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Evaluating Performance and Scalability of the
Sparse Linear Systems Solver Spliss

Michael Wagner, Jasmin Mohnke, Olaf Krzikalla, Arne Rempke

Abstract Solving linear equation systems is an integral part of implicit methods in
computational fluid dynamics (CFD). The sparse linear system solver Spliss aims to
provide a linear solver library that, on the one hand, is tailored to requirements of
CFD applications but, on the other hand, independent of the particular CFD solver.
Focusing on the specific task of solving linear systems allows for integrating more
advanced, but alsomore complex, hardware-specific optimizations, while at the same
time hiding this complexity from the CFD solver. Spliss enables the execution of the
computationally intensive linear solver on GPUs without the necessity of any code
adaption. This work evaluates performance and scalability of Spliss using CODA as
an example. CODA is the CFD software being developed as part of a collaboration
between the French Aerospace Lab ONERA, the German Aerospace Center (DLR),
Airbus, and their European research partners. CODA is jointly owned by ONERA,
DLR and Airbus. The evaluation includes an assessment of the scalability on an
HPC system based on the AMD Naples architecture and demonstrates the seamless
integration of GPUs on a cluster based on Nvidia V100 GPUs.

1 Introduction

For future aircraft design, Computational fluid dynamics (CFD) is a key technology
on the road to solving global challenges like climate change or mobility. CFD sim-
ulations are indispensable to reach European goals of drastic reductions in aviation
emissions such as a reduction of 75% of CO2 emissions, 90% of NOx emission
and 65% of perceived aircraft noise by the middle of the century while at the same
time increasing affordable and reliable connectivity within the European Union, its
neighbors and partners and ensuring the competitiveness of European industry [1].
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For this, newly developed aircraft have to become significantly lighter and more
aerodynamically efficient, in combination with the introduction of innovative flight
control and an intelligent mix of alternative propulsion system concepts.
Computational fluid dynamics simulations for aircraft aerodynamics are already

today imperative in the aircraft design process. They allow to reduce cost and time of
aircraft development by omitting unnecessary prototyping, wind tunnel experiments
and real flight tests and, thus, accelerate the introduction of progressive technology
and dynamic improvements. In particular, the progress towards the virtual product,
i.e., high-precision numerical representation of an aircraft and all its characteristics
and components, leads to faster development cycles; starting from product develop-
ment up to approval, production, maintenance and decommissioning [2].
Moreover, high-precision numerical simulations are inevitable for the assessment

of new aircraft designs to provide reliable insight into new aircraft technologies
and reach best overall aircraft performance through integrating aerodynamics, struc-
tural mechanics and systems design. Such simulations require vast computational
resources that are met partly by today’s high performance computing (HPC) systems.
This year marks the advent of the first true exascale HPC system, i.e. a system capa-
ble of calculating more than 1018 double precision operations per second, consisting
of over 8.7 million cores [3]. CFD simulations aiming to utilize these powerful sys-
tems need to be, first, highly parallel to take advantage of the increasing number of
compute cores and, second, support the usage of heterogeneous systems consisting
of new processor architectures and hardware accelerators such as GPUs.
The sparse linear systems solver Spliss [4] is designed to assist with this challenge

by offering the efficient solving of large linear equation systems that result from the
discretization of the Reynolds-averaged Navier-Stokes (RANS) equations in CFD
methods. Since Spliss focuses on the specific task of solving linear equation systems,
it integratesmore advanced, but alsomore complex, hardware-specific optimizations,
while at the same time hiding this complexity from the CFD solver. Spliss enables the
efficient and transparent execution of the computationally intensive linear solver on
new architectures and hardware accelerators such as GPUs. This way, the CFD solver
can leverage new architectures and hardware accelerators without the necessity of
any code adaptation in the CFD solver.
This work evaluates performance and scalability of Spliss using the CODA CFD

software as an example. CODA is the CFD software being developed as part of a col-
laboration between the French Aerospace Lab ONERA, the German Aerospace Cen-
ter (DLR), Airbus, and their European research partners. CODA is jointly owned by
ONERA, DLR and Airbus. It is one of the key next-generation engineering applica-
tions represented in the European Centre of Excellence for Engineering Applications
(EXCELLERAT) [5].
The contribution of this work is, first, an assessment of the performance and

