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Abstract. The involvement of robots in warehouse automation poses
new problems to research in logistic tasks such as tight packaging, in
which a container must be completely filled with items, in a regular and
ordered manner, leaving minimum clearance between them. This work
investigates the effect of a reliable placing strategy using a system with
passive compliance to improve robustness and success rate in such a
task. The methodology is integrated into a full pipeline to execute the
packaging operation and is evaluated in a real robot, using a mechanically
compliant hybrid gripper with variable stiffness, exploring the roles of
the hand configuration and stiffness level in the task execution. Along
different evaluation tasks, the results show an improvement in success
rate thanks to a reliable insertion strategy, when compared to a trivial
one. They also demonstrate the efficacy of using variable stiffness to
reduce error propagation.
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1 Introduction
The introduction of robotics in logistic scenarios poses new research challenges,
mainly in the development of end-effectors, and methodologies for item manipu-
lation and packaging. For packaging applications, the focus is mainly on checking
if an item fits in the bin and finding a suitable placement for it. This aspect is
often solved as trivially as lowering vertically the object into its intended posi-
tion and releasing it [13], [19]. Most approaches deal with uncertainty by leaving
some margin between objects, which results in loose and irregular packages [2].
A more challenging and realistic application happens when the robot performs
tight packaging, meaning that the container is filled with items so that they fit
closely together, with minimum clearance between them (Fig. 1). This setting
however provides a contact-rich environment, with noise and disturbances com-
ing from either the object localization, the perception of the bin, or the robot
and end-effector themselves.
⋆ +Equal contribution to this work. *This work was partially funded by the Euro-
pean Commission under the Horizon Europe Framework Programme grant number
101070600, project SoftEnable.
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Fig. 1: Robotic tight packaging task and our experimental setup.

The tight packaging task can be subdivided into three smaller operations:
object grasping, package planning and item insertion.
Object grasping. For the robot to get a hold on the object, suction cups
have proved a valuable tool, both for grasping [3] and manipulating [4] objects.
However, using suction is not always possible, hence we propose to use hybrid
fingers to broaden the range of objects the gripper can work with. In our pre-
vious work [5], we proposed a planner to select the best grasp modality using
hybrid grippers.
Package Planning. Also known as Bin Packing, this problem has been consid-
ered since the 80s using different heuristics [1]. More recently, the research has
focused toward online packing planning. [17] proposes a methodology to verify
if a given item set can fit in the container, regardless of the order of the objects.
[7] implements a pipeline to evaluate online the dimension of unknown items
arriving with unknown order, and to find a placement for them using a distance-
based heuristic; [18] solves the same task with a height-based heuristic.
Item insertion. Tight packaging is similar to a less constrained Peg-in-Hole
problem. Late solutions for peg-in-hole use visual feedback [12], force feedback
[16], and some estimation of the contact state [11]. These works highlight the
importance of exploiting contacts with the environment and using intrinsic com-
pliance to guide the insertion, an idea that we follow in this paper.
A full pipeline was proposed in [15] to solve the tight packaging problem using
a suction cup and visual feedback; to place an item, a simple insertion is per-
formed in a free portion of the container, and then the object is moved toward the
desired position. Corrective actions are also implemented to fix imprecise place-
ments, pushing and pulling the item. In this way, a tight package is achieved,
but it is not possible to fill the whole container, as it is necessary to have space
to insert the item and maneuver it. [20] uses instead a clawed gripper to place
cubes using force/torque sensing to guide the execution. The approach improves
on the previous one by increasing the placement accuracy (reducing the need
for corrective actions). However, the chosen gripper also prevents the complete
filling of the container.

Our work deals with the tight packaging problem by 1) proposing a package
planner integrated with a bio-inspired insertion strategy that only requires the
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Fig. 2: Scheme of the execution of the task.

intended place for the item to be free, hence filling the container up to all
four walls; 2) using a gripper with mechanical variable stiffness to adapt to
uncertainties and deal with error propagation; 3) exploiting the use of a hybrid
gripper to execute the task using both pinch and suction grasps with the same
end-effector, which benefits both the range of items that can be grasped and their
placement in constrained spaces; and 4) We evaluate the methodology in a real
robotic system using the DLR Hybrid Compliant Gripper (HCG) 3, integrating
planning and insertion strategies into a full tight packaging pipeline. Various
experiments are then carried out to test the effectiveness of the approach.

