
System Architecture Design Space Exploration: Integration with
Computational Environments and Efficient Optimization

Jasper H. Bussemaker∗, Luca Boggero†, Björn Nagel‡
DLR (German Aerospace Center), Institute of System Architectures in Aeronautics, Hamburg, Germany

System Architecture Optimization (SAO) enables automatically exploring combinatorial
system architecture design spaces, which can reduce bias and enable more architectures to be
considered in early design phases. This paper presents the Architecture Design Space Graph
(ADSG), a directed graph for modeling architecture design spaces, and encoding them as
optimization problems to be solved by optimization algorithms. The ADSG is built on top of
the Design Space Graph (DSG), which models hierarchical design spaces using selection and
connection choices, where selection choices define which nodes are selected in architecture
instances, and connection choices represent source-to-target connection problems. Selection and
connection choice encoders are introduced that enable full enumeration of valid design vectors,
and ensure any source-to-target connection problem can be encoded such that optimization
algorithms can effectively search the design space. The ADSG extends the DSG for use in system
architecting, by defining nodes such as functions, components and ports, which enables function-
based architecture definition. The ADSG can be modeled using ADORE: a Python tool with a
web-based GUI that allows connecting to performance evaluation code through Python-based
and file-based interfaces, and connecting to open-source architecture optimization algorithms.
The presented method is demonstrated by three application cases, each demonstrating different
evaluation and optimization aspects: a multi-stage launch vehicle, a guidance, navigation and
control system, and a jet engine architecture. It is shown that SAO problems formulated using
ADORE perform as well, if not better, than manually-defined SAO problems, without requiring
the user to be an expert in formulating optimization problems.

I. Introduction

The architecture of a system describes what components that system consists of, and how these components are
combined to achieve the system goals [1]. It transforms system requirements into a blueprint for implementation,

and provides an input to detailed design phases. An architecture assigns elements of form (i.e. components) to function:
function specifies what the system should perform; form specifies how the architecture performs its functions. The
architecture of a system greatly influences project success [2], however decisions regarding architecture are taken early
in the project and are therefore subject to great uncertainty [3]. Therefore, significant modeling and design effort is
required before alternative architectures can be compared to each other to select the most appropriate architecture
for a given design problem. This is why often only a few architecture alternatives are considered and compared, and
architecture trade-off might be subject to bias, overconfidence or conservatism [4, 5].

System Architecture Optimization (SAO) is an emerging field that applies numerical optimization algorithms to
automatically search an architecture design space, thereby considering more architectures and resulting in less bias and
a more complete overview of promising architecture instances [6, 7]. To implement an SAO problem, the architecture
design space should be defined, it should be possible to quantitatively evaluate the performance of architecture instances,
and appropriate optimization algorithms should be available [8]. This paper provides an overview of how to perform
SAO using the Architecture Design Space Graph (ADSG): a directed graph that combines architecture elements (e.g.
functions and components) with decision models, enabling the automatic generation of architecture candidates. The
ADSG can be encoded as an optimization problem in terms of design variables 𝑥, objectives 𝑓 and constraints 𝑔, which
can be used by optimization algorithms to explore the design space. Compared to other methods, the presented approach
thus enables architecture design space exploration without requiring the exhaustive generation of all architecture,

∗Researcher, DDP Group, Department of Digital Methods for System Architecting, jasper.bussemaker@dlr.de
†Head of DDP Group, Department of Digital Methods for System Architecting, luca.boggero@dlr.de
‡Institute Director, Institute of System Architectures in Aeronautics, Hamburg, bjoern.nagel@dlr.de

1

mailto:jasper.bussemaker@dlr.de
mailto:luca.boggero@dlr.de
mailto:bjoern.nagel@dlr.de


leveraging modern optimization algorithms for efficient exploration, and by allowing the user to define the design space
using system architecting terminology (functions, components, etc.).

This paper continues with a general overview of SAO in Section II. The ADSG is presented in more details in
Section III, focusing on extensions done since the paper originally introducing the ADSG [9], in particular the underlying
Design Space Graph (DSG) and the modeling environment ADORE. In Section IV we demonstrate the ADSG by three
SAO problems modeled in ADORE: a multi-stage launch vehicle, a guidance, navigation and control system, and a jet
engine. Section V concludes the paper.

II. System Architecture Optimization Review
On a high level, any optimization problem consists of two elements: an algorithm to suggest design solutions (the

optimization algorithm) and a function to tell the algorithm how good a given solution is (the evaluation function) [10].
Similarly, an SAO problem consists of [11]:

1) An architecture generator, suggesting architecture instances to be evaluated.
2) An architecture evaluator, evaluating the performance of a given architecture instance.

A. Architecture Generator
The architecture generator is an automated version of the architecture synthesis [12] or concept generation [1, 13]

step in systems engineering. It generates architecture instances from an associated architecture design space. The
architecture design space determines which architectures can be generated, by modeling architectural choices and
constraints. It should be specified formally enough so that automatic reasoning by a computer program is possible.
However, it should be possible to specify it in terms a system engineer would be familiar with, such a function and
form [14].

A system model created in a Model-Based Systems Engineering (MBSE) setting typically represents a specific
architecture instance or several architecture instances [14]. To model an architecture design space, architectural choices
should be modeled and architecture instances should be generated by resolving choices. Modeling choices in an MBSE
context is made possible by specific extensions of the Systems Modeling Language (SysML) such as CVL [15] or
VAMOS [16]. Variability is an integral part of SysMLv2 [17], showing that it is considered an important capability to
be supported in the future. Other approaches include variability modeling using feature models [18, 19], function-means
models [20], or configurable components [21].

Generating architecture instances from some architecture design space model can either be done exhaustively
(architecture enumeration) or selectively (architecture optimization). Several architecture enumeration methods based
on graph grammars [22] have been developed in the past, including ArchEx [23], perfect matchings [24], RoMOGA [25]
and Automatic Topology Generation [26]. Siemens Simcenter Studio enables architecture enumeration by modeling
architecture elements and port connection constraints, and then solving a constraint satisfaction problem (CSP) [27, 28].
The morphological matrix is a well-developed method for modeling system variability, and when combined with
a (in)compatibility matrix it can be used to enumerate architectures, as for example implemented by ARMA [29],
IRMA [30], or shown by [31]. Other methods for architecture enumeration include functional flows [32–34], resource
flows [35], Architecture Decision Graph (ADG) [36], RAAM [37], and using description logic reasoners [38].

The main downside of architecture enumeration is that architecture design spaces can be extremely large: for
example 79 million architecture are possible in the GN&C problem in [39], and a satellite instrument selection problem
in [40] features 8.8 trillion possible architecture. This makes architecture enumeration impractical and/or infeasible
due to time or computational resource constraints. In SAO, architectures are generated selectively and quantitative
evaluation is used to steer the exploration towards the best architecture(s) instead. Feature models [41, 42] and the
morphological matrix [6, 43, 44] have found limited application in architecture optimization. Apaza and Selva
present the Architecture Decision Diagram (ADD), which enables the user to model architectural decisions [39] based
on architecture decision patterns [45], which are then encoded as design variables and dedicated search and repair
operators for use in evolutionary algorithms [40, 46]. These architecture optimization methods, however, do not
represent architecture concepts like function and form, no links are established to system requirements, and often no
continuous design variables are supported. The ADSG [9], see also Section III, aims to close this gap by combining a
function-based architecture superset model (150% model) with a variability model. The ADSG can be encoded as
design variables and a repair operator is made available for use by optimization algorithms. This enables the user to
model the architecture design space with elements familiar to systems engineers, and at the same time leverage the
strength of optimization algorithms to search this design space.

2



Evolutionary Algorithms (EA) have been used to solve architecture optimization problems [6, 40, 47] due to their
ability to effectively search the mixed-discrete, hierarchical design space [48]. Although more practical than full
enumeration of the architecture design space, evolutionary algorithms might still require in the order of thousands of
evaluations and are therefore not appropriate for expensive evaluation functions, for example resulting from physics-based
simulation. To solve this, recently Surrogate-Based Optimization (SBO) and in particular Bayesian Optimization (BO)
algorithms have been applied to architecture optimization [48]. SBO algorithms build a surrogate model of the objective
function 𝑓 (x) and constraint functions 𝑔(x), and use this model to predict where the best architecture(s) are using infill
functions. BO algorithms use surrogate models that also provide uncertainty information, such as Gaussian Process
(GP) models, to increase the predictive accuracy of these infill functions. Recently, BO for architecture optimization has
been extended to also support hidden constraints [49]: evaluation failures resulting in no 𝑓 and 𝑔 values being available,
which is a common phenomena for evaluation using physics-based simulation. For more details about architecture
optimization algorithms and BO in particular, the interested reader is referred to [48, 49].

B. Architecture Evaluator
The architecture evaluator represents the evaluation function in an optimization process [11]: it returns performance

metrics for a given architecture instance. The evaluation function is problem-specific and can be implemented as anything
ranging from a simple script using lookup tables or low-fidelity handbook equations, to distributed multi-disciplinary
high-fidelity simulation toolchains, as long as it adheres to the following requirements:

• The performance metrics should be sensitive to all relevant architectural decisions.
• The performance metrics should be available for all possible architectures, and with similar accuracy/fidelity.
• The evaluation function should be executable without user interaction when running the optimization.

Beyond problem-specific ad-hoc code, some research has been performed on general methodologies for integrating
system architecture models with system simulation, as this would improve consistency and enables verification and
validation [50]. Performance calculations can be integrated in architecture models directly (e.g. [42, 51]) or external tools
can be connected (e.g. [52, 53]). Especially useful for simulating system-level performance is Multidisciplinary Design
Analysis and Optimization (MDAO) [50]: a set of methods and technologies for numerically coupling disciplinary
analysis tools, ensuring tightly-coupled computations are consistent with each other [54].

Helle et al. [55] present a method for modeling variability-aware analysis architectures in SysML using Parametric
Analysis Models (PAM), and executing analysis architectures from architecture instances manually defined from a
superset model. MDAO for architecture optimization was partly supported in work by Bussemaker et al. [56], where
generated architectures provided input for a collaborative MDAO workflow. Bruggeman et al. [57] present an MDAO
workflow that dynamically swaps a sub-workflow depending on a selection of the manufacturing process of the part
being designed. Sonneveld et al. [58] demonstrate an MDAO workflow that dynamically modifies a sub-problem
based on the number of ribs selected in an aileron. The integration of these methods into a collaborative MBSE and
MDAO framework is presented in [59]. Full architecture optimization with MDAO was demonstrated by Bussemaker
et al., with dynamically-instantiated MDAO workflows for evaluating jet engine [60] and hybrid-electric propulsion
system [61, 62] architectures. Garg et al. [63] present a method for modeling computational variability due to
architecture variability directly in MDAO workflows, enabling MDAO workflows to dynamically alter their behavior
based on the architecture being evaluated without requiring reformulation.

