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multifaceted droughts in Mainland Southeast Asia using satellite-based time 
series
Tuyen V. Haa,b,c, Soner Uereyena and Claudia Kuenzera,b

aGerman Remote Sensing Data Center, German Aerospace Center, Wessling, Germany; bInstitute of Geography and Geology, University of 
Wuerzburg, Wuerzburg, Germany; cFaculty of Resources Management, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, 
Vietnam

ABSTRACT
Drought ranks among the costliest of all climate-related phenomena and manifests in various 
forms, posing significant challenges in understanding its influence on agriculture and natural 
ecosystems. Mainland Southeast Asia (MSEA), a significant region of tropical agriculture and 
vegetation ecosystems, has become increasingly susceptible to drought hazards. In this study, 
we characterized and assessed vegetation dynamics and their drought impacts using correlation 
analysis and explainable machine learning methods under different vegetation types and elevation 
zones during the dry growing seasons from 2000 to 2022. Specifically, we characterized the 
vegetation dynamics and their trend in space and time. Next, we assessed vegetation-drought 
responses in consideration of meteorological, hydrological, and agricultural droughts under dif
ferent land cover types and elevation characteristics. Lastly, we used an explainable machine 
learning method to quantify the drivers and impacts of multifaceted droughts on natural and 
undisturbed vegetation ecosystems. Our findings revealed that nearly 70% of the MSEA region 
experienced a greening trend despite large areas of vegetative damage during the drought years. 
Vietnam witnessed increasing vegetation condition in most observed years while the declining 
trend was mainly found in Cambodia and southern Laos. Vegetation-drought responses showed 
that tropical vegetation had a high sensitivity to drought conditions, and stronger responses were 
observed in rainfed crop, mixed forest, and deciduous forest at lower altitude areas. In natural and 
undisturbed ecosystems, short-term meteorological and agricultural drought disturbances 
accounted for nearly 93% of variations in tropical vegetation. Among the different examined 
drought indices, the 3-month Standardized Precipitation Evapotranspiration (SPEI-3) and 
Temperature Condition Index (TCI) were identified as the factors having the largest influence, 
together explaining about 55% of the observed natural undisturbed vegetation variations. These 
findings deepen our understanding of tropical vegetation-drought responses and the underlying 
drivers of natural and undisturbed ecosystems. Such insights could provide valuable information to 
assist national and local governments in the MSEA region in developing effective drought manage
ment and adaptation programs to safeguard tropical agricultural production and natural ecosys
tems amidst growing climate challenges.
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Introduction

Drought is a persistent phenomenon reoccurring in 
most climatic zones and ranks among the costliest of 
all climate-related hazards (Ha et al. 2022; Masson- 
Delmotte et al. 2021). The primary cause of drought 
stems from a lack of precipitation against the long- 
term average, and it can be grouped into four main 
types: meteorological, agricultural, hydrological, and 
socio-economic droughts (A. K. Mishra and Singh  
2010; Q. Zhao et al. 2023). Each of these types entails 
different consequences and temporal aspects, 

contributing to the multifaceted impacts of drought 
on agricultural, natural vegetation, and human sys
tems (P. Wang et al. 2022; West, Quinn, and Horswell  
2019). For example, meteorological drought usually 
initiates with a lack of precipitation and/or higher 
temperatures over a short period (e.g. 1–3 months) 
(A. K. Mishra and Singh 2010). By contrast, hydrologi
cal drought evolves from an extended deficit in pre
cipitation (e.g. more than six months), resulting in 
reduced surface water bodies and groundwater 
(A. K. Mishra and Singh 2010). Agricultural drought, 
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closely linked to meteorological and hydrological 
droughts, manifests through depleted soil moisture 
levels, directly impacting agrarian productivity (Ha 
et al. 2022; A. K. Mishra and Singh 2010). With ongoing 
global warming crises, drought is projected to inten
sify and become more frequent and devastating in 
many parts of the world (IPCC (2013); Masson- 
Delmotte et al. 2021), including the Mainland 
Southeast Asia (MSEA) region.

Vegetation is a fundamental element of terrestrial 
ecosystems and is crucial in safeguarding global bio
diversity, hydrological cycles, climate regulations, and 
food supplies (Qin et al. 2021). However, climate 
change and human disturbances have posed signifi
cant threats to natural ecosystems (Anderegg, Kane, 
and Anderegg 2013; Qi et al. 2023; H. Wang et al.  
2015) and social/human health (Patz et al. 2005; 
Smith et al. 2014). Droughts are identified as having 
the most direct and widespread impact on agriculture 
(Sun et al. 2023; Venkatappa et al. 2021) and ecosys
tem function (Cao et al. 2023). For example, the 
annual loss of European agriculture due to drought- 
related events amounts to $9 billion, which could 
exceed $65 billion by the year 2100 (Naumann et al.  
2021). This figure for the MSEA region is estimated to 
be $19 billion per year (UNESCAP 2019). Also, recent 
studies reSported droughts causing both widespread 
vegetation damage and forest mortality across 
Europe (Obladen et al. 2021; Senf et al. 2020), 
Australia (De Kauwe et al. 2020; Qin et al. 2022), 
China (Fang et al. 2019; H. Wang et al. 2015), and 
the MSEA region (Fan et al. 2023; Ha, Uereyen, and 
Kuenzer 2023; B. Zhang et al. 2014). For instance, Senf 
et al. (2020) estimated nearly 500 thousand ha of 
European forest mortality being caused by drought 
events from 1987 to 2016. Apart from drought-related 
factors, human-induced activities also significantly 
influence vegetation growth, both positive and nega
tive. For example, shifting agriculture and deforesta
tion damaged vegetation in Laos and Cambodia 
(Chen et al. 2023, Namkhan et al. 2021), while forest 
plantation programs significantly increased greening 
in Vietnam (Nambiar 2021).

Due to the effects of the ongoing climate crisis 
together with unprecedented human activities, it 
has become increasingly crucial to understand how 
vegetation reacts to a spectrum of natural and 
human-induced influences and their underlying 
determinants. Recent progress in remote sensing 

and numerical modeling has facilitated the open 
accessibility of extensive satellite-derived time series 
and reanalysis datasets (AghaKouchak et al. 2015; 
Muñoz-Sabater et al. 2021), such as Moderate 
Resolution Imaging Spectroradiometer (MODIS) and 
ERA5-Land products. Such open data policies have 
fueled the growing number of drought-vegetation 
studies (AghaKouchak et al. 2015; Ha et al. 2022; 
A. K. Mishra and Singh 2010; West, Quinn, and 
Horswell 2019). Several drought indices have been 
widely accepted to characterize different aspects of 
drought conditions and their impacts on vegetation, 
including the most commonly used Standardized 
Precipitation Index (SPI) (McKee, Doesken, and Kleist  
1993), Standardized Precipitation Evapotranspiration 
Index (SPEI) (Vicente-Serrano, Beguería, and López- 
Moreno 2010), Temperature Condition Index (TCI) 
(Kogan 1995), Soil Water Deficit Index (SWDI) (A. 
Mishra et al. 2017), and Palmer Drought Severity 
Index (PDSI) (Palmer 1965). Among the existing meth
ods, spatiotemporal correlation analysis was probably 
the most widely used to evaluate vegetation growth 
sensitivities to droughts across different climatic 
regions (Jin et al. 2023; Xu et al. 2018; X. Zhang and 
Zhang 2019). Such relationships are typically estab
lished based on single drought and vegetation 
indices (e.g. NDVI: Normalized Difference Vegetation 
Index, EVI: Enhanced Vegetation Index). Specifically, 
most recent studies estimated vegetation-drought 
sensitivities using NDVI time series together with 
SPEI/SPI observations (Cao et al. 2023; Jin et al. 2023; 
Xu et al. 2018) and other comparable combined 
indices (X. Zhang and Zhang 2019; B. Zhang et al.  
2014).

However, vegetation dynamics are complex and 
influenced by numerous drought-related factors, 
each with its unique impact on vegetation growth. 
For instance, the SWDI offers crucial insights into 
vegetation responses to transient soil moisture defi
cits (A. Mishra et al. 2017). Conversely, the multi- 
timescale SPEI and SPI delve into the sensitivities of 
vegetation to different short-term and long-term cli
mate-driven drought events (Jin et al. 2023; H. Wang 
et al. 2015). Gaining insights into the multifaceted 
aspects of vegetation-drought associations is essen
tial for assessing different drought-related risks and 
enhancing drought mitigation and adaptation strate
gies. In addition, while correlation analysis offers great 
insights into spatiotemporal vegetation-drought 
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relationships, it may struggle to discover the potential 
underlying drivers of change on vegetation ecosys
tems. In this regard, robust and explainable machine 
learning techniques are required in addition to tradi
tional correlation analyses to address these chal
lenges. Despite the growing interest in explainable 
machine learning, such methods received little atten
tion in vegetation-drought studies (B. Zhang et al.  
2023).

