
Graph Detective: A User Interface for Intuitive Graph Exploration
Through VisualizedQueries

Dominik Opitz

German Aerospace Center (DLR)

Sankt Augustin, Germany

dominik.opitz@dlr.de

Andreas Hamm

German Aerospace Center (DLR)

Sankt Augustin, Germany

andreas.hamm@dlr.de

Roxanne El Baff

German Aerospace Center (DLR)

Oberpfaffenhofen, Germany

roxanne.elbaff@dlr.de

Jasper Korte

German Aerospace Center (DLR)

Sankt Augustin, Germany

jasper.korte@dlr.de

Tobias Hecking

German Aerospace Center (DLR)

Sankt Augustin, Germany

tobias.hecking@dlr.de

Figure 1: Graph Detective: Modeling graph queries with visual elements and rendering query results in interactive views.

ABSTRACT
Graph databases are used across several domains due to the intu-

itive structure of graphs. They are well-suited for storing document

collections together with their interlinkages through metadata and

annotations. Yet, querying such graphs requires database experts’

involvement for query formulation, reducing accessibility to non-

experts. To address this issue, we present Graph Detective, a web
interface that provides an intuitive entry point for graph data ex-

ploration, where users can create queries visually with little effort,

eliminating the need for expertise in query writing. After process-

ing, the resulting query output (a graph) is then rendered in an

interactive 3D visualization. This visualization allows the analysis

of structural traits of the resulting graph data, exploiting the doc-

uments and metadata interlinkage. Our user evaluation revealed

that even individuals inexperienced with graph databases or graph

data, in general, could satisfactorily access the graph data through

our interface. Furthermore, experienced participants commented

that our interface was more efficient than writing explicit queries

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

DocEng ’24, August 20–23, 2024, San Jose, CA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1169-5/24/08

https://doi.org/10.1145/3685650.3685660

in graph database query language. Interested users can find the

code openly accessible on GitHub
1
.

CCS CONCEPTS
• Information systems → Search interfaces; Query represen-
tation; • Human-centered computing→ Visualization.

KEYWORDS
Graph Database, Query Generation, Graph Retrieval Interface, Web

Application, Graph Data, Visual Querying

ACM Reference Format:
Dominik Opitz, Andreas Hamm, Roxanne El Baff, Jasper Korte, and Tobias

Hecking. 2024. Graph Detective: A User Interface for Intuitive Graph Ex-

ploration Through Visualized Queries. In ACM Symposium on Document
Engineering 2024 (DocEng ’24), August 20–23, 2024, San Jose, CA, USA. ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3685650.3685660

1 INTRODUCTION
In many domains, graphs constitute a useful and intuitive abstrac-

tion, where edges (a.k.a. relations) capture different, potentially

complex relations between the entities of a domain [1, 6, 7]. Graphs

are stored in graph databases, which excel in handling intercon-

nected data.

1
https://github.com/DLR-SC/GraphDetective

https://doi.org/10.1145/3685650.3685660
https://doi.org/10.1145/3685650.3685660
https://github.com/DLR-SC/GraphDetective


DocEng ’24, August 20–23, 2024, San Jose, CA, USA Opitz et al.

Graphs represent knowledge valuably based on the conjunction

of content, metadata, and extracted annotations in large document

collections. Resulting graphs have been used in various domains

such as health, engineering, and social media [22] for several down-

stream tasks such as relation and entity extraction [31, 27], question

answering [11], and semantic search [14]. However, before tackling

these downstream tasks, different domain-dependent users with

no technical background need to inspect and visually analyze the

raw graph that is usually stored on machines, requiring machine-

compatible access, typically accessed through querying languages

such as Neo4j2, ArangoDB3 with their querying language Cypher
and ArangoDB Query Language (AQL) respectively. The lack of pro-

ficiency in these querying languages forces many data consumers

(e.g., decision-makers) to rely on database experts to retrieve the

data, often leading to delays and hindering exploratory data access.

To address this issue, we present a web application with a user

interface for 3D graph data visualization: Graph Detective. As a core
contribution, Graph Detective provides an interface for no-code doc-

ument retrieval from property graphs. The interface overcomes the

need to formulate complicated database queries in the form of text.

Instead, users model queries visually on a canvas with click-and-

drag features. This visual query is then converted to actual database

queries using a template-based algorithm. To enable exploration of

the graph structures, parts of the interface offer interactive visual-

izations of the graph result. Our implementation uses ArangoDB

as the underlying graph database, but the concept can be applied

to other graph databases as well. To showcase the usefulness of

Graph Detective, we chose use cases outlining document analysis

on a linguistically annotated graph.

The interface is logically divided into an input area, a display
area and an ontology area. In the input area, the user graphically

specifies the entities and relations they want to retrieve from the

database. To better understand the graph schema, users can view

the graph schema of the underlying graph displayed in the ontology

area. Afterward, the system converts the input to a database query

and executes it on the database. The result is returned to the user

within the output area.