III. The Architecture Design Space Graph (ADSG)
This section presents and discusses the Architecture Design Space Graph (ADSG) and its use for SAO, at three

abstraction levels:
• Design Space Graph (DSG): the core mechanism for modeling hierarchical choices using a directed graph, and

encoding choices as design variables for defining optimization problems.
• Architecture Design Space Graph (ADSG): the application of the DSG for system architecting, defining node

types like functions, components, and ports.
• ADORE: the editor that provides a web-based graphical user interface (GUI) for creating ADSG models, and

application programming interfaces (APIs) for connecting to optimization libraries and evaluation code.

The ADSG and ADORE were first introduced in [9] and [56], respectively. Citations are omitted from the following
sections for clarity.

3



A. The DSG: Choice Modeling and Design Problem Formulation
The Design Space Graph (DSG) implements the mechanism for modeling hierarchical architecture choices and

encoding design variables, and has recently been abstracted from the original ADSG implementation presented in [9].
This abstraction provides possibilities for more focused development and the potential for reusing the same mechanism
in optimization contexts other than SAO. The purpose of the DSG namely is to model the hierarchical structure between
choices and nodes, and nodes can be interpreted as elements that can be part of some architecture instance. The Python
implementation of the DSG is available open-source as ADSG Core∗ (named as such because it represents the core
mechanism of the ADSG). Following sections provide more details about how choices are modeled, how architecture
instances are generated, and how choices are encoded into design variables.

1. Choice Modeling and Architecture Generation
Crawley et al. argue that the basic tasks of a system architect involve decomposing form and function, mapping

function to form, specializing and characterizing form and function, and connecting form and function [1]. Selva
et al. observe various reoccurring patterns in architecture decisions [45], and map above architecting tasks to these
patterns. The ADSG has originally been designed assuming that the first tasks (decomposing, mapping, specializing,
and characterizing) involve selecting architecture elements (function or form) to be included in an architecture instance,
and that the connecting task remains as a last task and depends on which elements have been selected by prior tasks.
Another assumption is that the choices involved in element selection are tightly coupled and hierarchical, with many
choices only activated based on other choices. For this purpose, the DSG is a directed graph consisting of two domains:

• Generic nodes, derivation edges, incompatibility edges and selection choices for selecting the elements that are
included in an architecture instance.

• Connector nodes, connection edges and connection choices for modeling connection tasks.

Selection Choices A derivation edge is a directed edge that asserts that if the source node is included in an architecture
instance, then the target node is also included in that same instance. Generic nodes can have any number of incoming
and outgoing derivation edges. Multiple outgoing derivation edges mean that all target nodes are selected if the node is
selected; multiple incoming derivation edges mean the node is selected if any of the source nodes are selected. A selection
choice node (called option-decision in [9]) represents an architectural choice where one of the mutually-exclusive option
nodes is selected. When resolved, the (singular) incoming generic node is connected to the selected option node by a
derivation edge. The nodes not selected and their derived nodes, excluding confirmed nodes (see below), are removed
from the graph. One or more generic nodes are designated as start nodes: these nodes and their derived nodes (not
passing through selection choice nodes) are present in all architectures and therefore are designated permanent nodes.
Non-permanent nodes that have at least one path originating from a starting node (passing through one or more selection
choice nodes) are conditional nodes. When resolving a DSG to an architecture instance, nodes derived from a starting
node are designated confirmed to highlight the fact that they are part of a specific architecture instance. Choice nodes
are active if they are or have been confirmed, inactive otherwise. An incompatibility edge is an undirected edge that
asserts that if either of the two nodes is confirmed, the other node and its derived nodes are not. The DSG is infeasible if
an incompatibility edge is defined between two permanent nodes. A DSG containing no more selection or connection
choices is designated final. A final and feasible DSG represents an architecture instance.

Figure 1 shows an example DSG with 12 nodes (Nx), 2 selection choice nodes (Cx) and N1 the starting node. Table 1
lists for the same example which nodes are permanent or conditional, and for an enumeration of C1 and C2 options
which nodes are confirmed or infeasible. There are 12 states for this DSG: 1 initial state (only containing permanent
nodes), 3 partial states (C1 is resolved; C2 not) and 8 final states (including 2 infeasible and 6 feasible states).

Connection Choices Connection choices (called permutation-decisions in [9]) offer a generic way to model source to
target connection problems, where source and target nodes are represented using connection nodes. Connection nodes
behave the same as generic nodes with respect to derivation edges and selection choice, however additionally specify a
connector constraint: a specification of how many outgoing (source) or incoming (target) connections the associated
connector node can accept, and whether repeated connections to/from the same target/source node are allowed. The
connector constraint can be specified as a list of numbers (e.g. 1, 2 or 3 connections: 1,2,3), a lower and an upper
bound (e.g. between 0 and 3, inclusive: 0..3), or only a lower bound (e.g. 1 or more: 1..*).

∗https://adsg-core.readthedocs.io/

4

https://adsg-core.readthedocs.io/


N1

N2

N3 C1

N0 N4

N5

N6

N7

N9

N10

C2

N8

N11N12

N13

Fig. 1 DSG example with generic nodes N and selection choice nodes C (shown in blue). Edges include derivation
edges (black arrows) and incompatibility edges (red). Node N1 is the start node.

Table 1 Node status table for all possible combinations of choice options for the example shown in Figure 1. In
the bottom part of the table, ✓ represents confirmed nodes in the associated (partial) architecture. × represents
violated incompatibility constraints. Node names in the choice columns (C1 and C2) indicate the selected option
node.

Node N0 N1 N2 N3 C1 N4 N5 N6 N7 C2 N8 N9 N10 N11 N12 N13

Permanent ✓ ✓ ✓ ✓

Conditional ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Partial arch. 1 ✓ ✓ ✓ N4 ✓ ✓ ✓

Architecture 1 ✓ ✓ ✓ N4 ✓ ✓ N8 ✓ ✓ ✓

Architecture 2 ✓ ✓ ✓ N4 ✓ ✓ N11 ✓

Partial arch. 2 ✓ ✓ ✓ N5 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Architecture 3 ✓ ✓ ✓ N5 ✓ ✓ ✓ N8 ✓ ✓ ✓

Architecture 4 ✓ ✓ ✓ N5 ✓ ✓ ✓ N11 ✓ ✓ ✓ ✓

Architecture 5 ✓ ✓ ✓ N6 ✓ ✓ ✓ ✓

Infeasible arch. 1 ✓ × ✓ N12 ×
Partial arch. 3 ✓ ✓ ✓ N13 ✓ ✓ ✓

Infeasible arch. 2 ✓ ✓ ✓ N13 ✓ N8 ✓ × ✓ ×
Architecture 6 ✓ ✓ ✓ N13 ✓ N11 ✓ ✓

All architecture decision patterns [45] can be represented as source to target connections and connector constraints.
However, for some patterns the order in which connections are established is not relevant (for example the partitioning
pattern). To model this, a connection grouping node can be used: the connector constraint of this node depends on
aggregated connector constraints of incoming connection nodes (connected by derivation edges). Finally, it is also
possible to define combinations of source and target nodes that may not be connected using exclusion edges. Using
connection (grouping) nodes, connection edges and connection choice nodes, it is possible to represent all architecture
decision patterns identified by Selva et al., as shown in Table 2. That table also contains two additional patterns:
unordered (non-replacing) combining, which represents combining patterns where the order of option selection is not
relevant. Due to its flexible formulation, however, also other connection choices can be modeled. For example, in [64]
connection choices derived from safety regulations were modeled, specifying that each electric brake actuator should be
connected to at least 2 independent electrical power sources.

Figure 2 shows an example DSG with a connection choice (C2). Its sources are the connection grouping node Grp
and connection node S1; its targets are connection nodes T1 and T2. The connection edges, shown by dashed black
arrows, display the connection constraints. The connection constraint of the connection grouping node Grp is aggregated
from constraints by its underlying source connection nodes S1 and S2: each of these can have either 1 or 2 outgoing
connections, which is aggregated to 2, 3 or 4 connections. The selection choice C1 determines whether S2 is confirmed
(S1 is always confirmed). If S2 is not confirmed, only S1 remains and the aggregated connection constraint of Grp is
modified to 1 or 2 connections (i.e. derived from S1 only). Table 3 enumerates all valid connection sets that exist for the
example of Figure 2. The example demonstrates that this way of modeling connection choices can lead to non-trivial
valid connection sets that extend the possibilities of architecture decision patterns as identified by Selva et al. [45].

5



Table 2 Architecture decision patterns modeled using connection choices. 𝑛 and 𝑚 are independent integers
equal to or greater than 1; 𝑛 @ cc specifies the number of nodes (𝑛) with connection constraint cc; (𝑖, ) represents
a connection from source 𝑖 to target 𝑗; "(rep)" indicates repeated connections are allowed.

Pattern Source nodes Target nodes Excluded edges

Combining 𝑛 @ 1 𝑚 @ 0, 1
Unordered combining 1 @ 𝑛 (rep) 𝑚 @ 0..∗ (rep)
Unordered non-replacing combining 1 @ 𝑛 𝑚 @ 0, 1
Assigning 𝑛 @ 0..∗ 𝑚 @ 0..∗
Partitioning 𝑛 @ 0..∗ 𝑚 @ 1
Downselecting 1 @ 0..∗ 𝑚 @ 0, 1
Connecting 𝑛 @ 0..∗ 𝑛 @ 0..∗ (𝑖, 𝑗 ) if 𝑖 ≥ 𝑗

Permuting 𝑛 @ 1 𝑛 @ 1

A connection choice is resolved by applying valid connection edges (i.e. edges adhering to all connector constraints)
directly from source to target nodes and removing the connection choice node. Connection choices are resolved
independently of other connection choices, however they depend on selection choices. Connection choices are therefore
resolved after all selection choices have been resolved, making it possible that some or all of the source and/or target
nodes have been removed because they are not selected. Effectively, this means that a different connection choice is
defined for each source and target node existence scenario. If for a given existence scenario it is not possible to establish
valid connection sets adhering to all connector constraints, the associated DSG is infeasible.

Fig. 2 DSG example with generic nodes N, choice nodes C (blue). Connection (choice) nodes are shown as
hexagons; connection edges as dashed lines. Nodes N0 and N1 are the start nodes.

Table 3 Valid connection sets for the connection choice C2 shown in Figure 2.