The MSEA is a major region of tropical agriculture 
and biodiversity ecosystems worldwide, but has 
become increasingly vulnerable to droughts and 
human-induced activities over the past two decades. 
Drought events mainly occur in this region during the 
dry growing seasons and have caused devastating 
damage to agriculture and natural ecosystems. For 
instance, a recent Vegetation Condition Index (VCI) 
analysis revealed that vegetation suffered from 
a significant decline during the dry seasons in 2004, 
2005, 2010, 2016, 2019, and 2020 across the MSEA 
region (Ha, Uereyen, and Kuenzer 2023). Likewise, Son 
et al. (2012) employed the vegetation temperature 
dryness index and found larger drought-induced 
crop areas in Cambodia and Thailand. Also, B. Zhang 
et al. (2014) reported a significant reduction in vege
tation productivity in 2005 and 2010 in the Mekong 
Basin using the Gross Primary Productivity (GPP). 
Notably, Fan et al. (2023) examined the influence of 
anthropogenic and climatic factors on vegetation 
greening using a partial correlation analysis and iden
tified temperature and precipitation as most impact
ful. Although these studies provide great insights into 
vegetation variations, understanding the multifa
ceted dimensions of vegetation-drought responses 
and the driving factors of natural undisturbed vegeta
tion ecosystems in the region remain understudied. 
For example, our prior study employed MODIS-based 
time series to explore vegetation-related drought 
characteristics, including trends (Ha, Uereyen, and 
Kuenzer 2023). The study highlighted that drought 
frequently occurred in this region during the dry sea
sons over the past decades. However, it lacked com
prehensive insights into how vegetation responds to 
droughts and how these trends vary across different 
land cover types and elevations.

In this study, we present an in-depth analysis of 
tropical vegetation dynamics and their multifaceted 
drought impacts using MODIS-based vegetation time 
series and multi-temporal and multi-type drought 

indices during the dry growing seasons from 2000 to 
2022 in the MSEA region. Specifically, we first exam
ined tropical vegetation dynamics and their trend 
across the study region. Secondly, we evaluated the 
responses of vegetation to drought using multifa
ceted drought indices in consideration of various 
land cover types and elevation characteristics. 
Finally, we quantified the drivers of natural and undis
turbed vegetation dynamics (e.g. vegetation ecosys
tems without significant human disturbances) to 
multifaceted drought indices using a robust and 
explainable machine learning method. The findings 
of this study will contribute to a better understanding 
of tropical vegetation responses and the underlying 
drivers of natural ecosystem change related to differ
ent droughts in the MSEA region. Such insights, in 
turn, could offer valuable support for developing 
effective drought management and adaptation stra
tegies in safeguarding food security and tropical eco
systems amidst growing global climate-related 
challenges.

Study area and materials

Study region

The MSEA region is located in Southeast Asia, and it 
extends over five different countries with a total land
mass of nearly 2 million km2 (Figure 1). The geogra
phy of this region is characterized by different land 
cover types (Figure 1(a)) and diverse elevations 
(Figure 1(b)). Here, we reclassified the MSEA land sur
face into seven major types: rainfed cropland, irri
gated cropland, shrubland, mixed forest, evergreen 
forest, deciduous forest, and other non-vegetation 
(e.g. water, bare-land, and built-up structures) using 
the European Space Agency (ESA) Climate Change 
Initiative (CCI) land cover product (Santoro et al.  
2017). In this region, cropland and forest are two 
dominant land cover types, accounting for nearly 
80% of the landmass. Rainfed croplands and ever
green forests have the largest share, with nearly 35% 
and 26%, respectively (inset plot in Figure 1(a)). 
Rainfed croplands are largely found in Thailand 
(~55%), Myanmar (~26%) and Cambodia (~37%), 
whereas irrigated agriculture (e.g. rice crop) is mainly 
observed in the Vietnamese Lower Mekong Delta.

The MSEA region falls within tropical and subtropi
cal zones (here referred to as tropical) as the 
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subtropical climate covers a small portion and can be 
found only in some high-altitude mountains in north
ern Myanmar (Beck et al. 2018; Köppen 1936). Overall, 
seasonal and tropical monsoon climate conditions 
primarily characterize weather patterns in this region 

(Yishan et al. 2022). Despite some climate variations 
across the MSEA countries, there are two main climate 
seasons: the rainy and dry seasons, each accompanied 
by two corresponding growing seasons. The rainy 
season frequently suffers from heavy precipitation, 

Figure 1. Map of the MSEA countries with different land cover classes (a) from the ESA CCI land cover product. The land cover types are 
reclassified into 7 major classes using the ESA CCI land cover dataset, and the sub-bar plot indicates the pixel percentage of seven land 
cover classes, respectively. The below maps show topographical characteristics (b) mean total precipitation (c) and mean temperature 
(d) during the dry seasons (November-April) from 2000 to 2022.
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for example in Vietnam (~400 mm/month) due to the 
southwest monsoon, spanning from May to October. 
However, the dry season experiences a significant 
reduction in precipitation (from November to April), 
leading to frequent drought conditions and heat 
waves across the region (Ha, Uereyen, and Kuenzer  
2023; Singh and Qin 2020). ERA5-Land data showed 
that most of the region suffers from the least rainfall, 
with less than 15 mm/month (Figure 1(c)), except the 
coastal areas of Vietnam, and high temperatures dur
ing the dry season (Figure 1(d)). Higher temperatures 
are dominantly observed in the southern region, 
especially in Cambodia and Vietnamese Lower 
Mekong Delta. The average temperatures in these 
areas during the dry season are around 30°C, while 
the northern region had lower temperature, espe
cially in the high mountains of Myanmar (Figure 1(d)).

Datasets and pre-processing

This study employed a wide array of geospatial data
sets, including MODIS NDVI and land surface tem
perature (LST) measurements, ERA5-Land reanalysis 
products, ESA CCI land cover, digital elevation model 
(DEM), soil property information as well as the World 
Database on Protected Areas (WDPA). All adopted 
datasets, except for the WDPA and ESA CCI land 
cover, were accessed through the Google Earth 
Engine (GEE) cloud computing platform (Gorelick 
et al. 2017), and they were converted into 
a geographic coordinate system (WGS84) and 
resampled to 1 km spatial resolution. In this study, 
the NDVI time series was used to derive the VCI, an 
indicator of vegetation health condition 
(Section 3.1.1). The ERA5-Land reanalysis, soil proper
ties, and MODIS LST datasets were used to calculate 
different drought indices (Section 3.1.2), while the 

WDPA was used to define the natural and undis
turbed vegetation areas (Section 3.2.3). A concise 
description of each dataset used in this study is pro
vided in Table 1 and elaborated upon in the subse
quent sections.

Modis-based NDVI and LST time series
This study used analysis-ready vegetation-based 
time-series measurements from both Terra and Aqua 
MODIS NDVI 16-day 1-km spatial resolution products 
(version 6.1) from 2000 to 2022. This dataset has been 
generated from georeferenced, radiometrically, and 
atmospherically corrected MODIS red and near- 
infrared reflectance bands (Didan 2021). The 16-day 
product was derived by selecting the highest-quality 
daily NDVI pixels acquired over the course of a 16-day 
period. Here, we used the MODIS-associated quality 
assurance band (QA) within the GEE platform to mask 
out cloud-related pixels. In case of missing NDVI 
observations, we applied linear interpolation, and 
monthly composites were subsequently generated 
using the median value composite (MVC) technique 
(Ha, Uereyen, and Kuenzer 2023), known for its 
robustness in handling outliers (Göttsche and Olesen  
2001). Next, the Savitzky-Golay method was under
taken to reconstruct the MODIS NDVI time-series 
measurements, reflecting a more reliable vegetation 
growth curve (De Jong et al. 2011; Ha, Uereyen, and 
Kuenzer 2023). Finally, this dataset was reprojected 
into a geographic coordinate system (WGS84) from 
the Sinusoidal grid system and restricted to the MSEA 
region at 1 km spatial resolution.

The LST was obtained from Terra and Aqua day
time MODIS 8-day 1 km spatial resolution (version 6.1) 
from 2000 to 2022 (Wan, Hook, and Hulley 2021). 
Here, cloud-covered LST pixels were removed from 
the MODIS LST collection before monthly composites 

Table 1. Description of satellite and reanalysis datasets used in this study. The data period indicates the timeframe during which the 
data was generated or last updated.

Datasets/sensors Variables
Temporal 
resolution

Spatial 
resolution Data period Source

MODIS NDVI and LST 16/8-day 1 km 2000 - present Didan (2021) and Wan, Hook, 
and Hulley (2021)

ERA5-Land Precipitation, soil moisture, air temperature,  
net radiation, wind, humidity

Hourly ~10 km 1950 - present Muñoz-Sabater et al. (2021)

Open soil data Carbon organic, clay, and sand contents – 250 m 2018 Hengl (2018)
ESA CCI land cover Land cover/land use Yearly 300 m 2000–2020 Santoro et al. (2017)
SRTM DEM Digital elevation model – 90 m 2000 Berry, Garlick, and Smith (2007)
World Database Protected 

Areas (WDPA)
Terrestrial protected areas – – 2023 IUCN and UNEP (2020)
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were retrieved using the mean composite method. 
Missing LST observations were interpolated based 
the nearest neighbor pixels. This dataset was trans
formed into a geographical coordinate system 
(WGS84) and subsequently limited to the MSEA 
region.