In order to verify the effectiveness of our interface, we conducted

a human evaluation. It revealed that participants, both with and

without prior knowledge in the domain, can research specific graph

information using the interface.

Our main contributions are threefold:

• We introduce a visual query builder that eliminates the need

to write complicated database queries using traditional query

languages, enabling quick and easy insights for users with

different backgrounds;

• We provide a three-dimensional visual representation of the

queried graph data in an interactive canvas, giving the user

an intuitive understanding of the graph data and enabling a

quick understanding of its structure;

• We conducted a user study showing that users with vary-

ing prior technical knowledge can retrieve specific graph

information using the interface. Through the evaluation,

2
https://neo4j.com

3
https://arangodb.com

we identify enhancements to improve effectiveness of the

interface for users.

2 RELATEDWORK
In addressing the challenge faced by users unfamiliar with graph

databases, several works explore methods to bridge the gap between

a researcher’s intent and the execution of a graph query, which

includes visual programming tools for creating textual queries

through visual interfaces and sequence-to-sequence translation

for translating natural language questions into database queries.

Visual Programming
Visual Programming (VP) enables users to create programs through

graphical elements rather than textual programming code, which

reduces the barrier to entry for end users who are not trained soft-

ware professionals [16]. Kuhail et al. further describe and classify

VP-based tools into four categories: Form-based tools allow the

placement of graphical components onto a form to construct a

functional user interface [15, 24]. Diagram-based tools let the user

create diagrams by piecing different visual components together

where data flows and algorithms [25] are created efficiently. Our

proposed Graph Detective belongs to this category. Existing related

tools often have other limitations. Some are restricted to tabular

data [5] or numerical data [13]. Others are closed-source [9] or lack

the ability to define visual graph queries, focusing solely on explo-

ration [4]. Our tool distinguishes itself by serving as a property

graph database query visualization tool, emphasizing the unique

capacity to visually define complex graph queries in ArangoDB.

While inspired by existing systems, our focus addresses the specific

need for interactive query formulation in property graph databases.

Block-based tools construct larger structures or workflows by

connecting pre-defined visual blocks that seamlessly fit together,

much like assembling a jigsaw puzzle [8, 23]. Icon-based tools

construct a program by connecting data flow icons, where each

icon is a service or action [12].

Neural Query Generation
In addition to constructing queries visually, alternative methods

involve querying databases based on natural language, allowing

users to articulate their information needs more intuitively. Such

approaches often adopt neural sequence-to-sequence learning [2,

28] and Large Language Models (LLMs) such as ChatGPT
4
to

directly generate a query. However, due to their black-box nature

and hallucination issues [29], LLMs still struggle when addressing

ambiguous or contextually complex queries [17]. They can not

assure the generation of syntactically valid queries, arguably a very

important requirement to ensure failure-free execution [18].

3 SYSTEM OVERVIEW
Graph Detective has three distinct components: A canvas area to

model visual queries (Figure 2, A), an ontology of the graph data-

base that the interface is connected to (Figure 3) and an interactive

graph explorer for visualizing query results (Figure 4). This section

4
https://openai.com/chatgpt

https://neo4j.com
https://arangodb.com
https://openai.com/chatgpt


Graph Detective: A User Interface for Intuitive Graph Exploration Through VisualizedQueries DocEng ’24, August 20–23, 2024, San Jose, CA, USA

Figure 2: Main Component: Canvas area where a user designs visual database queries.

Figure 3: Ontology Graph: An interactive 3D visualization
of the metagraph of the graph database that the interface is
connected to.

Figure 4: Main Component: Canvas area where a user designs
visual database queries.

describes each component (Section 3.1, 3.2 and 3.3) in more de-

tail. However, first, we introduce the components of an ArangoDB

graph:

Vertex. In ArangoDB, a vertex is an entity stored as a record,

called document with several properties. A graph database can

have several entity types, such as PERSON with properties (e.g.,

name, age) or ORGANIZATION (e.g., name, establishment data).

A vertex collection contains all the records of the same entity type

(e.g., PERSON).

Edge. Each edge in a graph represents a relation among two

vertices (e.g., PERSON P works at ORGANIZATION O), which is

also stored as a record with properties (e.g., the date of joining the

organization), where these records are stored in containers called

edge collections.
Graph.AnArangoDB graph is the network of all vertex and edge

records. A graph database query aims to filter a graph by selecting

certain vertex/edge types and setting conditions on vertex/edge

properties to answer a specific question.

3.1 Canvas Area for Query Modeling
This component empowers users to create a graphical structure

of vertex and edge collections (referred to as nodes and edges) on

a two-dimensional canvas (Figure 2, A) - it visually represents a

database query to be executed. Users can add nodes to the visual

database query from an adjacent list of available entity types (Figure

2, B). Once a user drops a vertex onto the canvas, they can access

three functionalities for it:

(1) Linking Vertex Types A user can drag and drop several

nodes and then link them via edges (Figure 2, C). If the linkage
does not exist in the graph schema, a warning is displayed

(Figure 2, D), indicating an invalid edge. The query is not

executable with the presence of invalid edges, as it would

result in a semantically invalid query.