scalability of Spliss with CODA on the largest available partition of the German
Aerospace Center’s CARA HPC production system based on the AMD Naples
architecture using the theNASAcommon researchmodel in a strong scaling scenario.
Second, a demonstration of the seamless integration of hardware accelerators such
as GPUs into CODA via Spliss on a cluster based on Nvidia V100 GPUs.
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The following sections provide background on the sparse linear systems solver
Spliss (Sect. 2) and the CFD software CODA (Sect. 3). Sect. 4 introduces the CARA
HPC system, the used test case and presents the results of the scalability assessment.
Similarly, Sect. 5 introduces the Nvidia V100 test cluster, the used test case and
presents first results of Spliss executing the linear solver of CODA on GPUs. Finally,
Sect. 6 summarizes the presented work and draws conclusions.

2 The Sparse Linear Systems Solver

The sparse linear systems solver Spliss is a library that enables a CFD software
like CODA to solve large distributed linear equation systems originating from the
discretization RANS equations. Such linear equation systems are sparse, since each
equation only relates a few of the millions of unknowns. The prescribed couplings
however have a structure that results in a block-structured sparse matrix for the linear
equation system to be solved.
Spliss allows to specify and solve such linear equations with sparse matrices of

dense blocks. A single dense matrix block typically corresponds to the couplings
between the different physical quantities within a physical element or on the facette
between two elements. For a classical finite volume discretization, the blocks have
a size of e.g. 7x7 for a two-equation turbulence model, and for higher order Dis-
continuous Galerkin approaches these dense blocks can become much larger. Spliss
supports both fixed block sizes for the whole matrix (same order approach) and
different block sizes within the same equation system (different order approach).

Fig. 1 Supported matrices in Spliss: sparse block-structure with constant (left) or variable (middle)
block sizes, different scalar types (right).

Another important feature of Spliss is that matrix entries can be of mixed scalar
data type. This is particularly important when solving harmonic balance or time-
spectral methods, where part of the matrix (typically the diagonal blocks) contain
complex numbers, while other parts remain real-valued, see Fig. 1. Also using
different precision scalar types is possible with this approach, which allows saving
memory and computational effort, e.g., when evaluating matrix vector products.
In order to solve the sparse linear equation system, Spliss includes a wide range

of iterative solvers and preconditioners. These solver components can be stacked
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together in a flexible way, allowing multiple layers of different solver types operating
on potentially different linear operators, see Fig. 2. This permits providing fast
preconditioners in the inner hot loopwhile utilizingmore exact higher-level operators
in the outer loops. Some solver components are specifically tailored for the demands
of CFD simulations, e.g., the LinesInversion for handling the high aspect-ratio cells
in the boundary layer of a mesh for flows with high Reynolds numbers [4].

Fig. 2 A possible solver chain in Spliss modeling the inner-outer GMRES method preconditioned
by a point-implicit multi-color Gauss-Seidel method.

Spliss is designed and implemented to efficiently leverage the computational
resources of contemporary and emerging HPC platforms. This includes techniques
such as one-sided communication, hybrid and heterogeneous parallelization. The
use of the C++ template mechanism shifts decisions such as the usage of a GPU and
the selection of an appropriate memory layout to the compile time. Thus, a shared
library object of Spliss compiled and built on a particular HPC cluster respects the
properties of that cluster. On the other hand, Spliss is designed in such a way, that it
does not expose these properties to the library interface.
By that means, it is sufficient to link against a GPU-enabled Spliss library in

order to benefit from available GPUs. An application is not even required to use the
GPU framework during its own compilation process thanks to an automatic explicit
template instantiation process. If multiple GPUs are available on a compute node,
Spliss distributes thoseGPUs to the processes running on the node. In addition, Spliss
supports CUDA-aware MPI implementations [6]. Those implementations combine
MPI and CUDA, so that GPU buffers can be directly passed to MPI calls; omitting
a detour via the host buffer.

3 The CODA CFD Software

The development of computational fluid dynamics software has a long history at the
German Aerospace Center (DLR). Currently, the TAU CFD package [7] developed
and maintained by DLR is in production in the European aircraft industry, research
organizations and academia since more than 20 years. For instance, TAU played a
vital role in the Airbus A380 and A350 wing design. As state-of-the-art for its time,
TAU implements a classical MPI parallelization to simulate steady and unsteady
external aerodynamic flows using a second order finite-volumes discretization.



