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Abstract

For a skew polynomial ring R = A[X; θ, δ] where A is a commutative Frobenius ring,
θ an endomorphism of A and δ a θ-derivation of A, we consider cyclic left module codes
C = Rg/Rf ⊂ R/Rf where g is a left and right divisor of f in R. In this paper, we derive a
parity check matrix when A is a finite commutative Frobenius ring using only the framework
of skew polynomial rings. We consider rings A = B[a1, . . . , as] which are free B-modules where
the restriction of δ and θ to B are polynomial maps. If a Gröbner basis can be computed over
B, then we show that all Euclidean and Hermitian dual-containing codes C = Rg/Rf ⊂ R/Rf
can be computed using a Gröbner basis. We also give an algorithm to test if the dual code is
again a cyclic left module code. We illustrate our approach for rings of order 4 with non-trivial
endomorphism and the Galois ring of characteristic 4.

1 Introduction

For a (non-commutative) skew polynomial ring R = A[X; θ, δ] where A is a commutative Frobenius
ring, θ an endomorphism of the ring A and δ a θ-derivation of A (Definition 1), we consider codes
that are cyclic left modules (i.e., generated by one element in R) of the form C = Rg/Rf ⊂ R/Rf
with f = hg for g, f, h ∈ R. In order to obtain a parity check matrix for such codes we will make
the additional assumption that there exists ℏ ∈ R such that f = hg = gℏ (i.e., g is a left and right
divisor of f). A parity check matrix of such codes has been derived in a general approach in [10],
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in [4, Corollary 4] for A = Fq and in [8, 9] and for a finite commutative Frobenius ring A. The
framework of pseudo-linear transformations is used in [8, 9, 10], while in this paper we only use
the framework of skew polynomial rings. The entries of the parity check matrix are expressions in
images under compositions of θ and δ of the coefficients of ℏ and g, which are difficult to solve when
searching for self-dual/dual-containing codes.

If A = B[a1, . . . , as] is a free B-module and the restriction of δ and θ to B are polynomial maps
(Definition 4) then we can transform algebraic expressions of images under θ and δ into polynomial
expressions over B. By representing the unknown coefficients of ℏ and g as a linear combination of
the algebra basis B[a1, . . . , as], we obtain multivariate polynomial expressions for the entries of a
parity check matrix. The smallest unitary subring of a finite commutative ring A (the image of the
canonical map Z→ A given by 1 7→ 1) is either isomorphic to a finite field Fp of prime order or to an
integer modular ring Zm = Z/(m) (note that p or m here is the characteristic of the ring A). Since
θ and δ are polynomial maps over the smallest subalgebra B ⊂ A and since polynomial equations
over B can be solved using a Gröbner basis [1, 2], our approach applies to many rings A. Within
the computation complexity constraints of the Gröbner basis, we can find all dual-containing codes
C = Rg/Rf ⊂ R/Rf over A for any given parameters [n, k]. Using this approach we can also test
various properties of codes C = Rg/Rf ⊂ R/Rf .

1. In Section 4.2.1, we give an algorithm to compute, within the capability of the Gröbner
basis computation, all (Hermitian-) dual-containing codes C = Rg/Rf ⊂ R/Rf over A for
any given parameters [n, k]. Dual-containing codes play an important role in constructing
quantum error-correcting codes.

2. In Table 8 and Table 3, we give examples of Hamming weight distribution of (Hermitian-)
dual-containing codes C = Rg/Rf ⊂ R/Rf that could not be found without considering either
non-zero derivations or non-trivial endomorphisms.

3. In Section 5, we give an example of a generating polynomial g of a [6, 4] dual-containing code
where all 8 polynomials f = hg = gℏ of degree 6 are non-central.

4. We give a procedure to decide whether the (Hermitian-) dual code C⊥ of a cyclic left module
C = Rg/Rf ⊂ R/Rf is again a cyclic left module code Rg⊥/Rf ⊂ R/Rf , i.e., generated by
a single polynomial g⊥.

5. In Section 4.2.2, we use the previous algorithm to show that many (Hermitian-) dual-containing
codes C = Rg/Rf ⊂ R/Rf have a dual code which is not a cyclic left module code.

We apply our method to all commutative rings of order 4: A = F2[v]/(v
2+ v), A = F2[u]/(u

2), and
A = F4, which have a non-trivial endomorphism. We also give some examples in characteristic 4
for the Galois ring

A = GR(2, 2) = Z4[X]/(X2 +X + 1).

2 Preliminaries

2.1 Skew Polynomial Rings

Let A ̸= {0} be a unitary ring (i.e., there exists 1 ∈ A \ {0}, such that 1 · a = a · 1 = a,∀a ∈ A).
We only consider unitary endomorphisms θ with the property that θ(1) = 1. The identity
automorphism will be denoted by id.
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Definition 1. Let A ̸= {0} be a unitary ring and θ an endomorphism of A. A θ-derivation is a
map δ : A→ A such that, for all a, b ∈ A

δ(a+ b) = δ(a) + δ(b) and δ(a b) = δ(a) b+ θ(a) δ(b).

A θ-derivation δ is an inner θ-derivation if there exists β ∈ A with the property that δ(x) =
βx− θ(x)β for all x ∈ A. For β = 0 we obtain the zero derivation which we denote 0.

We also use the exponential notation θ(a) = aθ and δ(a) = aδ throughout the paper. Skew
polynomial rings have been introduced and studied by Ore in [14]. A skew polynomial ring R is
defined as a set of (left) polynomials R = A[X; θ, δ] =

{∑n
i=0 aiX

i | ai ∈ A,n ∈ N
}
with coefficients

in the ring A. The addition in R is the usual polynomial addition and the multiplication is defined
using the rule Xa = aθX + aδ which is extended using associativity and distributivity.

If the leading coefficient of g ∈ R is invertible, then deg(hg) = deg(h) + deg(g) for all h ∈
R. In the case of a non-division ring A, if θ is an automorphism and the leading coefficient
of g ∈ R is invertible, then for any f ∈ R, we can perform a right (resp. left) division of f
by g and we obtain a unique right (resp. left) remainder of degree < deg(g). To see this, let
g =

∑m
i=0 giX

i, f =
∑n

i=0 fiX
i and m ≤ n. Then for the right (resp. left) division, the degree of

f − (fnθ
n−m(g−1

m )Xn−m)g (resp. f − g · (θ−m(g−1
m fn)X

n−m)) is less than the degree of f . To show
that the right1 division of f ∈ R by a fixed g ∈ R is unique, suppose that f = hg + r = h̃g + r̃.
This implies that (h − h̃)g = r̃ − r. If h − h̃ = csX

s + . . . is non-zero, then the leading monomial
in (h − h̃)g is csθ

s(gm)Xs+m. A unitary automorphism maps 1 to 1 and invertible elements to
invertible elements, so that csθ

s(gm) is non-zero. Since the right side of (h− h̃)g = r̃−r is of degree
< m we obtain h = h̃ and r = r̃. Note that a unique right division of any f ∈ R by a polynomial g
with invertible leading coefficient exists even if θ is just an endomorphism.