(2) Document Viewer To understand the individual documents

belonging to a vertex or edge collection, a user can scan each

node type individually in an ad-hoc fashion by clicking on

the corresponding icon in the node (Figure 2, E). This lists
all documents of that specific collection in a table, allowing

content investigation and properties of that collection.

(3) Graph Filter To filter for specific documents, users can

apply conditions to node properties (Figure 2, F). The filter-
ing supports various property data types such as boolean,

number, string and date. When assigning multiple filter con-

ditions for the same node object, all conditions must be met

for a document to be returned, creating the effect of an "AND"

operator. In order to create the effect of an "OR" operator

instead, the vertex has to be duplicated on the canvas. An

example for this is described in Section 4.

After finalizing the visual database query, users can initiate the

graph retrieval (Figure 2, G). Subsequently, the visual database query
is mapped to a textual query (more details in Section 3.4), which is

then executed to retrieve a sub-graph from the database.



DocEng ’24, August 20–23, 2024, San Jose, CA, USA Opitz et al.

3.2 Ontology Graph
The ontology graph visually represents the underlying graph schema,

a metagraph showcasing all entity types and their interconnections.

This component facilitates a comprehensive understanding of the

data model, empowering users to explore the connectivity of nodes

through interactive actions like dragging, rotating, and zooming.

This functionality is pivotal in helping users discern the types of

queries they can model.

3.3 Graph Result Explorer
The graph result explorer visualizes the graph result of the user-

defined visual query in three dimensions, offering interactive fea-

tures such as dragging, zooming, and panning. It includes pre-

defined view modes for different arrangements of nodes, enhancing

the overall user experience. Users can explore properties of vertices

and edges by clicking on and hovering over them, and the view

enables the iterative expansion of neighbors for individual nodes.

Also, it facilitates an option to export the whole graph or selected

parts of it.

3.4 Implementation Design
Web-Interface
The front-end of Graph Detective is a web-application that runs on

React v18
5
. The Canvas Area for Query Modeling is an interactive

canvas built with the open-source library React Flow6
. In React

Flow, diagrams can be built using nodes and edges that are stored

as JSON objects allowing for an efficient handling of the diagrams

in both the front-end and back-end. As for the Ontology Graph and

Graph Result Explorer, react-force-graph7 is being used. It renders
nodes and edges in an interactive 3D representation.

The back-end is built using the Python web application frame-

work Flask
8
. It exposes various endpoints with which the front-end

communicates via REST API calls. All functionality regarding the

conversion of visual queries to ArangoDB AQL queries is imple-

mented in the back-end.

The queries are generated iteratively by combining predefined

sub-query templates. Typically, a final query first retrieves a set of

source documents. Each one then initiates a separate graph traversal

process to find full source-to-sink paths. We outline this process

in more detail using the example visual query in Figure 5, which

corresponds to the generated AQL query in Listing 1:

(1) Collect all source documents from the database. Source doc-
uments are those documents which - based on the visual

query - do not have any incoming edges. In the example,

these consist of all documents of type "Person" (lines 1-4).

(2) Compose an AQL graph traversal statement (lines 6 to 31).

This statement contains a single FILTER statement (line 13)

with multiple conditions. Any set of conditions separated by

an "OR" operator (lines 14 to 22 "OR" lines 22 to 31) filters

for a single, complete source-to-sink path (here: [Person→
Institution] and [Person → Project]). Since graph tra-

versals can only ever start traversing from a single document,

5
https://react.dev/blog/2022/03/29/react-v18

6
https://reactflow.dev/

7
https://github.com/vasturiano/react-force-graph

8
https://flask.palletsprojects.com/en/3.0.x/

we use a loop to repeat the traversal for each of the source

documents (line 5).

(3) Return all paths (line 32). These are the ones which are ren-

dered in the Graph Result Explorer (Section 3.3) eventually.

Note that multiple distinct paths might share common doc-

uments. To display a single, coherent graph, we merge any

document nodes that appear in multiple paths.

Figure 5: Example visual query from the user interface. The
corresponding AQL query can be found in Listing 1.