Climate and soil reanalysis products
ERA5-Land is the fifth-generation reanalysis product, 
developed by the European Center for Medium- 
Range Weather Forecasts (ECMWF), providing con
sistent, multi-temporal, and high-resolution meteor
ological and land surface information from 1950 to 
the present, with a global coverage at 9 km spatial 
resolution. This dataset was produced from 
a combination of station-based observation data 
and state-of-the-art atmospheric-land assimilation 
and numerical modeling techniques (Muñoz- 
Sabater et al. 2021). The 
ERA5-Land variables have undergone extensive 
regional- and global-scale validation in recent 
years. For example, Muñoz-Sabater et al. (2021) 
revealed that the ERA5-land soil moisture had 
good agreement with in-situ soil observations from 
2010 to 2018 globally, while Rivoire, Martius, and 
Naveau (2021) found strong agreement between 
ERA5-Land variables and station-based data across 
European countries. These validations demonstrated 
the reliability and accuracy of ERA5-Land data in 
capturing essential climatic and environmental 
variables.

For this study, we selected soil moisture content 
and meteorological variables from the ERA5-Land 
hourly dataset between 2000 and 2022. The hourly 
climate variables were first aggregated into daily 
observations, and these daily measurements were 
then used to calculate potential evapotranspiration 
(PET) based on the FAO-56 Penman-Monteith 
approach (Allen et al. 1998) using the pyet Python 
package (Vremec, Collenteur, and Birk 2023). The PET 
data serves as a key input component for deriving 
climate-based drought indices such as the SPEI. After 
the PET calculation, we selected three variables, 
namely PET, precipitation and soil moisture. These 
variables were aggregated monthly for later calculat
ing the SPEI, SPI, and SWDI (Section 3.1.2). These 
monthly datasets were resampled to 1 km to align 
with the spatial resolution of the MODIS product 
using the bilinear method.

Land cover data
Numerous global land cover products are available at 
different spatial and temporal resolutions. In this 
study, the ESA CCI land cover dataset with 300 m 
resolution was used. The advantages of this data are 
its consistency, comparatively high-spatial resolution, 
improved accuracy, and annual update. This dataset 
has been curated by harnessing high-quality multi- 
satellite products, such as SPOT, MERIS, and PROBA-V, 
utilizing a blend of state-of-the-art machine learning 
algorithms (Santoro et al. 2017). Furthermore, every 
pixel in this dataset was consistently cross-verified 
with several-year observations to minimize potential 
classification errors. For this study, we sourced annual 
land cover maps, spanning the years 2000 to 2020 
from the ESA CCI land cover program (https://www. 
esa-landcover-cci.org/). Subsequently, we selected 
unchanged vegetation pixels over the past two dec
ades covering the MSEA region and categorized into 
six main types: rainfed cropland, irrigated cropland, 
mixed forest, evergreen forest, deciduous forest, and 
shrubland. In order to ensure the compatibility with 
MODIS products, we aggregated the land cover data 
to a spatial resolution of 1 km using the nearest 
neighbor method.

Auxiliary variables
This study also used the World Protected Area 
Database, elevation, and soil property datasets to 
facilitate the further analysis. The World Database on 
Protected Areas, developed jointly by the UN 
Environment Program and the International Union 
for Conservation of Nature, offers a comprehensive 
and up-to-date source of information on global pro
tected areas, such as national parks, wildlife reserves, 
and marine protected areas. Here, this dataset was 
used to define the natural and undisturbed vegeta
tion ecosystems, which serves the driver analysis of 
natural vegetation change in the Section 3.2.3. We 
selected only terrestrial protected areas within the 
MSEA region, resulting in a total of 417 natural (pro
tected) areas. On average, the terrestrial protected 
areas in Laos and Cambodia had the largest area, 
~160 thousand and ~ 115 thousand hectares, respec
tively, while Vietnam featured the smallest, ~32 thou
sand hectares. This dataset contains multi-part 
geometries and some overlapping polygons, so we 
decomposed these multi-part geometries into indivi
dual single-part polygons and selected only the 
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protected areas that exceeded 4 MODIS pixels (~400  
hectares), leading to a selection of 421 protected 
polygons. In addition, we accessed the Shuttle Radar 
Topography Mission (SRTM) elevation data through 
the GEE platform. This dataset provides consistent 
and high-quality near-global extent elevation at 90 m 
spatial resolution (Berry, Garlick, and Smith 2007). 
Finally, we retrieved the characteristics of top-soil 
layers, including clay, sand, and carbon organic con
tents. These variables were generated using robust 
ensemble machine learning methods and a large col
lection of in-situ observations (Hengl 2018). To ensure 
uniformity in our analysis, these datasets were subse
quently resampled to 1 km spatial resolution using the 
bilinear technique.

Methodology

This section presents the employed methodology for 
characterizing and assessing vegetation dynamics 
and their multifaceted drought impacts in the MSEA 
region during the dry seasons from 2000 to 2022. 
Here, the multifaceted drought impact implies the 
consideration of different drought indices, each repre
senting distinct drought types with multi-temporal 
information. Our analysis delves into the impacts of 
these indices on vegetation, offering insights on how 
different drought conditions influence and shape the 
response of vegetation. In summary, the implemen
ted methodology includes following steps: (1) retriev
ing and pre-processing satellite and reanalysis time 
series at monthly resolution; (2) calculating vegeta
tion condition and drought indices; (3) masking non- 
vegetation and defining the analysis within the dry 
seasons; (4) analysis of vegetation dynamics and 
trends, vegetation-drought responses, and drivers. 
An overview of the workflow is illustrated in 
Figure 2, and detailed descriptions are presented in 
subsequent sections.

Selection of vegetation and drought indices

Vegetation condition index (VCI)
NDVI is one of the most widely used indices for mon
itoring vegetation change and its sensitivity to human 
and environmental drivers such as land-use change 
and drought (Fensholt et al. 2009; Z. Li et al. 2013). 
However, this index presents some limitations. For 
example, the NDVI primarily measures the greenness 

of vegetation, and it may not capture subtle changes 
or water stress (e.g. drought) in vegetation (Goward 
et al. 1991). If the time-series NDVI data are linearly 
transformed into the VCI, this VCI data could over
come such challenges (Kogan 1990). For example, the 
VCI can capture subtle changes while exhibiting 
strong sensitivity to short- and long-term variations 
in vegetation. In addition, the VCI measures not only 
the greenness of vegetation but also its overall health, 
considering various stressors caused by environmen
tal factors (Kogan 1990; Liu and Kogan 1996). Last but 
not least, the VCI is expressed as a percentage ranging 
from 0% (extremely poor vegetation) to 100% 
(healthy vegetation), making it more interpretable. 
For this purpose, the time-series VCI measurements 
are expressed in the following equation (Kogan 1990) 
(Eq. 1). In this study, the VCI values are calculated per 
pixel. 

Where VCIi is vegetation condition of the i month. The 
NDVImin and NDVImax are the minimum and maximum 
NDVI values observed in a specific month during the 
selected study period (2000–2022), while NDVIi pre
sents the monthly NDVI values. Although the VCI 
values can be classified into various levels of vegeta
tion health severity, poor and healthy vegetation are 
generally considered below and above 50%, respec
tively (Ha, Uereyen, and Kuenzer 2023; Kogan 1995). 
Henceforth, the term VCI in this study is also referred 
to as vegetation condition.

Drought indices
Drought is a complex and multifaceted phenomenon 
that devastates agriculture and natural terrestrial eco
systems (Ha et al. 2022; Venkatappa et al. 2021). 
Numerous drought indices have been developed to 
capture various drought characteristics over the past 
decades. In this study, however, we selected four key 
drought indices: SPI, SPEI, SWDI, and TCI because 
these indices have been widely established in clima
tology studies (A. K. Mishra and Singh 2010; Seiler, 
Kogan, and Sullivan 1998) and demonstrated their 
applicability across diverse geographical regions 
with different climatic conditions. Each of these 
indices captures different temporal dimensions and 
types of drought and its influence on vegetation. For 
instance, the SPI and SPEI capture multi-temporal 
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drought information (McKee, Doesken, and Kleist  
1993; Vicente-Serrano, Beguería, and López-Moreno  
2010), reflecting different drought types such as 
meteorological and hydrological droughts, while the 
SWDI and TCI capture short-term agricultural drought 
related to soil moisture (A. Mishra et al. 2017) and 
thermal temperature (Kogan 1995), respectively.