Evaluating Performance and Scalability of the Sparse Linear Systems Solver Spliss 5

To design a modern concept for HPC from scratch, in 2012 DLR initiated the
development of a new, flexible, unstructured CFD solver called Flucs [8]. Thereby,
the focus was set on algorithmic efficiency using strong implicit solvers, higher-order
spatial discretization via the Discontinuous Galerkin method featuring hp-adaptation
in addition to finite volumeswithmaximum code share, and seamless integration into
Python-basedmulti-disciplinary process chains viaFlowSimulator [9, 10].While the
development of Flucs had been started at DLR, it since has become part of a larger
cooperation that is driven by Airbus, the French aerospace lab ONERA, and DLR.
The joint development of the CFD software based on Flucs was named CODA (CFD
for ONERA, DLR and Airbus) to honor the new collaboration and the involvement
of all three partners pursuing the joint effort and co-development.
The CODACFD software implements classical domain decomposition to support

distributed-memory parallelism viaMPI and the GASPI [11] implementation GPI-2.
This Partitioned Global Address Space (PGAS) library features efficient one-sided
communication to reduce network traffic and latency. Furthermore, CODA improves
scalability by allowing the overlap of halo-data communication with computation to
hide network latency. In addition to classical domain decomposition, CODA employs
a hybrid two-level parallelization to utilize shared-memory parallelism for multi- and
many-core architectures [12]. CODA implements sub-domain decomposition, where
each domain is further partitioned into sub-domains, each of which being processed
by a dedicated software thread that is mapped one-to-one to a hardware thread to
maximize data locality. The hybrid approach allows utilizing all parallelism layers
and provide a flexible adaption to different hardware architectures [13, 14].

4 Evaluation on an AMD Naples HPC System

This section provides an assessment of the scalability of Spliss with CODA on the
largest available partition of the German Aerospace Center’s CARA HPC produc-
tion system based on the AMD Naples architecture using the the NASA common
research model in a strong scaling scenario. The Computer for Advanced Research
in Aerospace (CARA) is one of the German Aerospace Center’s main HPC systems
providing 1.7 TFlop/s peak performance. The system offers 2280 compute nodes,
whereas each compute node consists of two AMD EPYC 7601 (32 cores at 2.2 GHz)
with four dies of eight cores each. In total, the system offers 145,920 compute cores.
The AMD Naples architecture within this system includes eight NUMA (non-

uniformmemory access) domains and threeNUMAdistances: first, to thememory of
the seven other cores on the same die, second, to the memory on the three other dies
on the same chiplet (socket) and, third, to the memory located on the other chiplet. In
addition, only four of the eight cores on each die share a last level cache (L3 cache),
which presents an additional difference in memory access latency depending on the
locality of the data; whether it is in the shared L3 cache of the according core or in
the adjoining L3 cache on the same die.
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4.1 The Test Case

The test case for the scalability evaluation is based on the NASA Common Research
Model (CRM) from the fifthAIAACFDDrag PredictionWorkshop [15]. It simulates
the external airflow at subsonic speed and computes typical characteristics like air
velocity and direction, pressure and turbulence via a one-equation turbulence model.
Fig. 3 visualizes the computed air pressure and shows aircraft configuration and
mesh on the left and the airflow around the wing and fuselage on the right. The
CRM test case is well studied and provides experimental data as well as numerical
solutions by other CFD applications for comparison.

Fig. 3 Visualization of the test case simulation: aircraft configuration with mesh (left) and airflow
around wing and fuselage (right); both with air pressure as color gradient.