1 LET source_nodes = FLATTEN(

2 FOR p IN Person

3 RETURN p

4 )

5 FOR source_node IN source_nodes

6 FOR v, e, p IN 0..1 ANY source_node

7 OPTIONS {

8 vertexCollections:

9 ["Person", "Institution"],

10 edgeCollections:

11 ["BelongsTo"]

12 }

13 FILTER (

14 (

15 (IS_SAME_COLLECTION(

16 p.vertices [0], Person)

17 )

18 AND

19 (IS_SAME_COLLECTION(

20 p.vertices [1], Institution)

21 )

22 ) OR (

23 (IS_SAME_COLLECTION(

24 p.vertices [0], Person)

25 )

26 AND

27 (IS_SAME_COLLECTION(

28 p.vertices [1], Project)

29 )

30 )

31 )

32 RETURN p

Listing 1: Generated AQL Query corresponding to Figure 5.

https://react.dev/blog/2022/03/29/react-v18
https://reactflow.dev/
https://github.com/vasturiano/react-force-graph
https://flask.palletsprojects.com/en/3.0.x/


Graph Detective: A User Interface for Intuitive Graph Exploration Through VisualizedQueries DocEng ’24, August 20–23, 2024, San Jose, CA, USA

4 USE CASE DEMONSTRATIONS
Any typical use case for property graphs (e.g., 360° view on enter-

prise data, which is often available in the form of huge document

collections) benefits from the intuitive visual form of querying

and displaying results that Graph Detective offers. As opposed to

relational databases, graph databases are ideal for queries involv-

ing multi-hop relationships. If such queries were to be formulated

on relational schema, the necessary use of table joins can quickly

build up to a both complex and complicated query
9 Graph Detec-

tive can be used for both simple ad-hoc queries, as well as more

sophisticated, multi-hop queries.

Our use cases deal with the analysis of discourses represented

in document collections around the topic of Climate Change in

science and society. We first collect documents covering several

domains from four different data sources: Scientific Abstracts from

OpenAlex [20] (∼ 367K articles),Wikipedia Page revisions under
the Climate Change category10 (∼ 1.2M revisions), Greenpeace
articles curated by [3] (∼ 700 articles), and Climate Analytics
articles curated by [26] (∼ 500 articles). These different sources

cover broad domains including, respectively, science, community-

driven content, specialized web and news articles
11
.

The combined and processed graph consists of the texts of

these documents, their metadata, and - most importantly - further

language-related annotations like named entities, concepts, and

emotions, as these can be used to reveal hidden semantic connec-

tions between documents. For creating this graph and annotations,

we used the framework Corpus Annotation Graph (CAG) [10].

Keyword co-occurrence
The identification of common keywords across different articles

mentioning a phrase like "wind energy" is of great interest. Model-

ing the visual query leads to finding the paths from respective Text
nodes to their Key Terms (Figure 6, Query). After querying, the

visual presentation shows commonly used key terms standing out

(Figure 6, Graph). The most prominent terms and phrases are solar
energy, renewable energy and electricity, while less used ones are

tidal power, indoor air, and depletion. These insights allow to draw

various conclusions, such as identifying which articles discuss the

integration of which renewable energy source. In general, identi-

fying such keywords allows to estimate prevalent topics, trends,

and terminology used in climate change literature. Argubly, this

use case could been handled by a relational database. Yet, Graph
Detective is a practical choice for simple ad-hoc queries like this

one.

Emotional Tone in News Articles
Next, we investigate the emotional tone conveyed by popular news

sources around the topics of environment and pollution. It is sensible

9
https://aws.amazon.com/compare/the-difference-between-graph-and-relational-

database/?nc1=h_ls.

10
https://en.wikipedia.org

11
News articles were scraped from the following 14 sites: https://www.eurekalert.org/,

https://arxiv.org/, https://www.nature.com/nature.rss, https://elib.dlr.de/, https:

//cdn.technologyreview.com/stories.rss, http://feeds.feedburner.com/carbonbrief,

https://ec.europa.eu/commission/presscorner, https://pr.euractiv.com/pr/rss/all,

https://techcrunch.com/feed/, https://www.ted.com/talks, https://engrxiv.org,

https://www.die-gdi.de/rss2.xml, https://www.economist.com/science-and-

technology/rss.xml, https://pubmed.ncbi.nlm.nih.gov/trending

Figure 6: Query result for identifying common key terms in
articles related to wind energy. Green: articles; purple: key
term.

Figure 7: Query result for News Alerts by EurekAlert! Science
News. Brown: News Source; Red: News Alert.

to break this process into separate subsequent queries. First, we

retrieve the articles (News Alerts) that have been published by differ-
ent News Sources. We filter only those articles whose title contains

https://aws.amazon.com/compare/the-difference-between-graph-and-relational-database/?nc1=h_ls.
https://aws.amazon.com/compare/the-difference-between-graph-and-relational-database/?nc1=h_ls.
https://en.wikipedia.org
https://www.eurekalert.org/
https://arxiv.org/
https://www.nature.com/nature.rss
https://elib.dlr.de/
https://cdn.technologyreview.com/stories.rss
https://cdn.technologyreview.com/stories.rss
http://feeds.feedburner.com/carbonbrief
https://ec.europa.eu/commission/presscorner
https://pr.euractiv.com/pr/rss/all
https://techcrunch.com/feed/
https://www.ted.com/talks
https://engrxiv.org
https://www.die-gdi.de/rss2.xml
https://www.economist.com/science-and-technology/rss.xml
https://www.economist.com/science-and-technology/rss.xml
https://pubmed.ncbi.nlm.nih.gov/trending


DocEng ’24, August 20–23, 2024, San Jose, CA, USA Opitz et al.

