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One of the critical aspects to consider in early design phases of complex systems is the
system architecture, as it has major influence on final performance of the product. System
Architecture Optimization (SAO) is a technique where the architecting process is formulated
as a numerical optimization problem, which allows more extensive and less biased design
space exploration. To evaluate the performance of architecture alternatives at the system-
level, Multidisciplinary Design Analysis and Optimization (MDAO) is seen as a key enabling
technology. Application of MDAO for architecture optimization is currently challenged by the
observation that different architectures require different MDAO problem formulations, for
example in discipline selection, data connections, and execution order. This work proposes a
set of capabilities that MDAO formulation platforms should provide in order to support such
dynamic MDAO workflow formulations. Special focus is placed to enable such capabilities in the
context of collaborative MDAO, a specialization of MDAO where emphasis is on collaborative
and cross-organizational definition, integration, and execution of MDAO workflows using
central data formats. The proposed capabilities are implemented in MDAx, an existing MDAO
workflow modeling tool developed for formulating collaborative MDAO workflows. The new
developments are demonstrated by an open-source launch vehicle architecture design problem,
showing that a dynamic MDAO workflow can be generated that modifies its execution behavior
automatically for each architecture to be evaluated.

Nomenclature

𝐴𝑒/𝐴𝑔 = Nozzle expansion ratio, 𝑁𝑠 = Number of stages
𝜖 = Cone angle, 𝑅𝑒 = Elliptical ratio
𝑙 = Stage length, 𝑆𝑡𝐹 = Fuel tank surface
𝐿𝑡_𝐷𝑡 = Length to diameter ratio, 𝑆𝑡𝑂 = Oxidizer tank surface
¤𝑚 = Mass flow, 𝑇 = Thrust
𝑀𝐹 = Fuel mass, 𝑉𝑠 = Stage volume
𝑀𝑂 = Oxidizer mass, 𝑉𝑡𝐹 = Fuel tank volume
𝑀𝑝 = Propellant mass, 𝑉𝑡𝑂 = Oxidizer tank volume
𝑚𝑝𝑎𝑦 = Payload mass

I. Introduction

When designing complex systems, an important aspect to consider is the system architecture: a description of the
different components that the system consists of and how they collaborate to fulfill the system’s functions [1].

Choosing the right architecture for the problem at hand is important and significantly affects the final system
performance [2]. However, even for a low number of architectural decisions, a combinatorial explosion of alternatives
leads to a large design space of architecture candidates [3]. Traditionally due to time and effort constraints, only a small
number of architectures is considered and analyzed in detail before settling for a system architecture to be used for
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downstream detailed design phases. This may lead to bias and conservatism in selecting the system architecture [4],
especially for novel systems where no prior design experience exists [5].

A possible solution to address these problems is System Architecture Optimization (SAO): the application of
numerical optimization algorithms to automatically explore the architecture design space [6]. Combined with simulation-
based performance evaluation, this can lead to a reduction in design bias and a consideration of more novel architectures.
SAO requires the implementation of two interacting components: the architecture generator and the architecture evaluator.
The architecture generator uses optimization algorithms to generate architecture candidates from the architecture
design space, by mapping architectural decisions to design variables. The architecture evaluator provides quantitative
performance feedback to the architecture generator for a given architecture candidate. This feedback should be provided
without user interaction, so that the generator can automatically search the design space. System architecting is an
integrative discipline that holistically considers many different engineering disciplines and comes up with a compromise
between the different interests [7]. The architecture evaluator should reflect this, in that it considers the multidisciplinary
nature of the involved analyses from the start. Multidisciplinary Design Analysis and Optimization (MDAO) is a
promising technique for implementing such automatic computations, as it enables coupling all relevant engineering
disciplines for designing a system, and provides a system-level compromise and overview of system performance [8].

To formulate and execute MDAO problems for application in SAO, MDAO platforms have to deal with multiple
challenges, such as mixed-discrete coupling variables and support for optimization algorithms that can solve mixed-
discrete, multi-objective, hierarchical, black-box optimization problems [2]. Another less researched challenge is that
of supporting evaluation of all possible architecture alternatives in a given SAO problem. For example, selecting
different components in an architecture can change the design variables, disciplines, and data connection involved in an
MDAO formulation. If the number of architecture alternatives is not excessively high, separate MDAO problems can
be manually formulated for each architecture alternative. For problems with larger numbers of possible architectures,
however, this approach is not feasible. Instead, the MDAO problem needs to be readjusted automatically for each
analyzed architecture alternative, as also observed by Bruggeman et al. [9].

In large-scale MDAO campaigns, disciplines and experts might be organizationally and/or geographically distributed.
The resulting data interfacing and exchange issues are partially addressed by collaborative MDAO techniques [10].
Using a Central Data Schema (CDS) ensures that all disciplines "speak the same language" and enables implementation
and reuse of disciplines in collaborative MDAO workflows. An example of a CDS is CPACS [11], an open-source
XML-based format for exchanging aircraft design data which has been applied successfully in many projects across
disciplines and organizations. Setting up workflows based on a CDS is supported by workflow formulation platforms
that automatically detect data connections based on input-output definitions of disciplinary tools. One such tool is
MDAx, the MDAO Workflow Design Accelerator, developed within the DLR [12, 13].