2.2 Cyclic Left Module (θ, δ)-Codes Rg/Rf ⊂ R/Rf

Definition 2. Let A be a finite ring, θ an endomorphism of A, δ a θ-derivation of A and R =
A[X; θ, δ] the corresponding skew polynomial ring. Let f ∈ R be a monic skew polynomial of degree
n and g ∈ R be a right divisor of f . A cyclic left module (θ, δ)-code (in short (θ, δ)-code) is
defined as C = Rg/Rf ⊂ R/Rf in the polynomial representation, and as

C = {c = (c0, c1, . . . , cn−1) | c0 + c1X + · · ·+ cn−1X
n−1 ∈ Rg/Rf}

in the vector representation.

Note that (θ, δ)-codes with endomorphism and derivation have been studied in [7, 8, 9, 15]. For
δ = 0 and f = Xn − 1 we obtain θ-cyclic codes characterized by

(a0, a1, . . . , an−2, an−1) ∈ C ⇒ (θ(an−1), θ(a0), θ(a1), . . . , θ(an−2)) ∈ C

while the classical cyclic code correspond to f = Xn − 1, θ = id and δ = 0 (in this case R is a
commutative univariate ring).

Proposition 1. Let g ∈ R = A[X; θ, δ] of degree n−k be a right divisor of a monic skew polynomial
f ∈ R of degree n. A cyclic left module (θ, δ)-code C = Rg/Rf ⊂ R/Rf has the following properties:

1The uniqueness of the left division can be shown in the similar manner.
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� The left R-module R/Rf is also a free A-module isomorphic to An with A-basis (1, X, . . . ,Xn−1).

� Rg/Rf is a left R-submodule of R/Rf .

� Rg/Rf is also a free left A-submodule of R/Rf ∼= An of dimension k = deg(f)−deg(g) (i.e. a
linear code of length n and dimension k over the alphabet A).

� If g is a left and right divisor of f = hg = gℏ, then we can assume that all the three polynomials
in f = hg for a cyclic left module (θ, δ)-code Rg/Rf ⊂ R/Rf are monic (i.e. have leading
coefficient 1). The monic generator polynomial g of a cyclic left module (θ, δ)-code Rg/Rf ⊂
R/Rf is unique.

� If g is a left and right divisor of f = hg = gℏ and θ is an automorphism, then we can
assume that all the four polynomials in f = hg = gℏ for a cyclic left module (θ, δ)-code
Rg/Rf ⊂ R/Rf are monic.

Proof. Since f is monic we can perform a right division of any element of R by f and produce
a unique remainder of degree < n. Therefore any element of the R-module R/Rf has a unique
representation (the remainder of the division) of degree < n in R/Rf . Viewed as an A-module,
R/Rf is a free A-module with basis 1, X, . . . ,Xn−1 (i.e. every element in R/Rf is a unique linear
combination of those elements).

For g ∈ R we have Rf ⊂ Rg if and only if g is a right factor of f and in this case Rg/Rf is a cyclic

left R-submodule of R/Rf generated by g + Rf . The leading coefficient gn−k of g =
∑n−k

i=0 giX
i

is a right divisor of 1 and is therefore invertible. This shows that deg(hg) = deg(h) + deg(g) for
all h ∈ R and implies that the R-module Rg/Rf is a free A-module of rank k of An with basis
g,Xg, . . . ,Xk−1g.

We now prove the fourth statement for g = gn−kX
n−k + · · · + g0 and h = hkX

k + · · · + h0. If
f = hg = gℏ, since f is monic, the leading coefficient of f = hg is hkθ

k(gn−k) = 1, showing that hk

and θk(gn−k) are invertible. We obtain

f = (hkX
k + · · ·+ h0)︸ ︷︷ ︸

h

· (gn−kX
n−k + · · ·+ g0)︸ ︷︷ ︸

g

= (hkX
k + · · ·+ h0) · gn−k︸ ︷︷ ︸

h̃

· g−1
n−k · (gn−kX

n−k + · · ·+ g0)︸ ︷︷ ︸
g̃

In this representation g̃ is a monic polynomial. Since the endomorphism θ maps 1 to 1, the product
rule of A[X; θ, δ] shows that the leading coefficient of h̃g̃ is the leading coefficient of h̃. Because
h̃g̃ = f is monic, we obtain that h̃ is also a monic polynomial. The polynomials g and g̃ differ by
an invertible element. Using the above equations in both directions we see that any multiple of g
by a polynomial of degree ≤ k − 1 is also a multiple of g̃ by a polynomial of degree ≤ k − 1 and
vice versa. Therefore Rg/Rf = Rg̃/Rf , showing that g and g̃ generate the same codes. Hence,
without loss of generality, we can assume that f , h and g are monic. If C is a cyclic left module
(θ, δ)-code with parameters [n, k] and monic generator polynomial g, then any codeword is of the
form c = m · g with deg(g) = n − k and deg(m) < k. In particular the only monic polynomial of
degree n− k in C is g = 1 · g.

We now show that ℏ = ℏkXk + · · · + ℏ0 is monic if θ is an automorphism. According to the
above we can assume that f and g are monic, so that the leading coefficient θn−k(ℏk) in gℏ = f
must be 1. Since θn−k is an automorphism, we obtain that ℏk = 1.
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Example 1. The Frobenius chain ring A = F2[u]/(u
2) is a free F2-module F2[u] with F2 basis [1, u].

The only automorphism of A is the identity θ1 : x 7→ x. There is a unique endomorphism defined
by θ2(u) = 0 (note that θ2(1) = 1) which is a polynomial map on F2 and on A itself θ2 : x 7→ x2.
Any θ-derivation δ is determined by δ(u) (note that δ(1) = δ(0) = 0). The list of θ-derivation is:

Automorphism Endomorphism
θ1 = id θ2 : u 7→ 0

δ1 = 0 u 7→ 0 u 7→ 0
δ2 u 7→ 1
δ3 u 7→ u u 7→ u
δ4 u 7→ u+ 1

We marked the inner θ-derivation by a gray cell.
In Proposition 1 we showed that all the three polynomials in f = hg for a cyclic left module

(θ, δ)-code Rg/Rf ⊂ R/Rf can be chosen to be monic. If θ is a non-trivial endomorphism, i.e.,
not an automorphism, the ℏ in the decomposition f = gℏ is not necessarily monic. To see this,
consider the ring R = A[X; θ2(u) = 0, δ3(u) = u] and the code Rg/Rf with g = X2 + uX + u + 1
and f = X4 + (u + 1)X3 +X + u + 1. It can be found that f = hg with h = X2 + (u + 1)X + 1,
and f = gℏ with ℏ = (u+ 1)X2 + (u+ 1)X + u+ 1 or ℏ = (u+ 1)X2 +X + u+ 1.