The SPI, a widely used drought index, was initially 
proposed by McKee, Doesken, and Kleist (1993). This 
index can be calculated at multi-temporal resolution 
and derived exclusively from historical precipitation 
time-series data by fitting a statistical distribution. 
Here, we selected specific timescales for calculating 
the SPI to manifest various drought conditions from 
2000 to 2022. Specifically, the SPI-1 (1-month) and 

SPI-3 (3-month) have been widely used to capture 
short-term drought, while the SPI-6 (6-month) and 
SPI-9 (9-month) represent medium-term drought, 
and SPI-12 (12-month) captures longer-term drought 
conditions (Fang et al. 2019; Ji and Peters 2003). The 
SPI calculation involves fitting a gamma distribution 
to the observed precipitation within each month for 
a selected accumulative timescale (e.g. 1-month, 
3-month, and 6-month), and then the resulting values 
are transformed into a standard normal distribution 
(Fang et al. 2019; McKee, Doesken, and Kleist 1993). 
The SPI values typically range from − 3 to + 3, with 
larger negative (positive) values indicating drier (wet
ter) conditions. Due to its simplicity and multi- 
timescale characteristics, the SPI was suggested by 

Figure 2. A descriptive workflow showing the analysis of vegetation dynamics and responses to different drought indices as well as 
the evaluation of drivers of natural and undisturbed vegetation variability during the dry months (November – April) from 2000 to 
2022 in the MSEA region. The used drought indices included SPEI (standardized precipitation evapotranspiration index), SPI 
(standardized precipitation index), TCI (temperature condition index), and SWDI (soil water deficit index), while soil contents referred 
to clay, sand, and organic carbon layers to retrieve the SWDI. WDPA indicates the World Database on Protected Areas while VCI and 
DEM means vegetation condition index and digital elevation model, respectively. The SPEI and SPI were calculated over multiple 
temporal scales of 1, 3, 6, 9, and 12 months.
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the World Meteorological Organization (WMO) for 
monitoring and assessing drought (Ha et al. 2022; 
A. K. Mishra and Singh 2010; WMO 1975).

One of the significant challenges associated with 
the SPI lies in its exclusive reliance on precipitation 
data. To address this limitation, a modified version of 
the SPI, known as SPEI, was developed by Vicente- 
Serrano, Beguería, and López-Moreno (2010). The SPEI 
offers a more holistic approach to assessing drought 
conditions by considering not only precipitation but 
also evapotranspiration. Here, we calculated the SPEI 
using the same procedure and timescales as observed 
in the SPI, but the climatic water balance (D) and log- 
logistic distribution are used instead. The climatic 
water balance (D) is derived from the difference 
between precipitation (P) and PET using the equation 
Eq. 2 (Vicente-Serrano, Beguería, and López-Moreno  
2010). 

Where Di indicates monthly water balance, and Pi and 
PETi denotes the precipitation and PET at month i, 
respectively.

In tropical regions, vegetation exhibits high sensi
tivity to temperature variations. Extreme high or cold 
temperatures can induce negative adversity to vege
tation vigor. Hence, we calculated the TCI, which 
reflects different responses of vegetation to thermal 
stress. The TCI is derived from MODIS-based LST by 
relative calculations using the minimum and maxi
mum temperatures recorded during the specified 
period (Kogan 1995), expressed in Eq. 3. 

Where TCIi is temperature condition index of the i 
month. The Tmin and Tmax are the minimum and max
imum temperature values observed in a specific 
month during the selected study period (2000– 
2022), while Ti presents the monthly temperatures. 
Higher TCI values indicate wetter conditions, whereas 
lower values denote drier conditions, and normal 
conditions are around 50% (Kogan 1995).

While the SPI, SPEI, and TCI provides critical infor
mation on meteorological and hydrological aspects of 
drought, they may not directly capture the soil moist
ure. By contrast, the SWDI offers robust insights into 
soil moisture conditions. Notably, this indicator is cap
able of detecting soil moisture deficits even before 

they become evident in precipitation data, making it 
a useful tool for monitoring agricultural drought 
(A. Mishra et al. 2017). Here, we calculated the SWDI 
using relevant soil properties and monthly topsoil 
moisture (7-28 cm depths), as established in previous 
studies (Martínez-Fernández et al. 2015; A. Mishra 
et al. 2017). Lower negative SWDI values imply drier 
conditions, while more positive values signify wetter 
conditions, with values approaching zero indicating 
non-drought conditions.

Analysis of vegetation dynamics and their drought 
impacts

Trends of vegetation time series
Monitoring vegetation dynamics and trends provide 
crucial insights into the ecological health of our pla
net and enable the assessment of the impacts of 
climate change as well as land-use and ecosystem 
disturbances. In this study, we combined the 
Modified Mann-Kendall (MMK) test and the Sen’s 
slope method to detect interannual trends in vegeta
tion vigor during the dry growing seasons spanning 
from 2000 to 2022 across the MSEA region. These 
methods are non-parametric and robust, capable of 
handling outliers, missing values, and non-normally 
distributed data measurements (Z. Li et al. 2013). The 
MMK test determines the trend direction, whereas the 
Sen’s slope measures the magnitude of the slope 
(Frazier et al. 2018). A positive slope denotes an 
increasing trend in vegetation, while a negative 
slope signifies a decrease.

The Mann-Kendall (MK) significance test, proposed 
by Kendall and Henry Mann (Kendall 1948; Mann  
1945), has been commonly used for estimating tem
poral trends in vegetation and climatology studies 
(De Jong et al. 2011; Guo et al. 2018). However, this 
method can yield lower sample variance measures 
due to its sensitivity to autocorrelated time series 
data (Guo et al. 2018), as is often observed in vegeta
tion and climate time series. To address this issue, 
Hamed and Rao (1998) introduced the MMK test, 
and this method became more robust in the presence 
of temporal serial correlation data. In addition, vege
tation time-series observations may be influenced by 
various factors, such as human activities and sensor- 
related issues. Thus, this study determined the overall 
trend by calculating the statistically significant trend 
for a specific period (e.g. 10 years) and averaged 
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across different time intervals while also accounting 
for local trend. Specifically, a statistically significant 
trend was calculated for each period extending over 
a decade (e.g. 2000–2010, 2001–2011, 2002–2012, 
and so on). The overall trend over the study period 
was subsequently averaged over all intervals (12 inter
vals). A significant trend in the MMK test is subse
quently identified at a level of p-value ≤0.05 per 
pixel basis, whereas non-significant trend values are 
discarded from the analysis.

Spatial patterns of vegetation response to drought
This study employed Spearman’s rank correlation 
analysis to investigate the responses of vegetation 
condition to different drought indices during the dry 
growing seasons from 2000 to 2022. The Spearman 
method is a non-parametric measure of the strength 
and direction of the monotonic relationship between 
the two variables (Bisquert et al. 2017; Tran et al.  
2023). This technique is recognized as more robust 
to non-linear relationships and non-normally distrib
uted data, which are frequently encountered in vege
tation and climate time series (Cao et al. 2022). Time 
series of vegetation condition and drought indices 
were initially transformed into anomalies to address 
potential spurious correlation (Udelhoven et al. 2009). 
Subsequently, we identified the maximum correlation 
coefficients (MCC) between vegetation condition and 
SPEI and SPI across multiple timescales (e.g. 1, 3, 6, 9, 
12 months), while calculating the correlation values 
for TCI and SWDI at each pixel. Different vegetation 
types may exhibit different sensitivities to drought 
durations, and the MCC highlighted the most robust 
response of vegetation to the SPEI and SPI. The 
Spearman correlation coefficients range from − 1 to 
1, where values closer to ± 1 (0) indicate stronger 
(weaker) monotonic relationships, respectively. 
Positive correlations suggest that vegetation tends 
to deteriorate as drought severity increases, while 
negative correlations indicate an inverse association. 
The coefficients calculated at each pixel are identified 
at p ≤ 0.05 significance level.

Driver analysis of natural and undisturbed vegetation
Global warming poses a significant threat to the func
tioning of terrestrial vegetation and ecosystems 
(Forzieri et al. 2022; McDowell and Allen 2015). 
Therefore, it is imperative to understand how drought 
conditions drive natural and undisturbed vegetation, 

as this serves as a critical reference point. In this study, 
we selected natural vegetation areas (e.g. undis
turbed forests and shrubs) where human activities 
are either absent or negligible. Hence, our analysis 
was confined to protected areas, allowing us to eluci
date the driving factors of change in natural and 
undisturbed vegetation across the MSEA region dur
ing the dry growing seasons between 2000 and 2022. 
While precipitation, temperature, and soil moisture 
are widely used and recognized as the most direct 
indicators for identifying contributions to vegetation 
variability, they come with major limitations related to 
drought characteristics. For instance, raw precipita
tion fails to capture both short-term and long-term 
droughts/impacts and lacks multi-temporal informa
tion (Lloyd‐Hughes and Saunders 2002). By contrast, 
drought indices provide a more holistic, time- 
sensitive, and spatially consistent assessment of 
drought conditions (Lloyd‐Hughes and Saunders  
2002; A. K. Mishra and Singh 2010). The SPEI, for 
example, can provide drought information across dif
ferent timescales, representing various drought types. 
In addition, the SPEI takes the temperature and pre
cipitation into account, so it offers more relevant 
insights into the water availability within ecosystems. 
Here, our analysis considered several land- 
atmosphere-based drought indices as the drivers of 
vegetation dynamics, including SPI-1, SPI-3, SPI-6, SPI- 
9, SPI-12, SPEI-1, SPEI-3, SPEI-6, SPEI-9, SPEI-12, TCI, 
and SWDI.