Connections from / to Total connections
Grp S3

S2 exists T1 T2 T1 T2 Grp S3 T1 T2

Yes
0 2 1 0 2 1 1 2
1 1 0 1 2 1 1 2
1 2 0 0 3 0 1 2

No

0 1 1 1 1 2 1 2
1 0 0 0 1 0 1 0
1 0 0 2 1 2 1 2
0 2 1 0 2 1 1 2
1 1 0 1 2 1 1 2

6



Design Problem Definition Next to selection and connection choices, it is also possible to define generic design
variables, for example to model parameter selections. These are defined using design variable nodes that are subject to
node selection just as generic nodes and can therefore exist conditionally.

Choice constraints allow constraining option availability for choices based on other choices. For continuous design
variables only linking is possible: here the same value relative to the respective design variable bounds is applied. For
discrete design variables and selection and connection choices, four types of choice constraints are available: linked,
permutations, unordered combinations, and unordered non-replacing combinations. These constraints are applied by
applying the following logic:

• Linked: all choices are assigned the same option index, e.g. AA, BB, CC.
• Permutations: all choices have a different option index, e.g. AB, AC, BA, BC, CA, CB.
• Unordered combinations: equal or higher index than preceding choices, e.g. AA, AB, AC, BB, BC, CC.
• Unordered non-replacing combinations: higher index than preceding choices, e.g. AB, AC, BC.

The design problem definition is completed by additionally defining performance metrics using metric nodes. Metric
nodes represent outputs of the architecture evaluation and can be used as objectives 𝑓 or constraints 𝑔 in the context of a
design problem. Objectives are minimization or maximization targets and metric nodes can only be used as objectives if
they are permanent, as otherwise it is not possible to compare the performance of all architectures. Constraints represent
inequality design constraints: values that should be above (greater than or equal) or below (lower than or equal) some
threshold. Metrics used as constraints can be conditional: if the node is not part of some architecture, it means that the
constraint does not apply and the constraint is assumed satisfied (the value is set equal to the threshold).

2. Design Problem Encoding, Decoding and Correction
As presented in the preceding section, a DSG defines an architecture optimization problem using selection choices,

connection choices, generic design variables, various types of constraints, and metrics. Here we present how this design
space definition is encoded as a set of mixed-discrete design variables 𝑥 to be used by an optimization algorithm and
how a given design vector x is decoded into an architecture instance. We additionally present how design vectors are
corrected and imputed to ensure they are valid [48] (representing a feasible and unique architecture instance).

Encoding and Decoding Selection Choices Selection choices can be encoded by two encoding algorithms: the fast
algorithm and the complete algorithm. The complete encoder results in more efficient design variable definitions and
enables the exhaustive identification of all valid design vectors. This, however, requires significantly more computational
resources (time, memory) than the fast encoder, which directly maps selection choices to discrete design variables.
When encoding the design space, therefore first the complete encoder is tried. If some time or memory limit is reached,
the fast encoder is used instead.

The fast encoder maps selection choices to discrete design variables, with option nodes mapped to integer values
between 0 and 𝑛opts-1 for each selection choice. For choice groups constrained by a linked choice constraint (i.e. all
choices are assigned the same option index), only one discrete design variable is defined. Remaining choices are known
as forced selection choices, because their value is fully determined by previously-taken selection choices. Decoding and
correcting design vectors is performed in a greedy manner: starting from the initial DSG, confirmed (active) selection
choices are assigned options from the given design vector. If for a given selection choice the requested option node is
not available, the requested option node is corrected to the closest available option, thereby ensuring that the design
vector represents a valid architecture.

The complete encoder exhaustively identifies all possible discrete design vectors 𝑥valid,discr and associated activeness
𝛿valid,discr and node existence information. This enables improving optimizer performance by using hierarchical sampling
and correction algorithms developed in [48]. Additionally, it enables the calculation of the number of valid architectures,
the identification of forced selection choices, and the identification of all existence scenarios as needed for encoding
connection choices. Decoding and correcting design vectors is done by first ensuring that the requested design vector is
valid: if this is not the case, the closest valid design vector as measured by the Manhattan distance is selected instead.
Table 4 shows valid design vectors, activeness information, and node existence for all feasible architecture shown in
Table 1. Selection choices C1 and C2 are mapped to design variables 𝑥0 and 𝑥1, respectively. C2 is not present in
architecture 5, resulting in an inactive 𝑥1 (𝛿1 = 0). This is also a good example of declared and valid design space
size discrepancy [48]: the declared design space is given by the Cartesian product, in this example 𝑛declared = 4 · 2 = 8,
whereas the valid design space is given by the number of feasible architectures, in this example 𝑛valid = 6.

7



Table 4 For each architecture in Table 1, the associated design vector 𝑥, activeness information 𝛿, and node
existence. Selection choices C1 and C2 are mapped to 𝑥0 and 𝑥1, respectively.

Design vector Activeness Node existence
Arch. 𝑥0 𝑥1 𝛿0 𝛿1 N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13

1 0 0 1 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 0 1 1 1 ✓ ✓ ✓ ✓ ✓ ✓

3 1 0 1 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

4 1 1 1 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

5 2 0 1 0 ✓ ✓ ✓ ✓ ✓ ✓ ✓

6 3 1 1 1 ✓ ✓ ✓ ✓ ✓ ✓

Encoding and Decoding Connection Choices A Connection Choice Formulation (CCF) consists of connection
(grouping) nodes, connection edges, exclusion edges, and node existence scenarios for a given connection choice node.
Different CCF patterns are best encoded as design variables using dedicated encoding grammars [39, 40, 45]. This is
due to two effects discussed by Selva [40]: bĳectivity and non-degradedness.

Bĳectivity relates to the difference in declared and valid design spaces: if this difference is large, it is more difficult
to explore the design space for an optimization algorithm, because there is a low chance of generating a valid design
vector when (randomly) searching the design space. We quantify this property using the discrete imputation ratio:

IR𝑑 =

∏𝑛𝑥𝑑

𝑗=1 𝑁 𝑗

𝑛valid,discr
(1)

where 𝑛valid,discr is the number of valid discrete design vectors, 𝑛𝑥𝑑 is the number of discrete design variables, and 𝑁 𝑗 is
the number of options for discrete variable 𝑗 . An imputation ratio of 1 indicates a one-to-one mapping between design
vectors and architectures (i.e. bĳectivity), whereas values higher than 1 indicate this is not the case. The higher the
value, the larger the discrepancy.

Non-degradedness can be quantified by looking at whether a small change in a design vector leads to a small change
in what is represented by that design vector. Having this property improves optimizer performance [65]: optimization
algorithms depend on it for local search and model building. In the case of connection choices, a design vector x
represents a connection set, which we can represent as an 𝑛src x 𝑛tgt connection matrix 𝑀 , where 𝑛src and 𝑛tgt represent
the number of source and target nodes involved in a given connection choice, respectively. We define the distance
correlation Dcorr, which correlates design vector distance to connection matrix distance:

Dcorr = pearsonr ({𝑑 (x, x′), . . . }, {𝑑 (𝑀, 𝑀 ′), . . . }) (2)

where pearsonr is the Pearson correlation coefficient, 𝑑 is the Manhattan distance, and x and x′ are two randomly
sampled valid design vectors with 𝑀 and 𝑀 ′ their corresponding connection matrices. Dcorr = 1 indicates perfect
correlation, meaning that a small change in a design vector indeed leads to a similarly small change in the connection
matrix. Lower values indicate less correlation.

The goal is therefore for a given CCF, to select an encoder that minimizes IR𝑑 and maximizes Dcorr. One possibility
is to define a dedicated encoder for each architecture decision pattern. However, a CCF is more flexible than that (as
discussed in Section III.A.1) and therefore the pattern encoders cannot cover all possibilities. To support all CCFs, we
therefore define generic encoders. One way is to first enumerate all valid connection matrices 𝑀 , and then encode these
matrices as unique design vectors (𝑀 to x mapping), from which then design variables are defined. Design vectors
are corrected in a greedy manner (i.e. one-by-one, starting from the left), and decoded by reverse lookup using the
previously defined mapping. We denote this class of generic encoders as eager connection encoders, because they
depend on the full enumeration of valid connection matrices in advance. If this is not possible due to time or memory
limits, lazy encoders can be used instead: encoders that directly define design variables from the CCF, without needing
all valid 𝑀 . Since not all 𝑀 is then available, correction is performed in a trial-and-error manner, repeatedly modifying
a requested x until it represents a valid 𝑀 . Finally, we also define ordinal encoders that simply map all valid 𝑀 to an
index, encoded as integers or a numeral system with some base (e.g. binary variables for base 2). Table 5 compares the
different classes of connection choice encoders and their properties, in order of preference: pattern-specific encoders
(fast correction/decoding, low memory usage), eager encoders (fast correction/decoding), lazy encoders (low memory
usage), and ordinal encoders (fallback solution).

8



Table 5 Classes of connection choice encoders and their properties, in order of decreasing preference from left
to right. Abbreviation: CCF = Connection Choice Formulation.

Encoder class Pattern-specific Eager Lazy Ordinal

Applies to Patterns All All All
Needs all 𝑀 No Yes No Yes
Encoding Pattern-specific Map 𝑀 to x Based on CCF Ordinal enumeration
Decoding Pattern-specific Reverse 𝑀 lookup Encoder-specific 𝑀 indexing
Correction Pattern-specific Greedy Trial-and-error Clipping
Encoding time Very fast Slow Fast Medium
Decoding time Very fast Fast Slow Very fast
Correction time Very fast Fast Slow Very fast
Memory usage Low High Low Low

Design Space Insights and Generating Architecture Instances Encoding a DSG into a set of design variables is
done by first encoding selection choices, then encoding connection choices, and finally adding design variables defined
by design variable nodes. Decoding is done in the same order: decode and resolve selection choices, decode and resolve
connection choices, set active design variable values, and impute inactive design variables (set inactive discrete variables
to 0, continuous variables to mid-bounds). If the complete selection choice encoder is used, it is possible to generate
𝑥valid,discr. This enables usage of the hierarchical sampling and correction algorithms developed in [48]. Additionally, it
allows the problem-level calculation of the number of valid architectures, and thereby the problem-level IR.