The encoding of the information (b0, b1, . . . , bk−1) ∈ Ak in a cyclic left module (θ, δ)-code

C = Rg/Rf ⊂ R/Rf is given by the coefficients of (
∑k−1

i=0 biX
i)g ∈ R. A generator matrix of

the code is of the following form:

G =


g0 g1 · · · gn−k 0 · · ·
gδ0 gδ1 + gθ0 gδ2 + gθ1 · · · gθn−k 0 · · ·
...

. . .
. . . · · ·

. . .
. . .

gδ
k−1

0 · · · · · · gθ
k−1

n−k


The rows are given by the coefficients of g,X · g, . . . , Xk−1 · g and can be computed using the rule
Xa = aθX + aδ for a ∈ A. In particular, the code is completely determined by g, θ and δ.

Example 2. In the notations of the above definition, consider a unitary polynomial f = hg in
R = A[X; θ, δ] of degree 4 with g = g1X + g0, h =

∑3
i=0 hiX

i and h3g1 = 1. The code C =
Rg/Rf ⊂ R/Rf is a [4, 3]A code whose generating matrix is

G =

 g0 g1 0 0
gδ0 gδ1 + gθ0 gθ1 0

gδ
2

0 gδθ0 + gθδ0 + gδ
2

1 gθ
2

0 + gδθ1 + gθδ1 gθ
2

1

 .

If θ is of the form a 7→ ap
m

and δ is an inner θ-derivation a 7→ βa − θ(a)β (those are the only
possibilities if A is a finite field Fq), then the entries of the above matrix become polynomials in
the coefficients of g and allow sophisticated computations. This is the reason why almost all known
examples of self dual (θ, δ)-code consider A to be a finite field.

Definition 3 (Hermitian Inner Product and Hermitian Dual). Let σ be an automorphism of A
whose order divides 2. The σ-Hermitian inner product of x,y ∈ An is defined as ⟨x,y⟩σ =∑n

i=1 xiσ(yi). The (σ-Hermitian) dual code of a code C is defined as

C⊥σ = {v | ⟨v, c⟩σ = 0, ∀c ∈ C} .
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A code is σ-dual-containing if C⊥σ ⊂ C and σ-self dual if C = C⊥σ .

If σ = id, the identity automorphism, we obtain the Euclidean inner product over Ak and the
Euclidean dual. In this case, we omit the σ in the notation.

Lemma 1. ([16]) Let A be a commutative Frobenius ring and C be a linear code over A. Then for
the (Hermitian) dual code C⊥σ we have |C| · |C⊥σ | = |A|n.

3 Parity Check Matrix and Generating Matrix of the Eu-
clidean and Hermitian Dual Code

A parity check matrix of a cyclic left module (θ, δ)-code C = Rg/Rf ⊂ R/Rf over a field Fq (where
all derivations must be inner) is given in [4, Corollary 4] and over a commutative Frobenius ring in
[8, 9]. In [15] a parity check matrix for a cyclic left module (θ, δ)-code C = Rg/Rf ⊂ R/Rf over
the ring A = (Z/4Z)[X]/(X2− 1) is studied when f = hg is a central polynomial. Our approach is
similar to [4] and [15]. In this case Rg/Rf is an ideal in R/Rf . In the next theorem we follow the
assumption in [4, 6, 8] that g is both a right and a left divisor of f , i.e., f = hg = gℏ, in which case
Rg/Rf is usually only a submodule of R/Rf . The assumption that f = hg = gℏ is much weaker
than the assumption that f is central (see the [6, 4] example in Section 5).

Lemma 2. Let θ be an endomorphism of the finite ring A, δ a θ-derivation on A, R = A[X; θ, δ],
f ∈ R a monic polynomial having both a right and a left divisor g (i.e. f = hg = gℏ) and C =
Rg/Rf ⊂ R/Rf a cyclic left module (θ, δ)-code. A word in An corresponding to an element w ∈ R
of degree < n is a codeword of C if and only if (the coset of) w ·ℏ = 0 in R/Rf . We obtain an n×n
matrix M such that the vector representation of C is C = {w ∈ An |wM = 0⃗} (i.e. C = lker(M)
is a left kernel of M), where the entries of M are images under compositions of θ and δ of the
coefficients of ℏ and g. The i-th row of M corresponds to the coefficients of Xi−1ℏ mod f , for
i = 1, . . . , n.

Proof. Since f is monic, an element of An ∼= R/Rf has a unique representation as a remainder
of the right division by f , which corresponds to a polynomial w ∈ R of degree < n. Following [5,
Lemma 8] we now show that w corresponds to a codeword if and only if (the coset of) w · ℏ = 0 in
R/Rf . If w ∈ C, then w = w̃g for some w̃ ∈ R. Therefore wℏ = w̃gℏ = w̃(h ·g) showing that wℏ = 0
in R/Rf = R/R(h · g). Conversely, if wℏ = 0 in R/Rf = R/R(h · g), then wℏ = w̃(h · g) = w̃(gℏ)
for some w̃ ∈ R. Since ℏ is not a zero divisor in R we obtain w = w̃g, showing that w ∈ C.

Since f is monic, a word in An corresponds to a coset w =
∑n−1

i=0 aiX
i ∈ R/Rf . Such a coset

w =
∑n−1

i=0 ci belongs to C if and only if wℏ = 0 in R/Rf . The coefficients of

wℏ mod f =

(
n−1∑
i=0

ciX
i

)(
k∑

i=0

ℏiXi

)
mod f

are obtained by bringing the coefficients ℏi to the left side and performing the right division of f .
The code C corresponds to the left kernel of this linear system and can therefore be represented as
the left kernel of a matrix M , i.e.,

∑n−1
i=0 ciMi,jX

j = 0, ∀j ∈ [0, n−1]. The entries Mij ∈ A are the
images under θ and δ of the coefficients of ℏ and f . Since f = gℏ, the entries Mij ∈ A are images
under θ and δ of the coefficients of ℏ and g. The i-the row of M corresponds to the contribution of
ciX

i · ℏ mod f in the product wℏ = 0 mod f .
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Example 3 (A toy example for n = 3, k = 1). Consider a ring A, a skew polynomial ring R =

A[X; θ, δ] and f = X3 +
∑2

i=0 fiX
i ∈ R such that f = gℏ in A[X; θ, δ] for g = g2X

2 + g1X + g0
and ℏ = ℏ1X + ℏ0. According to Lemma 2, w = c0 + c1X + c2X

2 belongs to C = Rg/Rf ⊂ R/Rf
if and only if wℏ = 0 in R/Rf , i.e. wℏ ≡ 0 mod f . Since

wℏ mod f =
(
c2(ℏθδ1 + ℏδθ1 + ℏθ

2

0 −ℏθ
2

1 f2) + c1ℏθ1
)
X2

+
(
c2(ℏδ

2

1 + ℏθδ0 + ℏδθ0 −ℏθ
2

1 f1) + c1(ℏδ1 + ℏθ0) + c0ℏ1
)
X

+ c2(ℏδ
2

0 −ℏθ
2

1 f0) + c1ℏδ0 + c0ℏ0
we obtain the condition w ∈ C ⇔ w ·M = 0 where w = (c0, c1, c2) and

M =

 ℏ0 ℏ1 0
ℏδ0 ℏδ1 + ℏθ0 ℏθ1

ℏδ20 −ℏθ
2

1 f0 ℏδ21 + ℏθδ0 + ℏδθ0 −ℏθ
2

1 f1 ℏθδ1 + ℏδθ1 + ℏθ2

0 −ℏθ
2

1 f2

 . (1)

Note that the entry Mij corresponds to the coefficient of the term ciX
j in the polynomial wℏ mod f .