To determine the relative importance of driving 
factors on vegetation dynamics, we performed the 
random forest (RF) regression (Breiman 2001) and 
applied the SHapley Additive exPlanations (SHAP) 
method (Lundberg and Lee 2017). The RF regression, 
a non-parametric ensemble learning method, offers 
robustness against outliers, non-linearity, overfitting, 
and autocorrelation in time-series data (Breiman  
2001; Gessner et al. 2015). It constructs a large num
ber of decision trees by repeatedly selecting random 
subsets of the original datasets with replacement, 
a process known as bootstrapping (Breiman 2001). 
In our study, we trained the RF regression using time- 
series drought indices to predict the vegetation con
dition (VCI) with 500 decision trees. While the RF 
regression model can measure the overall importance 
of features, it lacks the capacity to deliver individual 
insights for each specific prediction and fails to 
explain why and how these features influence 
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vegetation conditions (Lange et al. 2022). Thus, the RF 
regression was combined with the SHAP method to 
explain the overall and detailed impacts of different 
drought conditions on vegetation change. The SHAP 
technique computes the Shapley values from 
a trained machine learning model (e.g. RF regression), 
providing the directional contributions and strength 
of each observation to the model output (Lundberg 
and Lee 2017). Positive (negative) SHAP values sug
gest a positive (negative) impact on the prediction of 
the response variable, respectively. The overall rela
tive importance of each feature is subsequently deter
mined by calculating the mean of the absolute SHAP 
values across all individual observations. In this study, 
the SHAP method and RF regression are performed 
using Python SHAP and scikit-learn packages, 
respectively.

Results and discussion

Dynamics and trends of vegetation condition

Spatiotemporal vegetation patterns
In the MSEA region, the vegetation condition exhib
ited diverse spatial and temporal patterns across var
ious land cover types and countries during the dry 
seasons from 2000 to 2022. Overall, larger areas of 
stressed vegetation (VCI ≤50) were detected in 
Thailand, Cambodia, and Myanmar in certain years. 
Notably, rainfed croplands and evergreen forests gen
erally suffered from poorer vegetation health.

As can be seen in Figure 3, vegetation condition 
experienced noticeable stress in 2004, 2005, 2007, 
2010, and 2020. Almost 60% of the dry seasons in 
the region recorded large-area vegetation distur
bances (with over 40% of affected areas each year) 
over the study period. For example, nearly 80% of the 
vegetation in the MSEA region witnessed signs of 
degradation in 2005, while in 2010, this proportion 
peaked at almost 75%. In recent years, there have 
been distinct variations in stressed and productive 
vegetation. The highest rates of healthy vegetation 
were recorded in 2018 and 2022 (~85%) across the 
region. In contrast, large areas of stressed vegetation 
were evident in 2019, 2020, and 2021 (Figure 3). These 
findings were aligned with recent studies (Ha, Uereyen, 
and Kuenzer 2023; B. Zhang et al. 2014). Widespread 
instances of vegetation stress were primarily asso
ciated with drought hazards. A recent analysis of 

ground-based drought data revealed that the MSEA 
region suffered from multiple severe drought episodes 
in 2005, 2010, 2015, 2019, and 2020 (Ha et al. 2022). 
These years coincided with large areas of stressed 
vegetation in the region (Figure 3). Also, B. Zhang 
et al. (2014) examined vegetation productivity in the 
same region during the drought years and revealed 
that the severe drought event in 2005 reduced nearly 
15% of vegetation productivity.

Given the spatiotemporal dynamics of vegetation 
types and management practices in each MSEA coun
try, areas of stressed vegetation were temporally var
ied over the study period. Figure 4 shows the 
temporal evolution of stressed vegetation areas 
across different land cover types across the MSEA 
countries. Overall, Cambodia had the most significant 
areas of stressed vegetation over the study period, 
while Vietnam suffered from the least vegetation 
deterioration, especially over the past ten years. 
Most areas of stressed vegetation were found in 
rainfed cropland and forests. For example, nearly 
30% of rainfed cropland in Cambodia suffered from 
stress in 2005, and this figure remained relatively 
similar over the study period. In Thailand, this propor
tion peaked in 2005 (~25%) and 2020 (17%), while 
Laos and Myanmar generally had less than 10% of 
stressed rainfed croplands.

In comparison, Vietnam had below 5% of stressed 
rainfed cropland in most observed years (Figure 4). 
Notably, Vietnam together with Laos and Myanmar 
had much smaller proportions of stressed rainfed 
cropland areas than that in Cambodia and Thailand. 
Venkatappa et al. (2021) assessed the impact of 
drought on rainfed cropland in Southeast Asian coun
tries and reported that Cambodia and Thailand had 
the highest proportion of damaged rainfed cropland, 
about 40% and 30%, respectively. By contrast, 
Vietnam witnessed less than 10% of its rainfed crop
land affected during the same period. These discre
pancies could be attributable to several factors such 
as climatic factors, resource availability, and cropping 
practices. For example, Vietnam had a relatively 
higher precipitation rate and lower temperatures 
than Thailand and Cambodia during the dry seasons 
(Hersbach et al. 2020). In Myanmar, Cornish et al. 
(2018) reported that short-duration crops and shifting 
sowing dates were commonly practiced in drought- 
prone areas to minimize the risks in rainfed cropping 
systems (Radanielson et al. 2019).
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Among the remaining vegetation types, evergreen 
and mixed forests experienced larger areas of distur
bances than shrubland and deciduous forests over 
the years, especially during the drought years. 
Cambodia had the largest area of forest disturbance, 
being above 10% in 2005, 2010, and 2020, while Laos 
and Myanmar ranked second, with 5 to 10% of the 
forests being stressed (Figure 4). Vietnam and 
Thailand experienced below 5% stressed forests (e.g. 
evergreen forests). Irrigated cropland and deciduous 
forests had little sign of degradation. Specifically, only 

less than 3% of the respective areas were under stress 
in most observed years. Higher proportions of 
stressed forests in Cambodia, Laos, and Myanmar 
were in accordance with recent studies (Chen et al.  
2023; Grogan et al. 2015; Hansen et al. 2013), primarily 
due to drought and deforestation.

Vegetation trend analysis
Despite several years of vegetation stress, vegetation 
across the MSEA region had generally shown 
a greening trend over the past two decades. Figure 5 

Figure 3. Spatial variability of vegetation condition over the MSEA region during the dry growing seasons from 2000 to 2022. The blue 
represents healthier vegetation, whereas reddish color implies poorer vegetation condition.
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displays the spatial pattern of statistically significant 
vegetation greening trend (p-value ≤0.05) detected 
during the dry seasons from 2000 to 2022. 
It is observed that nearly 70% of the MSEA region 
experienced an increasing vegetation trend, and this 
greening was predominantly in the northern region 
(Figure 5a). Our detected spatial trend was also clearly 
observed in recent studies. For example, Ha, Uereyen, 
and Kuenzer (2023) employed time series MODIS- 
based vegetation and indicated that greening and 
browning vegetation were dominated in the northern 
Vietnam and Cambodia, respectively. In more details, 
Vietnam had the highest proportion of pixels exhibit
ing a greening trend (~75%), followed by Thailand 
(~70%). Myanmar and Laos also saw substantial green
ing, with proportions of 70% and 62%, respectively. In 
contrast, Cambodia had the lowest percentage of 
greening pixels, with only around 40%. Notably, there 
was a distinct pattern of vegetation trends between 
Thailand and its neighboring countries. For instance, 
within 50 km of the Thai-Cambodia border, Thailand 
exhibited a significant rise in vegetation greening, 
averaging 2.1% per year (in VCI units) during the dry 
seasons from 2000 to 2022 (Figure 5a). Cambodia, 
however, witnessed a significant decline in vegetation 
at a rate of − 2% per year during the same period. This 
distinctive pattern can be attributed to the stringent 
protection and control measures imposed on forests in 
Thailand. Southworth, Nagendra, and Cassidy (2012) 

revealed that the Thai military plays a crucial role in 
safeguarding these forests, bolstered by the presence 
of protected areas

