adapted to have a number of trainable parameters
close to that reported by the authors of the paper. In this work, the number of trainable
parameters was 1888 for the FOPDT model. In contrast, the TensorFlow implementa-
tion shown in the paper has a total of 1758 trainable parameters. Moreover, the last
layer residual connection was disabled to replicate the paper’s architecture. The pa-
rameters of the NN are described in Table 5.3. As described in the paper, the dataset
was created using simulation for random inputs u for a length of 1600 data points.

Using the validation set and its Mean Squared Error (MSE) as early stopping cri-
teria, the T-NN achieved on average a test loss value of 1.537 x 1073 (¢ = 5.35 x 1074
with 5 experiments), and 3.639 x 1073 (o = 2.65 x 10~* with 5 experiments) with 0% and
10% noise respectively. Noise is added directly to the measurements as a percentage
of the standard deviation of the dataset. These values are obtained for the complete
dataset.

Figure 5.2 shows an example of the T-NN model of the FOPDT system model, and
an ODE simulation for the same input u. The graph shows that the NN model has been
capable of capturing the dynamics of the system to a certain extent. In this example,
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Figure 5.2: Example of FOPDT and T-NN model output y for a given input u

the MSE is equal to 0.027066. Although the accuracy of the model depends on the
region of validity at which the model was trained, and the model deviated from the ODE
simulation, it shows the capability to model system dynamics. The model accuracy
can be further enhanced with extended training, improved parameter selection, and
model structure.

5.3 Solar tower Jilich model

The Solar Tower Power Plant Julich (STJ) NN model was trained using the dataset D
shown in Chapter2. The total length of the dataset consists of 109,821 measured data
points, obtained during 6 days of data acquisition in May and June 2023. Using the
TensorBoard library, MSE values were logged for ¢, as well as for Tgyrface and Thot air
individually.

The parameters of the NN that were kept fixed are described in Table 5.4.

5.3.1 Data pre-processing and filtering

The datasets and the resulting sequences for the input tensor X are a function of the
look-back windows w and the prediction horizon p. In this approach these values are
considered constant and set for the training. Dataset are then divided into training,
validation and test subsets in a ratio of 70%-20%-10%. The training sequences were
designed to be non-overlapping by creating arrays of validation and test sequence in-
dices. These arrays were extended to include adjacent sequence indices (plus or mi-
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Table 5.4: Solar tower Julich neural network parameter configuration

Name Value Name Value
Embedding dimension de 5 Dropout 20%
Output dimension{ 2 Optimizer Adam
Attention heads 5 Transformer layers 3
Trainable parameters 1888

nus one). If the training sequence index was found in these arrays, it was removed
from the training sequence to maintain exclusivity between the datasets. This struc-
ture ensured that the subsets were mutually exclusive, eliminating any potential for
information leakage that could lead to optimistic performance estimates. While this
approach prevents information leakage, it reduces the length of the training sequence.

As loss function, the Mean Squared Error (MSE) for training, validation and test
were logged throughout the training process. The validation MSE was used as an early
stop criterion. Early stopping was configured in 'minimum’ mode with a patience of 30
epochs to avoid overfitting.

Inthe case of the FOPDT model, the dataset provided assumed equally spaced data

points, thanks to the ODE system formulation and the numerical simulation. In the
case of the Solar Tower Power Plant Julich (STJ), the dataset requires pre-processing
and filtering due to its real-world nature.
At the facility, the integrated sensor system is programmed to make measurements at
a frequency of 1 Hz. For this work, the dataset was reduced to the five variables of in-
terest shownin previously 2.1: receiver’s mean surface temperature T face » receiver’s
mean surface apparent brightness Iy, hot air temperature Thot air » COld air tempera-
ture Tiolq air » @and air mass flow g, .

Due to the data structure needed to train and evaluate the NN, the dataset needs
to fulfill the following requirements: window overlap > 50%, X = (X — u(X))/o(X),
X € Rwir)xde NgN ¢ X, set window overlapping. The first condition requires a se-
qguence overlap greater or equal to 50%. The second describes that the input ten-
sor X is normalized and written as X. The second condition requires that from the
109,821 available data points, they need to be divided into sequences of shape (w +
p) X de. Last, X must have a value at every position. This also means that measure-
ments should be equally distant at 1-second intervals. Algorithm 2 describes the steps
for pre-processing and sequencing:

47



CHAPTER 5. ARTIFICIAL NEURAL NETWORK DYNAMIC MODELS
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Figure 5.3: Tsurface NOisy data and comparison of different filters. Note step offsets in
the measurements attributed to camera’s auto-calibration.

Algorithm 2 Data pre-processing and sequencing

X < Dataset {Read and load data to tensor}

X X;f‘x()x) {Normalize}

X + Filter X {Apply desired filtering}
stride < | (1 — window overlap %) x (w + p)] {Calculate stride}
fori < 0, total_length, stride do

X; < X[i : i +w + p] {Extract sequence}

Check X; continuous at 1 Hz and no NaN's. {Check sequence}
end for
return X;

In the dataset, measurement artifacts and noise are observed, particularly for the
Tsurface Values obtained from the IR camera. To filter the data, two approaches are
used: Direct data filtering and spectrogram analysis.

Inthe first method, different types of signal filters like exponential smoothing, Sav-
itzky - Golay, low-pass, and combinations were tested. Filters are passed forward and
backward to reduce phase delay. Figure 5.3 shows a snapshot of the normalized re-
ceiver’s mean surface temperature data, where different filters are applied for com-
parison.

In the second procedure, we calculate the spectrogram of the entire Ty face Mea-
surements. We sum the intensities across all frequencies and then normalize them.
We mark peaks where the summed intensities exceed a threshold, indicating regions
with noise due to higher frequency components. Figure 5.4 shows a graph of this anal-
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ysis before and after filtering for comparison. In the upper graph, Tsurface data is plot-
ted. The middle graph shows the spectrogram applied to the filtered data, and the
bottom graph shows the added normalized intensity with detected peaks. All three
graphs highlight the regions of noise around the peaks. The identified regions are dis-
carded from the dataset and not used during training and inference. For the following,
thisis referred toas denoising. The first method helps with direct measurement noise,
while the second helps identify regions in the data that are not suitable for training.

Results for the data filtering in Figure 5.3 show that there has been a marked de-
crease in the apparent noise in the data while preserving the trend with no observable
phase delay for all filters tested. Observing the data points, measurement temporal
offsets are observed. These are revealed as offset shifts in the data which are dis-
played as sudden steps in the measurements. In the graph, four of these offset ef-
fects are shown. These were later attributed to the IR camera auto-calibration, and
the effect of these were not filtered. These remain open for future work.

For the purpose of training and inference, the low-pass filter is selected for its im-
plementation simplicity. After applying the filter to the T face dataset, the measure-
ments showed an Signal-to-Noise Ratio (SNR) increase of 23.40 dB and a correlation
factor of 99.77%. An SNR above 0 dB implies that the signal power is higher than the
noise power, suggesting lower noise influence. Additionally, with a correlation factor
closerto 1, it suggests that the filtered signal retains most of the information from the
original signal.

Furthermore, Figure 5.4b shows a sharp reduction in the frequency components
in the spectrogram (middle graph). What stands out in this figure is the dominance of
frequency components in the lower ends of the normalized values (in the region of -2.5
inthe y-axis). These artifacts were later found to be related to the measurement range
of the IR camera system. These represent the measured values at ambient tempera-
ture before the operation of the solar tower. With a measuring range beginning at 300
°C, measurements below this value are not reliable and prone to high measurement
error. With this in mind, the method of finding regions of high noise in the dataset by
means of spectrogram analysis offers a systematic approach.

For the training of the T-NN with the STJ dataset, various parameter combinations
were tested. Unlike the approach by Park et al. [39] with the FOPDT model, we investi-
gated the use of longer look-back window w values compared to the prediction horizon
p. For this study, p = {10, 20,...,60} and w = {30,45,...,120} were tested.

For reference in the length of available training sequences, using data with filtered
measurements and deleted regions with high noise, the total number of dataset se-
quences results in 427 for w = 120 and p = 300. After splitting, the number of se-
guencesinthe training dataset drops from 298 to 136. Validation sequences therefore
are 85 elements long, and 44 for test.
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Figure 5.4: Ty face data spectrogram. Unfiltered data (left). Filtered data with low-
pass filter with critical frequency at 0.05Hz (right). Note drop in normalized noise sig-
nal intensity and less components in frequency domain while preserving data struc-
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Figure 5.5: Unfiltered data receiver’s mean surface temperature Ty, face learning
curve. TensorBoard logger sample.

Initially, the unfiltered dataset was used for training. During training, it was ob-
served that the learning curve of the Ty rface Showed apparent peaks in the loss. Log-
ging values are captured and plotted with the TensorBoard library. This effect is de-
picted in Figure 5.5 as an extract of the logging board. Contrary to a decreasing learn-
ing curve, the graph showed some epochs with loss values higher than the initial value.
This unexpected behavior was subject to analysis.

Observing the data as shown in Figure 5.3 and Figure 5.4b, the dataset presented
data points with high measurement noise. This concluded that filtering the measure-
ment of the Ty, rface Was needed for the complete scope of the work.

After selecting a low-pass filter as the standard filter, and removing regions of high
noise from training (Subsection 5.3.1), the MSE in the validation step was reduced. Us-
ingatestsamplewithw = 30,p = 20and w = 120, p = 20, and measuring the MSE dur-
ing validation, the loss value decreased for Ty face from 6.743 x 1073 and 4.449 x 1073
respectively before filtering, to 9.8 x 10~ and 1.369 x 1073 respectively after filter-
ing. This represents an 85.46% and 69.23% reduction in the loss value for validation
respectively.

5.3.2 Last layerresidual connection

Following the results in Section 5.2, the structure of the T-NN was analyzed and im-
proved. A last layer residual connection was added to the NN as seen in Section 4.2,
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Figure 5.6: Last layer residual connection prediction comparison of receiver hot air
temperature Tt 4ir Prediction.

whose structure is depicted in Figure 5.1. After learning the additional residuals, the
trained NN showed better performance.

With parameters w = 120,p = 20, Figure 5.6 shows a sample of the measured
dataset and the NN prediction for Thet air -

On the left, the NN does not have a last layer residual connection. Comparing both
graphs, it is clear that the residual connection improved the prediction capabilities.
This is observed in the discrepancy between the measured values and the predicted
values, where the T-NN with a residual connection captures the dynamics of the sys-
tem more accurately. For instance, the RMSE of the measurement and prediction
without a residual connection has a value of 1.798 x 10~!, compared to 1.09 x 1072
with a residual connection, considering unnormalized values.