For the CRM test case, CODA solves the Reynolds-averaged Navier-Stokes equa-
tions (RANS) with a Spalart-Allmaras one-equation turbulence model in its negative
form (SAneg). It uses a second-order finite-volume spatial discretization with an im-
plicit Euler time integration. For the linear problem, a Block-Jacobi solver with LU
decomposition is applied and solved via Spliss. For this case, the vast majority of the
iteration phase is spent in the linear solver, i.e. Spliss, thus, measuring the iteration
time of CODA provides a very close estimation of the performance and scalability
of Spliss within a real-world example. While results may be biased by CODA, the
measurements show the minimum performance and scalability of CODA together
with Spliss since performance degrading effects accumulate. In this sense, CODA
and Spliss may achieve better performance and scalability individually.
The test case operates with a small, unstructured mesh with 5.2 million points

and 10.2 million prisms that is obtained by splitting each hexahedron in the original
mesh into two prisms such that the geometry’s surface mesh is purely triangular.
This mesh is about one order of magnitude smaller than typical industrial cases and
was chosen to allow a strong-scaling analysis at relatively small core counts, i.e.,
neither the purely prismatic volumes nor the small number of cells allow for high
CFD accuracy in the boundary layer.
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4.2 Measurement Setup

For the scalability evaluation all software threads are bound to a hardware thread to
ensure thread affinity and three hybrid-parallel setups are evaluated to identify the
impact of the memory hierarchy:

• 16MPI processes per node with 4 OpenMP threads each. This way all four threads
are in the same NUMA domain and share the same L3 cache.

• 8MPI processes per node with 8 OpenMP threads each. This way all eight threads
are in the same NUMA domain but are split across two L3 caches.

• 4MPI processes per node with 16 OpenMP threads each. This way the 16 threads
are split across two NUMA domains.

In addition to the above setups using one hardware thread per core, the according
setupswith two-way simultaneousmulti-threading are recorded, too. For these setups
the number of OpenMP threads per MPI process is doubled, e.g. the version with 16
MPI processes and 4 OpenMP threads each is also measured with 16 MPI processes
and 8 OpenMP threads each, whereas the 8 OpenMP threads run on the same four
cores as the 4 OpenMP threads.
All measurements were executed only a single time due to the large core counts,

according costs and wait times in the queue. This must be kept in mind when dis-
cussing the significance of individual data points. In general, the recorded runtimes
are consistent in themselves; nonetheless, data points should be considered as gen-
eral trend rather than exact values. Parallel runtimes, in particular, can be affected by
the specific scheduling to nodes and the overall load on the system, among others.
In that sense, the recorded runtimes reflect typical behavior that users can expect in
production mode; not isolated benchmark runs in a close-to-perfect environment.

4.3 Results

Fig. 4 shows the general scaling behavior for the different setups of MPI processes to
OpenMP threads without and with enabled two-way simultaneous multi-threading
for 1 to 512 nodes, i.e. 64 to 32.768 cores. On the CARA system 512 nodes was the
largest partition that could be reasonably used during normal operation.
Without simultaneous multi-threading CODA with Spliss achieves about 90%

parallel efficiency at 4096 cores and 59% parallel efficiency at 32,768 cores within
the iterative phase. This represents very good strong-scaling behavior for such a
small mesh, where at 32,768 cores on average only 312 elements are assigned to
each software thread. As expected for the AMD Naples architecture, the best setup
is with four threads per MPI process, so that all four threads are executed on the four
cores that share the same last-level cache. The second-best setup is with eight threads
perMPI process, so that all eight threads are executedwithin a singleNUMAdomain.
The execution of threads across NUMA domains (16 threads per MPI process) leads
to further reduced performance.
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Fig. 4 Speedup for 1 to 512 nodes (64 to 32.768 cores) for different MPI rank to OpenMP thread
ratios: without (left) and with simultaneous multi-threading (right).

With enabled simultaneous multi-threading CODA with Spliss achieves about
88% parallel efficiency at 4096 cores and 47% parallel efficiency at 32,768 cores in
the iterative phase. Again, this represents very good strong-scaling behavior for such
a small mesh, where on average only 150 elements are assigned to each software
thread at 32,768 cores. Consequently, the scalability is slightly reduced since each
thread has only half the computational load. In that sense, computing a test case
with 10.2 million prisms across 65,536 threads sets an extreme case and highlights
the excellent scaling behavior of CODA even on very little computational load per
thread. In comparison, typical workloads used in production have at least one or two
orders of magnitude more elements per thread.
Although the setups with enabled simultaneous multi-threading show slightly

lower parallel efficiency at scale, they provide significantly better compute perfor-
mance. Comparing the individual simultaneous multi-threading setups with their
non-simultaneous multi-threading counterparts, the setups with enabled simultane-
ous multi-threading have a 15 – 20% reduced runtime, which might also be a factor
in the slightly reduced scalability.

