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ABSTRACT 

 

Current research and development efforts at DLR`s 

Center for Satellite Based Crisis Information (ZKI) focus on 

deploying automated image analysis methods as part of rapid 

mapping processing routines. The use of machine learning 

methods enables processing of large amounts of 

heterogeneous satellite, aerial and drone images at varying 

spatial scales and temporal frequencies. In this work, we 

introduce an automated and scalable image processing chain 

for rapid building damage assessment, optimize it for 

inference on different hardware and provide application 

examples from recent natural disasters. We show the 

scalability of the method from high-frequency live-mapping 

with drones on a laptop to large-scale processing of satellite 

and aerial images on a high-performance computing cluster. 

 

Index Terms— Damage Assessment, Rapid Response, 

Siamese Convolutional Neural Network, Drones, Optical 

Satellite Images 

 

1. INTRODUCTION 

 

The emergence of machine learning techniques and the 

availability of remote sensing datasets on a large scale have 

created new opportunities for automating the analysis of 

remote sensing data. This enables the handling of increasing 

data volumes, intricate complexities, and the inherent spatio-

temporal dynamics associated with disaster situations. 

Change detection approaches that compare pre- and co-/post-

disaster images can provide valuable insights into distribution 

and intensity of building damages. In this context, deep 

learning-based approaches have been extensively studied in 

recent years, with Siamese Convolutional Neural Networks 

(CNN) being particularly favored for the task [1], [2]. To 

overcome issues related to misalignments of building 

footprints between bi-temporal input images, some studies 

propose complex multi-task architectures that handle 

building delineation and damage classification at once [3]. 

Other studies follow a two-step approach and train separate 

models for building segmentation and damage classification 

[4]. In this work, we introduce an automated image 

processing chain for rapid building damage assessment, 

optimize it for inference on different hardware and provide 

application examples from recent natural disasters to evaluate 

its scalability and generalization ability. 

 

2. DATA 

 

The globally distributed xBD benchmark dataset [5] is 

used for training, validation and test of a Siamese CNN for 

damage assessment. Additionally, we use the OpenEarthMap 

dataset [6] as input for training and validation of a CNN for 

building footprint refinement. Very high-resolution optical 

satellite images from the MAXAR Open Data Program [7] 

are acquired for large scale application examples from recent 

natural disasters in Morocco (earthquake, September 2023) 

and Libya (floods, October 2023). Moreover, we utilize aerial 

and drone imagery from flight surveys carried out by DLR 

during and after the Ahrtal floods in Germany 2021 [8].  

 

3. METHOD 

 

We develop an automated and scalable image processing 

chain that uses a LightGlue model [9] for improved co-

registration of input images and a two-step approach for 

building damage assessment with a Siamese CNN (Figure 1).  

 

 
Figure 1: Overview of the automated image processing chain 

for damage assessment. 

 

We implemented a U-Net with EfficientNet-B4 [10] 

encoder for building segmentation and a Siamese version of 

the same encoder-decoder architecture for damage 

classification. We train both models independently with an 

AdamW optimizer, initial learning rate of 1e-3, weight decay 

of 1e-2 and a weighted combination of binary cross entropy 

and Lovász Hinge loss. Encoder weights are initialized from 

a model that has been pre-trained on Imagenet. Training is 

performed with 32-bit floating-point precision (FP32) using 

Pytorch. Training samples are augmented with respect to 

brightness, contrast, scale and orientation. Model 

performance is assessed by reporting Intersection over Union 

(IoU), Precision (Prec) and Recall (Rec). We compare 

different inference engines and model formats to evaluate 



their influence on throughput, including Pytorch (FP32), 

ONNX (FP32) and ONNX (FP16). Model throughput is 

measured in megapixel per second (mp/s) and averaged 

across five prediction runs on 5,000 tiles with shape (256, 

256, 3). 

 

4. RESULTS 

 

Figure 2 shows results of our approach on an independent 

test split of the xBD datasets and highlights the positive effect 

of the building footprint refinement on the performance of the 

Siamese U-Net with EfficientNet-B4 encoder. Improvements 

in model accuracy of 0.252 IoU (micro average) can be 

observed. The model with refinement performs well on 

classes “no damage”, “damaged” and “destroyed”, while the 

results indicate a clear drop in performance for class 

“possibly damaged”. All classes benefit from the building 

footprint refinement with class “destroyed” showing the 

largest increase in accuracy of 0.366 IoU. 

 

 
Figure 2: Accuracy assessment of the Siamese U-Net model 

with and without building footprint refinement on an 

independent test split of the xBD dataset. 

 

The trained models are deployed in the image processing 

chain via the open ONNX (Open Neural Network Exchange) 

format, which is built to represent machine learning models 

in a standard across a variety of frameworks, tools, runtimes 

and compilers. To improve inference speed in the production 

environment, we have converted the FP32 models to mixed-

precision FP16 models, which effectively reduces model size 

and complexity without affecting the accuracy of the results. 

Figure 3 shows a comparison of inference throughput across 

a range of batch sizes for the U-Net with EfficientNet-B4 

encoder on the building segmentation task. 

 

 
Figure 3:  Comparison of ONNX model inference throughput 

for different model precisions. Measured on a NVIDIA RTX 

A4000 GPU using ONNX-Runtime "CUDA Execution 

Provider" across a range of batch sizes. 

 

Figure 4 shows an example of a damage assessment from 

very high-resolution optical aerial images of the Ahr valley 

floods in Germany 2021. To exemplify the efficiency and 

scalability of the image processing chain, these images have 

been processed on a laptop with a standard consumer GPU. 

Beyond static map production, it is possible to use the 

deployed method for live-mapping of damages on the basis 

of aerial image streams and drone videos. 

  

 
Figure 4: Example of damage assessment from very high-

resolution optical aerial images of the Ahr valley floods in 

Germany 2021. 

 

Figure 5 shows small subsets of large-scale damage 

assessments for the Morocco earthquake 2023 and the Libya 

floods 2023 based on very high-resolution satellite images of 

the MAXAR Open Data Program. For such purposes, a 

highly parallelized version of the image processing chain is 

being deployed on a GPU node of the Leibniz 

Supercomputing Centre of the Bavarian Academy of 

Sciences and Humanities. Resource allocation is scalable and 

controlled via SLURM workload manager. 

 



5. DISCUSSION AND CONCLUSIONS 

 

We showed the deployment of a method for rapid damage 

assessment from bi-temporal satellite, aerial and drone 

images. The methods can produce accurate results and are 

scalable to different data- and hardware-availability 

scenarios. A good generalization ability of the image analysis 

method is in any case essential to cope with highly varying 

data availability in disaster situations like the 2021 floods in 

Germany. To this regard, more research is currently 

conducted to test the influence of different domain adaptation 

methods on the generalization ability of the learning machine 

[11]. Automated image processing routines together with pre-

trained machine learning methods for image analysis can 

reduce the time between image acquisition and final product 

generation from several hours/days to just a few minutes. It 

therefore allows for a faster product delivery, for a higher 

analysis frequency and for a continuous monitoring of the 

situation. The inference speed achieved by the damage 

assessment method coupled with the real-time capabilities of 

modern drone systems and the flexibility of the web-services 

offered by DLR`s ZKI [12], would further enable the 

deployment of a fully automated processing chain for live-

mapping, analysis and dissemination. 
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