The following result is contained in [8, 9] where the result is proven using pseudo-linear trans-
formation or Matrix-Product Codes, while we give a proof within the setting of skew polynomial
rings.

Theorem 1. (cf. [8, 15]) Let θ be an endomorphism of the finite Frobenius commutative ring A,
δ a θ-derivation on A, R = A[X; θ, δ] a skew polynomial ring, f ∈ R a monic polynomial having
a right and left divisor g (i.e. f = hg = gℏ) and C = Rg/Rf ⊂ R/Rf a cyclic left module (θ, δ)-
code. Let C be the vector representation of C. The dual code C⊥ is a free A-module code and
|C| · |C⊥| = |A|n. There exists a parity check matrix H for the code C such that it is a generator
matrix of the dual code C⊥. The entries of the matrix H are images under compositions of θ and
δ of the coefficients of ℏ and g.

Proof. We denote by C̃ the code generated by the columns of the n×n matrix M in Lemma 2
whose left kernel is exactly the code C. Then the columns of M form a generating set of C̃.
By construction we have that C̃ ⊂ C⊥. Note that w ∈ C if and only if wM = 0, which is
equivalent to w is orthogonal to all generators of C̃. Therefore C = C̃⊥. By Lemma 1 we have
that |C̃⊥| · |C̃| = |A|n. From C = C̃⊥ and |C| = |A|k we then get |C̃| = |A|n−k. By Lemma 1 we
also have that |C⊥| · |C| = |A|n, which implies that |C⊥| = |A|n−k. Since C̃ ⊂ C⊥ and both codes
have the same number of elements we get C̃ = C⊥.

It is shown in Lemma 2 that for i = 1, . . . , n − k, the i-th row of M corresponds to Xi−1ℏ
(e.g. the gray part in (1)). This shows that the right-upper (n − k) × (n − k) submatrix of M
is lower triangular with invertible diagonal elements ℏk, θ(ℏk), . . . , θn−k−1(ℏk) and the right-most
n− k columns of M are therefore linearly independent. Hence, the A-submodule generated by the
right-most n− k columns of M contains |A|n−k elements. This shows that C⊥ is a free A-module
generated by the right-most n − k columns of M which (after transposing) form a parity check
matrix of C (see (2) for an example).

Example 4. According to Theorem 1, the dual of the code in Example 3 is generated by the right-
most two columns M in (1) which (after transposing) form a parity check matrix of C,

H =

(
ℏ1 ℏδ1 + ℏθ0 ℏδ21 + ℏθδ0 + ℏδθ0 −ℏθ

2

1 f1
0 ℏθ1 ℏθδ1 + ℏδθ1 + ℏθ2

0 −ℏθ
2

1 f2

)
. (2)
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Theorem 2. Let σ be an automorphism of order 2 of A, θ be an endomorphism of the finite
Frobenius commutative ring A, δ be a θ-derivation on A, R = A[X; θ, δ] a skew polynomial ring,
f ∈ R a monic polynomial having a right and left divisor g (i.e. f = hg = gℏ) and C = Rg/Rf ⊂
R/Rf a cyclic left module (θ, δ)-code. Let C be the vector representation of C and C⊥ the dual
code of C. If we apply σ to all entries of the generator matrix G⊥ := H of the dual code C⊥, then
we obtain a generator matrix G⊥σ of the σ-Hermitian dual code C⊥σ of C. The coefficients of the
matrix σ(H) are expressions in images under compositions of θ, δ and σ of the coefficients of ℏ and
g.

Proof. For each row gs, s ∈ {1, . . . , k} of a generating matrix G of C and each row g⊥t , t ∈
{1, . . . , n− k} of a generating matrix of G⊥ of C⊥ we have ⟨gs, g⊥t ⟩ =

∑n
i=1 gs,i g

⊥
t,i = 0. Therefore

⟨gs, σ(g⊥t )⟩σ =

n∑
i=1

gs,i σ(σ(g
⊥
t,i)) =

n∑
i=1

gs,i g
⊥
t,i = 0.

Since the n − k rows of G⊥ generate a free code of dimension |A|n−k and σ is an automorphism,
the n− k rows of σ(G⊥) also generate a free code of dimension |A|n−k. Lemma 1 implies that they
generate C⊥σ .

4 Computing all Dual-Containing (θ, δ)-Codes

For the case δ = 0 and A = Fq, the generators of the dual code have been derived in [3, 5, 6, 8, 9].
For an arbitrary Frobenius ring A or δ ̸= 0, the dual code is much less studied. The algorithms in
this section will allow us to show that the dual of a cyclic left module (θ, δ)-code is in general not
a cyclic left module (θ, δ)-code.

4.1 Polynomial Maps

Our first goal is to transform algebraic expressions in the images under θ and δ of the coefficients
of ℏ and g (cf. M in (1) above), into multivariate polynomials over some subalgebra of A.

Definition 4. A polynomial map on a ring B is a map f : B → B;x 7→
∑s

i=0 bix
i, where s ∈ N

and bi ∈ B.