2 Problem Definition and Representation
To perform an efficient package planning, the dimensions of container and items
are discretized using a given resolution. The container C = [Pw

C , GC ], is described
by the position Pw

C of its top-left corner in world coordinates. It is discretized
with a planar grid GC = [resC , gC ], characterized by the discretization resolution
resC , and the integer dimensions of the grid gC = [gC,i, gC,j ]. The same applies
to the buffer B = [Pw

B , GB ], which is represented as a 1D grid GB = [resB , gB ].
The item set I is defined as a set of object-types. Each object on = [P̃w

on , tn, {Fm}n]
is an instance of one of the types available in I; it is characterized by its position
in world frame P̃w

on , its type tn, and by a set of faces {Fm}n, which define its
geometry. In turn, each face {Fm}n = [PFn,m

, bn,m, dn,m] is characterized by the
relative pose of its centre with respect to the centroid of the object PFn,m

, a
Boolean bn,m which defines if it can be grasped through suction, and the planar
discretized dimensions dn,m = [di, dj ] that the item has when looked at from the
normal along the surface.

The tight packaging task is defined as the collocation of the set of objects
O into the container C; each item undergoes a cycle of grasp, planning and
placement, as depicted in Fig. 2. In every cycle, a random object from the item
set starts in a random pose in the grasp workspace; one object at a time is
allowed to be in that region. The item is localized and grasped there. Once the
operation is successful, the package planner is invoked to find a position for the
item in the bin, using knowledge of the nominal state of the grid. An item can
either find a placement, be assigned to the buffer, or be discarded.

In the first case, the planner outputs a target placement for the item in grid
coordinates P g

on , which corresponds to a target pose in world coordinates Pw
on .

3 DLR HCG (2021) https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-18061
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The object placement is performed along a trajectory that the robot has to
follow, defined as a set of poses T = {Pk}; each pose can be expressed as relative
to the target position Pw

on , or in world coordinates, hence called respectively
T t
on = {P t

k} and Tw
on = {Pw

k }. The cycle is repeated until the container is filled,
or an unrecoverable error happens. The container is considered filled if an item
has been assigned to all the cells, and if the actual pose of each object placed
P̃w
on is within a threshold ϵa of the nominal one Pw

on . Similarly, an unrecoverable
placement happens when the difference between actual and nominal pose is
greater than another threshold ϵf .

3 Pipeline for tight packaging

Grasp and Manipulation approach. A prior analysis is performed to define
the robot workspace for the tasks, using its capability map [14]. First, the grasp
workspace is defined as a planar area of the table that the robot can reach
and where the vision pipeline can return the poses of the items with sufficient
confidence. Then, the best location for the container is found by checking that in
the selected position the robot is able to pack items in the whole bin, collision-
free and within its reachability. In a similar way, a region of the workspace is
assigned to be the buffer.

Due to the constraints of tight packaging, a suction grasp is the preferred
modality, as the gripper only needs access to one face of the item. On the con-
trary, with a pinch grasp a finger will always be in the way of a tight insertion.
The grasp algorithm requires knowledge of the object type and its 6D pose,
coming from a vision pipeline. With this, the algorithm computes which face of
the item is looking upwards, and if it is possible to perform a suction grasp; if
not, a pinch grasp is performed and the object is reoriented, in order to expose
a different face. The pipeline for this process is described in Algorithm 1.

Package Planner and Item Selection. After a successful grasp, the planner
(shown in Algorithm 2) selects where to place the item using as input the nominal
state of the container, and the planar dimensions of the object dn,m. First, the
planner checks if the item should be buffered; this applies to small items, which
can be useful in the latest stages of execution, where their size allows to fill in
the irregular and small gaps remaining. This strategy is used until the buffer is
full, or until it contains enough items to fill the remaining empty gaps. The Item
Selection works in sync with this strategy: if the buffer needs to be emptied,
the first item selected is the largest one in it; otherwise, the robot grasps the
item laying in the grasp workspace. If the item is not buffered, the planner
uses a Bottom-Left heuristic to find a placement for the item in the bin; the
cost function implemented defines a packing direction, from the top-left corner
towards the opposite one. If no placement is possible, the item is discarded.