This discrepancy was observed in other training sequences as well. Using a test
sample with w = 30,p = 20 and w = 120,p = 20, and measuring the MSE for Tyt air
during validation, the loss value decreased from 1.711 x 1073 and 2.95 x 1073 respec-
tively without a residual connection, to 9.0 x 107® and 7.6 x 10~° respectively with a
residual connection. This represents a 94.74% and 97.42% or 2 order of magnitude
reduction in the loss value for validation respectively.

Although not investigated, the discrepancy between the ODE and NN model ob-
servedin Figure 5.2 is considered capable of reduction when using a last layer residual
connection.

To assess the impact of both infrared measurement filtering, data denoising, and
the last layer residual connection, a comparative analysis was made. Using a persis-
tence model as described in Section 4.2, the validation loss value was contrasted.

Atotal of 5 NNs were trained and tested for each combination of parameters. With
w = {30,120} and p = 20 as selected parameter variations, the MSE loss value for
validation and testing was obtained for Tt air and Teyrface - 1his was repeated for each
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combination of residual connection and filtering enabled. Last, the same values were
captured from a persistence model with the same parameter combinations. When the
test MSE value of the trained NN is lower than the persistence model, it is marked as
Y

As shown in Table b.5, the results demonstrate that without the last layer residual
connection and filtering on Tgyface Measurements, the trained NN only learned the
dynamics of the receiver’s mean surface temperature, but not for the hot air.

The table also shows that with the last layer residual connection alone, the trained
T-NNwas capable of learning both Th,ot air and Tsurface betterthanapersistence model,
suggesting effective learning from the data. When testing data filtering alone without
residuals, the comparison fails, suggesting that the model did not learn the dynamics
of Tsurface -

While the residual connection enabled the model to learn both dynamics, using
data filtering in parallel reduced the loss value further. Even more, while the combi-
nation improved the model overall, the reduction of the loss value was greater in the
surface temperature dynamics. Thus, the overall MSE for both variables is calculated
to account for their influence.
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Table 5.5: Validation loss value and persistence model comparison table for w, p, residual connection and filtering parameters

MSE validation loss

Persistence model test MSE comparison

w P Residual Filtering
connection Sum Tsurface Thot air Sum Tsurface Thot air

30 20 N N 4.227 x 1073 6.743 x 1073 1.711 x 1073 Y Y N
120 20 N N 3.700 x 1073 4.449 x 1073 2.950 x 1073 Y Y N
30 20 Y N 2.676 x 1072 5.262 x 1073 9.000 x 107 Y Y Y
120 20 Y N 1.789 x 1073 3.503 x 10~2  7.600 x 107 Y Y Y
30 20 N Y 7.210 x 107*  9.800 x 10~* 4.620 x 1074 Y N Y
120 20 N Y 1.526 x 1073 1.369 x 1072  1.682 x 1073 Y N Y
30 20 Y Y 1.850 x 107* 3.090 x 10~* 6.100 x 107 Y Y Y
120 20 Y Y 1.910 x 107*  3.150 x 10~*  6.800 x 107 Y Y Y
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With the results obtained, it is concluded that a last layer residual connection and
measurement filtering are needed for the T-NN model to increase the accuracy of the
predictions and therefore improve the efficiency of the MPC controller.

5.3.3 Hyperparameters: Look-back window and prediction horizon

After finding that the model prediction error was reduced by using filters in the mea-
sured data and adding a last layer residual connection to the T-NN, it was of interest to
find which combination of parameters w (look-back window) and p (prediction horizon)
offered higher prediction accuracy. Additionally, the set of values w and p was adapted
to explore the use of longer prediction horizons due to the observed slow dynamics of
the system.

To obtain prediction accuracy insights, 5 NNs for each combination p = {60, 120,
...,300} and w = {30,60,...,120} were trained, for a total of 20 combinations, and
100 trained NNs.

Tomake equivalentcomparisons, MSE loss values for training, validation, and test-
ing were obtained for each prediction horizon value. This was calculated as:

MSE(y, 1) Vke{0,...,i},ifi <p,

Training loss vy (. p) = { (5.3)

1 otherwise.

Figure 5.7 illustrates Equation 5.3. Consider three NNs trained with a look-back
window w and three distinct prediction horizons p. Predictions 41, 92 and g3 of the real
output y are distinct from each other. The prediction deviation from the true value
is expected to increase for higher values of k. Calculating the MSE for the complete
prediction sequence of length & = {0,...,p} for each NNy 5 33, the values are at most
15% distinct from each other and in the same order of magnitude. The value for each
NN does not distinguish if the first predictions are closer to the true value since the
overall loss is calculated with values close to each other.

In contrast, if the MSE is calculated for the minimum prediction horizon p (in the
example graph p = 60), a NN with better prediction accuracy (lower MSE) for that time
window can be found. In our example, this is the case for NN3(p = 180) g3. This is
beneficial and applicable since we assume that the MPC utilizes the model where the
first optimal control inputs are used before reevaluating the model.

In this example, the MSE, g values are 22.0 x 1073 and 7.6 x 1073 for NN; and NN3
respectively. This represents a reduction of the MSE loss value of 14.4 x 1073 or 65%.
The method described in Equation 5.3 is used to select the NNs that will be used in the
MPC.
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MSE(y,7) at different prediction horizons p
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Figure 5.7: Example of neural network mean squared error comparison for different
prediction horizons p

Parameters such as the look-back window w and prediction horizon p are impor-
tant for capturing temporal dependencies and ensuring accurate future state predic-
tions. For this purpose, loss values were obtained for each of the 100 NN trained.
Surfaces were created using interpolation and analyzed to provide insights into the
optimization surface present during neural network training at different parameter
values.

Considering that the receiver hot air Tt 4ir Will be used for tracking MPC, the ob-
tained MSE lossvalues are ranked atp = 60 for that variable (sort on column Th o air,p:m).

Looking at Table 5.6, it was found that NNag(w = 60, p = 120) has the lowest MSE
validation loss at 3.01 x 10~%. For this reason, and considering the slow dynamics
present at the STJ plant, w = 60 and p = 120 are selected as fixed parameters for the
following chapters. For a simulated real plant that will be used in a software-in-the-
loop simulation, the trained neural network NNgg is selected. For the model present
in the MPC controller, neural network NNss is chosen as it has the same parameter
combination while having worse prediction performance. Having different models and
using those with worse performance is intended to explore the influence of dynamic
discrepancies in the controller.

Itis also noteworthy that the MSE loss value of Tht 4ir IS at least one order of mag-
nitude smaller than that of T face -

For reference, using data with filtered measurements and deleted regions with
high noise, the total number of dataset sequences results in 1062 for w = 60 and

= 120. After splitting, the number of sequences in the training dataset drops from
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Table 5.6: Lowest 10 mean squared error validation loss for w and p combinations
ranked atp = 60

MSE validation loss
NN w P

Sum SuMp=60  Thotair s p=60 Lsurface s p=60

28 60 120 0.001702 0.000741 0.000301 0.001182
06 60 60 0.000738 0.000737  0.000308 0.001167
92 90 300 0.005142 0.000714  0.000321 0.001107
07 60 60 0.000835 0.000835  0.000322 0.001347
04 30 60 0.001000 0.001000  0.000324 0.001677
29 60 120 0.001889 0.000801 0.000326 0.001276
27 60 120 0.001815 0.000781 0.000337 0.001225
25 60 120 0.001853 0.000798  0.000339 0.001257
16 120 60 0.000699 0.000699  0.000351 0.001047
94 90 300 0.006895 0.000815  0.000352 0.001277

743t0372. Validation sequences therefore are 212 elements long, and 107 for testing.
Additionally, with the above-mentioned parameter configuration, the model presents
a total of 219,915 trainable parameters.

As opposed to the learning curves obtained for unfiltered data as shown in Fig-
ure 5.5, the corresponding MSE loss values during training and validation did not ex-
hibit the same noise artifacts described. For reference, Figure 5.8a shows the logged
values for p = 60 during training, while Figure 5.8b shows the values for validation.

Regarding the corresponding loss surfaces, a 2-dimensional interpolation fit was
done for all the values. The resulting surface contour plots are obtained as well. Us-
ing the calculated surface interpolation values, the minimum z value (MSE loss) was
obtained with its corresponding w and p. Figure 5.9 shows the surface contour plot for
training, validation, and testing at p = 60 using the values of Table 5.6 (Figure 5.9a,
Figure 5.9b and Figure 5.9c respectively). Measured values are added as scattered
points in the graph marked in red.

The graphs show that there is no apparent correlation in the loss surfaces. What
is interesting in this figure is the difference between them. Three behaviors were ex-
pected to be observed: similar contours with relatively equal gradients and orders of
magnitude, similar or closer minimums, and higher MSE loss at greater values of p.
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Figure 5.8: MSE loss curves at p = 60

The first point was not met, as lower and highervalues between the contours do not
match, and the isolines dividing the values are located in different locations. Surface
minimum values are 4.0 x 1074, 4.5 x 1074, and 6.4 x 10~ for training, validation, and
testing respectively. Inthe same order, surface maximum values are 32.0 x 1074, 15.0 x
1074, and 12.8 x 1074,

Second, surface minimumes are located at different combinations of w and p. These
are located at w ~ 81,p = 60 for training, w = 120,p = 60 for validation, and w =
30, p = 300 for testing. The loss value for each minimum is 4.42 x 1074, 5.94 x 10~4, and
6.57 x 10~* respectively.

Last, while training and validation MSE surface contours show a clear increase in
the loss value for higher values of p, testing does not.

It is then concluded that, due to the difference between training, validation, and
testing MSE loss and their surfaces, a global optimum around the combinations of w
and p tested was found. This effect may be due to the size of the dataset, dynamics
present in the dataset, or the prevalence of measurement noise. This also opens the
line of inquiry to optimize the NN structure to better capture the dynamics and possibly
find a suitable combination of parameters.

Training, validation, and testing MSE loss value tables can be found in the Ap-

pendix, Chapter C. The corresponding loss surfaces are also available in the Appendix,
Chapter B.
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Chapter 6

Neural Network Model Predictive
Control

This chapter presents the use of NN dynamic models, with a focus on Model Predic-
tive Control (MPC). While MPC relies on accurate models, some dynamics can be chal-
lenging to formulate for complex systems. NNs, particularly novel structures such as
Transformer Neural Network (T-NN), adopt a data-driven approach to model these dy-
namics. The captured nonlinearities, also possible for MIMO systems, are thus ex-
pressed in a model that can be leveraged by the controller.