Apart from spatial distribution of the vegetation 
trend, the line plots from Figure 5 depict the temporal 
variations of overall vegetation trend across the MSEA 
countries. Again, Vietnam exhibited a consistent trend 
in greening vegetation over the past 22 years. 
Conversely, Cambodia showed an overall decline in 
the vegetation trend (Figure 5b). Despite some tem
poral variations, vegetation condition in Myanmar, 
Laos, and Thailand remained relatively stable (non- 
significant trend) in most land cover types (Figure 6). 
Notably, a significant decline in vegetation was found 
in Cambodia across different land cover types, with 
the most substantial reduction occurring in decid
uous forests and shrubs at a rate of − 1% per year 
(Figure 6). By contrast, Vietnam witnessed a signifi
cant greening trend, averaging above 1% per year in 
most land cover types (Figure 6). It can be observed 
that a large area of Myanmar and southern Laos 
indicated a sign of significant browning vegetation 
(Figure 5a), but examining individual vegetation types 
showed a statistically non-significant trend in most 
cases (Figure 6). Country-specific disturbances and 
data aggregation could be responsible for these var
iations. For example, the per-pixel trend analysis used 
in this study enables detecting location-specific and 
subtle changes in vegetation, while aggregating data 

Figure 4. Temporal variations in the percentage of stressed vegetation areas across six land cover types in the MSEA countries during 
the dry seasons from 2000 to 2022. Stressed vegetation corresponds to areas where the VCI ≤ 50, indicating drought-induced 
vegetation condition.
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across land cover types over large areas may struggle 
to capture more local and transient variability. It is 
also important to note that land-use types in the 
MSEA countries are significantly fragmented and 
intertwined. For instance, Kuenzer et al. (2018) exam
ined the consistency among six global land cover 
products (e.g. MODIS land cover, GlobCover) in the 
MSEA region, and their findings indicated large dis
parities among these products. This means that the 
temporal trend of vegetation across land cover types 
in the MSEA countries could be largely influenced by 
the land cover product.

While several factors may contribute to spatiotem
poral variations in the vegetation trends across the 
study region, drought and forest disturbances are 
likely the major drivers. For example, Cambodia 
ranked among the countries with the highest rate of 
forest loss worldwide (Hansen et al. 2013), with nearly 
50 thousand km2 of forest loss from 1998 to 2018 
(Namkhan et al. 2021). Likewise, Myanmar also lost 
approximately 30 thousand km2 of its forests over the 
same period (Namkhan et al. 2021). Our trend analysis 
indicated that nearly 70% of Cambodian forests suf
fered from a declining trend over the past 22 years, 

Figure 5. Spatial variability of vegetation condition trend (a) over the dry growing seasons from 2000 to 2022. Red colors represent 
negative vegetation trend (decreasing vegetation) and blue implies positive trend (increasing vegetation). Right-side subplots (A-C) 
shows the trend of vegetation condition in three exemplified locations with different land cover characteristics. Subplots (A-B) 
represent vegetation trends where forest was cut down or disturbed whereas the subplot (C) displays the trend of vegetation in the 
Lower Mekong Delta, where agriculture is dominant and stayed stable over the study period. The line plots represent the overall trend 
of vegetation across the MSEA countries (b) Cambodia, (c) Thailand, (d) Laos, (e) Myanmar, and (f) Vietnam. Statistically significant 
slope values in the line plots are marked with three asterisks (***, p-value ≤0.01), two asterisks (**, p-value ≤0.05), and one asterisk 
(*, p-value ≤0.1).
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while this figure for Myanmar was 32%. As an exam
ple, a negative trend in forested areas are displayed in 
the subplots (A) and (B) of Figure 5. In Vietnam, large 
areas of greening vegetation were detected in the 
north, and this was primarily due to forest plantation 
initiatives and intensive agricultural practices 
(Nambiar 2021).

Noticeably, the Central Highlands of Vietnam 
showed a significant decline in vegetation, possibly 
driven by the expansion of industrial crops (e.g. coffee 
plantations) into forested areas (Zeng et al. 2018). 
Also, this area was affected by the worst drought in 
2016 (Le et al. 2020). In Laos, browning trends were 
identified in large proportions of the southern pro
vinces, being consistent with recent findings of wide
spread forest loss (Cui et al. 2023) originating from 
shifting agriculture activities (Chen et al. 2023). This 
shift has resulted in the expansion of rainfed cropland 
areas, and recent droughts significantly exacerbated 
the declining trends. In comparison, most of the 
Lower Mekong Delta experienced greening trends 
over the past 22 years. This greening trend was clearly 

visible in Figure 5 (subplot C), where irrigated rice- 

growing systems were dominant (Ha, Uereyen, and 

Kuenzer 2023).
Apart from drought and forest disturbances, eleva

tion and land-use patterns may also influence the 
trend of vegetation. Figure 7 shows the distribution 
of significant vegetation trend values (p-value ≤0.05) 
under various elevation bins and land cover charac
teristics across the MSEA region. Clearly, higher vege
tation trends were primarily found at higher elevation 
zones across the land cover types (Figure 7). 
Specifically, vegetation condition at altitudes above 
1000 m exhibited the highest positive trend while the 
elevation bins within the 100-500 m exhibited lower 
trends. For example, a gradual increase in the vegeta
tion trend from low to higher elevations was identi
fied for evergreen forest, with nearly 2% (in VCI unit) 
above 1000 m. Notably, deciduous forest witnessed 
the largest increase in vegetation trend, starting from  
− 2% (in VCI unit) at 100 m to nearly 2% above 1000 m 
(Figure 7). Rainfed and irrigated cropland displayed 
a relative stable trend across the elevation bins while 
shrubland and mixed forest showed a slight increase 
in the vegetation trend at higher elevation areas. 
Multiple factors can contribute to varying vegetation 

Figure 6. Temporal trends of vegetation condition during the dry growing seasons across different landcover types in the MSEA 
countries. The vertical columns represent six land cover types and horizontal rows represent five different countries (e.g. Cambodia, 
Thailand, Laos, Myanmar, and Vietnam). Statistically significant slope values are marked with three asterisks (***, p-value ≤0.01), two 
asterisks (**, p-value ≤0.05), and (*, p-value ≤0.1).
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trends across elevations. Higher precipitation and 
cooler temperature in higher altitudes can facilitate 
the vegetation growth compared to low elevation 
zones (Daly et al. 2008; You et al. 2013). Also, soil 
quality and water retention capabilities are likely bet
ter at higher elevations due to lower rates of soil 
erosion and less intensive land use. The presence of 
rich organic matter (e.g. leaf and plant debris) in these 
regions enhances water retention, providing a stable 
supply of moisture for vegetation even during the dry 
periods (Cislaghi et al. 2019). In addition, these areas 
were generally forests and less impacted by human 
activities (e.g. agricultural shifting and land use con
version), resulting in less deforestation and land 
degradation (Zhenzhong et al. 2021). Among the 
examined land cover types, deciduous forests, on 
average, experienced a negative trend, particularly 
in lower elevation zones, while other land cover 
types witnessed a positive trajectory. In case of decid
uous forests, it is observed that nearly 85% of this 
forest is located in Cambodia under 100 m above 
the seas and witnessed negative trends. By contrast, 
deciduous forests in high elevations (above 500 m) 
are primarily observed in Myanmar (~73%) and 
Thailand (~17%), where positive trends were more 
dominant. These patterns were consistent with the 
spatial distribution of the VCI trend demonstrated in 

Figure 5. Cambodian forests witnessed large decline 
primarily due to drought and forest disturbance (e.g. 
deforestation) over the past 20 years (Hansen et al.  
2013; Ha, Uereyen, and Kuenzer 2023). This observa
tion was also reported in other studies (Jeganathan, 
Dash, and Atkinson 2014; Zoungrana et al. 2018), 
indicating that tropical deciduous forests in the 
MSEA are more vulnerable at lower elevation areas.

Responses of vegetation to droughts

Spatial patterns of vegetation-drought responses
To study vegetation condition response to varying 
drought conditions across the MSEA region, we calcu
lated Spearman per-pixel correlations between vege
tation and multiple drought indices (SPEI, SPI, SWDI, 
and TCI) at different time scales during the dry sea
sons from 2000 to 2022. Overall, there was 
a significant positive correlation between vegetation 
condition (VCI) and drought indices (Figure 8). 
Notably, the TCI generally had a higher relationship 
with vegetation condition among the examined 
drought indices, with the central region of Vietnam 
exhibiting non-significant correlations in most cases. 
Our per-pixel analysis found that the proportion of 
statistically significant coefficients varied from 56 to 
66% between vegetation and drought indices across 

Figure 7. Boxplots of spatially averaged vegetation trend values (p-value ≤ 0.05) in the MSEA region under different elevations and 
land cover types during the dry seasons from 2000 to 2022. The green asterisk and red line in each box represent mean and median 
values, respectively.
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the MSEA region. The SPEI and SPI had the largest 
proportion of significant coefficients, with nearly 66%, 
while the SWDI witnessed only 56%.