Figure 8: Emotions for articles from EurekAlert! Science
News. Brown: News Source; Red: News Article; Green: Article
Text; Blue: Emotion.

one or both of the terms pollution or environment. This scenario
requires the modeling of an "OR" operator which is constructed

by placing two distinct News Alert nodes on the canvas - one

that filters for the term pollution and the other for environment
(Figure 7, Query). After querying, solely from a visual perspective it

already becomes obvious which News Source (here: EurekAlert!
Science News) has the largest impact because of producing the

largest number of news alerts (Figure 7, Graph).

Second, we filter articles published by EurekAlert! Science
News and additionally display their corresponding Emotion anno-
tation (Figure 8). After inspecting the emotions visually, it appears

that ’neutral’ and ’disgust’ are prominent, whereas ’anger’ and

’sadness’ seem less present in those articles.

Based on our graph model, this query requires four distinct

node types in a three-hop relationship, a typical scenario for graph

databases.

5 EVALUATION
We conducted a user study to evaluate the effectiveness of GraphDe-

tective. The main objective was to assess whether users unfamiliar

with graphs and graph databases are able to access the example

database using the interface.

5.1 Methodology
Participants
We selected eleven participants working in the field of Computer

Science. Users responded with the following distribution on a 5-

point Likert scale to questions addressing their previous knowledge:

"How frequently do you work with graph data?":
2x Never, 5x Rarely, 1x Occasionally, and 3x Frequently.

"How frequent do you design queries for graph databases?":
8x Never, 3x Rarely.

Study Design and Procedure
After assessing their baseline knowledge, participants received a

standardized description of the web interface and the underlying

graph database to ensure an equal understanding. Content-related

questions were not answered during the study and participants

were not given any feedback on their results before they finished

completing all three tasks. All participants were previously unfa-

miliar with the interface as well as the database that it is connected

to.

Each participant completed three sequential tasks using the web

interface. Each task asks the participant to find specific information,

such as identifying articles on a particular topic or listing authors

within a specific field or affiliation. Tasks increased in difficulty

based on factors such as the number of nodes, edges and filters

required to complete the task successfully. We split participants into

two groups with a different set of questions to increase diversity.

After each task, participants provided feedback via question-

naires covering interface intuitiveness, solution confidence, the

use and intention of certain functionalities and any encountered

difficulties. Task completion time was also recorded. Correctness

of solutions was evaluated based on whether the query result con-

tained the requested information and focuses on only the relevant

data elements without excessive output.

5.2 Results
Task fulfilment
The core benefit of GraphDetective is that users can avoid writing

textual database queries (here: Arango AQL queries) manually and

instead use visual means. Indeed, as shown in Figure 9a, most par-

ticipants were able to successfully solve the tasks in this way, which

would not have been the case without GraphDetective. Notably,

the success rate for the last, most complex task, was clearly higher

than for the first two tasks. A likely reason is that the participants

gained familiarity with the interface while progressing through the

earlier, easier tasks. This is corroborated by the observation, that

the median time spent on the first task was 11 minutes compared

to 6 minutes for the last task (Figure 9b).

Qualitative feedback
While the user study showed the general usefulness of GraphDetec-

tive, the detailed qualitative feedback of the users provided more

information of how users apply the tool and what they are missing.

Throughout the tasks, the participants indicated a subtle increase in

intuitiveness of the interface but also a slight decrease in confidence

with their results.

All participants made frequent use of both the Graph Ontology

(Figure 3) and Document Viewer (Figure 2, E) and stated that it

helped them complete the task in most of the cases. The Ontology



Graph Detective: A User Interface for Intuitive Graph Exploration Through VisualizedQueries DocEng ’24, August 20–23, 2024, San Jose, CA, USA

(a) Number of correct vs. incorrect solutions for each task.

(b) Time taken (minutes) to complete each task.

Figure 9: Evaluation Results

was mainly used for understanding the relationships between enti-

ties. The Document View was mainly used to understand the data

format of specific nodes and identify specific attributes and values

for subsequent filtering.

There appeared to be a frequent misconception about the Docu-

ment Viewer (Figure 2, E) function. Many participants were looking

for intermediate query results in the table of the Document Viewer

and some were expecting the final result to show up in this table.

Furthermore, the users expressed some confusion about the cor-

rect use of the ontology graph. Also, a majority of users stated that

the distinction between AND and OR operators for multiple node

filters was unclear to them.

Notably, we encountered unexpected circumstances where users

attempted to apply relational database concepts to the logic of the

graph database. Some of the responses revealed that users were

sometimes looking for common node properties in connected nodes

in an attempt to create a foreign key, as it is typically the case for

relational databases. This seems to be a fundamental misunder-

standing by some participants, as the underlying logic is based

on graphs rather than relational databases. Yet, it is an additional

explanation for lacking confidence and confusions about the proper

usage of the Ontology (Figure 3).