Lemma 3. Let θ be an endomorphism of the finite ring A, δ a θ-derivation of A and B ⊂ A a
subring. Let E be a system of finitely many equations over A that are polynomial expressions in
the images under θ and δ of a finite set of variables y1, . . . , ym. If A = B[a1, . . . , as] (s ∈ N) is a
free B-module and the restriction of δ and θ to B are polynomial maps, then all solutions in Am

of the system E correspond to the solutions in Bms of a system of polynomial equations over B in
the variables y1,1, . . . , y1,s, . . . , ym,1, . . . , ym,s where yi = yi,1a1 + · · ·+ yi,sas.
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Proof. The image of the B-basis a1, . . . , as of A under δ and θ are expressions of the form
θ(ai) = γi,1a1 + · · ·+ γi,sas and δ(ai) = βi,1a1 + · · ·+ βi,sas for some given γi,j and βi,j in B:

yθi = (yi,1a1 + · · ·+ yi,sas)
θ

= yθi,1a
θ
1 + · · ·+ yθi,sa

θ
s

= yθi,1 (γ1,1a1 + · · ·+ γ1,sas) + · · ·+ yθi,s (γs,1a1 + · · ·+ γs,sas)

yδi = (yi,1a1 + · · ·+ yi,sas)
δ = (yi,1a1)

δ + · · ·+ (yi,sas)
δ

= yδi,1a1 + yθi,1a
δ
1 + · · ·+ yδi,sas + yθi,sa

δ
s

= yδi,1a1 + yθi,1 (β1,1a1 + · · ·+ β1,sas) + · · ·+ yδi,sas + yθi,s (βs,1a1 + · · ·+ βs,sas)

Using

1. the algebra relations aiaj = µi,j,1a1 + . . .+ µi,j,sas (where µi,j,s ∈ B are given),

2. the additive and multiplicative properties of θ and δ,

3. the fact that the restriction of δ and θ to B are polynomial maps on B (so that yθi,j and yδi,j
are polynomials in yi,j over B),

we can recursively transform any system of polynomial equations in the variables y1, . . . , ym, whose
solutions are in Am, into a system of polynomial equations in the variables y1,1, . . . , y1,s, . . . ym,1, . . . ,
ym,s, whose solutions are in Bms.

The following two examples show that there are endomorphism θ and θ-derivation δ of a ring
A which are not polynomial maps over A, but only polynomial maps over a subring B.

Example 5. Consider the Frobenius ring A = F2[v]/(v
2 + v) of order 4. There are two automor-

phisms θ1 = id and θ2 of order two, and two non-trivial endomorphisms θ3 and θ4. Any θ-derivation
δ is determined by δ(v) (note that δ(1) = δ(0) = 0). All the θ-derivations are listed below:

Automorphism Endomorphism
θ1 = id θ2(v) = v + 1 θ3(v) = 0 θ4(v) = 1

δ1 = 0 v 7→ 0 v 7→ 0 v 7→ 0 v 7→ 0
δ2 v 7→ 1
δ3 v 7→ v v 7→ v
δ4 v 7→ v + 1 v 7→ v + 1

The inner θ-derivations are marked by a gray cell. Here all θ-derivations are inner.
Suppose that the automorphism θ2 is a polynomial map on A of the form

f : x 7→
∑
i∈N0

(αi,1v + αi,0)x
i =

∑
i∈N0

αi,1vx
i +

∑
i∈N0

αi,0x
i (αi,j ∈ F2).

Then θ2(0) = 0 ⇒ α0,0 = 0. Since αi,j ∈ {0, 1}, f(v) is a multiple of positive powers of v. Since
v2 = v we get that f(v) is a sum of v, which is either v or 0 in this ring. Since θ2(v) = v + 1, we
obtain that θ2 is not a polynomial map on A.
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Example 6. We keep the notation of Example 1 for the ring A = F2[u]/(u
2). The only automor-

phism of A is the identity θ1 : x 7→ x which is a polynomial map. Suppose that a derivation δ of
A is given by a polynomial map δ : x 7→

∑t
i=0 bix

i over A (where bi ∈ A). Since δ(1) = 0, we

must have b0 = 0 in the polynomial map. From u2 = 0, we obtain δ : u 7→
∑t

i=1 biu
i = b1u. Write

b1 = β1,1u+ β1,0 ∈ A for some β1,1, β1,0 ∈ F2, then δ(u) = β1,1u
2 + β1,0u = β1,0u, which can never

be u + 1 or 1. Hence, δ2(u) = 1 and δ4(u) = u + 1 are not polynomial maps on A. For this ring
we will always work over B = F2 even for δ1 and δ3. Codes of small length over A are classified in
[11, 12].

Lemma 4. Automorphisms and derivations of a finite Frobenius ring A are polynomial maps over
the smallest unitary subring B of A.

Proof. The smallest unitary subring B of A is the image of the canonical map Z → A given
by 1 7→ 1 and is either isomorphic to a finite field Fp of prime order or to an integer modular ring
Zm = Z/(m) (here p or m is the characteristic of the ring A). Since any automorphism θ is given
by x 7→ x and θ-derivation δ is given by x 7→ 0 on B, they are both polynomial maps on B.

4.2 Computations via Gröbner Basis over B ⊂ A

In this section we assume that θ and δ are polynomial maps over a subalgebra B ⊂ A (this is always
the case for the smallest unitary subring B of A by Lemma 4) and that A = B[a1, . . . , as] is a free
B-module. This will enable us to transform any expression in θ and δ over A into a polynomial
expression over B (Lemma 3). The classical algorithm to solve systems of polynomial equations
in a multivariate polynomial commutative ring B[y1,1, . . . , y1,s, . . . , ym,1, . . . , ym,s] is via Gröbner
basis. This algorithm exists in particular if B is a field or an integer quotient ring ([1, 2]), and
therefore always over the smallest unitary subring B of the finite unitary ring A (Lemma 4).

4.2.1 An Algorithm to Compute All Dual-Containing (θ, δ)-Codes

We first express the unknown coefficients in A of g and ℏ as linear combinations in a given B-basis
of A over B with unknown coefficients xi in B. The expressions in images under compositions of
θ and δ of the coefficients of ℏ and g then become polynomials in the variables xi in B. We then
obtain a parity check matrix whose coefficients are polynomials in the variables xi. We can impose
that g divides gℏ on the right by imposing that all the coefficients of the remainder, whose entries
are polynomials in the unknown xi, to be zero. We can also impose C⊥ ⊂ C by imposing all the
entries M⊤ ·M , which are also polynomials in the unknown xi, to be zero. All these conditions
lead to a multivariate polynomial system in the unknowns xi with coefficients in B. If a Gröbner
basis algorithm exists for the ring B, then we can compute all dual-containing cyclic left module
(θ, δ)-codes C = Rg/Rf ⊂ R/Rf for the fixed parameters [n, k]. Note that C⊥ ⊂ C is a property
of the code C and is therefore independent of the choice of h, f, ℏ. In other words, if C⊥ ⊂ C holds
for some valid solution of h, f, ℏ, then this will hold for any valid solution of h, f, ℏ. We therefore
simply have to compute an elimination basis for the possible polynomials g and keep those skew
polynomials g that can be extended to a solution of the whole system.
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Algorithm 1: Computing all dual-containing cyclic module (θ, δ)-codes for given [n, k].

Input: A, θ, δ, a subalgebra B ⊂ A over which A = B[a1, . . . , as] is free and over which
θ, δ are polynomial maps and the Gröbner basis can be computed, code parameters
n, k.