B. The ADSG: Applying the DSG for System Architecting
Generic nodes in the DSG represent elements that can be included in architecture instances, however by themselves

they have no semantic meaning. We now present the Architecture Design Space Graph (ADSG): a database of node types
and allowable connections that assigns meaning to the generic DSG nodes for use in a system architecting context. This
enables function-based architecture definition, as originally presented in [9]. Nodes are defined based on the subdivision
of architecting tasks defined by Crawley et al. [1]: function decomposition and function-to-component (form)
allocation, component characterization, and component connection. Boundary functions, functions that act at the system
boundary and deliver the main value to the system stakeholders [29], are used as start nodes. Function-to-component
allocation decomposes functions, assigns functions to components (function fulfillment), and derives new functions from
component selection (function induction). Component characterization represents component-level choices, including
the number of component instances, design variable value allocation, and attribute selection. Component connection
involves the definition of port connectors for each associated component instance, and the connection of output ports to
input ports.

Table 10 lists all ADSG node types and possible derivation edge connections. Functions specify what the system
should do; components represent form and define how the functions are fulfilled. A function-to-component derivation
edge represents function fulfillment; the opposite represents function induction: the addition of a function because that
component has been selected [29]. Several complexity management nodes are provided: concept nodes for mapping a
solution-neutral to a solution-specific function, decomposition nodes for 1-to-n mapping of function nodes, and the
newly added non-fulfillment and multi-fulfillment nodes. Selection and connection choices are automatically added
based on graph patterns presented in Table 11. A selection choice is for example added when a function connects to
multiple components, representing a function fulfillment choice. For more detailed discussion of the semantic meaning
of remaining nodes in a system architecting context the reader is referred to [9]. Figure 12 shows an example ADSG.

C. ADORE: Editing and Exploring Architecture Design Spaces
The ADSG is implemented in ADORE (Architecture Design and Optimization Reasoning Environment) [56], an

in-house Python tool developed by the DLR Institute of System Architectures in Aeronautics. ADORE is built on three
pillars that enable the definition of architecture design spaces and solving SAO problems:

• A web-based graphical user interface (GUI) for editing and inspecting the ADSG.
• Python and file-based interfaces for connecting to evaluation code.
• Interfaces for connecting to optimization algorithms.

9



Fig. 3 ADORE web-based graphical user interface, showing the design space canvas in system view.

The architecture design space is defined in an ADORE model, from which the ADSG is constructed. An ADORE
model represents the same concepts, however with several differences to improve modeling experience. The web-based
GUI (see Figure 3) contains a canvas for editing the ADORE model, a list showing all defined architectural choices
and design space statistics, a page for defining optimization problems, and a page for viewing and manually creating
architecture instances. The ADORE model shows architectural choices by blue dashed arrows (instead of choice nodes
in the ADSG) and defines several views: a system view showing functions, function derivation elements and ports; a
component view showing component-level elements; and a port view showing a port and its port connectors. Metrics,
design variables, and static inputs are defined using Quantity of Interests (QOIs), enabling flexible switching between
input or output roles. This is useful, as during design space definition it may not be known whether some value is an
input to or an output from the architecture evaluation process. The ADORE model also adds the capability for modeling
subsystems: recursive groups of elements, where the number of subsystem instances may also be an architectural choice.
Each subsystem instance contains copies of the original elements, including choices, and copied choices are independent
of each other. Figure 4 shows the ADORE model equivalent to the ADSG shown in Figure 12.

Connection to evaluation code can be established in several ways, depending on what is more appropriate considering
available analysis tools, implementation environment, and/or programming skills. The most flexible way to implement
evaluation is by implementing an evaluation function, a function returning numerical values for all included output QOIs
for a given architecture instance (provided as an Architecture class), directly in Python. Python-based evaluation can
be supported by the Class Factory Evaluator (CFE) [62]. With the CFE, the user can define rules for instantiating
objects based on selected architecture elements, thereby making it easy to use object-oriented input definitions for
evaluation functions (see Section IV.C for an application). Another aid for Python-based evaluation is the Supplementary
Design Space Graph (SupDSG): a DSG with choices mapped to choices in the ADORE model. The SupDSG enables
modeling variability in graphs where edges and nodes do not necessarily have system architecture semantics. For an
example application of the CFE and SupDSG, see Section IV.C. For integration with external platforms, it is also
possible to use a file-based evaluation interface. Here, generated architectures are serialized as XML, JSON, or RDF,
which are then used as input to some externally-integrated evaluation function.

After the design space has been modeled and the evaluation function has been connected, the optimization
problem can be formulated and executed. Running the optimization problem is done by connecting to SBArchOpt†
(Surrogate-Based Architecture Optimization), an open-source Python library that provides an API for defining SAO
problems and connects to various optimization algorithms and frameworks [66]. SBArchOpt adds SAO capabilities
on top of pymoo‡, such as hierarchical sampling and correction, and an implementation of an SBO algorithm for
architecture optimization: ArchSBO [48, 49].

†https://sbarchopt.readthedocs.io/
‡https://pymoo.org/

10

https://sbarchopt.readthedocs.io/
https://pymoo.org/


QOI [OBJ]:
Objective ↓

FUN:
Boundary Function

FUN:
Function 1

FUN:
Function 2

FUN:
Function 3

COMP:
Component 1

COMP:
Component 2

COMP:
Component 3

COMP:
Component 4

DE:
Decomposition

MULTI:
Multi-fulfillment

PORT:
Port

fulfilled by

fulfilled by

includes

fulfilled by

fulfilled by

includes

fulfilled by

emerges from

zooms into

zooms into

zooms into

fulfilled by

outputs toto input

to input

(a) System view

COMP:
Component 4

INST

QOI [DV]:
DV = [0, 1]

PORT:
Port

OUT:
Port

COMP:
Component 1

COMP:
Component 2

1,2 1 1..* to input

to input

(b) Component view (Component 4)

Fig. 4 ADORE model showing a design space with a boundary function (which is also the start function) with
an objective, a decomposition into 3 lower-level functions, selection choices (2x function fulfillment, 1x component
instantiation), instance-level design variables, and a port connection choice. Figure 12 shows the equivalent
ADSG. Blue-dashed arrows indicate architectural choices.

D. Section Conclusions
The preceding sections have introduced the DSG for modeling architectural choices using a directed graph and

encoding these as an SAO problem, the ADSG for adding meaning to nodes in a system architecting context, and
ADORE for modeling an ADSG in a GUI and connecting to evaluation code and optimization algorithms. Figure 13
shows the interaction between the three layers, and how the layers are involved in the SAO loop.

IV. Demonstration: Architecture Optimization with ADORE
In this section, we demonstrate the ADSG and ADORE by three test problems: the design of a multi-stage launch

vehicle demonstrating selection choices and evaluation using file-based dynamic MDAO (Section IV.A), the design of
a guidance, navigation and control system demonstrating connection choices (Section IV.B), and the design of a jet
engine demonstrating the Class Factory Evaluator (CFE), Supplementary Design Space Graph (SupDSG), and MDAO
for evaluation (Section IV.C). Table 6 presents problem statistics of the test problems, along with application cases
published since the original ADSG publication [9].

A. Multi-Stage Launch Vehicle Architecture
The multi-stage launch vehicle SAO problem was originally developed to test dynamic MDAO formulation in [63, 72],

however also from an SAO point-of-view it is an interesting problem. It involves the choice of number of stages, several
stage-level choices (number of engines, engine types, and stage length) and rocket geometry choices (head shape and

11



Table 6 Overview of ADSG/ADORE application cases. Abbreviations: 𝑛𝑥𝑑 = discrete variables, 𝑛𝑥𝑐 = continuous
variables, 𝑛 𝑓 = objectives, 𝑛𝑔 = constraints, IR = imputation ratio, GNC = guidance, navigation & control, CFE =
class factory evaluator, DoE = Design of Experiments, SupDSG = supplementary design space graph, FCS =
Flight Control System.

Problem 𝑛𝑥𝑑
𝑛𝑥𝑐 𝑛 𝑓 𝑛𝑔 𝑛valid,discr IR Optimizer Translation Evaluation

Apollo mission [9] 8 2 108 5.3 Enumeration Python
Supersonic business jet [56] 9 2 11 1 1 ArchSBO [48] MultiLinQ [56] MDAO
Business jet family [67] 10 9 2 6 1024 1.5 SEGOMOE [68] MultiLinQ MDAO
Hybrid-electric propulsion [62] 8 14 3 310 79.4 ArchSBO CFE [62] MDAO [61]
Landing gear braking [64] 13 100 352 1.3 DoE CFE ASSESS
Space mission [69] 2 10 2 2 25 1.7 NSGA-II CFE Python
FCS (spoilers) [70] 22 1 3 139 260 11 700 NSGA-II CFE ACOBS
FCS (spoilers & ailerons) [71] 32 3 3 < 6.3e12 — ArchSBO CFE MDAO
Launch vehicle (Section IV.A) 8 6 2 2 18 522 2.5 ArchSBO, NSGA-II XML Dynamic MDAO
GNC (Section IV.B) 33 2 79 091 323 367 ArchSBO, NSGA-II Python
Jet engine (Section IV.C) 15 9 1 5 70 9.1 ArchSBO CFE, SupDSG MDAO [60]

length-to-diameter ratio). It is a multi-objective problem, with the goal to maximize payload mass and minimize cost for
a given target orbit altitude, subject to structural (max-Q) and payload volume constraints.

Figure 5 presents the ADORE model, showing the decomposition of the main function "Carry Payload to Space",
the associated objectives, and the rocket stage subsystem. The Stage subsystem contains the rocket body component
with the stage length design variable, and the engine assembly with the choice of engine type. Both the Stage and
Engine Assembly subsystems can be instantiated 1, 2 or 3 times. Engine selection choices are linked, shown by purple
dashed edges [62], because in the original problem formulation it is not possible to select different engine types for each
stage. In [63, 72], architecture instances are evaluated with a file-based dynamic MDAO workflow. The purpose of
that work was to demonstrate the formulation of such a dynamic workflow that for example switches between liquid
and solid propulsion calculations based on selected engine types, repeats stage-level disciplines based on the selected
number of stages, and dynamically (re)connects inputs and outputs based on available state variables. In this work, we
evaluate architectures using the Python-based evaluation code available in SBArchOpt, which functionally represents
the same dynamic MDAO workflow of the original implementation.

We compare performance of the ADORE formulation both for the fast and the complete selection choice encoders
(denoted "ADORE Fast" and "ADORE Complete", respectively). The ADORE formulations are compared against a
manual formulation available as LCRocketArch in SBArchOpt, denoted as "Manual". Table 7 lists problem statistics.
All formulations result in the same design variables and IR, CR, and CRF because of the low degree of hierarchical
coupling: activeness is only determined by the number of stages and head shape design variables. We also compare
the Correction Time (CT), the average time needed to correct and impute one design vector, needed for the different
formulations; this is relevant because this operation may be called orders of magnitude more often than function
evaluation, for example when generating a DoE or when searching for infill points in SBO. CT for the Manual and
ADORE Complete formulations is significantly lower than ADORE Fast, because for the ADORE Fast formulation
𝑥valid,discr is not available and therefore a trial-and-error approach has to be used. ADORE Complete, however, still
requires some model-parsing overhead, so Manual has the lowest CT.