This paper presents recent efforts to enable the use of collaborative MDAO techniques for SAO. First, the influences
that changing architecture alternatives have on the formulation of an MDAO workflow are investigated in Section II.
Section III presents mechanisms for supporting the influences in a collaborative MDAO platform, and the implementation
of these mechanisms in the MDAx tool. The implementation is demonstrated in Section IV with an open-source launch
vehicle architecture design problem. Section V concludes the paper.

II. Methodology
Addressing different system architectures requires modifications to the MDAO problem formulation and execution

which can be accommodated into four mainstream categories, termed architectural influences. A sample of MDAO
problems available in literature were chosen to identify the architectural influences. Each of these problems analyses a
given fixed system architecture which was later modified to evaluate and understand how the MDAO problem would be
affected by these architecture modifications.

This section will proceed with the introduction of the architectural influences followed by the use of the supersonic
business jet (SSBJ) problem [14] from literature, as an example to show the methodology involved in identifying these
architectural influences. Finally, the discovered architectural influences will be verified using more SAO problems
available in literature.

A. Architectural Influences
Bussemaker et. el. [15] laid down the ground work for identifying the different architectural influences that could

exist in a system architecture optimization problem and presented some mitigation strategies to address these influences
during the formulation process of the corresponding MDAO problem. Using it as a starting point, the aforementioned
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methodology was adopted to converge on a total of four different types of architectural influences:
1) Conditional variables: Each system is made of different components, and each component is defined by

different variables. As a consequence, the variables existing in the MDAO problem will change depending on
the architecture being analysed. The variables whose existence depends on an architectural decision are called
conditional variables.

2) Data connection: In some occasions, the connections between design disciplines might change because of an
architectural decision. This happens when there is a modification in the coupling of a certain variable leading to
a change in terms of which disciplines the variable is connected to. Therefore, in MDAO problems used for
system architecture optimization, rerouting of variables can happen, leading to dynamic connections between
disciplines.

3) Discipline repetition: It is common in MDAO that a discipline has to be repeated a fixed number of times.
However, in system architecture optimization, sometimes the discipline multiplicity depends on an architectural
decision, and therefore has to be readjusted automatically.

4) Discipline activation: As a consequence of an architectural decision, there are multiple cases where some of the
disciplines included in the MDAO problem are no longer required for that specific architecture. This is usually
the case when two or more technologies are available to perform a certain function.

The existence of conditional variables in the MDAO problem leads to the modification of inputs/outputs of the
different design disciplines, and therefore have to be readjusted for each system architecture automatically. In the SSBJ
problem, a possible architectural decision leading to this modification could be the inclusion of a winglet. If a winglet is
included in the architecture, new variables will appear in the MDAO problem, such as the winglet length or the cant
angle. To manage complex problems, it is also necessary to exchange more complex data structures, such as arrays,
between the different disciplines. MDAO platforms should also be capable of dealing with undefined parts of these
structures, for example variable length arrays.

A change in data connections is seen when an architectural decision leads to a change in how the disciplines
among which a variable is coupled. An example in the SSBJ problem would be the aircraft landing gear placement. A
change in the attachment location from wing to fuselage might influence the load cases used for sizing the wing and
fuselage structures. In this case, the connections existing between the different design disciplines could be modified as a
consequence of the architectural decision, as shown in Figure 1.

Fuselage geometryLanding Gear geometry Wing geometry

Landing Gear loads
1:

Landing Gear Loads

2:
Fuselage Structure

2:
Wing Structure

(a) Landing gear attached to the fuselage

Fuselage geometryLanding Gear geometry Wing geometry

Landing Gear loads
1:

Landing Gear Loads

2:
Fuselage Structure

2:
Wing Structure

(b) Landing gear attached to the wing

Fig. 1 Example of a data connection influence: if the landing gear is attached to the fuselage, the "Landing
Gear Loads" discipline will be connected to the "Fuselage Structure" discipline; if the landing gear is attached to
the wing, this connection is removed and replaced by a connection between the loads and the "Wing Structure"
discipline.

Discipline repetition usually happens when the number of instances of a component, in the system architecture,
is an architectural decision itself. For example, consider a modified propulsion discipline which takes as input the
properties of an engine. If each engine had different properties and the number of engines was an architectural decision,
the number of times the discipline would have to be repeated would vary depending on the selected number of engines.
This repetition will involve a variation of inputs/outputs for each discipline iteration. It also leads to the inclusion of new
connections in the MDAO problem.