This research explores how neural network-based MPC can be implemented and
tested invarious scenarios. The goal is to demonstrate the applicability of MPC in con-
trolling complex systems, specifically within the context of solar power plants like the
Solar Tower Power Plant Julich (STJ). Additionally, the research investigates the use of
optimization algorithms commonly found in NN training applications to solve the OCP
presented by the MPC.

Similar to Chapter 5, the First-Order Plus Dead-Time (FOPDT) model presented by
Park et al. [39] and the Solar Tower Power Plant Julich (STJ) model were used. While
the first case was used to explore application feasibility, the second employs a more
rigorous qualitative methodology. For both models, it is assumed that all states are
observable and that the systems are completely controllable in all described control
scenarios.

Closed-loop simulations were done and performance of the controller subject to
the given models was measured. Such a closed-loop is depicted in Figure 4.6, Sec-
tion 4.5.
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6.1 First oder plus dead-time MPC

To simulate the FOPDT model for testing and performance evaluation, a change in the
setpoint y,.y was introduced in an unconstrained MPC formulation as in the work of
Park et al. [39]. While the paper’s authors used TensorFlow [104] for the NN and SciPy
library [107] for the OCP, we compared the performance using PyTorch 2.1.1 [105] and
replicate using Scipy 1.11.4. These libraries were used with Python 3.11 [103].

The formulation of the MPC was implemented as described in Park et al.[39], which

is given by:
p—1
minimize D (U(w(k), u(k)) + r(Au(k))), (6.1a)
U[k41:k+p] k=0
subjectto: x(k+1) = f(x(k),u(k)), (6.1b)
where, 1(z(k),u(k)) = f'(z(k),u(k) " Qf (x(k),u(k)), (6.1¢)
r(Au(k)) = Au(k) " RAu(k), (6.1d)
Au(k) =u(k) —u(k —1), (6.7e)
f(xk),u(k)) =x(k+1) — xpef(k+ 1) (6.11)

For the FOPDT model, a single step k was simulated to explore the behavior of the
MPC controller. A change in the set point value y,..; was set from its initial condition
aty = 0.5toy = 1.0 using the NN model described in Chapter 5. For comparison, the
simulation was also performed using an ODE model.

To compare the solution between the first-principles model and the data-based
approach, 3 simulation results are obtained: ODE MPC using SciPy’s numeric integra-
tor, a T-NN MPC using SciPy as optimizer, and a T-NN MPC using the PyTorch Adam
optimizer. Results are shown in Figure 6.1.

For the ODE simulation, the MPC problem was solved using SciPy’s minimize Se-
quential Least SQuares Programming (SLSQP) optimizer (eps=1e-6, ftol=1e-3). The
second simulation was solved with the same approach. The PyTorch simulation was
solved using the Adam optimizer (learning rate=0.0238, eps=1e-3). Figure 6.1a shows
the output variable y and its simulated dynamics for the 3 simulations. From the
graph, we can see that there is a difference between the ODE model and the dynamics
described by the T-NN model. In contrast, there is no significant difference between
the results obtained using SciPy and PyTorch. Furthermore, while there is a difference
between the models, the values converge at step k = 3. It is worth noting the discrep-
ancy between the ODE and NN models, which accounts for up to 12.5% at time k = 2.
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Figure 6.1: FOPDT response model y at time & = 1 for change in setpoint given MPC
controlinput u*. Results replicate reported findings by Park et al. [39]. Note different
u* and y values at k = 1 due to model differences.

On the other hand, Figure 6.1b shows the value of the controlled variable u* over
time obtained by the MPC. While the initial guess of the optimizer is initialized with the
same value across the simulations, the optimal solution at k& + 1 is different between
the ODE and NN models. This is believed to be due to the model’'s accuracy. Addition-
ally, and unlike the previous graph, the final value of u* is also different.

Results obtained also replicate those obtained by Park et al. [39] for the ODE and
SciPy cases.

The final value of the cost function demonstrates a clear difference between the
first-principles and NN models. With the specified optimizer parameters, the final
value of the cost function was 3.5224, 25.9760, and 25.9593 for the ODE-SciPy, T-
NN-SciPy, and T-NN-PyTorch models, respectively. These observations were not men-
tioned in the paper by Park et al. [39], but they do suggest that improvements to the
model are needed to achieve higher prediction accuracy and potentially reduce the
difference in the cost function due to difference in modeled dynamics.

What stands out in both figures is the different solution times of the MPC cycle.
While ODE simulations are typically faster, the difference between the SciPy and Py-
Torch approaches is significant. On average, the PyTorch approach took 50% less time
than using the constrained optimizer in SciPy. While this is partially attributed to the
calculation of the gradients for each optimizer, it was not the subject of research in
this work.

In this context, the SciPy library uses numerical methods to calculate gradients.
Specifically, it computes the gradient using first-order one-sided differences. While
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Figure 6.2: STJ motivation scenario for MPC

second-order methods are available, they are typically computationally expensive. On
the other hand, PyTorch uses a technique called automatic differentiation using Py-
Torch’s Autograd module. Moreover, the use of tensor-based libraries and parallel NN
architectures such as Transformer can further reduce the solution times, especially
when improved by using GPUs.

Findings on the applicability of T-NN as dynamics models and the faster MPC compu-
tation time compared to constrained optimizers extended the interest of using PyTorch
in the STJ case.

6.2 Solartower Jiilich MPC

The STJ is subject to operational constraints in the following parameters: hot air tem-
perature (Thot air ), air mass flow (ra; ), and surface temperature (Tsyrace ). The first of
these constraints is related to the maximum operating temperature in the HTM, which
is defined as the temperature at which degradation or failure of different components
along the fluid’s path may occur. The second constraint is associated with the max-
imum and minimum angular velocity of the compressor that actuates the air in the
system. The third constraint is related to temperature gradients. Higher temperature
changes than those permitted could damage the receiver’s ceramic cups due to inter-
nal stresses.

The evolution of the system, variables and cloud disturbances as well as the ap-
pearance of these constraints over time are depicted in Figure6.2. From time tg to t1,

the system is in a steady state. At time ¢;, a cloud blocks the heliostat field, resulting
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in a decline in the apparent receiver’s surface brightness Iy and surface temperature
Tsurface that persists until time to. At this point, the controller attempts to mitigate
the disturbance by reducing the controlled variable 1, , thereby restoring the hot air
temperature Thet 50 tO its setpoint. At time t3, the cloud passes and the irradiation re-
turn to their previous levels, while the air massflow remain constant. This presents a
risk scenario in which a change in the rhgj, occurs at a later time. At time t3, a sudden
increasein IQtranslates into a higher surface and hot air temperatures. Dependingon
the disturbance, this increase in surface temperature could also violate the temper-
ature gradients constraints. Consequently, the rise in the temperature of the hot air
could reach levels above the maximum safe operational point. This is where the ad-
vantages of the MPC could be exploited, by allowing the controller to find a controlled
variable trajectory that rejects the disturbances while tracking the setpoint.

6.2.1 Testing scenarios

Based on the values observed in the Solar Tower Power Plant Julich (STJ) plant mea-
sured data, four different testing scenarios were created, divided into two groups. The
first group focuses on assessing the MPC in operation regimes close to the constraints
(CV.). The goal of the second group is to obtain insights into nominal operation condi-
tions (N.O.). Each scenario has its initial values.

Tosimulate changing conditions, 7 consecutive steps were considered. Forthe first
group, each step has a length of 5 minutes, while the second group has steps of 15
minutes. Theinitial conditions of both scenarios are shownin Table A.1, while the time-
variant step values are shown in Table A.2, both in the Appendix, Chapter Datasheets.
Direct publication of the raw data from the findings is not permissible. Nonetheless,
results are shown in a normalized manner.

Constraint violation and nominal operation scenarios 1 describe a Thot air track-
ing MPC controller simulation at constant IQfor different values of Thot4ir - In con-
trast, while having the Ti o 4ir tracking behavior, its value was kept constant in con-
straint violation and nominal operation scenarios 2. Additionally, these scenarios ex-
hibit changes in I5to emulate the influence of solar irradiation disturbances such as
cloud passes.

In the case of scenario CV. 2, disturbances were emulated during steps 2, 4, and 6
by a change in I;0f -50%, +50%, and -70% relative to the initial value. For scenario
N.O. 2, disturbances are simulated in a similar fashion, with -25%, -50%, and -70%
relative to the initial value.

Operating constraints are described as lower and upper bounds (L.B. and U.B., re-
spectively) for i, . The same was set for Thot air , but with different upper bound values
depending on the testing scenario, being lower in the constraint violation scenarios.
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Figure 6.3: Nominal operation test scenario 1. Hot air Thot air temperature tracking at
constant solar irradiation Iy MPC moving window w + p in solid line. Future values in
dashed line.

Lastly, a constraint on the receiver’s surface temperature gradients Ty face iS imposed
to avoid damage to the ceramic material due to rapid heating and cooling. These con-
straints are shown in Appendix, Table A.3.

Given the constraints, the test scenarios are designed to drive the MPC towards
and outside the bounds to test the controller’s performance and constraint violation
rejection. This is done by setting Thot air S€tpOINts greater than or equal to the upper
bound constraint. The simulation steps at which this situation occurs are marked in
bold in Table A.1 and Table A.2.

For purposes of comparison, Figure 6.3 depicts the time graph for the normal oper-
ation scenario 1 (N.O. 1). This graph depicts the hot air temperature setpoint Thot 4ir. ref
for the controller and the values for states @ and outputs y. While outputs, states, and
inputs are shown, they illustrate the initial conditions. The scenariois initiated at time
t = 0, and the solid line depicts the data used as the input sequence in the tensor X.
The dashed lines represent future values, which are updated during the simulation.
Vertical lines attimet = w and t = w + p are also depicted to illustrate the moving
window of the MPC. A graph for all testing scenarios can be found in the Appendix,
Chapter B.
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Table 6.1: Optimizers used in the MPC formulation

Library Optimizer

PyTorch Adam AdamW  Yogi  L-BFGS
SciPy  Trust-constr COBYLA SLSQP

6.2.2 Barrier functions constrained MPC

This work also tested the performance of newer optimization algorithms to solve the
OCP. While Park et al. [39] used SLSQP (Kraft [108]) as the optimizer algorithm with the
SciPy library (Virtanen etal. [107], SciPy 1.11.4) to obtain the optimal control sequence,
thiswork was based on other tools. Using the PyTorch library, optimizers such as Adam
(Kingma et al. [109]), AdamW (Loshchilov and Hutter [110]), Yogi (Zaheer et al. [111]),
and Limited-memory Broyden—-Fletcher—Goldfarb—Shanno (L-BFGS) (Schmidt [112])
were tested. The L-BFGS algorithm uses a low-rank Hessian approximation for the
line search.