Contact Analysis. Our packaging methodology relies on the detection of cor-
ners, defined by the edges of the items and the walls of the bin. A correctly
oriented pushing action can move an item towards one corner, where it can fit
guided by the constraints that it finds (Fig. 3-A). Moreover, as the bin fills up,
the items constrain each other, reducing their freedom of movement.



Robotic Tight Packaging using a Hybrid gripper with Variable Stiffness 5

Algorithm 1 Grasp and Manipulation

Input: Buffer B

1: items number, {P̃on , tn} ← call vision()

2: if items number ̸= 1 then
3: return exit Error

4: on ← select item(B, [P̃on , tn])

5: Create object: on ← [P̃on , tn, {Fm}n]
6: Fn,m ← find upwards face(on)

7: if bn,m and not failure then
8: success ← plan and execute suction grasp(on)

9: if success then
10: failure ← False

11: return exit ← Package Planner

12: else
13: failure ← True

14: return exit ← Grasp and Manipulation

15: else
16: success← plan and execute pinch grasp(on)

17: if success then
18: execute manipulation()
19: return exit ← Grasp and Manipulation

20: else
21: return exit ← Grasp and Manipulation

Insertion Strategy. By properly choosing a loading direction it is possible to
keep piling objects in the container, correcting the arising uncertainties through
a placing-by-pushing action. The insertion starts by selecting a loading direction
depending on the current situation in the container (represented by the container
grid), and the intended position of the item. As shown in Fig. 3-B, four directions
are possible, defined as an angle in the container plane; each of them points
from the center of the container towards one of the corners. The item is loaded
preferentially towards the walls of the container; if not possible, against the
packaging direction enforced by the planner. To insert the object in its slot, a
set of actions is performed along the found direction, as depicted in Fig. 3-C.
The item is first inclined backwards, to expose a corner, which is used to pierce
between the items underneath; the held object is then pulled backwards, to clear
some space, and straightened, pushing eventual items out of the way. Then, the
item is moved forwards, onto its target position, and then lowered. This sequence
of pushing and pulling does not disrupt the state of the bin achieved up to this
moment. These actions are performed by moving the item along a trajectory
defined by poses in space; these points are computed by a distance from the
target position of the item in the container along the loading direction, a height
from the container floor, and an orientation. Algorithm 3 details the execution.

Hybrid Grasp and Stiffness Level. To select a suitable hand configuration
and stiffness level, the requirements of the task are analyzed, following our pre-
vious work in [10]. To accomplish the insertion it is necessary, on the one hand,
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Algorithm 2 Package Planner

Input: on, C

1: if on ∈ small items and not full buffer then
2: return exit ← Buffer

3: found, P g
on ← find placement(dn,m, GC)

4: if not found then
5: dn,m ← [dj , di]

6: found, P g
on ← find placement(dn,m, GC)

7: if found then
8: return exit ← Insertion

9: else
10: return exit ← Discard

Top View: Loading Direction Pierce Push Backwards Full InsertionPush ForwardsStraighten

C. Sequence of actions composing the Insertion strategy.

A. Effect of a pushing force. B. Loading Directions.

Fig. 3: A. Strategical selection of the pushing force drives the item toward a
constraint and then complies into its target position. B. The four possible loading
directions, depending on the target position (dashed). C. Sequence of actions
composing the insertion strategy (loading from right to left in the side view).

to retain compliance in the horizontal plane, so to allow the item to look for con-
tacts and to adapt to the surrounding despite the uncertainties. On the other
hand, the robot needs to exert vertical forces to pierce and to insert the item,
requiring a higher stiffness along said direction. The benefits of the hybrid grip-
per are here exploited: the item is grasped using suction, and the other fingertip
is simply sitting on top of the item, to resist the vertical forces while allowing it
to slide under its tip, thus keeping the required compliance (Fig. 4-A).