Output: A set of solutions P = {g, ℏ, f | C = Rg/Rf is dual-containing}
1 P1 ← B[g0,1, . . . , g0,s, . . . , gn−k−1,1, . . . , gn−k−1,s, ℏ0,1, . . . , ℏ0,s, . . . , ℏk−1,1, . . . , ℏk−1,s] ;

/* multivariate ring over B */

2 P ← {} ; /* Initialize a set to collect g, ℏ of self-dual codes */

3 foreach ℏk =
∑s

j=1 ℏk,jaj ∈ {invertible element of A} do

4 LSEs← {Constraints such that gi,j , ℏi,j ∈ B} ; /* gpi,j = gi,j , ℏpi,j = ℏi,j if B = Fp */

5 g ←
∑n−k−1

i=0 (
∑s

j=1 gi,jaj)X
i +Xn−k ; /* g ∈ P1[X; θ, δ] */

6 ℏ←
∑k−1

i=0 (
∑s

j=1 ℏi,jaj)Xi + (
∑s

j=1 ℏk,jaj)Xk; /* ℏ ∈ P1[X; θ, δ] */

7 f ← g · ℏ; /* LC(f) may not be monic but does not contain variable */

8 h, r ← quotient, remainder of g right dividing f ; /* h, r ∈ P1[X; θ, δ] */

9 LSEs
Append←− {All coefficients of r are 0 } ; /* implies g |r f */

10 G← a generator matrix constructed from g;
11 M ← the matrix constructed from ℏ according to Example 3;

12 LSEs
Append←− {All entries in M⊤ ·M are 0} ; /* implies C⊥ ⊆ C */

13 S ← {solutions of g0,1, . . . , gn−k−1,s, ℏ0,1, . . . , ℏk−1,s from the Groebner basis of LSEs};
14 P Append←− {g, ℏ, f ∈ A[X; θ, δ] : ∀ solution in S};

/* g, ℏ ∈ A[X; θ, δ] are reconstructed by evaluating coefficients of

g, ℏ ∈ P1[X; θ, δ] for each solution in S; f is reconstructed by f = g · ℏ
*/

15 end

4.2.2 Is the Dual C⊥σ of a Cyclic Module (θ, δ)-Code Again a Cyclic Module (θ, δ)-
Code ?

In the following let σ be the identity or an automorphism of order 2 of A. Note that the rows
of the generator matrix G⊥σ = σ(H) in Theorem 2 correspond to skew polynomials p1, . . . , pk in
R/Rf which form an A-basis of the free code C⊥σ . If the (Hermitian-) dual code C⊥σ is a cyclic
module code Rg⊥σ/Rf̃ ⊂ R/Rf̃ generated by some monic skew polynomial g⊥σ of degree k, then
this monic polynomial g⊥σ is a left divisor of all the polynomials p1, . . . , pk.

We follow the notations in Algorithm 1. We first set up a monic polynomial

g⊥σ =

k−1∑
i=0

(

s∑
j=1

g⊥σ
i,j aj)X

i +Xk ∈ R

in the unknowns g⊥σ
0,1 , . . . , g

⊥σ
0,s , . . . , g

⊥σ

k−1,s over B. Then we perform a right division of all polynomi-

als p1, . . . , pn−k by g⊥σ and set the remainders r1, . . . , rn−k to zero. Note that the coefficients of all
r1, . . . , rn−k are polynomials in B[g⊥σ

0,1 , . . . , g
⊥σ

k−1,s] and must all be zero. This leads to a polynomial
system over B that can be solved by an algorithm via Gröbner basis. If the Gröbner basis is {1}
then C⊥σ is not a cyclic module code in R/Rf for any f ∈ R. Otherwise the Gröbner basis gives
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the generator polynomial g⊥σ of degree k of the cyclic module code C⊥σ .

5 Computational Results for A = F2[v]/(v
2 + v)

We keep the notation used in Example 5 and compute the dual-containing cyclic left module (θ, δ)-
code over the ring A = F2[v]/(v

2 + v) using the algorithm given in Section 4.2.1. Lemma 4 shows
that we can use the subalgebra B = F2 ⊂ A for the algorithm. Codes of small length over A
are classified in [12]. We follow [11] and define the Lee weight of 0, 1, v, v + 1 respectively as
0, 2, 1, 1 and the Bachoc weight respectively as 0, 1, 2, 2. Table 1a and Table 2 give an overview
of the best Euclidean and Hermitian dual-containing codes C = Rg/Rf ⊂ R/Rf (the algorithm
found all such codes). The empty set indicates that the approach shows that no dual-containing
code Rg/Rf ⊂ R/Rf exists for the parameter [n, k]. A question mark indicates that such dual-
containing codes exist, but we did not compute the minimal distance. The codes that could not
have been found without considering non-zero derivations are marked in gray; the codes that only
can be found by a non-zero derivation and an endomorphism which is not an automorphism are
marked in dark gray. Examples of such codes are the three weight distributions of the [6, 4] codes
in Table 3. Table 3 and 4 show more precisely which Hamming weight enumerators could only be
found by using specific (θ, δ) combinations.

Besides the complexity of a Gröbner basis, the complexity of our approach is also linked to the
fact that many decompositions f = hg = gℏ can exist for a fixed g, and that all combinations
lead to the same code whose generating matrix is constructed only from g and the corresponding
A[X; θ, δ]. To illustrate this we present in more detail the results for the [6, 4] code with Hamming
weight enumerator 1+13w2+24w3+. . . . There are four possible generator polynomials g presented
in Table 5. Note that given g and A[X; θ, δ] one can compute a generating matrix immediately. We
consider the first polynomial g = X2 + X + v + 1 ∈

(
F2[v]/[v

2 + v]
)
[X; θ3, δ3] of Table 5. There

exist 8 non-central polynomials f for which there are polynomials h, ℏ such that f = hg = gℏ, i.e.,
g is a left and right divisor of f :

f1 = X6 + vX4 + vX3 + vX + v + 1 = (X4 +X3 + vX2 +X + v + 1) · g
f2 = X6 +X5 + (v + 1)X4 +X3 + vX + v + 1

= (X4 + vX2 + (v + 1)X + 1) · g
f3 = X6 + (v + 1)X4 + vX3 + vX2 +X + v + 1

= (X4 +X3 + (v + 1)X2 + 1) · g
f4 = X6 +X5 + vX4 +X3 + vX2 +X + v + 1

= (X4 + (v + 1)X2 + vX + v + 1) · g
f5 = X6 + vX4 + vX3 +X2 + (v + 1)X = (X4 +X3 + vX2 +X + v) · g
f6 = X6 +X5 + (v + 1)X4 +X3 +X2 + (v + 1)X

= (X4 + vX2 + (v + 1)X) · g
f7 = X6 + (v + 1)X4 + vX3 + (v + 1)X2 = (X4 +X3 + (v + 1)X2) · g
f8 = X6 +X5 + vX4 +X3 + (v + 1)X2 = (X4 + (v + 1)X2 + vX + v) · g

For each f , there is a unique h corresponding to f = hg and 16 distinct ℏ such that f = gℏ, where
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Table 1: Results on dual-containing cyclic module (θ, δ)-code over F2[v]/(v
2 + v).