While the mentioned optimizers are built for unconstrained formulations, they were
used for constrained problems by means of barrier functions. Tocompare against con-
strained optimizers, the SciPy library (Virtanen et al. [107]) is implemented using op-
timizers such as Constrained Optimization BY Linear Approximation (COBYLA) ([113]-
[115]), Sequential Least SQuares Programming (SLSQP) ([108]), and trust-region inte-
rior point method (Trust-constr) ([116]).

Table 6.1 shows the list of optimizers used. For further detail, SciPy optimizer op-
tions are shown in Table A.6, and PyTorch optimizer options are shown in Table A.5.

The controller is programmed and implemented in the unconstrained case based
on Equation 6.2.
Forcompleteness, the formulation of the cost function J of the MPC for the constrained
case using unconstrained optimizers is defined as:

p—1 m
J(@,u, Au) = (U@(k), u(k)) +r(Auk)) + > ¢(gi(x)) (6.2a)
k=0 =1
with:  I(z(k),u(k)) = f'(x(k),u(k) " Qf (x(k), u(k)), (6.2b)
r(Au(k)) = Au(k)T RAu(k), (6.2¢)
p—1
$(gi(@)) =Y _(I_(vj(x))), j=1[1,6] (6.2d)
k=0

67



CHAPTER 6. NEURAL NETWORK MODEL PREDICTIVE CONTROL

where I_(v(x)) represent the barrier function for the value function v.

Furthermore, the MPC gain matrices @ and R are selected consistently for each
study case to ensure equivalence across different scenarios. These are given as:

R= _1 (6.3a)
1 0

Q= (6.3b)
0 10

Considering 6 constraints in total, 3 variables (Thot air » air » Tsurface ), @aNd 2 bounds
each (lower and upper bound), the value functions v;(x) for the constrained formula-
tion are given as:

V1 = Mair — Mair, U.g.» (6.4a)
Vg = Mair, |, — Mair, (6.4b)
v3 = Thotair — Thot air, UB.» (6.4c)
va = Thotair, s, — Thotair (6.4d)
vs = Tourtace — Tsurface, UB.» (6.4¢e)
Vg = Tsurface, L8, — Teurface (6.41)

where the tilde variable represents the obtained value at each optimization iteration.
The tuning parameters 3, v, and T, each corresponding to the scaled Softplus and ex-
ponential barrier functions respectively are given in Appendix, Table A.4. While these
values were manually tuned using all test scenarios to get a desired behavior, the pro-
cess is not considered part of this work and therefore the methodology is not further
detailed. For the following, the exponential barrier function is used.

6.2.3 Closed-loop controller

To measure controller performance in the STJ study case, metrics such as constraint
violation (CV.), total effort >~ Aw , surface temperature gradients Tyurface » tracking
RMSE Tiot air, rMsSE » and estimated heat flux I—Lfa;r were obtained in simulation. MPC so-
lution time was captured as well for reference and comparison, but no major analysis
was performed.
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To gain insights on the power output of the receiver, a reduced model of the outlet
air enthalpy flux is considered for result quantification based on the work of Oster-
mann [32]. This is given by the formula 6.5:

Hair: p,air(Thotair_ coldair)mair (6-5)

with €, air = 1.005 (air specific heat [kJ/(kg °C)]).

Measured metrics are first normalized and then ranked. Two approaches were
implemented for ranking. The first evaluates the aggregated normalized values ra-
tio (Equation 6.6a), while the second makes a Softmax aggregated assessment of the
results (Equation 6.6b). Individual ranking values are given for sorting from smaller to
greater values, except for the estimated heat flux ﬁair ,where a higher value indicates
better performance due to a higher energy state.

Aggregated ratio ranking =(1air yg.cv. + Mair, LB.CV.

+ Thot air, u.cv. T Thot air, L.B.CV.

, (6.6a)
+ Z Tsurface + Z Au
+ Thot air, RMSE)/(Z ﬁair)

Softmax aggregated ranking =(Softmax(1air s, cy.) + Softmax(rair, L g.cv.)
+ Softmax(Thetair, ug.cv.) + Softmax(Thot air, LB cv.)
+ Softmax(z Tourface) + Softmax(z Au)

+ Softmax(Thot air ruse))/(Softmax (S Har)
(6.6b)

As mentioned in Chapter 5, two NNs were selected. One will model the dynamics
of the plant inside the MPC controller, while the second acts as the real plant. Consid-
ering the two models and the closed-loop diagram, the simulation is then carried out
as explained in Algorithm 3.

Finally, for the purpose of this work, each library (SciPy and PyTorch) computes its own
gradientinformation. Although the MPC used PyTorch-based NNs for most of the sim-
ulations, results are only obtained using the CPU.

6.2.4 Constraint violation case

One of the advantages of using MPC is its reported higher performance compared to
otherapproaches. Thisis particularly important for controlling the system in the pres-
ence of constraints. Forthisreason, the STJ study case was further analyzed using the
four different test scenarios described in Section 6.2.
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Algorithm 3 NN-based MPC simulation closed-loop

. Initialize dataset D
Define look-back window w
Define prediction horizon p
Initialize time index k =0
while Simulation do
X ¢ ZTp—wt1:6+p from Dy (Get input from dataset at k),
repeat
Y <= NNuipc plant model < X (Evaluate NN model),
uﬁc—{-l:k—&-p] + MPC (Calculate optimal control sequence)
10:  until break condition
11 X X« U1k (Update tensor),
122 Y 4= NNeal plant < X' (Evaluate real plant model),
13:  Dpyyq) + Y (Update dataset at k+1),
14: k=k+1(ncrementtimeindex)
15: end while

©

In the analysis, both ranking methods (Softmax aggregated ranking and Aggre-
gated ratio ranking) yielded the same score results. Consequently, only the Softmax
aggregated ranking method is shown in the results. For reference, the aggregated ra-
tio ranking values can be found in the Appendix, Chapter C, Subsection Aggregated
ratio ranking results C.2.2.

To evaluate performance in testing scenarios prone to constraint violations, simu-
lations were run using test scenarios CV. 1 and 2. Each case imposes constraints, and
two approaches to solve the OCP were used: a constrained optimizer in SciPy and an
unconstrained optimizer in PyTorch with barrier functions to handle constraints.

The performance of the used optimizer from both approaches (SciPy and PyTorch)
were compared by ranking of the metrics. Table 6.2 (Appendix Table C.4) shows results
of simulations in test scenarios CV. 1 and 2 for all optimizers. Zero value columns are
omitted for visualization purposes as they do not change the result.

This table reveals several key points. First, it directly compares the score for each

optimizer for the SciPy and PyTorch approaches, showing that PyTorch performed bet-
ter by having the lowest score overall. In this case, the lowest score among the SciPy
optimizers was 4.04 (Trust-constr) and 3.98 (COBYLA) for C.V. 1 and 2 respectively. Be-
tween PyTorch optimizers 3.71 (Adam) and 3.80 (L-BFGS) for the same scenarios.
The data indicates that for test scenario CV. 1, the SciPy-based MPC violated the up-
per bound constraints in Thet air » @n operation point which is undesirable. In addition,
the PyTorch-based MPC produced less temperature change in the surfaces, reducing
the gradients T yace OVerall.

The table also shows that the PyTorch approach reported a lower total effort > Aw
in the controlled variable ;. , representing softer transitions and control of the sys-
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tem. Similarly, this approach reduced the error between the desired reference hot air
temperature Th ot air, ref and the measured value Thet 4ir , as indicated by the lower RMSE
value.

Unlike the previous metrics, where a lower value means better performance, a higher
value of Zﬁair indicates a higher energy state in the system, translating to more en-
ergy available for downstream processes. The Adam optimizer in PyTorch managed to
control the system into a state of higher heat flux compared to Trust-constr. The final
ranking for CV. 1 suggested that the PyTorch approach using Adam as the optimizer
performed the best overall, with a score of 3.71.

Ranking results observed in test scenario CV. 1 also apply to CV. 2. The interesting
aspect of this data is that in this scenario, both approaches violated the constraints.
Nevertheless, the amount of violation was significantly higher in the SciPy approach
compared to PyTorch. A metric at which constrained optimizers excelled in this sce-
nario was ZTsurface , but with a probability difference no greater than 1%. Thus, the
final score of 3.80 suggests that the PyTorch approach performed better relative to
SciPy.

It is important to note that for CV. scenario 2, the simulation time for the SciPy
approach using optimizer SLSQP took over 150 hours. This greatly reduced the per-
formance of this optimizer, since the simulated simulation time was only 35 minutes.

Despite these results, another relevant aspect of the investigation was the value
of the cost function when using unconstrained optimizers available in Python. This is
crucial since the values of the barrier functions are directly added to the cost function
J in the MPC. If the parameters are not chosen carefully, barrier function values may
exceed the stage cost and control effort, potentially driving the solution away from
the optimum. To address this, the cost function value at the end of each cycle in all
testing scenarios was captured. Particularly, the constraintviolation testing scenarios
were explored. Figure 6.4 shows the aggregated and disaggregated values of the cost
function for test scenario CV.2. As seen in Table 6.2, both approaches violated the
constraints.

The plot consists of three graphs. The first graph shows the individual values over
the simulation for the objective function, the stage and control effort costs, and penal-
ties (barriers).

The second graph shows the individual values of the stage and control effort costs.
In this scenario, the control effort was close to zero, while most of the cost went to
tracking the reference in the stage cost.

From the bottom graph, each barrier function relative to each constraintis graphed.
It can be seen that the major component of the barrieris to drive the system away from
violating the upper bound constraint in the hot air temperature Tt ajr -
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Aggregated MPC Costs and Penalty Values
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Figure 6.4: PyTorch MPC costs on test scenario constraint violation 2
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The most striking observation from the graph is the difference in the order of mag-
nitude between the costs and the penalties. This is clear in the upper graph, where
the penalty values represent approximately 3% of the costs. These results were also
observed in all test scenarios.

73



v/

Table 6.2: Softmax aggregated ranking PyTorch vs SciPy results on test scenarios Constraint Violation (C.V.) 1 and 2 for all different

optimizers. Constrained violations in Tit air Observed. PyTorch MPC showing better performance compared to SciPy.
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6.2.5 Nominal operation case

Regarding testing scenarios with nominal operation regimes, Table 6.3 (Appendix Ta-
ble C.5) shows results of simulations in test scenarios N.O. 1 and 2 to compare the per-
formance of the used optimizer from both approaches (SciPy and PyTorch) by ranking
of the metrics.

Interestingly, while the best performing optimizer in SciPy was Trust-constr for the
constraintviolation scenarios, it was no longer the case for the nominal operation sce-
narios. SLSQP performed bestin N.O. scenarios while performing worst in CV. scenar-
ios. Despite starting conditions away from constraints, none of the approaches drove
the system towards constraint violation regions for both nominal operation scenarios.