Corrective Actions. To minimize the chances of having objects occluding
potential slots, it is possible to perform corrective actions after a placement.
Given the actual and intended position of the item, a correction is triggered
if their distance exceeds a given threshold. The correction is a pushing action
along a direction, computed as a vector from P̃w

on to Pw
on . It is performed by

inserting a straight finger and moving it until a force exceeding a given threshold
is sensed, signaling that a constraint has been found. Therefore, before executing
the action, it is necessary to check if there is enough space to safely insert a finger.
This is done considering the nominal situation in the container, verifying that
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Algorithm 3 Insertion

Input: Bin C, item dimensions dn,m, target pose P g
on

1: Pw
on = from relative to world coordinates(P g

on , P
w
C )

2: θ = compute loading direction(P g
on , dm,n, GC)

3: Tw
on = compute trajectory(T t

on , P
w
on , θ)

4: execute trajectory(Tw
on)

5: return exit = Correction

a sufficient number of cells are empty in front of the item along the pushing
direction. Algorithm 4 details the execution.

Algorithm 4 Correction

Input: Container grid GC , target pose Pw
on , acceptance threshold ϵa

1: P̃on = query item position()

2: if P̃w
on − Pw

on < ϵa then
3: return exit = Grasp and Manipulation

4: θ = compute correction direction(P̃w
on , P

w
on)

5: if verify feasibility(GC , P
w
on , θ) then

6: plan and execute correction(Pw
on , θ)

7: return exit = Grasp and Manipulation

4 Experimental Setup

For the experimental task we use the redundant DLR LWR III with the mounted
DLR Hybrid Compliant Gripper (HCG) and a F/T sensor placed between arm
and gripper (Fig. 1). The HCG is a tendon-driven, underactuated, and hybrid
gripper. Its fingers are the thumb modules of the CLASH hand [6], with 3 DoFs,
slightly modified to accommodate a suction cup at the tip; there is an additional
DoF at the base of each finger for enhancing the width of the grasp. The stiffness
of each finger can be independently set, on a scale from 0 to 100% (the higher
the value, the stiffer the finger), and independently of the finger configuration.

We capture RGB and depth images using an Azure Kinect DK camera. For
computing the 3D position of an item, we first run GroundingDINO [9] to detect
the item and pass the corresponding bounding box to a Segment Anything model
[8] to extract the respective segmentation mask. Second, we derive the depth
value of the segmentation mask’s centroid and unproject the position with known
camera intrinsics. Eventually, we return the position of the item with respect to
the robot through a prior robot-to-camera calibration.

The packaging pipeline is implemented as a state machine, and relies on the
DLR motion planning library RMPL. The DLR middleware Links and Nodes is
used to enable communication among all the components. The user is involved
in the execution, as the corrective actions are manually triggered, since this feed-
back is unavailable in the current implementation. The same setup is replicated
in a simulation environment using Python, with PyBullet as physics engine.
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A. Stiffness setting B. Grasp and Manipulation Strategy

Fig. 4: A. HCG uses different stiffness levels in each finger: a suction cup with
soft setting (blue) grasps the object while providing adaptability, and a fingertip
with stiff setting (red) allows application of forces for insertion. B. A block being
grasped and released in a pose that allows suction.

A. Blocks tasks B. Boxes Packaging

Fig. 5: A. Blocks packaging (left) and stacking (right). Note the hybrid grasp
used for supporting the object. B. Frames of the insertion of a box.

5 Experimental evaluation: Results and Discussion

Three experiments are designed to test the proposed pipeline:

1. Blocks Packaging: Mega Blocks have to be packed upright in a half-opened
container, both in simulation and reality, with nominal clearance between
items of 1mm (Fig. 5-A). The blocks are graspable through suction only on
the sides, with a grasp error of up to 15mm. Hence, this task emphasizes
the grasp and manipulation aspect of the pipeline. A simplified insertion
strategy is tested, since there is no need to incline the item and pierce. The
hybrid grasp uses stiffness values of 10% and 40% of the maximum stiffness.