Table 7 Multi-stage launch vehicle problem formulations. The problem contains 18522 valid discrete design
vectors. Abbreviations: 𝑛𝑥𝑑 = discrete variables, 𝑛𝑥𝑐 = continuous variables, IR = imputation ratio, CR =
correction ratio, CRF = correction fraction, CT = correction time.

Formulation 𝑛𝑥𝑑 𝑛𝑥𝑐 IR CR CRF CT [ms]

Manual 8 6 3.7 1.6 38% 0.21
ADORE Fast 8 6 3.7 1.6 38% 17
ADORE Complete 8 6 3.7 1.6 38% 7.0

12



Fig. 5 ADORE model showing the design space of the launch vehicle problem in system view.

The different formulations are solved using NSGA-II, a multi-objective evolutionary algorithm (EA), and
ArchSBO [48], a Bayesian Optimization (BO) algorithm tailored for SAO. Both algorithms start from an initial
DoE of 70 points; NSGA-II is executed for 25 generations (population size 140) and 40 repetitions, ArchSBO is executed
for 100 infill points with a batch infill size of 4, and 12 repetitions. Performance is compared using ΔHV (lower is
better), representing the difference to the known Pareto front hypervolume, as a function of number of infill points
(due to the assumption of expensive evaluation). Figure 6 presents optimization results. For NSGA-II, the Manual
formulation performs best and the two ADORE formulations perform similarly. The difference in performance is due to
a different arrangement of design variables, leading to slight differences in the initial population. For ArchSBO, the
ADORE Fast formulation is performing worse than the Manual and ADORE Complete formulations.

(a) NSGA-II (b) ArchSBO

Fig. 6 Multi-stage launch vehicle problem solved using two optimization algorithms.

13



B. Guidance, Navigation and Control Architecture
The GNC (Guidance, Navigation & Control) problem [1, 39] features the definition of an architecture connecting

sensors (S) to flight computers (C), and flight computers to actuators (A). Each object (S, C, or A) can be instantiated 1,
2 or 3 times, and for each instance there are three types available (A, B or C) with a different masses and reliabilities
associated to each (in general, with increasing reliability as mass increases). The connections from S to C and C to A are
architectural decisions, with each connection increasing reliability, and a constraint that no object is left unconnected.
For each object, only unordered combinations of types can be assigned, as permutations of types lead to the same
architecture if also the associated connections are permuted (for example, AB sensors connected to BC computers
represent the same architecture as BA sensors connected to CB computers if the connections are reversed as well). The
problem objectives are mass, calculated from the sum of selected object masses, and system-level reliability, calculated
from a failure-tree approach assuming that the system does not fail as long as at least one S-C-A path is still operational
(i.e. the objects and connections have not failed). We note that our interpretation of the problem is slightly different
from [1, 39], so results cannot be compared directly.

In ADORE, we model the architecture design space by decomposing the boundary function "Provide GNC" into
sensing (fulfilled by sensors), determining action (fulfilled by computers), and controlling (fulfilled by actuators). Ports
are used to model component connections: "Data" represents the sensor to computer connection, "Command" the
computer to actuator connection. Figure 7a show the system view, including the two system-level objective mass
and failure rate, both to be minimized. Each component has 1, 2 or 3 instances, and an attribute specifying the type,
see Figure 7b. Attributes are modeled as connection choices, "connecting" from attribute to value: in this case each
component instance has an attribute needing exactly 1 connection, and each value can be connected to between 0 and 3
times. On the attribute side, order is set to irrelevant (shown by "!order"), effectively grouping outgoing connections
and ensure only unordered combinations can be selected. Connections are modeled using ports, with the only constraint
being that each connector has at least one connection (shown by "1..*"), see Figure 7c.

For selection choice encoding (use for component instantiation) we compare the fast and complete selection
choice encoders (denoted "ADORE Fast" and "ADORE Complete", respectively). In addition to these two ADORE
formulations, the GNC problem is also implemented with a manual encoding (called "Manual") and only using
connection choice encoders (called "Encoded"). The Manual and Encoded formulations are available in SBArchOpt as
GNC and AssignmentGNC, respectively. Table 8 presents statistics of the GNC problem, including and excluding

(a) System view

(b) Component view (Sensor)

(c) Port view (Data)

Fig. 7 ADORE model showing the design space of the GNC problem in system view, component view and port
view. All components and ports have a similar definition.

14



Table 8 GNC problem formulations. Abbreviations: 𝑛𝑥𝑑 = discrete variables, IR = imputation ratio, CR =
correction ratio, CRF = correction fraction, CT = correction time.

Including actuators Excluding actuators
Formulation 𝑛𝑥𝑑 IR CT [ms] 𝑛𝑥𝑑 IR CR CRF CT [ms]

Manual 30 1761 4.7 17 113 17.2 60% 1.4
Encoded 33 367 38 19 39.5 6.0 49% 12
ADORE Fast 30 23460 650 17 632 — — 102
ADORE Complete 33 367 62 19 39.5 6.0 49% 17

𝑛valid,discr 79 091 323 29 857

actuators. It shows that the ADORE Complete formulation obtains the same problem definition as the Encoded
formulation. The Manual formulation results in a higher IR and CR compared to the Encoded and ADORE Complete
formulations, showing that automatically choosing the connection choice encoders improves problem formulation.
ADORE Fast formulation results in a very high IR, because the fast selection choice encoder is not able to correctly
determine all connector node existence scenarios, which results in less efficient connection choice encoding. Manual
formulation has the fastest CT as it features problem-specific code tailored to the formulation. Encoded and ADORE
Complete formulations are slightly slower, as they depend on greedy correction that uses design vector lookup. ADORE
Fast correction is slowest as it depends on trial-and-error correction. Except ADORE Fast, the problem formulations
excluding actuators do provide 𝑥valid,discr, which enables the use of the hierarchical sampling algorithm presented in [48].

The different formulations (including actuators) are solved using NSGA-II and ArchSBO [48]. Both algorithms start
from an initial DoE of 150 points; NSGA-II is executed for 25 generations (population size 150) and 40 repetitions,
ArchSBO is executed for 100 infill points with a batch infill size of 4, and 12 repetitions. Figure 8 presents optimization
results. It shows that for NSGA-II, the Manual formulation performs significantly worse than the other formulations,
which all perform similarly. For ArchSBO, all formulations perform similarly, with the Manual formulation performing
slightly worse than the others. It can be concluded that the ADORE formulations all result in problem formulations that
can be solved by EA and BO algorithms, and that they perform as well as the Encoded formulation and better than the
Manual formulation. ADORE Complete outperforms ADORE Fast in terms of IR, correction time, and is similar in
optimizer performance.

(a) NSGA-II (b) ArchSBO

Fig. 8 GNC problem (including actuators) solved using two optimization algorithms.

15



C. Jet Engine Architecture
The jet engine architecture problem [60] features the selection and sizing of jet engine components. Here, we use

the simple problem definition presented in [60], which is a single-objective problem minimizing Thrust-Specific Fuel
Consumption (TSFC) subject to several feasibility constraints. Architectural choices include adding a fan (turbofan
architecture) or not (turbojet architecture), the number of compressor/turbine stages, whether bypass and core flows are
mixed before flowing out, whether a gearbox is added between the fan and low-pressure shaft, and the locations of bleed
air and power offtakes. Continuous sizing variables include bypass ratio, fan pressure ratio, compressor pressure ratios,
gearbox ratio and shaft rpm’s.

Figure 9 shows the ADORE model with three boundary functions: Generate Thrust, Provide Bleed Air, and Provide
Power. The Generate Thrust function has the TSFC objective and weight metrics associated to it, and its fulfillment
represents the choice whether to include a fan or not. The nozzle mixing choice is represented by the fulfillment of
the Exit Core/Bypass Flow functions. Incompatibility constraints are used to model the constraint that either a mixed
nozzle is selected, or both the (core) nozzle and bypass nozzle. The (core) nozzle and mixed nozzle both need the
Energize Air function, which derives the remaining components in the engine core. The Compressor, Shaft and Turbine
components include instantiation choices (1, 2 or 3), which are linked by a choice constraint ensuring that the number of
instances match. The Provide Bleed Air and Power functions are fulfilled by connecting a Bleed Air Duct and Generator
to one of the Compressors and Shafts, respectively. The gearbox choice is an example of non-fulfillment: the function
Uncouple Fan RPM represents an "improvement" function which can either be fulfilled by the gearbox, or it can be left
unfulfilled. Sizing variables (e.g. bypass ratio, compressor ratios) are modeled as design variable QOIs of the respective
components.

Jet engine architecture instances are sized and evaluated using the framework presented in [60], which constructs
an MDAO problem using pyCycle [73] and OpenMDAO [74] based on a set of ArchElement classes that represent
engine elements. Each class contains several properties that provide input to the analysis, some of which are also
architecture-level sizing variables, such as pressure ratios and rpm’s. The thermodynamic cycle analysis is based on
coupling a series of airflow elements, with each element having airflow properties (e.g. pressure, temperature) both

Fig. 9 ADORE model showing the design space of the jet engine problem in system view.

16



Fig. 10 Supplementary Design Space Graph (SupDSG) modeling airflow variability for the jet engine problem.
Choice nodes are shown in blue, edges represent derivation edges. "Inlet" is the start node.

as analysis input and output. To automatically construct the MDAO problem, the connection sequence of elements
should therefore be defined. In [60], this is defined implicitly as part of the ArchElement instantiation code, however
this makes it difficult to trace exactly which elements are connect to each other for different architecture instances.
To mitigate this, we use a Supplementary Design Space Graph (SupDSG). A SupDSG is an extension of the ADSG
that allows modeling graph variability in contexts other than system architecting: for this problem, we use it to model
variability in the airflow as shown in Figure 10. Choice nodes are mapped to architecture choices in the ADORE model:
Fan, Compressor and Core/Bypass mixing choices are mapped 1-to-1 to their ADORE equivalents; the turbine choice is
divided in two, because otherwise it is not possible to maintain the same direction for derivation edges and airflow. All
nodes except choice and "[connector]" nodes are mapped to ArchElements, thereby specifying the airflow path for
each architecture instance.