Finally, the relevance of a discipline to a given architecture determines the discipline activation or deactivation
status. An example of discipline activation would be when an architectural decision exists on the choice of the fuselage
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material. Depending on the decision taken (e.g. metallic or composites) the discipline used for the structural analyses
might have to be exchanged (Figure 2). When multiple disciplines can be added or excluded, connections always change,
and even the coupling variables could end up being different.

Outputs

1:
Previous part of the workflow

2b:
SSBJ-Structures-Composite

Outputs

InputsInputs

2a:
SSBJ-Structures-Metallic

3:
Continuation of the workflow

Fig. 2 Example of discipline activation: if a metallic material is chosen, the metallic structures discipline is
activated and the necessary connections are made (dark blue path). In the case of composites, another discipline
is used to perform structural calculations and different connections are needed (yellow path).

B. Verification of Architectural Influences
In this section, two pre-existing system architecture problems from literature are analyzed to verify that the

architectural influences that have been identified, indeed affect the implementation of MDAO in the system architecting
process. First, [16] presents a benchmark problem based on the design of an aircraft jet engine. Different components
were included in the architecture (fan, gearbox,...). Each of these components is represented by a different discipline,
and are therefore an example of discipline activation. The number of instances of some of these components (such as
compressor or turbine stages) is also an architectural decision, leading to the discipline repetition influence. At each
compressor stage execution iteration there was an option to bleed cooling air to the turbine. This would be an example
of both, conditional variables and data connection, with the respective architectural decisions being whether to bleed
air or not and if yes, then to which turbine is this air being passed to.

Architectural influences can also be found in the example shown in [17], which aims to design an hybrid-electric
aircraft propulsion system using system architecture optimization. There is a part within the MDAO problem where the
propulsion system thrust is calculated using the mechanical power generated by the motor or the turboshaft, as an input
(among others). A simplified version of the same is shown in Figure 3. In this problem, all the components of the
propulsion system that might contribute to the generation of mechanical power have their own design discipline. The
existence of these disciplines depends on the choice of components made in each separate system architecture, and
therefore are an example of discipline activation. The number of times these disciplines will be executed depends on
the number of instances of their correspondent architectural component, which in-turn is also an example of discipline
repetition. Finally, there are two instances where the motor and the turboshaft co-exist in the system architecture. In the
first case, the turboshaft and the motor contribute directly to the generation of mechanical power to be used for thrust
production (parallel configuration). In the second case, the power generated by the turboshaft is used to feed the motor
(series configuration). Depending on the case, the power generated by the turboshaft will be an input for the Motor or
the Performance discipline, and is therefore and example of data connection.

III. Implementation of Architectural Influences in a Collaborative MDAO Platform
In the previous section four architectural influences have been introduced. This section will first introduce high-level

strategies for dealing with architectural influences in MDAO workflows. This is followed by the description of the
implementation of the chosen strategy in MDAx, the MDAO platform modified in this work [12, 13].

A. Strategies for Applying MDAO for SAO
MDAO problems are formulated in several steps [18]: a tool repository is defined, the MDAO problem is defined by

selecting tools from the repository and establishing data connections, and the solution strategy is defined by adding
non-linear solvers and/or applying an MDAO architecture [19]. To benefit from MDAO for SAO problems, another
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2:
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Fig. 3 Simplified process for the calculation of the aircraft propulsion thrust considering different sources of
mechanical power. Architectural choices will govern whether the mechanical power to generate thrust will be
provided by the turboshaft, the motor or both.

step needs to added to include the architectural influences. These architectural influences are included by specifying
the "influence logic": the logic (if statements, loops, etc.) which defines how the MDAO workflow should modify its
behavior for evaluating different architecture instances. After formulation, the MDAO problem is deployed in some
execution environment, where it can be invoked as part of the SAO loop for a given architecture instance generated by
an architecture generator [2]. The results of the MDAO problem are communicated back to the architecture generator in
the form of performance metrics, after which the next iteration of the architecture generator starts. It should be noted
that the formulation phase and the optimization loop form two coupled yet separate steps of the whole process, as also
depicted in Figure 4. The formulation and deployment tasks are implemented by a "formulator" which, depending on
where it is applied in the process, can require user interaction or not. The following high-level strategies for using
MDAO for architecture evaluation can be distinguished:

1) Single static (Figure 4a): a single static MDAO problem is defined, influence logic is implemented at the
discipline-level, and the formulator is applied in the MDAO formulation phase. No change in MDAO tooling
is required to support this strategy. This is a more restricted way of dealing with architectures which is only
possible if all architecture influences can be handled at the discipline-level. Examples of this strategy include the
design of a business jet family [20], and the comparison of various electrification levels of aircraft on-board
systems [21].

2) Multi static (Figure 4b): multiple static MDAO problems are defined, each of which solves a predefined set
of architecture instances. These sets are either defined by clustering architecture instances, or manually based
on architecture choice values. This is a more conventional way of dealing with multiple architectures. This
strategy is either executed using a router that determines within the SAO loop which static MDAO problem
should be used for the given architecture instance, or by manually running parallel SAO problems for each of the
architecture sets. Examples of this strategy include an architecture clustering approach based on active design
variables [22], and the execution of two independent static MDAO problems for different material selections [23].