Closer inspection of the table shows that contrary to the constraint violation sce-
narios, the performance difference between both approaches was relatively smaller.
For instance, in nominal operation scenario 1, the SciPy approach obtained a lowest
score of 3.83 against 3.79 for PyTorch. This trend was also observed in scenario 2,
where PyTorch had a better performance with a lower score of 3.85 compared to SciPy’s
3.87.

Similar to the constraint violation test scenarios, the solutions obtained by the
PyTorch-enabled MPC had better performance relative to the SciPy approach. The
only metric where the best performing SciPy optimizer achieved a better result was
iN Thot air, st 1N test scenario N.O. 2, which might be due to the higher > Aw in the
controlled variable.

These results can also be observed in the simulation graphs. While results for
nominal operation test scenarios 1 and 2 are presented in this chapter, all simula-
tion graphs and results can be found in the Appendix, Chapter B Graphs, Section B.2.
Values shown in the figures are normalized.

Figure 6.5 shows the simulation results for test scenario nominal operation 1. This
figure is composed of seven graphs.

The first graph shows the simulation values for the surface apparent brightness
Iy For scenarios CV. and N.O.1, this is kept constant.
In the second graph, the desired temperature value Tt air, ref IS Shown, along with the
system dynamics for both approaches while tracking the set point. The data shows
that both SciPy- and PyTorch-enabled MPC were able to track the desired setpoint,
albeit SciPy did so slightly slower in the first two steps. The model captured the dy-
namics in the domain of validity sufficiently, evident at each step change. Whenever
there is a higher Thot air. ref » CONtrollers reduce g, to allow the receiver to give less en-
ergy tothe HTM. This is visible in the drop in Tit 4ir » Which later increases to the lower
mass flow. The dynamics of the STJ and the predictive behavior of the controller en-
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Figure 6.5: PyTorch vs SciPy simulation results on test scenario nominal operation 1
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able the system to reach the new setpoint with little overshoot. During steady state,
the controller efficiently tracks Th ot air, ref » k€€PINE the Thot air, rRMsE Value close to zero.

The third graph shows the surface temperature Ty face measured by the IR system,
with surface temperature gradients T, rface Shown in parallel, with a second Y-label.
This graphically demonstrates if the dynamics were closer to the gradient constraints.
What stands out in this graph is the simulated increasing T face Of the system. This
result is somewhat counterintuitive. While expected during steps with increasing set-
points, the opposite was not observed during decreasing steps. This would mean that
the system’s energy is continuously increasing despite operating at lower points. A
reason for this result could also be due to the NN model and insufficient dynamics
data to reproduce the system accurately for Ty face - Although the gradient graph in-
dicated higher values at setpoint changes and during steady-state regions, the ex-
pected behavior was for the surface temperature to converge to zero, suggesting min-
imal changes.

The fourth graph shows the evolution of the controlled variable air mass flow 7,
over the simulation, along with gradients on ri,j; to get insights on the effort for the
whole test scenario. Gradients’ absolute values are added to get the total delta, or the
totalrate of change, shown as metric > Awinthe previous tables. The figure indicates
that the PyTorch approach reacted faster to setpoint changes.

The fifth graph shows the heat flux ﬁair of the system calculated according to Equa-
tion 6.5. Despite reaching higher hot air temperatures, the heat flux was lower due to
the constant IQand the controller tracking only Thot air ref - 1he system dynamics re-

quired lower air mass flow values to achieve higher temperatures, reducing Hir .

The sixth graph depicts the RMSE over time between Ty air @nd Thot air, ref » ShOWN
as Thot air, RMSE » illustrating the deviation from the setpoint. These values correlate
with setpoint changes, approaching zero when the system achieved steady-state.

Finally, the seventh graph shows the MPC cycle time for both approaches. No-
tably, a significant reduction in the MPC cycle time was achieved with the PyTorch
approach. On average, PyTorch computed the optimal solution of the OCP in 136.25,
107.20, 49.88, and 122.29 ms for test scenarios N.O. and CV. 1 and 2, respectively. In
comparison, the best performing SciPy optimizer controller cycle time was 3649.12,
2193.44,17694.68, and 29957.71 ms. This represents a change of up to two orders of
magnitude in the CV. case and one order of magnitude in the N.O. case. This is much
more important when a plant is desired to be controlled in Real-Time. For the STJ, Py-
Torch offers solutions under 1 second, lower than the measuring frequency, potentially
enabling Real-Time operation. Although faster computation times can be achieved by
down-scaling the model and sampling the system at lower frequencies, these results
show a clear benefit of using PyTorch and Autograd gradient calculation.
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The most surprising aspect of the data is the Thot air, RmsE relation between both ap-
proaches. While the system dynamics and control inputs might have followed differ-
ent trajectories, the relative equal value in this metric suggests that both approaches
followed the desired value Tt 4ir, ref SimMilarly on average. Additionally, the selection
of the parameters in the barrier functions for the PyTorch approach allowed the con-
troller to be closer to the constraints compared to SciPy.

In general, similar behavior can be seen in the simulation results for all test sce-
narios. The related figure shown in Appendix Section B.2 illustrates that PyTorch can
compute solutions similar to a constrained optimization approach based on SciPy.
Moreover, results demonstrate control with less effort and lower deviation from the
setpoint.

Another important aspect is the performance of both approaches in testing sce-
narios where disturbances are simulated as variations in 1. For instance, Figure 6.6
(Appendix Figure B.11) shows the simulation results for this case.

It stands out that the controller effectively uses the prediction capabilities of the
T-NN model to reject most disturbances. The first two disturbances simulate cloud
passes with brightness reductions of 25% and 50%, respectively. In these cases, the
controller adjusts rigjr to track Thot air, ref » reducing Thot air. RMse - However, the con-
troller struggled with the third disturbance, which simulates a cloud pass with a 70%
reduction in L. Under this condition, the system cannot track the reference due to
insufficient solar radiation to heat the receiver. This limitation is evident in the 7,
value, which reaches its lower bound during the last disturbance.

The most surprising aspect of the graph is the system response after the distur-
bance. Even when I4returns to the initial state, the controller did not track the ref-
erence. Moreover, the final simulation values show a clear reduction in the hot air
temperature. One reason for this behavior might be the NN model, which may not have
learned the dynamics accurately for this combination of inputs due to the training data
points.

This is also highlighted in the T face graph. The simulation shows an upward trend in
surface temperature, expected to drop when the system temperature dropped. This
remains open for further research.

Additional graphs are also available to the reader. Constraint violation values are
graphed for all testing scenarios. These were not shown in the chapter as their final
values are captured in the tables but can be found in Appendix, Section B.2.
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Figure 6.6: PyTorch vs SciPy simulation results on test scenario nominal operation 2
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Table 6.3: Softmax aggregated ranking PyTorch vs SciPy results on test scenarios Nominal Operation (N.O.) 1 and 2 for all different
optimizers. No constraints violations observed. MPC using PyTorch scores lower showing better performance compared to SciPy.
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6.2. SOLAR TOWER JULICH MPC

6.2.6 Measurement noise

To emulate the influence of measurement noise, uniform random distribution noise
was added to the measurements attime k = 0 in the MPC model. The amount of noise

is given as:
Xk=0,] = X[g=0,;] + NOis€max - NOIS€random scale: (6.7a)
where:  NoiS€random scale = 2 'N(X[k:O,:}Q (0,1]) — 1, (6.7b)
Noisemax = Noisey, - max(D) (6.7¢)

maz(D) represents the maximum observed value in the dataset. For example, as-
sume a state-of-the-art Open Volumetric Receiver (OVR) with Heat Transfer Medium
(HTM) temperatures of up to 500 °C. A 5% measurement noise based on the maximum
value maz (D) = 10°C measurement error would represent over 2 orders of magnitude
higher inaccuracy than standard PT100 temperature sensors with tolerance class W
0.6, F type, according to DIN EN IEC 60751.

Figure 6.7 shows the results obtained from simulations with 0% and 5% measure-
ment noise. The Thot air raph shows that controller performance decreased compared
tosimulations without noise. Furthermore, accuracy degraded inrelationtotheamount
of noise. Despite the influence, the controller follows the Ti ot 4ir. ref trend, albeit with
higher oscillation in the presence of higher noise. This is also visible in the Thot air, RMSE
graph, where the effect is clearly visible. Quantitatively, a > Thot air. mse Of 812.98 and
621.88 with 5% and 0% noise respectively is observed. This represents up to 30.43%
higher total RMSE respectively.

Noise effect is also visible in the third graph, which reveals different Ty face fOr
each case. The striking aspect of the graph is the gradients Ty face » Which also behave
differentrelative to each other. For 0% measurement noise, values were still within the
bounds, but this was close to the constraint in the case of 5% noise.

Anincreasein > Awu is also observed in the rigi- graph. Similar effects were found
in Hyi, . Most interestingly, MPC cycle times remained under 1 second on average, but
clear steps with 1 second solution times are observed.

Figure 6.8 presents experimental data on increasing measurement noise for met-
rics absolute total > Auw and Thot air, rmse. With Noiseg, = [0%,0.5%, 1.0%,2.5%, 5.0%,
7.5%,10%)] results show a direct correlation. The increase in the metric value for in-
creasing values of simulated measurement noise is depicted.

At noise levels of 7.5% and 10%, metric values were not captured. This was due
to the NN model returning NaN or 4 inf values in the output tensor Y, thus ending the
optimization cycle of the MPC due to non-convergence.
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Figure 6.7: PyTorch simulation with 0% and 5% measurement noise on test scenario
nominal operation 1
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Overall, these results suggest that a T-NN dynamic model can be used for MPC,

even in the presence of measurement noise. Additionally, the results indicate the vi-

ability of PyTorch as a constrained optimizer using barrier functions. This approach

performed better relative to an off-the-shelf constrained optimizer used in the litera-
ture. Results also show that the simplified T-NN dynamic model of the STJ system is

capable of Real-Time solutions.
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Chapter 7

Uncertainty Quantification

The primary objective of this research is to investigate the applicability of Transformer
Neural Network (T-NN) within Model Predictive Control (MPC). Additionally, this study
explores Uncertainty Quantification (UQ) using Kernel-based Gaussian Process Re-
gressor (GPR). By incorporating probabilistic information into the model’s predictions,
this research aims to lay the groundwork for future applications in this domain.

Recent advances in the literature have introduced innovative approaches such as
incorporating a Bayesian final layer in neural networks, which allows these models to
infer probabilistic information intrinsically [51]. In contrast, similar to other existing
methodologies, our approach fits the model discrepancy between historical predic-
tions and actual measurements using GPR [48]-[50].