We compare the ADORE model formulated with the fast and complete selection choice encoders (denoted "ADORE
Fast" and "ADORE Complete") with the manual formulation from [60] (denoted "Manual"). The Manual formulation
is available in SBArchOpt as SimpleTurbofanArch. Table 9 lists statistics, showing that the Manual and ADORE
Complete formulations are similar, and the ADORE Fast formulation leads to a higher IR. Manual and ADORE
Complete CT values are significantly lower than ADORE Fast, for the same reasons as for the rocket problem (𝑥valid,discr
availability). Optimizer performance is compared for ArchSBO, the hierarchical BO algorithm presented in [48]. The
algorithm is run with an initial DoE of 75 points, 200 infill points, 4 points evaluated in parallel, and 12 repetitions.
Figure 11 presents optimization results, showing that the Manual and ADORE Complete formulations perform similarly,
and ADORE Fast performs slightly worse.

Table 9 Jet engine problem formulations. The problem contains 70 valid discrete design vectors. Abbreviations:
𝑛𝑥𝑑 = discrete variables, 𝑛𝑥𝑐 = continuous variables, IR = imputation ratio, CR = correction ratio, CRF =
correction fraction, CT = correction time.

Formulation 𝑛𝑥𝑑 𝑛𝑥𝑐 IR CR CRF CT [ms]

Manual 6 9 3.9 2.1 55% 9.0
ADORE Fast 7 9 9.3 2.1 33% 87
ADORE Complete 6 9 4.6 2.1 55% 17

17



Fig. 11 Jet engine problem solved using the ArchSBO algorithm.

V. Conclusions and Outlook
The Design Space Graph (DSG) is a directed graph that models node and choice hierarchy using selection choices,

and connection patterns using connection choices. Selection choices are encoded using a complete encoder, enabling
full enumeration of all valid design vectors, or a fast encoder that needs less time and memory to encode. Connection
choices are encoded by pattern-specific, eager, lazy or ordinal encoders. For each Connection Choice Formulation
(CCF), the encoder is automatically selected based on two metrics (IR𝑑 and Dcorr). Incompatibility constraints and
choice constraints can be used to further constrain node selection and architectural choices. The DSG can then formulate
a design problem by encoding architectural choices as design variables and specifying objectives and constraints using
metric nodes. The Python implementation of the DSG is available open-source as ADSG Core.

To apply the DSG in a system architecting context, the Architecture Design Space Graph (ADSG) defines node types
with semantic meaning. For example, function, component, decomposition, multi-fulfillment, component instance,
and port nodes. A function connected to a component represents function fulfillment; the opposite represents function
induction. To create an ADSG, the ADORE modeling environment is used. ADORE provides a web-based GUI for
creating ADORE models (from which the ADSG is constructed), interfaces for implementing performance evaluation
functions, and an interface for connecting to optimization algorithms provided by SBArchOpt.

The ADSG is demonstrated by three demonstration cases: the design of a multi-stage launch vehicle (18.5k
architectures in the design space, demonstrating evaluation using dynamic collaborative MDAO), a guidance, navigation
and control system (79m architectures in the design space, demonstrating connection choice encoders), and a jet engine
architecture (70 architectures in the design space, demonstrating the Class Factory Evaluator and Supplementary Design
Space Graph). For each problem, formulations modeled in ADORE and encoded with the fast and complete encoders
are compared with manual formulations of the same problem. For all problems it is demonstrated that the ADORE
formulation results in similar optimizer performance as the best manual formulation if the complete selection choice
encoder is used. If the fast encoder is used, performance is reduced slightly. It can therefore be concluded that the
ADSG as implemented in ADORE can be used to define optimization problems using system architecting terminology
(functions, components, etc.) that are as solvable as manually-formulated optimization problems (i.e. defined in terms
of design variables, objectives, constraints, etc.).

Support for very large design space should be improved, so that hierarchical sampling and correction can also be
used in cases where currently the complete selection choice encoder is not available. In future work, the method should
be applied to more system architecture problems, such as on-board systems or System-of-Systems problems, with more
design variables and objectives than currently tested. Especially high-dimensional optimization problems (e.g. with
hundreds of design variables) are expected to pose problems for current SBO algorithms. ADORE should be integrated
with existing MBSE methods, enabling seamless transition from requirements engineering to system architecting, to
detailed design. A good candidate for this is the SysMLv2 language, which already supports variability modeling,
however might benefit from full SAO capabilities. Finally, collaborative MDAO should be applied to architecture
performance evaluation. The first steps towards this has been presented in [63], however integration should be made
easier by providing a generic mapping interface from generated architecture instances to the data model used in the
MDAO workflow.

18



Appendix

Table 10 ADSG node types and allowed incoming/outgoing derivation edge connections. Abbreviations: FDN =
function derivation node (node in the function allocation task other than the function node), F/M = function or
multi-fulfillment node, QOI = Quantity of Interest (met, dv, or inp), CCN = component characterization node
(QOI or attr), C/I = comp or inst.

Task Node Symbol Node type Incoming Outgoing

Function
allocation

Function fun Generic 0+ FDN 1+ FDN, 0+ QOI
Component comp Generic 1+ F/M 0+ fun or CCN, 1+ inst
Concept con Generic 1 F/M 1 fun
Decomposition de Generic 1 F/M 1+ fun
Non-fulfillment nof Generic 1 F/M
Multi-fulfillment multi Generic 1+ fun 1+ FDN

Component
characterization

Component instance inst Generic 1 comp 0+ CCN, 0+ in/out
Attribute attr Generic 1 C/I 1+ val
Attribute value val Generic 1 attr
Metric met Metric 1 C/I or func
Design variable dv Design variable 1 C/I or func
Static input inp Generic 1 C/I or func

Component
connection

Output port out Connector 1 inst Optional grp
Input port in Connector 1 inst Optional grp
Port grouping grp Connector grouping 1 in/out

Table 11 ADSG architecture choices. Choices are inserted for each matching incoming-outgoing pair.

Choice Type Incoming Outgoing

Function fulfillment Selection 1 fun 2+ FDN
Component instantiation Selection 1 comp 2+ inst
Attribute value selection Connection 1 attr 1+ val
Port connector instantiation Selection 1 inst 2+ in/out
Port connection Connection 1+ out 1+ in

19



Fig. 12 ADSG example, showing a design space with a boundary function (which is also the start function)
with an objective, a decomposition into 3 lower-level functions, selection choices (2x function fulfillment, 1x
component instantiation), instance-level design variables, and a port connection choice. Figure 4 shows the
equivalent ADORE model.

20



connected by

DSG

ADSG

ADORE Model

extends

constructs

Selection
choices

Connection
choices

Design
variables

encoded
as

encoded
as

Optimization
problem

defines

has

Objectives &
constraints

has

Incompatibility
constraints

Choice
constraints

subject to

Nodes has

selected by

Design vector

converted by

Architecture
graph

converted to

has
Architecture

elements

are

Design
problem

defines
ADORE model

elements
has

specify

represents

Architecture
instance

converted
to

Evaluation
function

evaluated by

Performance
metrics

provides

interpreted as

provided to

Python-based
evaluation

File-based
evaluation

Evaluatorrepresents

provides

SBArchOpt
problem

represents

SBArchOpt
optimizer

solves

converted
by

implements

subject to

generates

ADORE

ADSG

DSG

Legend

optimization
loop

External

Fig. 13 Connection between DSG, ADSG and ADORE layers and how these are involved in the SAO loop.

21



Acknowledgments
The research presented in this paper has been performed in the framework of the COLOSSUS project (Collaborative

System of Systems Exploration of Aviation Products, Services and Business Models) and has received funding from the
European Union Horizon Europe Programme under grant agreement n◦ 101097120.

References
[1] Crawley, E., Cameron, B., and Selva, D., System architecture: strategy and product development for complex systems, Pearson

Education, England, 2015. https://doi.org/10.1007/978-1-4020-4399-4.

[2] Ulrich, K., “The role of product architecture in the manufacturing firm,” Research Policy, Vol. 24, No. 3, 1995, pp. 419–440.
https://doi.org/10.1016/0048-7333(94)00775-3.

[3] La Rocca, G., “Knowledge Based Engineering Techniques to Support Aircraft Design and Optimization,” Ph.D. thesis, Delft
University of Technology, 2011.

[4] Roelofs, M., and Vos, R., “Correction: Uncertainty-Based Design Optimization and Technology Evaluation: A Review,” 2018
AIAA Aerospace Sciences Meeting, Reston, Virginia, 2018. https://doi.org/10.2514/6.2018-2029.c1.

[5] McDermott, T., Folds, D., and Hallo, L., “Addressing Cognitive Bias in Systems Engineering Teams,” 30th Annual INCOSE
International Symposium, Virtual Event, 2020. https://doi.org/10.1002/j.2334-5837.2020.00721.x.

[6] Judt, D., and Lawson, C., “Development of an automated aircraft subsystem architecture generation and analysis tool,”
Engineering Computations, Vol. 33, No. 5, 2016, pp. 1327–1352. https://doi.org/10.1108/EC-02-2014-0033.

[7] Bussemaker, J. H., and Ciampa, P., “MBSE in Architecture Design Space Exploration,” Handbook of Model-Based Systems
Engineering, edited by A. Madni, N. Augustine, and M. Sievers, Springer, Switzerland, 2022. https://doi.org/10.1007/978-3-
030-27486-3_36-1.

[8] Bussemaker, J. H., Bartoli, N., Lefebvre, T., Ciampa, P. D., and Nagel, B., “Effectiveness of Surrogate-Based Optimization
Algorithms for System Architecture Optimization,” AIAA AVIATION 2021 FORUM, Virtual Event, 2021. https://doi.org/10.
2514/6.2021-3095.

[9] Bussemaker, J. H., Ciampa, P. D., and Nagel, B., “System Architecture Design Space Exploration: An Approach to Modeling
and Optimization,” AIAA AVIATION 2020 FORUM, Virtual Event, 2020. https://doi.org/10.2514/6.2020-3172.

[10] Martins, J. R. R. A., and Ning, A., Engineering Design Optimization, Cambridge University Press, Cambridge, 2022. URL
https://mdobook.github.io/.

[11] Bussemaker, J. H., Ciampa, P. D., and Nagel, B., “System Architecture Design Space Modeling and Optimization Elements,”
32nd Congress of the International Council of the Aeronautical Sciences, ICAS 2020, Shanghai, China, 2021.

[12] Haberfellner, R., de Weck, O., Fricke, E., and Vössner, S., Systems Engineering, Springer International Publishing, Cham, 2019.
https://doi.org/10.1007/978-3-030-13431-0.

[13] Madni, A., “Novel Options Generation,” Transdisciplinary Systems Engineering, Springer International Publishing, Cham,
2017, pp. 89–102. https://doi.org/10.1007/978-3-319-62184-5_6.