3) Single dynamic (Figure 4c): a single dynamic MDAO problem is defined, which implements influence logic
directly in the workflow such that its behavior is automatically modified for a given architecture instance. The
effectively established data connections and tool execution sequence is represented by the effective MDAO
problem, a hypothetical problem representing the fact that the dynamic MDAO problem changes its behavior
for different architecture instances. This is a more novel approach to SAO which holds promise for improving
efficiency of the process. Examples of this strategy include an approach for dynamically switching between sub-
workflows based on an architectural choices by Bruggeman et al. [23], and a dynamically changing sub-workflow
based on the number of instances of some architecture element by Sonneveld et al. [24].

4) On-demand (Figure 4d): automatically formulate a static MDAO problem within the SAO loop based on the
architecture instance. Examples of this strategy are a hybrid-electric propulsion system problem [17] and a jet
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(a) "Single static" (b) "Multi static"

(c) "Single dynamic" (d) "On-demand"

Fig. 4 High-level strategies for integrating architecture influences in MDAO workflows. The formulation phase
(orange dashes) is executed before running the optimization loop (blue dashes). The optimization loop is executed
without user interaction.

engine architecture problem [16].

The single static strategy requires a level of control over disciplinary tool development which might not be possible
for collaborative MDAO [25, 26], and might simply not be flexible enough for complex SAO problems. The multi
static strategy requires managing multiple workflows simultaneously, which will not be feasible above a relatively low
number of workflows. The on-demand strategy requires an automated formulator (or "MDAO bot" [18]) that also
automatically deploys the workflow. In collaborative MDAO, however, the formulation phase is usually separate from
the execution phase [26], because both phases involve specialized software requiring one or more manual steps. This
currently prevents the application of on-demand MDAO problem generation for collaborative MDAO, which is why the
single dynamic strategy is chosen and implemented for supporting architectural influences in this work.

B. Supporting Architectural Influences in MDAx
MDAx is an MDAO formulation platform developed by the DLR that allows to model, inspect and explore workflow

components and their relationships [12, 13]. To execute the MDAO problem, an external integration platform called
Remote Component Environment (RCE) [27], which is developed by the DLR, can be used. Using these two platforms
the MDAO problem can be formulated and executed according to collaborative MDAO principles.

This section presents how MDAx was extended to support the previously presented architectural influences based on
the "single dynamic" strategy (see Figure 4c): the MDAO workflow model contains all logic for dynamically modifying
its execution behavior, which is materialized in the exported RCE workflow where the SAO problem is executed.
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Fig. 5 Example of a tool with activation logic in RCE. First, the workflow XML enters into the activation logic
script, which checks if the activation logic assertion attached to the tool is true or false. If is true, the switch
passes the workflow XML to the tool and the tool is executed. If not, the workflow XML is passed directly to the
next discipline.

1. Discipline Activation
Disciplines whose inclusion in the MDAO problem is contingent upon an architectural decision have conditions

known as activation assertions, which determine their execution within the MDAO problem. If a discipline is associated
with an activation assertion in MDAx, its RCE export incorporates an additional script executed prior to the discipline.
This script evaluates the condition, and if it is satisfied, the discipline is executed; otherwise, the discipline is bypassed
in the workflow execution (Figure 5).

In RCE, all necessary information for executing the MDAO problem, including the relevant variables, is stored in an
XML file known as the workflow XML file. Architectural decisions impacting discipline inclusion can be linked to
specific nodes or information within these nodes in the workflow XML file. The condition determining the inclusion
of a tool may involve the existence of a node (indicating the presence of a component in the system architecture),
the repetition of a node (indicating the number of component instances), or the information contained within a node
(usually related to the properties of a component in the system architecture). Assertions for these conditions have been
implemented as composable Python classes. The activation logic script, illustrated in Figure 5, utilizes these classes to
evaluate the assertion, subsequently routing the input file either through the tool (if the discipline is active) or bypassing
the tool (if the discipline is skipped)

2. Discipline Repetition
The implementation of discipline repetition in an MDAO platform can be approached in two ways. The first method

involves creating a distinct instance for each repetition of the discipline, known as a parallel configuration. The second
approach is to utilize a single discipline instance, configuring the workflow to repeatedly "enter" the same discipline,
known as a series configuration. Figure 6 illustrates these two approaches using XDSM notation.

The series configuration has been implemented in MDAx and RCE to simplify workflow management in line with
the principles of collaborative MDAO. To understand this implementation, it is important to recognize that multiple
instances of a component (determining the number of repetitions) are represented in the workflow XML file as repeated
nodes corresponding to the component and its properties.