Figure 8(a,b) displays a consistent positive relation
ship between vegetation and the drought indices 
SPEI and SPI across the MSEA region. Vegetation in 
the MSEA region had a higher response to short- 
timescale SPEI and SPI, and this pattern was more 
evident in Central Myanmar and northern Thailand. 
For example, nearly 90% of the MSEA region showed 
the largest response of vegetation to SPEI-1, SPEI-3, 
and SPEI-6 (subplot in Figure 8a). In addition, nearly 
56% of the MSEA region was characterized by 
a significant positive correlation between vegetation 
and SWDI (Figure 8c), resulting in an average R-value 

of about 0.6. Likewise, nearly 60% of the study area 
depicted statistically significant positive correlations 
between vegetation health and TCI (Figure 8d) over 
the study period. In comparison, only 3% of the area 
showed such negative correlations between the two 
datasets, and the rest indicated statistically non- 
significant correlations. Notably, Cambodia had the 
most substantial area with positive correlations 
between the TCI and vegetation (~82%), followed by 
Thailand (~72%), and Myanmar (~60%). Despite spa
tial variations, the average R coefficients in these 
countries ranged from 0.35 to 0.82 (Figure 8d). By 
contrast, Vietnam showed the modest R coefficients, 
averaging around 0.35, covering around 35% of the 
country. Most of Vietnamese central and northern 

Figure 8. Spatial patterns of Spearman coefficients between vegetation conditions and drought indices (a: SPEI, b: SPI, c: SWDI, and d: 
TCI) during the dry seasons between 2000 and 2022. Red (blue) colors represent the negative (positive) values of correlation 
coefficients (p-value ≤0.05) between vegetation and drought conditions. The gray areas indicate statistically non-significant pixels 
and masked areas. The inset bar plots in (a-b) indicate the proportion of the total area having the largest coefficients at the selected 
timescales. The SPEI and SPI represents the maximum correlation coefficient with vegetation condition at the five drought timescales 
(1-month, 3-month, 6-month, 9-month, and 12-month). SPEI: standardized precipitation evapotranspiration index, SPI: standardized 
precipitation index, SWDI: soil water deficit index, and TCI: temperature condition index.
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regions witnessed non-significant correlations, while 
the southern regions showed relatively high vegeta
tion-drought responses, particularly along the Central 
Highlands, extending toward the southern coast of 
Vietnam (Figure 8d).

This relationship suggests that vegetation condi
tion tends to thrive as values of drought indices 
increase, indicating wetter conditions. In other 
words, vegetation in the MSEA region is sensitive to 
changes in soil moisture and water availability, mak
ing it more susceptible to drought. These positive 
correlations between vegetation and drought indices 
agreed with previous studies (Ji and Peters 2003; 
A. Zhao et al. 2018), and that vegetation generally 
responds to shorter drought indices (e.g. SPEI-1, 
SPEI-3) in tropical areas (Vicente-Serrano et al. 2013). 
It is noteworthy, however, that a large portion of the 
central Vietnam and upper Myanmar typically experi
enced statistically non-significant relationships 
between vegetation and drought indices. This 
absence can be attributed to a range of localized 
factors. In mountain ranges, microclimatic variations 
driven by altitude and topography create diverse 
weather patterns that can independently influence 
vegetation health. For example, in Myanmar’s north
ern mountains, presence of fog and dew can provide 
moisture that supports vegetation even during peri
ods of low precipitation, thereby possibly weakening 
the correlation with the drought indices. Likewise, 
coastal areas in Vietnam experience sea breezes and 
high humidity levels that can sustain vegetation 
despite drought conditions, masking the expected 
correlation. One common observation in these 
regions is an abundance of precipitation, which can 
stabilize vegetation growth. Moreover, human activ
ities such as agricultural practices and land use 
changes can artificially bolster vegetation resilience 
to drought (Fan et al. 2023). These factors underscore 
the complexity of ecosystem responses to climate 
variables and highlight the need for localized studies 
to better assess the interplay between drought 
indices and vegetation dynamics in these specific 
regions.

Responses of vegetation to droughts under different 
elevations and land cover types
Vegetation responses to droughts can be influenced 
by different factors, including environmental and 
human-induced elements. In this study, we examined 

the responses of vegetation to multifaceted drought 
indices at statistically significant pixels in considera
tion of different land cover types and elevation char
acteristics. Overall, vegetation condition exhibited 
a significantly positive response to drought indices, 
but its responses varied across land cover types and 
elevation zones in the MSEA region.

Figure 9 depicts the spatially averaged coeffi
cients (p-value ≤0.05) between vegetation and the 
drought indices across elevation bins with respect 
to specific land cover types. It is observed that 
vegetation condition appears to have a higher 
response to TCI at lower elevations. For instance, 
deciduous forests had the strongest response to 
the TCI at below 100 m elevation zones (R = 0.85), 
while its response at above 1000 m was notably 
lower (R = 0.56). In comparison, higher vegetation 
responses to the remaining drought indices (SPEI, 
SPI, SWDI) were found in 300–1000 m elevated 
areas. In this regard, the highest vegetation- 
drought response was especially observed at 
300–500 m zones (Figure 9) across rainfed crop 
(R = [0.63–0.7]), mixed forest (R = [0.63–0.69]), and 
deciduous forest (R = [0.62–0.73]). This pattern sug
gests that vegetation condition at elevation zones 
between 300 and 1000 m is more likely vulnerable 
to drought variability. Also, this finding is consistent 
with the lower vegetation trend in these areas 
(Figure 7a). Furthermore, it can be noted that vege
tation above 1000 m witnessed a lower response to 
drought indices (Figure 9). At the same time, it is 
determined that vegetation trend was highest at 
these altitudes (Figure 7a). While limited research 
has explored the relationship between vegetation 
and multifaceted drought indices across different 
elevations, Y. Wang et al. (2021) studied the 
responses of vegetation to droughts (SPEI and SPI) 
in the Tibetan Plateau and found that higher eleva
tions tended to have lower responses to vegetation 
productivity.

In terms of vegetation-drought responses across 
land cover types, deciduous and mixed forests had 
the highest response to drought indices, being fol
lowed by rainfed croplands. For example, the correla
tion between TCI and deciduous forests, on average, 
was found to be ~ 0.73. By contrast, other remaining 
land cover types had much lower responses to 
drought indices, especially in lower elevations. For 
example, shrubland was less sensitive to drought 
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indices with a R between 0.53 and 0.64. Notably, ever
green forests had the lowest response to all examined 
drought indices, suggesting a higher resilience to 
droughts in the tropical regions. This might be 
explained through the fact that tropical evergreen 
forests maintain better light-use efficiency of photo
synthesis even during the dry conditions (Huang and 
Xia 2019). It is also observed that evergreen forests in 
the MSEA region are primarily found in higher eleva
tions (e.g. northern Myanmar), where climatic condi
tions experience less extreme events (Feng et al.  
2020).

Drivers of natural and undisturbed vegetation 
dynamics

In this study, the RF model was trained using the 
entire sample data from 2000 to 2022, and subse
quently the SHAP values were derived from this 
trained model. Although the model optimization is 
not the primary focus, we assessed the model’s per
formance, finding an R2 (coefficient of determination) 
of 0.94 on the entire training dataset over the pro
tected areas. This result indicated that our trained 
model performed well, suggesting a reasonable level 
of accuracy for proceeding with the SHAP analysis.

Divergent drought conditions can significantly 
impact the condition of natural vegetation (Chang 
et al. 2023), especially in tropical and subtropical 
regions. In the following, we explored the roles of 
different drought indices driving natural and undis
turbed vegetation variability during the dry seasons 
across the MSEA region from 2000 to 2022. These 
indices, each representing distinct aspects of drought 
conditions, were categorized into short-term (e.g. 
SPEI-1, SPEI-3, SPI-1, SPI-3, TCI, and SWDI), medium- 
term (e.g. SPI-6, SPI-9, SPEI-6, and SPIE-9), and long- 
term drought conditions (e.g. SPEI-12 and SPI-12).

In this regard, Figure 10a shows the relative impor
tance of drought indicators driving natural vegetation 
dynamics. Generally, this figure indicates that natural 
and undisturbed vegetation appears to be exception
ally influenced by short-term disturbances. For 
instance, short-term drought conditions explained 
nearly 93% of variations in natural vegetation 
changes in the MSEA region. In particular, the SPEI-3 
was the most influential contributor, explaining 
approximately 35% of the observed changes. This 
finding underscores the significant impact of precipi
tation and temperature patterns occurring over three 
months on natural and undisturbed vegetation. The 
TCI ranked second, accounting for about 20% of the 

Figure 9. Heatmap shows the distribution of spatially averaged coefficients (p-value ≤0.05). These coefficients highlight the 
correlation between vegetation condition and four drought indices across the land cover categories during the dry growing seasons 
between 2000 and 2022. The SPEI and SPI represents the maximum correlation coefficient with vegetation condition from multi- 
temporal timescales (1-month, 3-month, 6-month, 9-month, and 12-month). SPEI: standardized precipitation evapotranspiration 
index, SPI: standardized precipitation index, SWDI: soil water deficit index, and TCI: temperature condition index.
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variations, followed by the SWDI (~14%). The SPI-1, 
SPI-3, and SPEI-1 also has a significant role, collectively 
accounting for 24% of the variations. By contrast, 
other drought indices, representing medium and 
long-term drought conditions, appeared to have 
a minor impact, accounting for less than 2% in most 
cases.