Implications for the future interface design
By far the biggest confusion originated from the Document Viewer

(Figure 2, E) function. This tabular view was originally designed

for browsing through documents of individual nodes. However, the

majority of users assumed that this view would either display final

query results, intermediate query results, or refresh automatically

after applying a conditional filter to a node.

While it is not intended to show final query results in this par-

ticular view, we realize that the view can be made more interactive.

We think that a feasible solution includes options to add and delete

filters through this tabular view and automatically update its con-

tent to match the selected node filters. Ideally, the two tabs "Node

Analyzer" and "Filters" will be combined into a single tab menu,

which further emphasizes their functional similarities. Showing

intermediate query results updating live while the user designs the

visual query would be very useful for the user but is challenging

to implement, as it would involve constant execution of the query.

Especially for large graphs, this will cause extended delays and

computational overhead.

Furthermore, the current method of combining multiple filters

with either an "OR" or an "AND" operator lacks intuitiveness. In

the present version, simply adding multiple filters to the same node

results in an "AND" operator, meaning that all conditions must

be met for a document to be returned. To create the effect of an

"OR" operator, the node must be duplicated on the canvas instead.

In a future version, this functionality should be implemented in

a single view, reducing not only confusion but also unnecessary

node objects that potentially clutter the canvas area.

Finally, it can be argued that the pool of evaluators might not

be representative of the potential users who would most benefit

from this tool. Our user study comprised of evaluators working in

the field of Computer Science yet unfamiliar with graph database

concepts. Graph Detective has the potential of being useful also to

users without such technical background, but we found that its

intuitiveness should be further increased, for example by providing

an interactive walk-through with example queries.

6 FUTUREWORK
Several lines of future work could add major benefits to Graph
Detective.

Automated Query Support
Currently, the interface puts the user in charge of building the

complete query. They fully decide the nodes, properties and edges to

model on the canvaswithout significant external support. Therefore,

automated exploitation of the graph schema during query design

can decrease modeling time and increase the accuracy of the user’s

query. This can be accomplished by adding features such as node

and edge auto-completion.



DocEng ’24, August 20–23, 2024, San Jose, CA, USA Opitz et al.

Graph Projections
When a user executes a query, it returns the raw resulting graph.

However, there are cases where additional nodes need to be queried

to retrieve the desired output. In future work, we plan to address this

by allowing users to hide specific nodes in the result. For example,

in Figure 8, a user might only want to see the Emotions linked

to articles by specific News Sources. Due to the graph schema,

it is currently necessary to query intermediate nodes like News
Alert and Text, but there is no option to hide these nodes in the

visualization.

Language Model Guided Query Design
With advancements in generative Artificial Intelligence, query mod-

eling can be performed by Tool-Augmented Language Models [19,

21, 30]; Language Models that have the ability to manipulate the

users query based on their natural language input. This would

greatly reduce the extent to which the user is required to under-

stand the database model.

7 CONCLUSION
The adoption of graph databases across diverse domains has high-

lighted their efficiency in storing graph data. However, querying

such graphs, particularly for those not well familiar with database

concepts, remains a significant challenge.

To address this issue, we presented Graph Detective, an inter-

face that provides visual means to query ArangoDB databases and

allows a 3D interaction with the graph database. Our interface em-

powers users to create visual database queries, effectively querying

ArangoDB without needing expertise in database query writing.

Also, our interface allows users to export graph results and thus

link them to external tools to enhance analytical capabilities. We

verified the usefulness of our concept and application through a

user study and revealed that even individuals inexperienced with

graph databases could successfully solve the tasks of the study.

8 ACKNOWLEDGEMENTS
This project is funded by the German Federal Ministry of Education

(BMBF) under the InsightsNet project, grant no. 01UG2130A.

REFERENCES
[1] Renzo Angles and Claudio Gutierrez. 2008. Survey of graph database models.

ACM Computing Surveys (CSUR), 40, 1, 1–39.
[2] Artur Baranowski and Nico Hochgeschwender. 2021. Grammar-constrained

neural semantic parsing with LR parsers. In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021. Chengqing Zong, Fei Xia, Wenjie

Li, and Roberto Navigli, editors. Association for Computational Linguistics,

Online, (Aug. 2021), 1275–1279. doi: 10.18653/v1/2021.findings-acl.108.

[3] Sabine Bartsch, Changxu Duan, Sherry Tan, Elena Volkanovska, and Wolfgang

Stille. 2023. The insightsnet climate change corpus (iccc).

[4] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. 2009. Gephi: an

open source software for exploring and manipulating networks. (2009). http:

//www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154.

[5] Aleksandar Bobic, Jean-Marie Le Goff, and Christian Gütl. 2023. Exploring

tabular data through networks. In Advances in Information Retrieval. Jaap
Kamps, Lorraine Goeuriot, Fabio Crestani, Maria Maistro, Hideo Joho, Brian

Davis, Cathal Gurrin, Udo Kruschwitz, and Annalina Caputo, editors. Springer

Nature Switzerland, Cham, 195–200. isbn: 978-3-031-28241-6.