Each time the discipline is executed, a new block called "Global to Local" selects the appropriate inputs for that
iteration, converting data from a global (workflow XML file) to a local (tool) representation. The tool then executes
normally, and its output is converted back by the "Local to Global" block, ensuring that the outputs are correctly written
into the workflow XML file. The local versions of the input and output XML files are specific not only to the tool but
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x3
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(b)

Fig. 6 Example of the two possible approaches to implement discipline repetition: (a). A different instance is
used every time the discipline has to be executed (parallel configuration). (b). An unique instance is created an
re-executed multiple times (series configuration).

also to each iteration, allowing variation in inputs and outputs across different executions of the same tool.
Finally, an "Iterator" block tracks the number of iterations and detects the loop’s end once the tool has been executed

the specified number of times as defined in the workflow (Figure 7)

3. Data Connection
The implementation of data connection in an MDAO platform depend on how connections between disciplines are

generated. If a decentralized approach is used [18], then it is the connection itself which has to be created or suppressed.
A central data schema (CDS) allows these connections to be modified by changing input-output specifications of the
involved disciplines.

In MDAx, the MDAO problem formulation takes into account the inputs and outputs of disciplines and their
corresponding couplings. Consequently, all the possible connections between disciplines exist in the formulation itself.
Now, for a connection to be deactivated due to an architectural decision, the coupling variable itself can be deactivated
in the input definition of the involved disciplines. The variable deactivation conditions are implemented in a similar
manner as discipline activation. Thus, for each input variable that may be deactivated, an assertion condition can be
specified to determine when deactivation should occur. These assertions are implemented in the previously introduced
"Global to Local" block. If the assertion for a given input variable is true, the corresponding XML node is filtered out of
the input file passed to the tool.

4. Conditional Variables
In MDAx, nodes corresponding to potential input variables are searched in the workflow XML file before executing

the discipline. If a node is found, it is added to the tool input file; if not, it is ignored. This procedure enables MDAx to
handle conditional variables effectively when they are present as inputs. In the case of conditional variables found as
outputs, an analogous methodology to the one used for data connection is implemented. The condition determining its
deactivation from the MDAO problem is stated in the configuration file. Following this, a Local to Global block checks
the assertion after the tool is executed. If the assertion is satisfied, then the variable is deleted form the outputs and is
not merged into the workflow XML file, deleting it from the MDAO problem.

IV. Demonstration Case: Multistage Rocket Problem
This section demonstrates the previously presented methodology for supporting architectural influences in a

collaborative MDAO framework for the purpose of architecture optimization. A multistage launch vehicle architecture
optimization problem is introduced and solved. It is a realistic engineering design problem, allowing to show the
potential of system architecture optimization in combination with dynamic collaborative MDAO.

The section begins by introducing the design problem, followed by the description of the different involved disciplines.
Finally, some example architectures are executed to verify the implementation of the methodology and MDAO problem
in MDAx, and the results of the optimization problem are analysed.
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Fig. 7 An overview of dynamic MDAO implementation in RCE, as exported by MDAx. The activation logic
script determines whether the tool is skipped or not, see also Figure 5. The Global to Local (G2L) component is
in charge of multiple processes, such as determining the number of iterations, keeping track on the iteration
the execution is at each moment or selecting the inputs/outputs for each iteration. The Local to Global (L2G)
prepares the tool outputs to be merged in the correct place in the workflow XML. Finally, the iterator block
determines if the repetition of the discipline has ended or not.

A. Benchmark Problem Description
A multistage rocket is a launch vehicle designed to carry a manned or unmanned payload from Earth’s surface to

outer space. Therefore, synonymous to an aerospace vehicle design optimization problem, the primary objective is to
maximize the mass of payload that can be lifted to a circular orbit at 400 km of altitude, while minimizing the cost.
Since payload mass and cost are the main considerations influencing the design rocket, these quantities will be the key
drivers of the optimization problem. To achieve the best possible design, the optimizer will have control over various
architectural decisions: the number of stages (𝑁𝑠), the head shape (𝐻𝑠), the engine type used for each stage, and the
number of engines for each stage.

Seven different design disciplines are considered in the optimization process, including trajectory analysis and
propulsion sizing. Some constraints are also added to ensure the feasibility of the design. The remainder of this section
briefly introduces the included disciplines and analysis blocks. For a more detailed description, the reader is referred
to [28]. The problem implementation is available as open-source Python code∗.

The first discipline in the workflow execution is propulsion. The propulsion discipline varies with the type of
propellant. It allows a choice between three possible engines, taken from real-life designs. They receive an array
containing the engine type and the number of engines of a rocket stage as input. The outputs include the thrust generated
by a rocket stage and some additions quantities of interest in case of liquid propulsion engines, like mass flow or the
nozzle expansion ratio.

The next discipline is the geometry calculator. This discipline provides some geometric parameters as output, such
as the surface and volume for fuel and oxidizer tanks and the rocket head. It receives various inputs such as the engines
used for the stage and the parameters associated to each possible head shape (semispherical, conical or elliptical).