(a) Best Hamming, Lee and Bachoc dH , dL, dB distance of dual-containing (θ, δ)-codes over F2[v]/[v
2 + v].

n \ k 2 3 4 5 6 7 8 9 10 11 12

3 1, 1, 2

4 2, 2, 4 2, 2, 2

5 ∅ ∅
6 2, 2, 2 2, 2, 2 2, 2, 2

7 3, 3, 5 ∅ ∅
8 4, 4, 7 2, 2, 4 2, 2, 2 2, 2, 2

9 ∅ ∅ ∅ 1, 1, 2

10 2, 2, 2 2, 2, 2 ∅ ∅ 2, 2, 2

11 ∅ ∅ ∅ ∅ ∅
12 4, 4, 6 3, 3, 4 2, 2, ? 2, ?, ? ?, ?, ? ?, ?, ?

13 ∅ ∅ ∅ ∅ ∅ ∅

(b) For the dual-containing codes C, is C⊥ a cyclic module code, according to Section 4.2.2?

n \ k 2 3 4 5 6 7 8 9

3 None
4 All Some
5 / /
6 All Some Some
7 All / /
8 All Some Some Some
9 / / / None
10 All Some / / All

small

(c) The number of dual-containing (θ, δ)-codes and codes whose dual is also a cyclic module θ, δ) code. (We
only listed for the parameters marked with “Some” in Table 1(b) above.)

[n, k]
# of dual-containing cyclic module codes Rg/Rf for each (θ, δ)

# of above codes for which the dual code is also a cyclic module (θ, δ)-code
(Id; 0) (θ2, 0) (θ2, δ2) (θ2, δ3) (θ2, δ4) (θ3, 0) (θ3, δ3) (θ4, 0) (θ4, δ4)

[4, 3]
1 1 3 1 1 1 2 1 2
1 1 1 1 1 1 1 1 1

[6, 4]
1 1 1 2 2 1 4 1 4
1 1 1 1 1 1 2 1 2

[6, 5]
1 1 1 2 2 1 1 1 1
1 1 1 1 1 1 1 1 1

[8, 5]
1 3 5 1 1 1 8 1 8
1 3 1 1 1 1 1 1 1

[8, 6]
1 3 5 1 1 1 4 1 4
1 3 3 1 1 1 2 1 2

[8, 7]
1 1 3 1 1 1 2 1 2
1 1 1 1 1 1 1 1 1

[10, 6]
1 1 1 1 1 1 16 1 16
1 1 1 1 1 1 2 1 2
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Table 2: Best Hamming, Lee and Bachoc distance of θ2-Hermitian dual-containing (θ, δ)-codes over
F2[v]/[v

2 + v]

n \ k 2 3 4 5 6 7 8 9

4 2, 2, 4 2, 2, 2
5 2, 2, 2 1, 1, 2
6 3, 3, 4 2, 2, 4 2, 2, 2
7 3, 3, 5 1, 1, 2 1, 1, 2
8 3, 3, 6 2, 2, 4 2, 2, 2 2, 2, 2
9 1, 1, 2 ∅ ∅ ∅
10 2, 2, 2 2, 2, 2 ∅ ∅ 2, 2, 2

Table 3: Hamming weight enumerator of dual-containing (θ, δ)-codes over F2[v]/[v
2 + v].

[n, k] Hamming Weight Constructed with (θ, δ)

[4,2]
1 + 6w2 + 9w4 all combinations (θ, δ) provide such an example
1 + 4w2 + 4w3 + 7w4 (θ2, δ2), (θ3, δ3), (θ4, δ4)

[6,3] 1 + 9w2 + 27w4 + . . . all combinations (θ, δ) provide such an example

[6,4]

1 + 9w2 + 24w3 + . . . all combinations (θ, δ) provide such an example
1 + 17w2 + 24w3 + . . . (θ2, δ3), (θ2, δ3)
1 + 2w + 11w2 + . . . (θ3, δ3), (θ4, δ4)
1 + 13w2 + 24w3 + . . . (θ3, δ3), (θ4, δ4)

[8,4]

1 + 12w2 + 54w4 + . . . all combinations (θ, δ) provide such an example
1 + 28w4 + 56w5 + . . . (θ2, 0)
1 + 4w2 + 38w4 + . . . (θ2, δ2), (θ3, δ3), (θ4, δ4)

Table 4: Hamming weight enumerator of θ2-Hermitian dual-containing (θ, δ)-codes over
F2[v]/[v

2 + v].

[n, k] Hamming Weight Constructed with (θ, δ)

[4,2] 1 + 6w2 + 9w4 all combinations (θ, δ) provide such an example
1 + 2w2 + 8w3 + 5w4 (θ2, 0)

[4,3] 1 + 18w2 + . . . all combinations (θ, δ) provide such an example
1 + 2w + 16w2 + . . . (θ2, δ2), (θ3, δ3), (θ4, δ4)
1 + 2w + 12w2 + . . . (θ2, δ3), (θ2, δ4)

[5,3] 1 + 8w2 + 14w3 + . . . (θ2, δ3), (θ2, δ4)
1 + w + 6w2 + . . . (θ3, δ3), (θ4, δ4)

[5,4] 1 + 3w + 22w2 + . . . (θ2, δ3), (θ2, δ4)
[6,3] 1 + 9w2 + 27w4 + . . . all combinations (θ, δ) provide such an example

1 + 8w3 + 21w4 + . . . (θ3, δ3), (θ4, δ4)
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Table 5: [6, 4] dual-containing (θ, δ)-codes over F2[v]/[v
2 + v] with Hamming weight enumerator

1 + 13w2 + 24w3 + . . . .

Index g (θ, δ) G

1 g = X2 +X + v + 1 (θ3, δ3)


v + 1 1 1 0 0 0
v 1 1 1 0 0
v 0 1 1 1 0
v 0 0 1 1 1


2 g = X2 + (v + 1)X + 1 (θ3, δ3)


1 v + 1 1 0 0 0
0 v + 1 1 1 0 0
0 v 1 1 1 0
0 v 0 1 1 1


3 g = X2 + vX + 1 (θ4, δ4)