[6] 2018. Introduction. Querying Graphs. Springer International Publishing, Cham,

1–2. isbn: 978-3-031-01864-0. doi: 10.1007/978-3-031-01864-0_1.

[7] Hejie Cui et al. 2023. A survey on knowledge graphs for healthcare: resources,

applications, and promises. (2023). arXiv: 2306.04802 [cs.AI].

[8] Jose Danado and Fabio Paternò. 2014. Puzzle: a mobile application development

environment using a jigsaw metaphor. J. Vis. Lang. Comput., 25, 4, (Aug. 2014),
297–315. doi: 10.1016/j.jvlc.2014.03.005.

[9] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor Lee. 2019. Tigergraph: a native

mpp graph database. arXiv preprint arXiv:1901.08248.
[10] Roxanne El Baff, Tobias Hecking, Andreas Hamm, Jasper W. Korte, and Sabine

Bartsch. 2023. Corpus annotation graph builder (CAG): an architectural frame-

work to create and annotate a multi-source graph. In Proceedings of the 17th
Conference of the European Chapter of the Association for Computational Linguis-
tics: System Demonstrations. Danilo Croce and Luca Soldaini, editors. Associa-

tion for Computational Linguistics, Dubrovnik, Croatia, (May 2023), 248–255.

doi: 10.18653/v1/2023.eacl-demo.28.

[11] Yanlin Feng, Xinyue Chen, Bill Yuchen Lin, Peifeng Wang, Jun Yan, and Xiang

Ren. 2020. Scalable multi-hop relational reasoning for knowledge-aware ques-

tion answering. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Bonnie Webber, Trevor Cohn, Yulan He,

and Yang Liu, editors. Association for Computational Linguistics, Online, (Nov.

2020), 1295–1309. doi: 10.18653/v1/2020.emnlp-main.99.

[12] Rita Francese, Michele Risi, and Genoveffa Tortora. 2016. Iconic languages:

towards end-user programming of mobile applications. Journal of Visual Lan-
guages & Computing, (Nov. 2016). doi: 10.1016/j.jvlc.2016.10.009.

[13] Tom Freeman, Sebastian Horsewell, Anirudh Patir, Josh Harling-Lee, Tim

Regan, Barbara Shih, James Prendergast, David Hume, and Tim Angus. 2022.

Graphia: a platform for the graph-based visualisation and analysis of high

dimensional data. PLOS Computational Biology, 18, (July 2022), e1010310. doi:

10.1371/journal.pcbi.1010310.

[14] Manas Gaur, Keyur Faldu, and Amit Sheth. 2021. Semantics of the black-box:

can knowledge graphs help make deep learning systems more interpretable

and explainable? IEEE Internet Computing, 25, 1, 51–59. doi: 10.1109/MIC.2020

.3031769.

[15] Björn A. Johnsson and Boris Magnusson. 2020. Towards end-user development

of graphical user interfaces for internet of things. Future Gener. Comput. Syst.,
107, C, (June 2020), 670–680. doi: 10.1016/j.future.2017.09.068.

[16] Mohammad Amin Kuhail, Shahbano Farooq, Rawad Hammad, and Mohammed

Bahja. 2021. Characterizing visual programming approaches for end-user devel-

opers: a systematic review. IEEE Access, 9, 14181–14202. doi: 10.1109/ACCESS.2
021.3051043.

[17] Yiheng Liu et al. 2023. Summary of chatgpt-related research and perspective

towards the future of large language models. Meta-Radiology, 1, 2, (Sept. 2023),
100017. doi: 10.1016/j.metrad.2023.100017.

[18] Dominik Opitz andNicoHochgeschwender. 2022. From zero to hero: generating

training data for question-to-cypher models. In 2022 IEEE/ACM 1st International
Workshop on Natural Language-Based Software Engineering (NLBSE), 17–20.
doi: 10.1145/3528588.3528655.

[19] Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm: tool augmented language

models. (2022). doi: 10.48550/arXiv.2205.12255.

[20] Jason Priem, Heather Piwowar, and Richard Orr. 2022. Openalex: a fully-open

index of scholarly works, authors, venues, institutions, and concepts. (2022).

arXiv: 2205.01833 [cs.DL].
[21] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli,

Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2023. Toolformer:

language models can teach themselves to use tools. (2023). doi: 10.48550/arXiv

.2302.04761.

[22] Phillip Schneider, Tim Schopf, Juraj Vladika, Mikhail Galkin, Elena Simperl,

and Florian Matthes. 2022. A decade of knowledge graphs in natural language

processing: a survey. In Proceedings of the 2nd Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics and the 12th Interna-
tional Joint Conference on Natural Language Processing (Volume 1: Long Papers).
Yulan He, Heng Ji, Sujian Li, Yang Liu, and Chua-Hui Chang, editors. As-

sociation for Computational Linguistics, Online only, (Nov. 2022), 601–614.

https://aclanthology.org/2022.aacl-main.46.