Afterward, the propellant mass discipline is executed. This discipline calculates the propellant mass (if it solid) or
the fuel/oxidizer mass (if it is liquid) for each rocket stage. The contribution of other rocket components to the total

∗https://github.com/raul7gs/Space_launcher_benchmark_problem
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rocket mass is calculated in the structural mass discipline. In the case of solid propulsion, the component mass is
calculated for the engine casing. While, for liquid propulsion, the mass of tanks, pumps and the insulation are calculated.
In both cases the rocket head mass is considered as well.

To calculate the maximum payload mass that the rocket can lift to the desired orbit, the trajectory discipline is used.
This discipline first calculates the vehicle drag coefficient. Assuming that there is no payload mass, the equations of
motion (Equation 1) are solved numerically to determine if the rocket has enough power to arrive at the orbit (Figure 8).
If the power is more than required, the payload mass is increased to the limit while ensuring that the orbit altitude can be
reached, thereby determining the maximum payload mass that can be carried to that orbit.

𝜕2𝑥

𝜕𝑡2
=
𝑇𝑐𝑜𝑠(𝛼) − 0.5𝜌𝑆𝑉2𝐶𝐷

(𝑚0 + 𝑚𝑝𝑎𝑦) − ¤𝑚 ∗ 𝑡 − 𝑔𝑠𝑖𝑛(𝛾) (1)

Fig. 8 The trajectory is assumed to consist of three phases: First a vertical take off, then a constant 45 degrees
climb, finally the rocket increases its speed to achieve the desired orbit (in this case shown as 100km, however this
is a problem input and can be changed).

The second objective is calculated in a discipline called cost. Three main components are assumed to contribute to
the total rocket cost: the engines, the propellant and the rocket head structure. The engines costs are calculated using the
TRANSCOST model [29]. Propellant and structural costs are estimated using current prices [28].

Finally, two constraints are considered to determine the design feasibility. First contraint ensures that the rocket can
withstand the loads during the mission. This is done by determining the maximum dynamic pressure in the trajectory
(maxQ) and ensuring that the value is lower than the rocket structural limit. The second constraint ensures that the
payload mass calculated can fit inside the rocket head shape.

The problem XDSM can be found in Appendix VI. Conditional variables are indicated with an asterisk next to them.
Variables involved in data connection are expressed in bold and italic, including between parenthesis the architectural
decision causing them. Discipline repetition is indicated in the top right of the discipline block, again with the associated
architectural decision. Lastly, for the cases with activation logic, the assertion condition is expressed in a third additional
row in the discipline block.

B. Verification
To verify the successful implementation of the process, two distinct system architectures were executed within the

RCE workflow. The first architecture features a singular-stage liquid-fueled rocket with a spherical head, with additional
details such as stage dimensions, vehicle dynamic pressure thresholds, and payload densities, integrated into the input
workflow XML file (see Figure 9). The second architecture comprises of a three-stage rocket, with all stages employing
liquid propulsion except the first, accompanied by a modification in nose shape to an elliptical configuration. While the
first architecture demonstrates the implementation of discipline activation and repetition, the second one features all four
influences.
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1 <Rocket>
2 <Stage UID="stage_1">
3 <Engines>
4 <Liquid>
5 <VULCAIN/>
6 </Liquid>
7 </Engines>
8 <Geometry>
9 <Length>26.47</Length>

10 </Geometry>
11 </Stage>
12 <Geometry>
13 <Head_shape>Sphere</Head_shape>
14 <L_D>10.83</L_D>
15 </Geometry>
16 <Structure>
17 <Max_q>50000.0</Max_q>
18 </Structure>
19 <Payload>
20 <Density>2810.0</Density>
21 </Payload>
22 </Rocket>

Fig. 9 Example of a workflow XML input file. In this case, a single stage rocket.

A notable distinction in the execution processes of these architectures pertains to the frequency of tool invocation, as
depicted in Table 1. For instance, discipline activation is evident in the single-stage rocket scenario, where the absence
of solid propulsion obviates its inclusion during workflow execution.

Table 1 Number of executions of each tool for the different system architectures

Architecture Propulsion (L) Propulsion (S) Geometry Structure Mp Trajectory Cost Str. Constr. Payload

1 stage 1 0 1 1 1 1 1 1 1

3 stages 2 1 1 3 1 1 1 1 1

Moreover, Table 1 also shows discipline repetition across system architectures. This is particularly evident in
disciplines such as structural mass, where the number of executions aligns with the number of stages. Notably, the
iteration-specific data handling automatically adjusts input and output data locations, exemplified in Figure 10.
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1 <Rocket>
2 <Stage UID="stage_2">
3 <Geometry>
4 <Length>30.53</Length>
5 <Stage_volume>427.57</Stage_volume>
6 <Oxidizer_tank_volume>141.44</