[14] Menshenin, Y., Mordecai, Y., Crawley, E. F., and Cameron, B. G., “Model-Based System Architecting and Decision-
Making,” Handbook of Model-Based Systems Engineering, Springer International Publishing, Cham, 2022, pp. 1–42.
https://doi.org/10.1007/978-3-030-27486-3_17-1.

[15] Broodney, H., Dotan, D., Greenberg, L., and Masin, M., “1.6.2 Generic Approach for Systems Design Optimization in MBSE1,”
INCOSE International Symposium, Vol. 22, No. 1, 2012, pp. 184–200. https://doi.org/10.1002/j.2334-5837.2012.tb01330.x.

[16] Weilkiens, T., Variant Modeling with SysML, Leanpub, Victoria, BC, Canada, 2015.

[17] Bajaj, M., Friedenthal, S., and Seidewitz, E., “Systems Modeling Language (SysML v2) Support for Digital Engineering,”
INSIGHT, Vol. 25, No. 1, 2022, pp. 19–24. https://doi.org/10.1002/inst.12367.

[18] Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., and Wasowski, A., “Cool features and tough decisions,” Proceedings of
the Sixth International Workshop on Variability Modeling of Software-Intensive Systems - VaMoS '12, ACM Press, Leipzig,
Germany, 2012. https://doi.org/10.1145/2110147.2110167.

22

https://doi.org/10.1007/978-1-4020-4399-4
https://doi.org/10.1016/0048-7333(94)00775-3
https://doi.org/10.2514/6.2018-2029.c1
https://doi.org/10.1002/j.2334-5837.2020.00721.x
https://doi.org/10.1108/EC-02-2014-0033
https://doi.org/10.1007/978-3-030-27486-3_36-1
https://doi.org/10.1007/978-3-030-27486-3_36-1
https://doi.org/10.2514/6.2021-3095
https://doi.org/10.2514/6.2021-3095
https://doi.org/10.2514/6.2020-3172
https://mdobook.github.io/
https://doi.org/10.1007/978-3-030-13431-0
https://doi.org/10.1007/978-3-319-62184-5_6
https://doi.org/10.1007/978-3-030-27486-3_17-1
https://doi.org/10.1002/j.2334-5837.2012.tb01330.x
https://doi.org/10.1002/inst.12367
https://doi.org/10.1145/2110147.2110167


[19] Madeira, R. H., de Sousa Pinto, D. H., and Forlingieri, M., “Variability on System Architecture using Airbus MBPLE for
MOFLT Framework,” 33rd Annual INCOSE International Symposium, 2023. https://doi.org/10.1002/iis2.13041.

[20] Gedell, S., and Johannesson, H., “Design rationale and system description aspects in product platform design: Focusing
reuse in the design lifecycle phase,” Concurrent Engineering, Vol. 21, No. 1, 2012, pp. 39–53. https://doi.org/10.1177/
1063293x12469216.

[21] Raudberget, D., Edholm, P., and Andersson, M., “Implementing the principles of Set-based Concurrent Engineering in
Configurable Component Platforms,” DS 71: Proceedings of NordDesign 2012, the 9th NordDesign conference, Aarlborg
University, Denmark, 2012.

[22] Wyatt, D., Wynn, D., Jarrett, J., and Clarkson, P., “Supporting product architecture design using computational design
synthesis with network structure constraints,” Research in Engineering Design, Vol. 23, No. 1, 2012, pp. 17–52. https:
//doi.org/10.1007/s00163-011-0112-y.

[23] Kirov, D., Nuzzo, P., Passerone, R., and Sangiovanni-Vincentelli, A., “ArchEx: An Extensible Framework for the Exploration
of Cyber-Physical System Architectures,” Proceedings of the 54th Annual Design Automation Conference 2017, ACM, New
York, NY, USA, 2017. https://doi.org/10.1145/3061639.3062204.

[24] Herber, D. R., “Enhancements to the Perfect Matching Approach for Graph Enumeration-Based Engineering Challenges,”
Volume 11A: 46th Design Automation Conference (DAC), American Society of Mechanical Engineers, 2020. https://doi.org/10.
1115/detc2020-22774.

[25] Paparistodimou, G., “Generative design of robust modular system architectures,” Ph.D. thesis, 2020. https://doi.org/10.48730/
T9JH-6R87.

[26] de Vos, P., Stapersma, D., Duchateau, E., and van Oers, B., “Design space exploration for on-board energy distribution systems:
A new case study,” Proceedings of the 17th International Conference on Computer and IT Applications in the Maritime
Industries (COMPIT ’18), Pavone, Italy, 2018.

[27] Menu, J., Nicolai, M., and Zeller, M., “Designing Fail-Safe Architectures for Aircraft Electrical Power Systems,” 2018
AIAA/IEEE Electric Aircraft Technologies Symposium, American Institute of Aeronautics and Astronautics, 2018. https:
//doi.org/10.2514/6.2018-5032.

[28] Nicolai, M., Salemio, L., and Vanhuyse, J., “Design Space Modeling Language for the Generation of Engineering Designs,” ,
Jan. 2020.

[29] Mavris, D., de Tenorio, C., and Armstrong, M., “Methodology for Aircraft System Architecture Definition,” 46th AIAA
Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reston, Virigina, 2008, pp. 1–14.
https://doi.org/10.2514/6.2008-149.

[30] Chakraborty, I., and Mavris, D. N., “Integrated Assessment of Aircraft and Novel Subsystem Architectures in Early Design,”
54th AIAA Aerospace Sciences Meeting, Vol. 54, American Institute of Aeronautics and Astronautics, Reston, Virginia, 2016,
pp. 1268–1282. https://doi.org/10.2514/6.2016-0215.

[31] Guerster, M., and Crawley, E., “Dominant Suborbital Space Tourism Architectures,” Journal of Spacecraft and Rockets, Vol.
34385, 2019, pp. 1–13. https://doi.org/10.2514/1.A34385.

[32] Kurtoglu, T., and Campbell, M. I., “Automated synthesis of electromechanical design configurations from empirical analysis
of function to form mapping,” Journal of Engineering Design, Vol. 20, No. 1, 2009, pp. 83–104. https://doi.org/10.1080/
09544820701546165.

[33] Albarello, N., Welcomme, J., and Reyterou, C., “A formal design synthesis and optimization method for systems architectures,”
Proceedings of MOSIM, Bordeaux, France, 2012.

[34] Bornholdt, R., Kreitz, T., and Thielecke, F., “Function-Driven Design and Evaluation of Innovative Flight Controls and Power
System Architectures,” SAE Technical Paper Series, SAE International, 2015. https://doi.org/10.4271/2015-01-2482.

[35] Shougarian, N., “Towards concept generation and performance-complexity tradespace exploration of engineering systems using
convex hulls,” Ph.D. thesis, MIT, Department of Aeronautics and Astronautics, 2017.

[36] Simmons, W., “A Framework for Decision Support in Systems Architecting,” Ph.D. thesis, Massachusetts Institute of Technology,
2008.

23

https://doi.org/10.1002/iis2.13041
https://doi.org/10.1177/1063293x12469216
https://doi.org/10.1177/1063293x12469216
https://doi.org/10.1007/s00163-011-0112-y
https://doi.org/10.1007/s00163-011-0112-y
https://doi.org/10.1145/3061639.3062204
https://doi.org/10.1115/detc2020-22774
https://doi.org/10.1115/detc2020-22774
https://doi.org/10.48730/T9JH-6R87
https://doi.org/10.48730/T9JH-6R87
https://doi.org/10.2514/6.2018-5032
https://doi.org/10.2514/6.2018-5032
https://doi.org/10.2514/6.2008-149
https://doi.org/10.2514/6.2016-0215
https://doi.org/10.2514/1.A34385
https://doi.org/10.1080/09544820701546165
https://doi.org/10.1080/09544820701546165
https://doi.org/10.4271/2015-01-2482


[37] Iacobucci, J., “Rapid Architecture Alternative Modeling (Raam): a Framework for Capability-Based Analysis of System of
Systems Architectures,” Ph.D. thesis, Georgia Institute of Technology, 2012.

[38] Franzén, L. K., Staack, I., Krus, P., Jouannet, C., and Amadori, K., “Ontology-Represented Design Space Processing,” AIAA
AVIATION 2021 FORUM, American Institute of Aeronautics and Astronautics, 2021. https://doi.org/10.2514/6.2021-2426.

[39] Apaza, G., and Selva, D., “Automatic Composition of Encoding Scheme and Search Operators in System Architecture
Optimization,” 41st Computers and Information in Engineering Conference (CIE), American Society of Mechanical Engineers,
Virtual, 2021. https://doi.org/10.1115/detc2021-71399.

[40] Selva, D., “Rule-based system architecting of Earth observation satellite systems,” Ph.D. thesis, Massachusetts Institute of
Technology, Dept. of Aeronautics and Astronautics, 2012.

[41] Lopez-Herrejon, R. E., Linsbauer, L., and Egyed, A., “A systematic mapping study of search-based software engineering for
software product lines,” Information and Software Technology, Vol. 61, 2015, pp. 33–51. https://doi.org/10.1016/j.infsof.2015.
01.008.

[42] Lazreg, S., Cordy, M., Collet, P., Heymans, P., and Mosser, S., “Multifaceted Automated Analyses for Variability-Intensive
Embedded Systems,” 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), IEEE, 2019.
https://doi.org/10.1109/icse.2019.00092.

[43] Ölvander, J., Lundén, B., and Gavel, H., “A computerized optimization framework for the morphological matrix applied to aircraft
conceptual design,” Computer-Aided Design, Vol. 41, No. 3, 2009, pp. 187–196. https://doi.org/10.1016/j.cad.2008.06.005.

[44] Frank, C., “A Design Space Exploration Methodology to Support Decisions under Evolving Requirements Uncertainty and its
Application to Suborbital Vehicles,” Ph.D. thesis, Georgia Institute of Technology, 2016. https://doi.org/10.2514/6.2015-1010.

[45] Selva, D., Cameron, B., and Crawley, E., “Patterns in System Architecture Decisions,” Systems Engineering, Vol. 19, No. 6,
2016, pp. 477–497. https://doi.org/10.1002/sys.21370.

[46] Selva, D., Cameron, B., and Crawley, E. F., “A rule-based method for scalable and traceable evaluation of system architectures,”
Research in Engineering Design, Vol. 25, No. 4, 2014, pp. 325–349. https://doi.org/10.1007/s00163-014-0180-x.