Interestingly, it is observed that the TCI can have 
a considerable influence on natural and undisturbed 
vegetation in the tropical MSEA region (Figure 10b) in 
certain cases despite its lower overall importance 
than the SPEI-3. For example, the wettest condition 
based on the TCI can increase vegetation up to 25% in 
some instances, while the driest events can reduce 
nearly 20% of vegetation. These findings underlined 

the significance of the thermal temperature variations 
in influencing natural vegetation dynamics. For 
instance, Baumbach et al. (2017) reported that 
European vegetation was significantly vulnerable to 
extreme temperatures while extreme cold spells sub
stantially reduced vegetation productivity in mid-to- 
high latitude regions during the spring and summer 
months (J. Li et al. 2022). Our findings generally 
agreed with recent studies that tropical vegetation 
has become more sensitive to extreme temperatures 
and precipitation (Ciemer et al. 2019; Fan et al. 2023).

Despite the divergent contributions, short-term 
drought conditions generally had a higher influence 
on tropical natural vegetation across the MSEA region 
during dry seasons. This can be attributed to the 

Figure 10. Relative contribution measures of drought impact on vegetation variability across the MSEA region using random forest- 
and shap-based methods. The bar plot (a) represents the overall importance of driving factors based on SHAP values (in percentage). 
Higher values indicate more important drivers in random forest and SHAP analyses. The bee swarm plot (b) presents the details of the 
contribution of individual observations to vegetation dynamics. Positive and negative SHAP values from the bee swarm plot indicate 
positive (increasing) and negative (decreasing) contributions to vegetation condition while its color bar represents feature observation 
values from low (drier conditions in red) to high (wetter conditions in blue). The combination of red and blue dots signifies ambiguity 
in their impact on natural vegetation. Driving factors include the SWDI, SPI, TCI, and SPEI during the dry seasons from 2000 to 2022. To 
minimize the impact of human activities on vegetation, this analysis is limited to protected areas.
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responses of natural vegetation to the specific tem
poral patterns of moisture availability within the eco
systems. For instance, the SPEI-3, considering 
precipitation and evapotranspiration over 
a relatively short time (Vicente-Serrano, Beguería, 
and López-Moreno 2010), aligns closely with the cri
tical period when moisture stress begins to impact 
tropical vegetation (Chang et al. 2023; Wantong et al.  
2022). In arid and semi-arid regions, in comparison, 
vegetation condition tends to be more sensitive to 
long-term droughts (Xu et al. 2018; Zhan et al. 2022). 
In this regard, these findings provide useful informa
tion to understand the behaviors of drought condi
tions that significantly drive natural and undisturbed 
vegetation changes in the MSEA region. Recognizing 
the SPEI-3 as the most critical driver has significant 
implications for understanding and managing natural 
ecosystem health and vulnerability in these regions. 
This information enables local land authorities and 
conservationists to anticipate potential shifts in vege
tation distribution and identify areas at higher risk of 
drought-induced stress. Ultimately, this understand
ing strengthens the ability to manage and protect 
tropical ecosystems effectively, providing better gui
dance for conservation efforts in the face of growing 
global warming crises.

While the RF regression and SHAP methods can 
determine the variable importance and provide infor
mative insights into its individual contributions, they 
may fall short in capturing the full complexity of 
natural ecosystem responses and interactions. 
Tropical and subtropical vegetation systems are intri
cate and influenced by numerous factors, including 
biotic and abiotic features. Limiting the analysis to 
drought-related conditions may overlook other cru
cial drivers, such as wildfires, pest infestations, and 
forest disturbance. For instance, wildfire events, 
ignited by a spectrum of natural and human- 
induced factors, can have profound and immediate 
effects on vegetation composition and structure 
(Morresi et al. 2022). Also, the drought indices used 
in this study were calculated for the duration of the 
MODIS time series while longer periods (e.g. 30-years) 
are typically recommended for calculating the SPEI 
and SPI (Ha et al. 2022; A. K. Mishra and Singh 2010; 
Vicente-Serrano, Beguería, and López-Moreno 2010). 
Hence, this problem may influence the reliability of 
our analysis. It is also important to note that although 
our analysis is restricted to protected areas and 

assumes minimal human interference, several studies 
have reported that the detrimental effects of growing 
tourism activities and deforestation on natural vege
tation and ecosystems within terrestrial protected 
areas have become more evident in developed and 
developing countries (Leberger et al. 2020; Pickering 
and Hill 2007). We acknowledge that protected areas 
may not cover all natural and undisturbed vegetation 
ecosystems within the study region. Significant 
expansions of pristine vegetation may exist beyond 
protected boundaries, thus warranting consideration 
despite their exclusion from this study. Last but not 
the least, there may be discrepancy between the R2 

values on the entire sample dataset and the test data, 
so the importance of features identified by SHAP 
values should be interpreted with caution.

Future research endeavors should broaden their 
scope to encompass diverse drivers, such as El Niño/ 
Southern Oscillation (ENSO), to better understand 
driving factors in tropical natural vegetation. Given 
the increasing global warming crisis and significance 
of tropical biodiversity, this region is expected to 
experience more intensified and devastating 
droughts in the foreseeable future, and understand
ing the sensitivities of vegetation to future drought 
conditions is crucial for assessing the impacts of cli
mate change on vegetation ecosystems. Thus, simu
lating and predicting future vegetation-drought 
sensitivities under different drought scenarios are 
needed to plan and mitigate the negative effects of 
climate change on natural ecosystems. Also, the MSEA 
region consists of interconnected river systems (e.g. 
Mekong River) and such networks can greatly influ
ence vegetation ecosystems. Hence, network infer
ence analysis should be considered in the future 
work due to the causal interactions among the eco
hydrological dynamics (J. Li and Convertino 2021; 
Rinaldo, Gatto, and Rodriguez-Iturbe 2018; H. Wang 
and Convertino 2023).

Conclusion

The MSEA is a significant region of tropical agriculture 
and vegetation ecosystems, and has been frequently 
impacted by severe drought events over the past 
decades. This study attempted to provide a detailed 
analysis of vegetation dynamics and their drought 
impacts using MODIS-based vegetation time series and 
ensemble of drought indices in consideration of 
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different land cover types, land-use transitions, and ele
vation characteristics. Specifically, we first characterized 
tropical vegetation dynamics and their trends in 
space and time. Secondly, we assessed vegetation- 
drought responses using multi-temporal and multi- 
type drought indices in consideration of land cover 
and elevation characteristics. Finally, we quantified 
the drivers and impacts of multifaceted droughts on 
natural and undisturbed vegetation ecosystem using 
a robust explainable machine learning method. The 
main findings of this study are summarized in the 
following:

● First, the spatiotemporal pattern of vegeta
tion condition and its trend varied across 
the MSEA region over the past 22 years. 
Large areas of stressed vegetation were 
observed during the dry seasons in 2004, 
2005, 2010, 2016, 2019, and 2020. 
Specifically, nearly 80% of the region indi
cated vegetation stress during the dry season 
in 2005, while this value amounted to 75% in 
2010. This stress was primarily observed in 
rainfed croplands, especially in Cambodia 
and Thailand. Despite the temporal variabil
ity, a greening trend was observed for almost 
70% of the vegetated areas. At country scale, 
Vietnam had the largest area of greening 
trend (~75%), followed by Thailand (~70%). 
By contrast, Cambodia had the largest area 
of declining vegetation (~60%). These vegeta
tion trends varied with elevation characteris
tics and land use types, but higher altitudes 
exhibited a larger greening trend than lower 
altitudes across land cover types.

● Second, vegetation was highly responsive to 
drought conditions across the MSEA region, and 
higher influences of drought were largely found 
in Myanmar, Thailand, and Cambodia. Generally, 
vegetation showed a significant positive 
response (R = [0.5-0.75]) to the drought indices 
during the dry season. Vegetation had a higher 
coupling with the TCI among the examined 
drought indices, and this coupling was found to 
be stronger with lower elevation in rainfed crop, 
mixed forest, and deciduous forest. Evergreen 
forest and irrigated crop vegetation showed the 
least response to drought indices, especially in 
high elevation zones.

● Third, short-term drought disturbances accounted 
for nearly 93% of the variation of the natural and 
undisturbed tropical vegetation in the MSEA 
region. The SPEI-3 was identified as the factor 
having the largest influence among the examined 
drought indices, explaining approximately 35% of 
the observed vegetation dynamics, followed by 
the TCI (~20%). The SPEI-3 indicated that wet 
conditions can positively alter vegetation condi
tion by up to 15% (in VCI units), while the worst 
drought events can reduce the vegetation condi
tion up to 20%.

The results of this study deepen the understanding of 
tropical vegetation variability and how vegetation 
responds to and is influenced by multifaced drought 
conditions during the dry growing seasons. The per
formed in-depth analyses of our study can support 
local, national, and regional governments to develop 
effective drought management and adaptation stra
tegies in safeguarding food security and tropical eco
systems. Amidst the growing climate crises, 
simulating and predicting the future vegetation- 
drought sensitivities under different drought scenar
ios will be considered.
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