Oxidizer_tank_volume>
7 <Fuel_tank_volume>286.13</

Fuel_tank_volume>
8 <Oxidizer_tank_surface>161.99</

Oxidizer_tank_surface>
9 <Fuel_tank_surface>299.04</

Fuel_tank_surface>
10 </Geometry>
11 </Stage>
12 </Rocket>

(a) Geometric data second stage

1 <Rocket>
2 <Stage UID="stage_3">
3 <Geometry>
4 <Length>10.82</Length>
5 <Stage_volume>151.53</Stage_volume>
6 <Oxidizer_tank_volume>50.12</

Oxidizer_tank_volume>
7 <Fuel_tank_volume>101.40</

Fuel_tank_volume>
8 <Oxidizer_tank_surface>75.49</

Oxidizer_tank_surface>
9 <Fuel_tank_surface>124.06</

Fuel_tank_surface>
10 </Geometry>
11 </Stage>
12 </Rocket>

(b) Geometric data third stage

Fig. 10 Three stage system architecture geometric data. The output differs for each iteration (stage), as inputs
were taken from different parts of the workflow XML file.

Regarding data connection influence, consider the mass structure discipline as an illustrative example. Here,
the necessity of propellant mass input arises solely in the context of solid engine deployment. This adjustment is
reflected in Figure 11, wherein propellant mass data is selectively omitted from mass structure inputs when liquid engine
configurations are employed.

1 <Rocket>
2 <Stage UID="stage_{INDEX}">
3 <Engines>
4 <Solid></Solid>
5 </Engines>
6 <Geometry></Geometry>
7 <Propellant_Mass></Propellant_Mass>
8 </Stage>
9 <Geometry></Geometry>

10 </Rocket>

(a) Solid fuelled stage

1 <Rocket>
2 <Stage UID="stage_{INDEX}">
3 <Engines>
4 <Liquid></Liquid>
5 </Engines>
6 <Geometry></Geometry>
7 </Stage>
8 <Geometry></Geometry>
9 </Rocket>

(b) Liquid fuelled stage

Fig. 11 Simplified intermediate input files for the mass structure discipline. When a liquid engine is used, the
propellant mass information is deleted.

Finally, the type of fuel utilized in each stage influences the inputs for various disciplines. For instance, within the
geometry calculator discipline, the provided geometric data varies based on the head shape of the system architecture,
such as sphere radius or ellipse length-to-diameter ratio. This capability underscores the platform’s proficiency in
handling conditional variables, adapting inputs dynamically in response to specific architectural configurations. The
resultant XDSM for the demonstration case can be seem in Figure 16. The figures also shows some prospective additions
to the XDSM representation in order to incorporate the architecture influences.

C. Results and Discussion
To solve the problem, the genetic algorithm NSGA-II has been used [30]. By a general rule of thumb, a population

size of 10 per design variable was taken, leading to a total population of 150. Also, 30 generations were decided to be
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analysed to which ensures good performance of a genetic algorithm. This leads to a total of 4500 evaluated design point,
out of which 763 were found to be feasible. The results obtained can be observed in Figure 12.

Fig. 12 Feasible design space (blue) and Pareto front (red). The objectives are the cost (x-axis; to be minimized)
and the payload mass (y-axis; to be maximized).

The Pareto front consists of 32 of the feasible design points. Different architectures can be found in the Pareto front.
For example, taking a look at the number of stages (Figure 13), it can be observed that a lower number of stages is
chosen when lower payload masses are lifted, as it is cheaper. However, when the payload mass increases, it becomes
necessary to also increase the number of stages required to achieve that orbit, at the compromise of a higher cost.

Fig. 13 Pareto front points based on different number of stages. When the number of stages increases, the
rocket payload mass capability increases, but the cost increases too.

Another important architectural choice is the rocket head shape. It should be noted, that for the current research, the
decision for the head shape is primarily governed by the drag coefficient values of the different shapes. The coefficients
for the three shapes under question are governed by the equations available in open literature [31, 32]. For further
details into the chosen method for the geometry calculation discipline and the performance of the three shapes under
consideration, the reader is referred to [28]. It can be observed that semispherical heads are chosen for the lower payload
(Figure 13). This is because, among the possible options for head shape, a semisphere maximizes the amount of volume
available for payload given a certain surface (and therefore cost). However, it is the worst aerodynamically, explaining
why for bigger payload masses and bigger rockets, where aerodynamics is more important, it starts to be substituted by
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conical heads and then at the end by elliptical, which are the one with the lowest drag coefficient.

Fig. 14 Different architectures found in the Pareto front according to the head shape. Progression of head cone
from semishpere to conical as payload increases

Finally, for the choice of the type of propellant, two clusters are observed which are based on the chosen propellant
for the first stage of the rocket. For smaller rockets with lower payload, liquid propellant is used due to its lower density
and thus, a lower mass. However, since more power is needed with the increase in payload mass, solid propellant has to
be chosen which consequently, results in increased total mass and cost of the rocket (Figure 15). Finally, for the second
and third stages of the rocket, a liquid propellant is chosen everytime since less power is needed. The general trends of
the results achieved are consistent with real life examples of rockets used in Ariane 5, Space Shuttle and Saturn V. For
further details and drawing more parallels with real life examples, the reader is again referred to [28].