[23] [n. d.] Scratch - imagine, program, share. https://scratch.mit.edu/. Accessed:

2010-11-18. ().

[24] Salvatore Sorce, Alessio Malizia, Vito Gentile, Pingfei Jiang, Mark A. Ather-

ton, and David Harrison. 2019. Evaluation of a visual tool for early patent

infringement detection during design. In International Symposium on End-User
Development. https://api.semanticscholar.org/CorpusID:195785537.

[25] Srikanth G Tamilselvam, Naveen Panwar, Shreya Khare, Rahul Aralikatte,

Anush Sankaran, and Senthil Mani. 2019. A visual programming paradigm for

abstract deep learningmodel development. In Proceedings of the 10th Indian Con-
ference on Human-Computer Interaction (IndiaHCI ’19) Article 16. Association

for Computing Machinery, Hyderabad, India, 11 pages. isbn: 9781450377164.

doi: 10.1145/3364183.3364202.

[26] Elena Volkanovska, Sherry Tan, Changxu Duan, Paul Chowdhury Debajyoti,

and Sabine Bartsch. 2023. Presenting an annotation pipeline for fine-grained

linguistic analyses of multimodal corpora. In Proceedings of the 19th Conference
on Natural Language Processing (KONVENS 2023). KONVENS 2023 Organizers,
Ingolstadt, Germany, (Dec. 2023).

https://doi.org/10.18653/v1/2021.findings-acl.108
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
https://doi.org/10.1007/978-3-031-01864-0_1
https://arxiv.org/abs/2306.04802
https://doi.org/10.1016/j.jvlc.2014.03.005
https://doi.org/10.18653/v1/2023.eacl-demo.28
https://doi.org/10.18653/v1/2020.emnlp-main.99
https://doi.org/10.1016/j.jvlc.2016.10.009
https://doi.org/10.1371/journal.pcbi.1010310
https://doi.org/10.1109/MIC.2020.3031769
https://doi.org/10.1109/MIC.2020.3031769
https://doi.org/10.1016/j.future.2017.09.068
https://doi.org/10.1109/ACCESS.2021.3051043
https://doi.org/10.1109/ACCESS.2021.3051043
https://doi.org/10.1016/j.metrad.2023.100017
https://doi.org/10.1145/3528588.3528655
https://doi.org/10.48550/arXiv.2205.12255
https://arxiv.org/abs/2205.01833
https://doi.org/10.48550/arXiv.2302.04761
https://doi.org/10.48550/arXiv.2302.04761
https://aclanthology.org/2022.aacl-main.46
https://scratch.mit.edu/
https://api.semanticscholar.org/CorpusID:195785537
https://doi.org/10.1145/3364183.3364202


Graph Detective: A User Interface for Intuitive Graph Exploration Through VisualizedQueries DocEng ’24, August 20–23, 2024, San Jose, CA, USA

[27] ChengbinWang, XiaogangMa, Jianguo Chen, and JingwenChen. 2018. Informa-

tion extraction and knowledge graph construction from geoscience literature.

Computers & geosciences, 112, 112–120.
[28] Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng, and Vadim Sheinin. 2018.

Graph2seq: graph to sequence learning with attention-based neural networks.

CoRR, abs/1804.00823. http://arxiv.org/abs/1804.00823 arXiv: 1804.00823.

[29] Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haom-

ing Jiang, Bing Yin, and Xia Hu. 2023. Harnessing the power of llms in practice:

a survey on chatgpt and beyond. (2023). arXiv: 2304.13712 [cs.CL].

[30] Jiawei Zhang. 2023. Graph-toolformer: to empower llms with graph reasoning

ability via prompt augmented by chatgpt. (2023). doi: 10.48550/arXiv.2304.111

16.

[31] Ningyu Zhang, Shumin Deng, Zhanlin Sun, Guanying Wang, Xi Chen, Wei

Zhang, and Huajun Chen. 2019. Long-tail relation extraction via knowledge

graph embeddings and graph convolution networks. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
Jill Burstein, Christy Doran, and Thamar Solorio, editors. Association for Com-

putational Linguistics, Minneapolis, Minnesota, (June 2019), 3016–3025. doi:

10.18653/v1/N19-1306.

http://arxiv.org/abs/1804.00823
https://arxiv.org/abs/1804.00823
https://arxiv.org/abs/2304.13712
https://doi.org/10.48550/arXiv.2304.11116
https://doi.org/10.48550/arXiv.2304.11116
https://doi.org/10.18653/v1/N19-1306

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 Canvas Area for Query Modeling
	3.2 Ontology Graph
	3.3 Graph Result Explorer
	3.4 Implementation Design

	4 Use Case Demonstrations
	5 Evaluation
	5.1 Methodology
	5.2 Results

	6 Future Work
	7 Conclusion
	8 Acknowledgements