2. Blocks Stacking: follows the previous task, but now the blocks are stacked
onto a base layer, rather than laying them on a flat surface (Fig. 5-A). This
is performed in reality only, with a nominal clearance of 1mm, and fingers
with stiffness of 10% and 60%.

3. Boxes Packaging: a closed container is to be filled with boxes, with a nominal
clearance up to 15mm. The full insertion strategy is tested here (Fig. 5-B). In
simulation, 5 shapes of boxes are used, and a buffer is present; in reality, the
task is performed with tea boxes, with only one shape available. The grasp
strategy uses a stiff finger (value equal to 30%) in the rear of the object, to
pierce and push, and a soft one (value equal to 10%) in the front, to comply
to the surrounding; the object is held with suction, due to its weight, with
a grasp error that can be up to 25mm.
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Table 1: Planner and buffer performance. Highlight: Settings for the experiments.
Grid Size Itemset Buffer Spawned Placed Discarded Leftovers

6x4 1x1 to 3x2 no 14.367
(179.62%)

9.217
(100.00%)

5.150
(79.62%)

-

6x4 1x1 to 3x2 yes 11.833
(147.90%)

8.437
(100.00%)

2.672
(40.96%)

0.724
(6.94%)

12x8 1x1 to 5x4 yes 39.345
(306.94%)

14.751
(100.00%)

22.307
(192.78%)

2.287
(14.17%)

Grasp and Manipulation The success rate for the grasp and manipulation
portion of the pipeline is shown in Fig. 6-A. Finger grasping proves to be reliable
and robust to errors. On the other hand, the main reason behind a failed Suction
grasp is an imprecise object localization, and a lack of local dexterity in the robot;
this is usually due to the robot working close to its joint limits. An unsuccessful
manipulation is caused by either slippage, that lead to no toppling, or to the
object falling in a pose that prevents its identification with the vision pipeline.

Package Planner To measure the performance of the planner, reported in
Table 1, a batch of simulations is run with different container dimensions, size
of the objects in the item set, and presence of a buffer. In each one, the number
of items entering the system and their outcome is counted and averaged over
the batch; similarly, the total area of the items for each outcome is summed and
normalized with respect to the container area. The results show how the planner
is able to run the task until completion, but having a large amount of items that
end up discarded. The presence of a buffer improves the results, but performance
drops drastically when increasing the variety in the item set.

Insertion Strategy: Blocks Packaging Fig. 6-B plots the overall success rate
of the tasks; this is evaluated by measuring the maximum distance in which the
obtained package exceeds the intended area of the container. Similarly, it is also
possible to evaluate in which threshold does the error of each placement fall,
and correlate the number of unsuccessful ones to the position in the grid. Such
analysis shows that the error is less than 1cm (30% of the cell size) in 63.93%
of the individual placements. Both simulation and reality show that the error is
skewed along one direction. This is due to a lack of local dexterity, and at times,
to the gripper getting in the way of a correct placement.

The presence of a grasp error is also correlated with the final placement;
no significant difference is noticed, meaning that the pipeline is partially able to
absorb such error, but also that its magnitude can be shadowed by the other error
sources mentioned. Corrective actions are effective to reduce the misplacement
inside the 5 mm threshold in 73.80% of the times. Repeating the experiment
without them shows that the error increases at the end of the task, but not
after each placement; this proves their necessity only for the containment of the
outer layer, while the packaging strategy is able to deal with misplacements up
to 1cm. The experiment is then repeated, first setting both fingers stiff, and then
both soft. The results do not particularly worsen, but some behaviours can be
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A. B.

Fig. 6: A. Success ratio of the Grasp and Manipulation experiments. B. Success
rate for blocks packaging.
A. Stack fail sequence B. Boxes Packaging Results (including a failure)

Fig. 7: A. Even after the block is released in the correct position, a tilted item
produces failure at pressing down with the finger. B. Exemplary results in sim-
ulation and in experiments.

observed. First, the softer the hand, the more the fingers bend under the weight
of the objects, approaching the target with residual inclination; moreover, the
items tend to get more stuck against the container walls due to friction. With
stiffer joints, higher forces are transmitted due to the higher rigidity of the
system; in this way, an imprecise positioning of the item can squeeze another
item out of its position, rather than comply to it.