5 Evaluation on an Nvidia V100 GPU System

This section highlights the benefits of using Spliss to incorporate accelerators, in this
case GPUs, for solving large, sparse linear equations systems while no changes need
to be implemented in the CFD software, in this case CODA. For this assessment, a
test case is run on an Nvidia V100 GPU system, which has compute nodes consisting
of two Intel Xeon 6230 CPUs with 20 cores each and four Nvidia Tesla V100 GPUs.
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5.1 The Test Case

The test case for the evaluation is based on the NASA 3D Onera M6 wing test case
in version 2308 [16]. It is widely used for research purposes and well-studied. Both
experimental data and numerical solutions are available for validation of results.
The test case solves the Reynolds-averaged Navier-Stokes equations (RANS) with

a Spalart-Allmaras one-equation turbulence model in its negative form (SAneg). A
Spliss Block Inversion preconditioned Block-Jacobi Solver is applied to solve the
linear system. The mesh used for the test case consists of about 8.65M volume ele-
ments which is large enough to achieve peak performance per single V100 GPUwith
the chosen linear solver components for the scale of multi-GPU results presented.

5.2 Measurement Setup

The evaluation compares a single- and multi-GPU setup with the Spliss linear solver
offloaded to GPUs on one and multiple compute nodes to a CPU-only setup on the
same system. To compare one GPU against one CPU only two of the four GPUs
per compute node are used. For the parallel setups on CPU, two MPI proecesses per
node, i.e one MPI processes per socket, with 20 OpenMP threads each are launched
and bound to a core. For the GPU accelerated execution the CPU setup is identical
and additionally each process offloads to one GPU. Switching from the CPU-only
setup to taking advantage of Spliss GPU acceleration merely requires linking to a
Spliss variant that is compiled for GPU, no changes on the CODA side are necessary.
Both the runtime for the entire time integration iteration phasewith a fixed number

of 100 iterations and solely the time spent in the linear solver are measured. The latter
includes any host-to-device or device-to-host memory transfers that are necessary
when offloading this section of computation to GPUs.

5.3 Results

Acceleration of the Spliss linear solver by offloading computations provides per-
formance gain with a single GPU compared to a single 20-core CPU on the test
system compute node. With the use of multiple GPUs both intra- and inter-node
MPI communication required for halo updates can prove to be a bottleneck when
being carried out via host memory despite all data is residing in the GPU memory
during the computation. In order for a gain seen with GPU acceleration to translate
to a multi-GPU case, CUDA-aware MPI with GPUDirect acceleration and, thus,
optimized transfers from host to device buffers and vice versa need to be taken
advantage of (currently work in progress). This gain can be observed both for the
intra-node case as depicted in Fig. 5 with two MPI processes as well as inter-node
communication with four MPI processes distributed on two compute nodes.
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Fig. 5 GPU speedup of the entire iteration phase (left) and solely the linear solver (right) with MPI
communication via host buffers (initial port) and using CUDA-aware MPI.

For the parallel configuration, the number of available GPUs predetermines the
number of used MPI processes that are used. Though this is generally the preferred
setup from a GPU performance perspective it is not a fixed constraint given by Spliss
and can be circumvented by using Nvidia MPS (Multi Process Service) [17], which
enables the efficient offloading of work from multiple processes to a single GPU.
Therefore, the seamless integration of GPU usage in application codes via Spliss
also extends to the parallel configuration setup.

6 Conclusion

This work presents an evaluation of performance and scalability of the sparse linear
systems solver Spliss with the CODA CFD software for aircraft aerodynamics.
The test case based on the NASA common research model achieves 90% parallel
efficiency at 4096 cores and 59%parallel efficiency at 32,768 cores in a strong scaling
scenario despite running on a very small mesh with very little computational load per
thread; an extreme case rarely approached in production simulations. Furthermore,
the assessment highlights that best hybrid-parallel performance is reached when
using only four threads per MPI process, so that these threads share the same last
level cache, which is specific to the memory layout of the AMD Naples architecture
and stands in contrast to other architectures. A second test case based on the 3D
ONERA M6 wing shows that Spliss allows leveraging GPUs without the necessity
of any code adaption in the CFD solver. By providing the seamless integration of
GPUs, Spliss accelerates the test case by a factor of 2.2 in a node-wise comparison.
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