Toachieve accurateandreliable predictions, anonline trainingand inference mech-
anism is employed, which augments prediction data by including the computed mean
() and covariance (X). This study adopts the First-Order Plus Dead-Time (FOPDT)
model as proposed by Park et al.[39], utilizing the Gaussian Processes module from
the SciKit library 1.3.2 [117]. The use of Solar Tower Power Plant Julich (STJ) case study
was also explored using the GPyTorch library 1.11 [118] in Python 3.11 [103].

Another advantage of using these libraries is their use of a Kernel approach, which
is flexible for testing combinations. The main disadvantage of this method is the lack
of theoretical analysis of the GP, and the parameters need to be computed every cycle,
posing a limitation for real-time applications. These remain subjects for future study.

This study uses stored NN predictions g and true plant output measurements
Ymeasured L0 Calculate a model error as Jerror = Y — Ymeasured- 1 N€ ONliNe process inside
the MPC cycle is illustrated in Algorithm 4.

The GPR parameters for both Python libraries are in Appendix, Section A.3 GP pa-
rameters Table A.7.
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Algorithm 4 GP model error model fit

Initialize dataset D

Define look-back window w

Define prediction horizon p
Initialize time indext =0

Define model error model length [
Define Confidence Intervals C.I.(o)

Initialize yerror, [k=l,7=0:p]> Qstore, [k=l,j=0:p]>» Ymeasured, [k=l,j=0:p]
while Simulation do
X ¢ @yt 1:64p from D (Get input from dataset)
10: store, 0,] < NN(X) (Store NN model predictions)
11 Ymeasured, [0,] < Real Plant(X) (Measure real plant model outputs)
12: ift =l then

©

13: gerror, [0,:] < Z)store, 1] — Ymeasured, [—1,] (Ca[CU[ate prediction error)
14: gerror, [0,:] ~ gP(,“/; 0'2) (Fittoa GP)

1%: ¥ < 9+ ug.,,.. (Calculate adjusted predictions)

16: y' £ C.I. -0y, (Calculate prediction confidence regions)

17:  endif

18: Shift Yerrors Ystore> Ymeasured: [1 5 :] — [: -1, :]
19:  Display Confidence Intervals from o

20t =t+1(Incrementtime index)

21: end while

71 First order plus dead-time model

Similar to Section 5.2, the dataset from the FOPDT model described in Park et al. [39]
was used, with NN parameters as presented in Section 5.2. The kernel utilized for the
analysis was a product of a Constant and RBF kernels.

To simulate plant dynamics, the same random test scenario of inputs v used to
generate the data set was used to obtain the NN response and fit geror- Figure B.23in
Appendix, Section B.3, shows the test scenario for the FOPDT case. In addition, 5% of
o(u) normally distributed random noise was added to the input of the NN to evaluate
the performance of the GPR in the presence of noise.

Figure 7.1 shows the result of the open-loop simulation for T-NN prediction at sim-
ulation time step t = 126. The upper graph shows the prediction from the T-NN model
7, and the lower graph shows the prediction of the NN model plus the GPR mean p and
with the confidence intervals (C.l.) of +30.

What stands out from the figure is that the true data ys-u41 1S inside the confidence
intervals of the GPR and these intervals are narrow. In comparison, Figure 7.2 shows
the simulation resultattime ¢t = 77, where a wider confidence region is evident. These
differences can be explained in part by the delay in the uncertainty quantification, re-
sulting from the model error being made of past measurements. This is especially
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Figure 7.1: FOPDT narrow confidence interval at test scenario time ¢t = 126 with input
uand MPC sliding window. T-NN model (Top). T-NN model with GP model error model
regressor and +30 confidence intervals (Bottom). Note that due to low prediction error,
uap is close to zero and the difference between the two models small.
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evident at points with higher changes in the input variables u or the desired setpoint
yref, @s illustrated in the figure. This observation also highlights the inaccuracy of the
model and its potential for improvement.

An interesting result from the data is that despite the added noise, out of the 785
times for which the GPRwas evaluated during the test, y4-.+n Wwas inside the confidence
interval of 30 (99.7%) 93.50% (762 of 785) and £+2.58¢0 (95%) 97.07% (762 of 785).

The effect of changes in the input u that contribute to wider confidence intervals
canalsobeseeninFigure7.3. This graph shows the RMSE of both models (g and Jeyror)-
From the graph, itis clear that the prediction that included the mean of the GPR wors-
ened the prediction when changes in the setpoint occurred. In addition, no advantage
was found for the RMSE over the values obtained. Overall, the gerror Model performed
14% worse than the g model, with a total yrayrse = 0.0300 and Gerror, RMsE = 0.0342.

It is recommended that the GPR be analyzed in the STJ case study. The results of
the FOPDT model demonstrate that this approach is viable, with confidence regions
aligning with the predicted trends. These results could be incorporated into the pre-
dictions.

For reference, graphs with the calculated model error ge,o and its corresponding
GPR fit, as well as calculated grarse and Jerror, RMsE @t timest = 77 and t = 126, can
be found in Appendix, Section B.3 Uncertainty Quantification. See Figure B.25 and
Figure B.24, respectively.

7.2 Solar tower Jilich model

Anotherapplication of interest was the integration of statisticalinformationin the pre-
diction of dynamic models in closed-loop control. Focusing on the STJ case to examine
the behavior of Gaussian Process (GP) model errors was studied in conjunction with T-
NN models under optimal control inputs u*. Similar to the FOPDT model, a product of
constant and RBF kernels was used.

To extend the scope of UQ methods in this work, quantitative measures were incor-
porated to evaluate the prediction accuracy of NN dynamic models. As an introduc-
tory experiment, initial simulations were performed according to the nominal opera-
tion scenario 1 (N.O. 1) described in Section 6.2.

Figure 7.4 illustrates the closed-loop simulation results at time step t = 338 for the
two variables predicted by the T-NN: Thot air and Ty rface-

Both graphs show predictions by the NN model and measured states. An extended
model, combining the T-NN model predictions with the GP mean ugp, is also shown,
along with +30 confidence intervals.

The results show that the GP model error model effectively quantifies prediction
covariance and captures the dynamic trend of the system. Notably, during steady-
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Figure 7.2: FOPDT wide confidence interval at test scenario time ¢ = 77 with input u
and MPC sliding window. T-NN model (Top). T-NN model with GP model error model
regressor and +3o confidence intervals (Bottom). Note that due to higher prediction
error, ugp contribute tothe NN predictions while the confidence intervals is wider sug-
gesting lower certainty.
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Figure 7.3: Neural network and added Gaussian Process models prediction root mean
squared error

state conditions (no setpoint changes or rapid dynamics), the mean 43¢ over the pre-
diction horizon accounts for only 1.78% of Tqrface aNd 3.22% of Thot air at this time step,
suggesting a high level of confidence in the predictions.

A significant contrast was found at later time steps in the simulation. Figure 7.5
shows the simulation results when a change in the hot air temperature T}t air. ref Was
introduced (time t = 774).

Similar to the FOPDT model, the GP model exhibited a notable bias in response
to rapid setpoint changes. It is worth noting that the mean +3o0 over the prediction
horizon increased to only 2.62% of Tsyrface @and 10.87% of Thot 5ir at this time step, sug-
gesting a lower confidence in the predictions.

As last finding, it was observed that ugp introduced an offset in the NN predic-
tions. This phenomenon can be attributed to the delayed effect of incorporating past
measurements and the incorporation of model error in a closed-loop system. This dis-
tinction is particularly important. As Lucia explains: “open-loop predictions are not
the same as closed-loop trajectories [...] because we are using a finite horizon” [119].
Open-loop control systems rely on predetermined predictions withoutintegrating feed-
back for adjustments. In contrast, closed-loop control systems use continuous feed-
back to constantly refine and modify control actions based on real-time data [120].

These results illustrate the feasibility of combining NN models with UQ methods
such as GP to include statistical information such as covariance. The findings sug-
gest that, although there are certain constraints, this methodology shows potential
for enhancing prediction accuracy and offer an overview in the uncertainty. Future
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Figure 7.4: Narrow confidence interval at STJ test scenario nominal operation 1 time
t = 338 with input w and MPC sliding window. T-NN model (Top). T-NN model with GP
model error model regressor and +3¢ confidence intervals (Bottom). Note that due to
low prediction error, ugp is close to zero and the difference between the two models
small.
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Figure 7.5: Wide confidence interval at STJ test scenario nominal operation 1 time ¢t =
774 with inputuwand MPC sliding window. T-NN model (Top). T-NN model with GP model
error model regressor and +3¢ confidence intervals (Bottom). Note that due to higher
prediction error, ugp contribute to the NN predictions while the confidence intervals

is wider suggesting lower certainty.
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investigations are suggested to mitigate these limitations and examine further appli-
cations of UQ within control systems.
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Chapter 8

Conclusions

Thisthesis explorestheintegration of Model Predictive Control (MPC) with Transformer
Neural Network (T-NN) to model and control the Solar Tower Power Plant Julich (STJ).
The aim was to increase the efficiency of Concentrated Solar Power (CSP) plants. This
section evaluates the extent to which the study has achieved its goals. As mentioned
in the Introduction 1, the lateral focus is on meeting the global need for sustainable
Renewable Energy Sources (RESs). Furthermore, we present an analysis of the find-
ings’ relevance and potential impact.

Artificial Neural Networks

The present work was designed to explore the use of novel NNs to learn system dy-
namics. Motivated by the limitations of simplified models [25], [32], a data-based ap-
proach using T-NN was proposed [39]. Additionally, this work aimed to explore the
potential of employing NN dynamic models with an MPC controller, rather than opti-
mizing results for each system individually.

The T-NN was trained to predict the system’s future states based on historical data.
This study demonstrated the importance of data integrity and its impact on the per-
formance of data-based models. During the training phase, measurement noise in
one of the states limited the NN’s ability to learn the system’s dynamics. By applying
filtering techniques, the model’s predictions were significantly improved, highlighting
the importance of data preprocessing and filtering to ensure the quality of the training
data.

Interestingly, no clear minimum was identified in the model's prediction perfor-
mance when exploring the hyperparameter space of the look-back window and pre-
diction horizon. In order to select a suitable configuration, validation MSE values were
ranked based on the metric at the lowest value of the prediction horizon. This result
showed that training for longer prediction horizons drives the learning process to have
better performance for the first few steps in the study case presented.
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Another important contribution was the addition of a last-layer residual connec-
tion in the T-NN, which was absent in the work by Park et al. [39].The results demon-
strated enhanced prediction accuracy when compared to the model without last layer
residual connection.