Insertion Strategy: Blocks Stacking Along the 10 executions, the blocks
are successfully placed in the right cell 92.3% of times; in the remaining, the
item gets stuck on the wrong one, and leads to a failed task. In 47.9% of times,
the block is pressed in its spot; in the remaining it is only released on it.

One more source of error is observed, which leads to these partial failures:
the hand needs to release the block and reconfigure itself before pressing it in
its position, to avoid having a finger colliding with the base-heads; in half of the
executions, the hybrid grasp is not able to partially insert the block, which then
tilts and is missed by the pressing finger (as shown in Fig. 7-A).

Insertion Strategy: Boxes Packaging The full insertion strategy is per-
formed in these tasks; some examples of the outcomes are shown in Fig. 7-B.

Out of the 11 execution, 7 are successful, meaning that the container is filled
completely. All the failures happen because the piercing action fails, meaning
that the corner of the grasped box gets stuck onto the top of the ones underneath
and is unable to enter between them, leading to the loss of the suction constraint.
This happens because of the uncertainty in the relative position between object
and robot, due to grasp inaccuracy. In presence of this error, even if the arm
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Table 2: Summary of experimental results.
Achieved clearance [mm]
(% of item size)

Extra space
required

Success
Rate

Blocks Packaging 5 (16.1%) yes 73.8%

Blocks Stacking 1 (3.2%) yes 92.3%

Boxes Packaging 15 (10.3%) no 63.3%

reaches the nominal position, the box does not, but is rather shifted back; hence
the piercing action is not performed as intended and fails.

The task is then repeated using a simple insertion strategy, consisting in a
top-down insertion of the item, directly in its intended position. This strategy
fails 5 times out of 5, often before reaching the tight regions of the container;
this happens because of the inability to deal with the large error coming from
the grasping portion of the pipeline (up to 3 times the nominal clearance). The
repetitions with low and high stiffness present a reduced success rate. The suction
cups are quite compliant, hence their softness shadows the stiffness commanded
to the fingers. In case of two soft fingers, the excessive compliance makes the
execution even more vulnerable to getting stuck on the top of the boxes due to
friction; making both fingers stiffer does not improve the behaviour, since only
the rear finger actually utilizes its stiffness to pierce and push.

6 Conclusions

This paper presented a complete pipeline to do tight packaging. We focused
on developing a strategy for inserting an item requiring only its intended area
to be free; hence, our approach can fill a container up to all four walls. The
use of a hybrid and variable-stiffness gripper ensures versatility while grasping,
and allows suitable system behaviours to properly perform the item placement.
There is scarce work so far on the tight packaging problem. The closest works in
[15] and [20] use a gripper that prevents them from filling up the full container.
However, our HCG and planning approach allow achieving this goal.

The results show an improvement in the ability to deal with uncertainty,
with respect to a trivial strategy. Corrective actions are effective in reducing the
errors, but are not necessary for smaller objects, as the insertion method can
deal with them; moreover they cannot recover errors such as toppling and failed
placements. The hybrid grasp and the stiffness settings prove useful in achieving
the desired compliant behaviour necessary to perform each operation.

Still, improvements can be done in future work to further improve the efficacy
of the proposed method. A fully trained visual pipeline could be used to localize
the items, reducing the grasping uncertainty. The planner can be improved to
search in multiple layers and in 3D; its efficacy would greatly improve with
knowledge of the set of items. so that the planner can efficiently avoid discarding
the items that do not fit in a given step. As a next step, we will complement the
placement strategy with sensor feedback, so to find an actual contact by sensing
it, in spite of possible shifts in the grasp. The corrections could be expanded to a
set of recovery actions, so to tackle the different failures that can be encountered;
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the detection of such failures could be automatized with visual feedback on the
container, making the pipeline completely autonomous.
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