[47] Frank, C., Marlier, R., Pinon-Fischer, O., and Mavris, D., “An Evolutionary Multi-Architecture Multi-Objective Optimization
Algorithm for Design Space Exploration,” 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, Reston, Virginia, 2016, pp. 1–19. https://doi.org/10.2514/6.2016-0414.

[48] Bussemaker, J. H., Saves, P., Bartoli, N., Lefebvre, T., Lafage, R., and Nagel, B., “System Architecture Optimization Strategies:
Dealing with Expensive Hierarchical Problems,” Journal of Global Optimization, 2024. Article submitted.

[49] Bussemaker, J. H., Saves, P., Bartoli, N., Lefebvre, T., and Nagel, B., “Surrogate-Based Optimization of System Architectures
Subject to Hidden Constraints,” AIAA AVIATION 2024 FORUM, Las Vegas, NV, USA, 2024.

[50] Chaudemar, J.-C., and de Saqui-Sannes, P., “MBSE and MDAO for Early Validation of Design Decisions: a Bibliography
Survey,” IEEE, 2021. https://doi.org/10.1109/syscon48628.2021.9447140.

[51] Dori, D., “Developing Industry 4 Systems with OPM ISO 19450 Augmented with MAXIM,” Handbook of Model-Based Systems
Engineering, Springer International Publishing, Cham, 2022, pp. 1–20. https://doi.org/10.1007/978-3-030-27486-3_38-1.

[52] Paredis, C., Bernard, Y., Burkhart, R., de Koning, H., Friedenthal, S., Fritzson, P., Rouquette, N., and Schamai, W., “An
overview of the SysML-Modelica transformation specification,” INCOSE International Symposium, Vol. 2, 2010, pp. 1–14.
https://doi.org/10.1002/j.2334-5837.2010.tb01099.x.

[53] Bile, Y., Riaz, A., Guenov, M., and Molina-Cristobal, A., “Towards Automating the Sizing Process in Conceptual (Airframe)
Systems Architecting,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, , No. January,
2018, pp. 1–24. https://doi.org/10.2514/6.2018-1067.

[54] Sobieszczanski-Sobieski, J., Morris, A., and van Tooren, M., Multidisciplinary Design Optimization Supported by Knowledge
Based Engineering, John Wiley & Sons, Ltd, West Sussex, UK, 2015. https://doi.org/10.1002/9781118897072.

[55] Helle, P., Schramm, G., Klostermann, S., and Feo-Arenis, S., “Enabling Multidisciplinary-Analysis of SysML Models in a
Heterogeneous Tool Landscape using Parametric Analysis Models,” The Complex Systems Design & Management Conference
(CSD&M 2022), 2022.

24

https://doi.org/10.2514/6.2021-2426
https://doi.org/10.1115/detc2021-71399
https://doi.org/10.1016/j.infsof.2015.01.008
https://doi.org/10.1016/j.infsof.2015.01.008
https://doi.org/10.1109/icse.2019.00092
https://doi.org/10.1016/j.cad.2008.06.005
https://doi.org/10.2514/6.2015-1010
https://doi.org/10.1002/sys.21370
https://doi.org/10.1007/s00163-014-0180-x
https://doi.org/10.2514/6.2016-0414
https://doi.org/10.1109/syscon48628.2021.9447140
https://doi.org/10.1007/978-3-030-27486-3_38-1
https://doi.org/10.1002/j.2334-5837.2010.tb01099.x
https://doi.org/10.2514/6.2018-1067
https://doi.org/10.1002/9781118897072


[56] Bussemaker, J. H., Boggero, L., and Ciampa, P. D., “From System Architecting to System Design and Optimization:
A Link Between MBSE and MDAO,” 32nd Annual INCOSE International Symposium, Detroit, MI, USA, 2022. https:
//doi.org/10.1002/iis2.12935.

[57] Bruggeman, A.-L., Nikitin, M., La Rocca, G., and Bergsma, O., “Model-Based Approach for the Simultaneous Design
of Airframe Components and their Production Process Using Dynamic MDAO Workflows,” AIAA SCITECH 2024 Forum,
American Institute of Aeronautics and Astronautics, 2024. https://doi.org/10.2514/6.2024-1530.

[58] Sonneveld, J., van den Berg, T., La Rocca, G., Valencia-Ibáñez, S., van Manen, B., and Bruggeman, A., “Dynamic workflow
generation applied to aircraft moveable architecture optimization,” 2023. https://doi.org/10.13009/EUCASS2023-544.

[59] Bruggeman, A. M., and La Rocca, G., “From Requirements to Product: an MBSE Approach for the Digitalization of the Aircraft
Design Process,” INCOSE International Symposium, Vol. 33, No. 1, 2023, pp. 1688–1706. https://doi.org/10.1002/iis2.13107.

[60] Bussemaker, J. H., De Smedt, T., La Rocca, G., Ciampa, P. D., and Nagel, B., “System Architecture Optimization: An Open
Source Multidisciplinary Aircraft Jet Engine Architecting Problem,” AIAA AVIATION 2021 FORUM, Virtual Event, 2021.
https://doi.org/10.2514/6.2021-3078.

[61] Fouda, M., Adler, E. J., Bussemaker, J. H., Martins, J. R. R. A., Kurtulus, D. F., Boggero, L., and Nagel, B., “Automated Hybrid
Propulsion Model Construction for Conceptual Aircraft Design and Optimization,” 33rd Congress of the International Council
of the Aeronautical Sciences, ICAS 2022, Stockholm, Sweden, 2022.

[62] Bussemaker, J. H., García Sánchez, R., Fouda, M., Boggero, L., and Nagel, B., “Function-Based Architecture Optimization: An
Application to Hybrid-Electric Propulsion Systems,” 33rd Annual INCOSE International Symposium, Honolulu, HI, USA,
2023. https://doi.org/10.1002/iis2.13020.

[63] Garg, S., García Sánchez, R., Bussemaker, J. H., Boggero, L., and Nagel, B., “Dynamic Formulation and Excecution of MDAO
Workflows for Architecture Optimization,” AIAA AVIATION 2024 FORUM, Las Vegas, NV, USA, 2024.

[64] Jeyaraj, A., Bussemaker, J. H., Liscouët-Hanke, S., and Boggero, L., “Systems Architecting: A Practical Example of Design
Space Modeling and Safety-Based Filtering within the AGILE4.0 Project,” 33rd Congress of the International Council of the
Aeronautical Sciences, ICAS 2022, Stockholm, Sweden, 2022.

[65] Weinberger, E., “Correlated and uncorrelated fitness landscapes and how to tell the difference,” Biological Cybernetics, Vol. 63,
No. 5, 1990, pp. 325–336. https://doi.org/10.1007/bf00202749.

[66] Bussemaker, J. H., “SBArchOpt: Surrogate-Based Architecture Optimization,” Journal of Open Source Software, Vol. 8, No. 89,
2023, p. 5564. https://doi.org/10.21105/joss.05564.

[67] Bussemaker, J. H., Ciampa, P. D., Singh, J., Fioriti, M., Cabaleiro, C., Wang, Z., Peeters, D., Hansmann, P., Vecchia, P. D., and
Mandorino, M., “Collaborative Design of a Business Jet Family Using the AGILE 4.0 MBSE Environment,” AIAA AVIATION
2022 FORUM, Chicago, USA, 2022. https://doi.org/10.2514/6.2022-3934.

[68] Bartoli, N., Lefebvre, T., Dubreuil, S., Olivanti, R., Priem, R., Bons, N., Martins, J., and Morlier, J., “Adaptive modeling
strategy for constrained global optimization with application to aerodynamic wing design,” Aerospace Science and Technology,
Vol. 90, 2019, pp. 85–102. https://doi.org/10.1016/j.ast.2019.03.041.

[69] Bussemaker, J. H., and Firchau, T., “System Architecture Optimization: An Example Application to Space Mission Planning,”
MBSE2024 Workshop, Bremen, Germany, 2024.

[70] Cabaleiro de la Hoz, C., Fioriti, M., and Boggero, L., “Automated generation of aircraft on-board system architectures and
filtering through certification specification requirements,” Journal of Physics: Conference Series, Vol. 2716, No. 1, 2024, p.
012044. https://doi.org/10.1088/1742-6596/2716/1/012044.

[71] Cabaleiro de la Hoz, C., Fioriti, M., Ramm, J., Boggero, L., and Nagel, B., “Automated Evaluation of Performance, Certification
and Maintenace Aspects of Aircraft On-board System Architectures During Preliminary Design Stages,” AIAA AVIATION 2024
FORUM, Las Vegas, NV, USA, 2024.

[72] García Sánchez, R., “Adaptation of an MDO Platform for System Architecture Optimization,” mathesis, Delft University of
Technology, Delft, NL, Jan. 2024.

[73] Hendricks, E., and Gray, J., “pyCycle: A Tool for Efficient Optimization of Gas Turbine Engine Cycles,” Aerospace, Vol. 6,
No. 8, 2019, p. 87. https://doi.org/10.3390/aerospace6080087.

[74] Gray, J., Hwang, J., Martins, J., Moore, K., and Naylor, B., “OpenMDAO: an open-source framework for multidisciplinary
design, analysis, and optimization,” Structural and Multidisciplinary Optimization, Vol. 59, No. 4, 2019, pp. 1075–1104.
https://doi.org/10.1007/s00158-019-02211-z.

25

https://doi.org/10.1002/iis2.12935
https://doi.org/10.1002/iis2.12935
https://doi.org/10.2514/6.2024-1530
https://doi.org/10.13009/EUCASS2023-544
https://doi.org/10.1002/iis2.13107
https://doi.org/10.2514/6.2021-3078
https://doi.org/10.1002/iis2.13020
https://doi.org/10.1007/bf00202749
https://doi.org/10.21105/joss.05564
https://doi.org/10.2514/6.2022-3934
https://doi.org/10.1016/j.ast.2019.03.041
https://doi.org/10.1088/1742-6596/2716/1/012044
https://doi.org/10.3390/aerospace6080087
https://doi.org/10.1007/s00158-019-02211-z

	Introduction
	System Architecture Optimization Review
	Architecture Generator
	Architecture Evaluator

	The Architecture Design Space Graph (ADSG)
	The DSG: Choice Modeling and Design Problem Formulation
	Choice Modeling and Architecture Generation
	Design Problem Encoding, Decoding and Correction

	The ADSG: Applying the DSG for System Architecting
	ADORE: Editing and Exploring Architecture Design Spaces
	Section Conclusions

	Demonstration: Architecture Optimization with ADORE
	Multi-Stage Launch Vehicle Architecture
	Guidance, Navigation and Control Architecture
	Jet Engine Architecture

	Conclusions and Outlook