These results suggest that a NN with an attention mechanism, as introduced by
Vaswani et al. [38], can be used to model the dynamics of complex systems. The T-
NN model was able to learn the system dynamics and predict future states within the
region of validity. This opens up the possibility of using advanced NN architectures
with modern control technigues to further improve the performance of CSP plants.

Model Predictive Control

The MPC controller was selected due to its ability to handle complex systems and
MIMO configurations. Significantly, this controller enabled the system to operate un-
der constraints and incorporated predicted disturbances in the control strategy. Fo-
cusing on the application in CSP plants, the use of MPC with the STJ receiver system
was demonstrated. The key contribution was the use of T-NN to model the system
dynamics. This thesis has demonstrated that NN models can be used for MPC in the
ST.

In the current study, a comparison was made between constrained and uncon-
strained optimization with barrier functions, which yielded interesting results. The
former, implemented in Python’s SciPy library as shown by Park et al. [39] and Jung et
al. [37], served as a reference for an optimal control solution. The primary objective
was to evaluate the performance of the MPC controller using different optimization
algorithms such as Adam and L-BFGS. It was demonstrated that the unconstrained
optimization approach was able to handle bound constraints using barrier functions
with tuned parameters. This approach exhibited significantly lower computational ef-
fort and superior performance in simulation tests compared to the constrained opti-
mization approach. These findings need to be confirmed for more testing scenarios
and other system dynamics.

Itis noteworthy that in all proposed test scenarios, both approaches successfully
utilized a T-NN model to predict the system dynamics and control the system. The re-
sults demonstrated that the MPC controller was capable of tracking the set points and
maintaining the system within operational bounds near constraints and during nom-
inal operation scenarios. Another important finding was that the Multi Step-Ahead
(MSA) prediction capabilities of the T-NN model were leveraged by the MPC controller
to reject predicted disturbances. This was demonstrated in scenarios with simulated
varying solar irradiance. However, the observed model dynamic deviation at the end
of this scenario highlights the need for further research. The prediction accuracy was
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observed to decline outside the domain of validity of the training data, indicating the
necessity for the acquisition of more real plant data and model tuning.

The results on the PyTorch-based MPC have important implications for developing
of real-time control applications. In our study, the computational time was found to
be significantly reduced in comparison to the SciPy-based MPC. This difference could
be attributed to the use of different tools for gradient computation, which constitutes
an important area for future research.

An additional objective of this work was to explore the impact of measurement
noise on the model dynamics and the MPC controller. In the STJ case study simulation
results showed that the system remained controllable and was able to track the refer-
ence set points even under higher noise levels than typical industrial instrumentation
standards. However, the presence of noise in the measurements led to a deterioration
in the performance of the controller and anincrease in the tracking error. Although this
was explored with a single case study, caution must be applied, as the findings might
not be transferable to all measured variables and regions of operation. Therefore, a
more robust analysis is required.

Uncertainty Quantification

With these results, it can be concluded that the addition of a Gaussian Process (GP)
has potential to overall enhance the prediction accuracy of the T-NN by uncertainty
information. What stands out is the matching confidence interval calculation when
compared to simulated true data, confirming that the probabilistic information pro-
vided by the covariance of the Gaussian Process Regressor (GPR) can be used. This
suggests that while the GP model error model did not improve overall accuracy of the
NN model, it was capable of quantifying the model prediction uncertainty, which is
valuable for future work.

Using the example proposed by Park et al. [39] while extending the architecture
and methodology, we were able to showcase the applicability of the Transformer Neu-
ral Network (T-NN) to learn and simulate nonlinear system dynamics. The model was
then used with real-world data from the Solar Tower Power Plant Julich (STJ) to model
Concentrated Solar Power (CSP) system behavior. The importance of tuning parame-
tersis presented, and the modelis validated in simulation. Furthermore, the potential
of novel neural network architectures such as the "Transformer” is demonstrated, il-
lustrating the possibility of using itin conjunction with Model Predictive Control (MPC)
to enhance the efficiency and reliability of Concentrated Solar Power (CSP) plants.

Results from this work contribute to address global challenges like climate change
by enhancing the efficiency and reliability of Renewable Energy Sources (RESs) tech-
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nologies such as CSP plants[4]. When energy storage is considered, the implications
can be extended and economic viability enhanced [2], [8]. This contributes to nar-
row the gap in the field of Renewable Energy Sources (RESs) model and control, and
aims to serve as an example to further motivate increasing investments in scientific
research.
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Outlook

In light of the scope of this thesis, areas for future research can further deepen on the
findings. Potential topics for future investigation include topics on data pre-processing
and broader test scenarios, alternative control methods and NN architectures, results
validation, optimization, MPC, UQ and real plant validation.

Data pre-processing and test scenarios

Further experiments exploring lower data-sampling rates could shed more light on
model prediction accuracy, control performance, and the computational cost of Op-
timal Control Problems (OCPs). Extending in model testing could be conducted by in-
corporating fast and more dynamic disturbances. These could include variable ramps
and smooth transition, among other possibilities. An interesting open field rely on the
controller response in the presence of inaccurate disturbance predictions.

Alternative control methods and neural network architectures

A comprehensive review of alternative controllers such as PID and Linear Quadratic
Regulator could provide valuable insights. Additionally, a detailed comparison with
reinforcement learning and other neural network architectures such as LSTM NNs
could be pursued. Moreover, investigating replacing traditional multi-layer percep-
trons with Kolmogorov-Arnold Networks (KANs) [121] presents and interesting field
of study.

Results validation

Future studies might include a full discussion on uncertainty propagation, domain of
validity and stability, extending the findings of this work. If the research is to be moved
forward, a better understanding of theoretical assumptions, noise disturbance and
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model uncertainty needs to be developed with theoretical tools such as sensitivity
analysis, among others.

Optimization

A greater focus on optimization tools could produce interesting findings that account
more for constrained optimization in tensor-enabled architectures. Penalty methods,
barrier functions, interior point methods implementation or constrained optimization
algorithms in PyTorch could be investigated. More research using SciPy and PyTorch
with shared gradient information is required to enable a systematic comparison. In
addition, more information on the OCP ill-conditioning would assist on establishing a
greater degree of accuracy on this area.

Model predictive control

The incorporation of an aim-point and solar irradiation control system is an intriguing
one which could be usefully explored in further research. Moreover, considerably more
work will need to be done to determine the applicability of NN models with uncertainty
quantification in MPC. Anatural progression of thisworkis to analyze a Stochastic and
Robust MPC formulation, as well as the economic formulation of the objective func-
tion. Elements in the MPC formulation such as terminal cost, terminal set, a terminal
control law and recursive feasibility are presented as of particular interest to proof
controller stability.

Uncertainty quantification

Future research should aim to deepen the theoretical understanding of GPs to opti-
mize their application in different modeling scenarios. An extended theoretical analy-
sis will enhance understanding and improve the accuracy of NN models by leveraging
UQ methods. Designed operation regimes that account for limitations on added UQ
methods such as gradual setpoint, could contribute to increase the reliability of the
method.

Another UQ approaches applied to MPC such as NN Bayesian last layer [60], sparse
GP [54] or conformal prediction [122] offer opportunities for future research. The ad-
dition of UQ in the model can enable the controller to be formulated as Robust MPC. In
particular, formulations such as Stochastic, Min-max, Tube-based, Scenario-based
MPC could be investigated.
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Real plant test validation, economic and environmental impact assessment

This research has thrown up many questions in need of further investigation. The
precise effect of the proposed T-NN MPC in the real STJ plant remains to be tested.
An extensive assessment of both economic and environmental impacts could provide
valuable insights to evaluate the advantages associated with the proposed MPC sys-
tem. This evaluation should incorporate analyses of cost-benefit scenarios as well as
potential reductions in greenhouse gas emissions. Finally, trials beyond CSP plants
could provide more definitive evidence on the findings.
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Datasheets

A1 Parameters for MPC testing scenarios
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Initial conditions

Scenario T Thot ajr
Tsurtace  Thotair ~ Mair  Tooldair Iy Hgjr  setpoint
CV.1 -0.9034 - 0.5696 -1.0215 0.9174 1.3900 -
CV.2 -0.9034 -0.5221 0.5696 -1.0215 - 1.3900 4.7484
N.O. 1 -0.9034 - 0.5696 -1.0215 0.9174 1.3900 -
N.O. 2 -0.9034 -0.5221 0.5696 -1.0215 - 1.3900 -0.5221

Table A.1: Initial conditions for each test scenario

Scenario Time

Step time variant value

Step Scenario

variant 1

2 3 4 5 6

7 duration duration

CV.1 Thotair -0.5227 -0.3112 0.1104 4.7484 -0.3112 -0.7329 -0.1847 5 min 35 min

CV.2 Iy

0.9174 -0.4334 0.9174 2.2681 09174 -0.9737 0.9174 5min 35 min

N.O.1  Thotar -0.5221 -0.3112 01104 05320 -0.3112 -0.7329 -0.1847 15min 105 min

N.O. 2 Iy

0.9174  0.2420 0.9174 -0.4334 09174 -0.9737 0.9174 15 min 105 min

Table A.2: Step time variant values for each test scenario
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A.2 MPC parameters

Thot air . .
Majr Tsurface
CV. N.O.