Fig. 15 Variation in the choice of propellant type (solid or liquid) for the first stage of the rocket in the Pareto
front. Two distinct Pareto fronts can be observed with liquid propellant being favoured for rockets with smaller
payload capacity and solid propellant for higher payload carrying larger rockets.

V. Conclusion and Outlook
System Architecture Optimization (SAO) can be used to objectively look for the best possible architectures in a large

combinatorial design space. MDAO can be used to evaluate the different architectures, so that the different coupled
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design disciplines are considered. To implement SAO in industry, it is necessary that the MDAO platform used is
adapted to collaborative MDAO and can automatically readjust the MDAO problem for each system architecture.

Various strategies to implement MDAO in SAO problems are laid down. The strategy which best suits the task of
dynamically modifying the MDAO formulation, for the different architectures involved in a SAO problem, is selected
and further implemented in a chosen MDAO platform. To do so, a set of architectural influences are identified which
address the various modifications that are required in the dynamic modification MDAO problem formulation from one
architecture to the other. These are as follows:

1) Conditional variables: Variables in the MDAO problem change based on the architecture being analyzed.
The existence of conditional variables in the MDAO problem leads to the modification of inputs/outputs of the
different design disciplines, and therefore have to be readjusted for each system architecture automatically

2) Data connection: The connections between design disciplines may change due to architectural decisions. Thus,
to address dynamic coupling and rerouting of variables between disciplines in MDAO problems, MDAO platform
should be capable of of handling dynamic data connection.

3) Discipline repetition: In system architecture optimization, the number of times a discipline is repeated
can depend on architectural decisions, requiring automatic readjustment of the same at the MDAO problem
formulation level.

4) Discipline activation: Some disciplines may become unnecessary due to architectural decisions, especially
when multiple technologies can perform the same function, leading to selective discipline activation. Thus, a
MDAO platform should be able allow for dynamic and selective activation of disciplines.

These architectural influences are the ground work for any expert wishing to achieve a similar automation in MDAO
problem formulation phase of a design study which mandates dynamically changing the problem formulation. Certain
implementation strategies are also proposed, implemented and validated for each architectural influence which can be
extended to any MDAO problem formulation platform.

The in-house MDAO problem formulation software MDAx is extended to implement the dynamic MDAO problem
formulation strategy. This was achieved by implementing the distinct architectural influences that guide the modifications
in the MDAO problem formulation, encompassing various system architectures. A rocket design problem was developed
and solved to verify that the implementation was done correctly, and to show the potential of the methodology when
applied to realistic design cases.

This research is already a step forward in the implementation of MDAO inside the SAO process, allowing to reduce
the gap impeding the implementation of SAO in the industry. However, there is still some development to be done to
further reduce this gap, for example, using the feedback from the MDAO analysis to govern the architectural decisions
and thus completing the system architecting-MDAO loop. A major next task is to implement the user-interface for
the new features in the MDAO platform, enhancing its applicability and making it easier to use for engineers without
requiring knowledge of the backend code. Another step would be to improve the pre- and post-processing of disciplinary
blocks, which is required for execution of the dynamic MDAO features, resulting in reduced complexity of the executable
workflow. Also, it can be foreseen that complex MDAO workflows and nested workflows might require the application
of the features to groups of tools rather than individual tools.

Influence logic governs the dynamic behavior of the MDAO workflow and is currently defined by the user
directly. Logically, however, it depends on the behavior of the SAO design space, for example in terms of which
components/technologies can be selected to fulfill a given function. Future work will investigate how to better integrate
the definition SAO design problems and associated dynamic MDAO workflows, for example by automatically deriving
influence logic from architectural choices, and by developing a process for side-by-side development of the SAO design
problem and dynamic MDAO workflow.

The results of this research have potential to be applied in other novel areas of research like multi-fidelity MDAO,
efficient global MDAO using surrogate models, and a combination of the aforementioned in combination with SAO.
Furthermore, in the interest for maintaining collaboration and widening the application of this research, one possible
extension could be to include exports of the dynamically executed MDAO workflows for other MDAO platforms and
process integration and design optimization platforms used in research and industry. Finally, work is being done to
develop a standard for the visual representation of dynamic MDAO problems by a new variant of the XDSM notation,
for which first steps were taken in the current research but future work is still needed.
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VI. Appendix
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Fig. 16 XDSM of the space rocket benchmark problem depicting the analysis disciplines, constraints and the variable couplings between them. Dynamic
XDSM is a provisional extension of XDSM to include the four architectural influences: Conditional variables are indicated within square brackets. Variables
involved in data connection are expressed in bold and italic, including between parenthesis the architectural decision causing them. Discipline repetition
is indicated in the top right of the discipline block where the multiplicity is a result of an architectural decision. Lastly, the activation condition behind
discipline activation is expressed in an additional row in the discipline block.
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