Lower bound -1.9977 -1.9977 -1.4723 -0.0221
Upper bound -0.3112 1.3753 4.3616 0.0221

Table A.3: Bound constraints for each test scenario

Value function v

Barrier Parameters
function V1 Vg V3 Vg Vs Vg
Scaled softplus T 0.010 0.001 0.010
g 5
Exponential T 1 1 0
v 40 50 100

Table A.4: Barrier functions parameters

L-BFGS Adam AdamW Yogi
Option Value Option Value Option Value Option Value
lr 0.001 lr 0.01 lr 0.01 lr 0.025
history_size 10 amsgrad  True

line_search_fn strong_wolfe

loss_threshold Te-3

controlled_variable_loss_threshold Te-3

Table A.5: PyTorch optimizer options
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Table A.6: SciPy optimizer options

Trust-contr

COBYLA

SLSQP

Option Value Option Value Option Value
jac 2-point rhobeg 1 jac 3-point
factorization_method SVDFactorization catol 2e-8 ftol 1e-3
initial_barrier_parameter le-2 tol le-4 maxiter 100
finite_diff_rel_step 1e-2 maxiter 1000 eps 1e-3
barrier_tol le-6
initial_tr_radius 1.5e0
xtol 1.5e0
gtol 1e-2
maxiter 100
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A.3. GP PARAMETERS

A.3 GP parameters

Table A.7: Kernel parameters for each case study

Case study Kernel Kernel(s) parameters
constant_value 1.0
Constant kernel (1e-5, 1eb)
constant_value_bounds
"fixed”
FOPDT
length_scale 1.0
RBF kernel (1e-5, 1eb)
constant_value_bounds
"fixed”
outputscale_prior 1.0
Constant kernel
outputscale_constraint Positive
length_scale 1.0
STJ
RBF kernel eps le-6

lengthscale_constraint Positive
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Appendix B

Graphs

B.1 Artificial Neural Networks
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Figure B.1: Neural networks training mean squared error surface for w and p combina-
tions ranked at p = 60
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Figure B.2: Neural networks training mean squared error surface contour for w and p
combinations ranked at p = 60
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Figure B.3: Neural networks validation mean squared error surface for w and p com-
binations ranked at p = 60
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120
110
100
90
80
70
60
50
40

30

100 150 200 250 300

N S N o N

& & & ¢ ¢ ¢ ¢ ¢

S S S S Q S Q S

Q' Q' Q' Q' Q' Q' Q' Q'

Figure B.4: Neural networks validation mean squared error surface contour for w and
p combinations ranked at p = 60
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Figure B.5: Neural networks testing mean squared error surface for w and p combina-
tions ranked at p = 60
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Figure B.6: Neural networks testing mean squared error surface contour for w and p

combinations ranked at p = 60
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B.2 Model Predictive Control
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Figure B.7: Nominal operation test scenario 1. Hot air T},ot air temperature tracking at
constant solar irradiation IQ.
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Figure B.8: Nominal operation test scenario 2. Hot air Tht air temperature tracking at
variant solar irradiation IQ.
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Figure B.9: Constraint violation test scenario 1. Hot air Tyt 4y temperature tracking at
constant solar irradiation Iy
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Figure B.11: Pytorch vs SciPy simulation results on test scenario nominal operation 1
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Figure B.12: Pytorch vs SciPy simulation constraint violation on test scenario nominal
operation 1
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Figure B.13: Pytorch MPC costs on test scenario nominal operation 1
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Figure B.14: Pytorch vs SciPy simulation results on test scenario nominal operation 2
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Figure B.15: Pytorch vs SciPy simulation constraint violation on test scenario nominal
operation 2
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Figure B.16: Pytorch MPC costs on test scenario nominal operation 2
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Figure B.17: Pytorch vs SciPy simulation results on test scenario constraint violation 1
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Figure B.18: Pytorch vs SciPy simulation constraint violation on test scenario con-
straint violation 1
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Figure B.19: Pytorch MPC costs on test scenario constraint violation 1
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Figure B.20: Pytorch vs SciPy simulation results on test scenario constraint violation
2
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Figure B.21: Pytorch vs SciPy simulation constraint violation on test scenario con-
straint violation 2
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Figure B.22: Pytorch MPC costs on test scenario constraint violation 2
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B.3 Uncertainty Quantification
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Figure B.25: PyTorch MPC costs on test scenario constraint violation 2
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Tables

C.1 Artificial Neural Networks
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Table C.1: Lowest 10 mean squared error training loss for w and p combinations ranked at p = 60. Filtered and denoised dataset.

Training MSE loss

NN w p
Sum Thot air Tsurface ~ SUMp=60  Thotair s p—60  Lsurface s p—60
28 120 60 0.002366 0.003513 0.001219 0.001144  0.001906 0.000382
06 60 60 0.000435 0.000487 0.000383 0.000435 0.000487 0.000383
92 300 90 0.005318 0.006526 0.004109 0.001517  0.002115 0.000918
07 60 60 0.000852 0.001334 0.000370 0.000852 0.001334 0.000370
04 60 30 0.000543 0.000814 0.000271 0.000543 0.000814 0.000271
29 120 60 0.002382 0.002796 0.001969 0.000874  0.001177 0.000572
27 120 60 0.001374 0.001868 0.000880 0.000720  0.000985 0.0004b5
25 120 60 0.001965 0.003029 0.0009017 0.000826  0.001301 0.000352
16 60 120 0.000926 0.001186 0.000665 0.000926  0.001186 0.000665
94 300 90 0.005970 0.007213 0.004726 0.001541 0.002048 0.0010833
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Table C.2: Lowest 10 mean squared error validation loss for w and p combinations ranked at p = 60. Filtered and denoised dataset.

Validation MSE loss

NN w p
Sum Thot air Tourface ~ SUMp=60  Thotair s p=60  Lsurface s p—60

28 60 120 0.001702 0.000831 0.002573 0.000741 0.000301 0.001182
06 ©60 60 0.000738 0.000308 0.001167 0.000737  0.000308 0.001167
92 90 300 0.005142 0.003787 0.006497 0.000714 0.000321 0.001107
07 60 60 0.000835 0.000322 0.001347 0.000835 0.000322 0.001347
04 30 60 0.001000 0.000324 0.001677 0.007000 0.000324 0.001677
29 60 120 0.001889 0.000895 0.002883 0.000801 0.000326 0.001276
27 60 120 0.001815 0.000958 0.002672 0.000781 0.000337 0.001225
25 60 120 0.001853 0.000943 0.002763 0.000798  0.000339 0.001257
16 120 60 0.000699 0.000351 0.001047 0.000699  0.000351 0.001047
94 90 300 0.006895 0.004835 0.008955 0.000815  0.000352 0.001277
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Table C.3: Lowest 10 mean squared error training loss for w and p combinations ranked at p = 60. Filtered and denoised dataset.

Testing MSE loss

NN w p
Sum Thot air Tsurface ~ SUMp=60  Thotair s p—60  Lsurface s p—60

28 120 60 0.0023217 0.003647 0.000995 0.001021 0.001746 0.000296
06 60 60 0.000692 0.001064 0.000320 0.000692  0.001064 0.000320
92 300 90 0.005786 0.007517 0.004055 0.001187  0.001634 0.000741
07 60 60 0.000712 0.001116 0.000307 0.000712 0.001116 0.000307
04 60 30 0.000641 0.000943 0.000339 0.000641 0.000943 0.000339
29 120 60 0.002359 0.003593 0.001125 0.001034  0.001711 0.000357
27 120 60 0.002026 0.002937 0.001116 0.000891 0.001447 0.000334
25 120 60 0.002146 0.003263 0.001029 0.000946  0.001557 0.000335
16 60 120 0.000863 0.001284 0.000443 0.000863 0.001284 0.000443
94 300 90 0.007072 0.009616 0.004528 0.001213 0.001695 0.000730
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C.2 Model Predictive Control

C.2.1 Softmax aggregated ranking results
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Table C.4: Softmax aggregated ranking PyTorch vs SciPy results on test scenarios Constraint Violation (C.V.) 1 and 2 for all different

optimizers. Constrained violations in Tit air Observed. PyTorch MPC showing better performance compared to SciPy.

> >
. = =g o 4
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g & £ - = 3 X~ F > x S x T ~ 3 ~ o
g 5 B s 5 32 5 2 o= 5§ 4§ 2 05 | G 8
® 3 o £ £ & ¢ & KW 2z W c & a2 W c o
- COBYLA 1.00 0.00 042 013 0.00 013 014 013 034 016 015 0.08 013 4.3
A
S 8 SLSQP 0.00 0.00 0.77 0.26 0.00 018 0J5 048 045 034 034 014 014 493
% Trust-constr 0.00 0.00 0.04 012 0.00 015 014 045 014 015 034 011 014 4.04
2
c Adam 0.00 0.00 0.00 012 0.00 013 034 033 034 034 034 037 015 371
S
@ g AdamW 0.00 0.00 0.00 012 0.00 034 034 034 034 014 014 016 015 372
5 K=
S 2 Yogi 0.00 0.00 0.01 012 0.00 015 014 015 034 014 014 017 015 379
LBFGS 0.00 0.00 0.07 013 0.00 012 014 012 034 014 034 017 015 371
o = COBYLA 0.00 1.00 0.07 013 0.00 012 034 0.09 013 013 034 010 0J4 3.98
[al
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2
= Adam 000 0.00 041 014 000 013 014 019 015 012 014 015 014 3.95
©
1 g AdamW 0.00 0.00 0.09 014 0.00 013 014 019 045 012 034 015 014 3.94
5 K=
S & Yogi 0.00 0.00 014 034 0.00 014 034 0.23 046 032 034 015 034 4.06
LBFGS 0.00 0.00 0.06 013 0.00 012 014 0.07 013 012 034 015 0J4 3.80
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Table C.5: Softmax aggregated ranking PyTorch vs SciPy results on test scenarios Nominal Operation (N.O.) 1 and 2 for all different
optimizers. No constraints violations observed. MPC using PyTorch scores lower showing better performance compared to SciPy.
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C.2.2 Aggregated ratio ranking results

Table C.6: Aggregated ratio ranking Pytorch vs SciPy results on test scenarios Con-
straint Violation (CV.) 1 and 2 for all different optimizers. Constrained violations in
Thot air Observed. PyTorch MPC showing better performance compared to SciPy.

> >
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2 Q o ° = 3 8 =
- > —_— ) m - N ng [a g
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$ 5 2 5 5 s 8 &= 4 5 S
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- COBYLA .00 0.00 012 0.00 0413 0.08 016 0.08 B6.01
A
g (g SLSQP 0.00 0.00 0.77 0.00 018 0.23 014 014 9.24
%5 Trust-constr  0.00 0.00 0.04 0.00 0415 046 0415 011 4.65
2
c Adam 0.00 0.00 0.00 0.00 013 0413 014 0317 2.38
© c
+ g AdamW 0.00 0.00 0.00 0.00 014 012 0314 016 2.42
S =
S e Yogi 0.00 0.00 0.01 0.00 045 018 014 017 2.85
LBFGS 0.00 0.00 0.07 0.00 022 0.09 034 017 2.43
o - COBYLA 0.00 1.00 0.07 000 0J2 0.09 013 010 3.89
[l
g 8 SLSQP 0.00 0.00 0.30 0.00 0.24 016 0.25 0.21 4.62
%5 Trust-constr 0.00 0.00 0.23 0.00 042 0.08 013 010 5.34
2
c Adam 0.00 0.00 011 0.00 013 019 012 015 3.71
©
3 g AdamW 0.00 0.00 0.09 000 013 019 012 015 3.58
S =
83 3 Yogi 0.00 0.00 014 0.00 014 0.23 012 015 4.39

LBFGS 0.00 0.00 0.06 0.00 012 0.07 012 015 2.58
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Table C.7: Aggregated ratio ranking Pytorch vs SciPy results on test scenarios Nominal
Operation (N.0O.) 1 and 2 for all different optimizers. Constrained violations in Thot air
observed. PyTorch MPC showing better performance compared to SciPy.
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