1 v 1 0 0 0
0 v 1 1 0 0
0 v + 1 1 1 1 0
0 v + 1 0 1 1 1


4 g = X2 +X + v (θ4, δ4)


v 1 1 0 0 0

v + 1 1 1 1 0 0
v + 1 0 1 1 1 0
v + 1 0 0 1 1 1



one of ℏ is equal to h. The following are the other 15 distinct ℏ ̸= h such that f1 = g · ℏ:

f1 = g ·
(
X4 + (v + 1)X3 + vX2 + (v + 1)X + v + 1

)
= g ·

(
X4 +X3 + vX2 + (v + 1)X + v + 1

)
= g ·

(
X4 + (v + 1)X3 + (v + 1)X + v + 1

)
= g ·

(
X4 +X3 + (v + 1)X + v + 1

)
= g ·

(
X4 + (v + 1)X3 + vX2 +X + v + 1

)
= g ·

(
X4 + (v + 1)X3 +X + v + 1

)
= g ·

(
X4 +X3 +X + v + 1

)
= g ·

(
X4 + (v + 1)X3 + vX2 + (v + 1)X + 1

)
= g ·

(
X4 +X3 + vX2 + (v + 1)X + 1

)
= g ·

(
X4 + (v + 1)X3 + (v + 1)X + 1

)
= g ·

(
X4 +X3 + (v + 1)X + 1

)
= g ·

(
X4 + (v + 1)X3 + vX2 +X + 1

)
= g ·

(
X4 +X3 + vX2 +X + 1

)
= g ·

(
X4 + (v + 1)X3 +X + 1

)
= g ·

(
X4 +X3 +X + 1

)
The [8, 4, dH = 5] code in Table 2 that achieves the Singleton bound in Hamming metric are

obtained with g = X4 + (v + 1)X3 + X2 + vX + 1 and g = X4 + vX3 + X2 + (v + 1)X + 1 in(
F2[v]/[v

2 + v]
)
[X; id, θ2].

We apply the algorithm presented in Section 4.2.2 to verify for which dual-containing codes
C = Rg/Rf ⊂ R/Rf the dual code C⊥ is again a cyclic module (θ, δ)-code. See in Table 1b and
Table 1c for an overview. We list two examples below which show that the dual of a dual-containing
cyclic module (θ, δ)-code is not always a cyclic module (θ, δ)-code:

� For [n = 4, k = 3], we found three g ∈ A[X; θ2, δ2] that generate dual-containing cyclic module
codes: g1 = X + v + 1, g2 = X + 1, g3 = X + v where only the dual of g2 = X + 1 is a cyclic
module code, with g⊥2 = X3 +X2 +X + 1.
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� For [n = 6, k = 4], we found four g ∈ A[X; θ3, δ3] that generate dual-containing cyclic module
codes: g1 = X2+(v+1)X+v+1, g2 = X2+X+1, g3 = X2+X+v+1, g4 = X2+(v+1)X+1.
Only the dual of g2 and g4 are cyclic module codes, with g⊥2 = X4 + X3 + X + 1 and
g⊥4 = X4 + (v + 1)X3 +X + v + 1, respectively.

6 Computational Results for A = F2[u]/(u
2)

We keep the notations of Example 1 for the ring A = F2[u]/(u
2). Lemma 4 and Algorithm 1 show

that we can search dual-containing cyclic left module (θ, δ)-code C = Rg/Rf ⊂ R/Rf over the
subalgebra B = F2 ⊂ A using a Gröbner basis approach. We follow [11] and define the Lee weight
of 0, 1, u, u + 1 respectively as 0, 1, 2, 1 and the Euclidean weight respectively as 0, 1, 4, 1. Table 6
give an overview of the best dual-containing codes C = Rg/Rf ⊂ R/Rf (the algorithm found all
such codes). For the cell marked in gray, the dual-containing cyclic module codes are only found
from the maps (id, δ2) and (id, δ4).

Table 6: Best Hamming, Lee, and Euclidean distances of dual-containing cyclic module (θ, δ)-codes
over F2[u]/(u

2).

n \ k 2 3 4 5 6 7 8 9

4 2, 4, 4 2, 2, 2
5 ∅ 1, 2, 2
6 2, 4, 4 2, 2, 2 2, 2, 2
7 3, 3, 3 ∅ 1, 2, 2
8 4, 4, 4 2, 4, 4 2, 2, 2 2, 2, 2
9 ∅ ∅ ∅ 1, 2, 2
10 2, 4, 6 2, 4, 5 ∅ ∅ 2, 2, 2

Table 7 gives an overview whether the dual codes C⊥ of the dual-containing codes found by
Algorithm 1 are again cyclic module (θ, δ)-codes.

Table 8 shows examples for which Hamming weight enumerators could only be found using
specific (θ, δ) combinations. In particular the gray cells indicate those that can only be obtained
using a non-zero derivation.

7 Computational Results for A = F4

Consider the field F4 = F2(α) where α2 = α + 1. There are two automorphisms: θ1 = id and the
Frobenius automorphism θ2 : x 7→ x2. θ2 is of order 2 and is a polynomial map on both F4 and F2.
All the θ-derivations are inner derivations and are marked in gray in the list below:

Automorphism
θ1 = id θ2(α) = α+ 1

δ1 = 0 α 7→ 0 α 7→ 0
δ2 α 7→ 1
δ3 α 7→ α
δ4 α 7→ α+ 1
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Table 7: For which dual-containing cyclic module codes C is the dual C⊥ again a cyclic module
code, according to Section 4.2.2?

n \ k 2 3 4 5 6 7 8 9

4 All All

5 /
(id, δ2): None
(id, δ4): All

6 All All All
7 All / All
8 All All All All

9 / / /
(id, δ2): None
(id, δ4): Some

10 All All / / All

Table 8: Hamming weight enumerator of dual-containing (θ, δ)-codes over F2[u]/[u
2].

[n, k] Hamming Weight Constructed with (θ, δ)

[4,2]
1 + 2w2 + 8w3 + 5w4 (id, 0), (id, δ2), (id, δ3), (θ2, δ2)
1 + 6w2 + 9w4 all maps

[8,4]

1 + 4w2 + 30w4 + . . . (id, 0), (θ2, δ2)
1 + 4w2 + 46w4 + . . . (id, 0)
1 + 4w2 + 16w3 + . . . (id, 0)
1 + 12w2 + 54w4 + . . . all maps
1 + 26w4 + 64w5 + . . . (id, δ2)

[8,5]

1 + 4w2 + 16w3 + 94w4 + . . . (id, 0), (id, δ2)
1 + 4w2 + 16w3 + 110w4 + . . . (id, 0)
1 + 12w2 + 102w4 + . . . all maps
1 + 16w2 + 8w3 + 114w4 + . . . (id, δ2)
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Following [11] we define the Lee weight of 0, 1, α, α+1 respectively as 0, 2, 1, 1 and following [13]
we define the Euclidean weight respectively as 0, 1, 2, 1.

Table 9 shows the existence and the best Hamming, Lee and Euclidean distance of the θ2-
Hermitian dual-containing cyclic module (θ, δ)-codes C = Rg/Rf ⊂ R/Rf over F4. The gray cells
indicate the codes that can only be obtained using a non-zero derivation.

Table 9: The best Hamming, Lee and Euclidean dH , dL, dE distance of θ2-Hermitian dual-containing
codes Rg/Rf ⊂ R/Rf over F4.

n \ k 2 3 4 5 6 7 8 9

4 2, 2, 2 2, 2, 2
5 3, 3, 3 1, 1, 1
6 4, 4, 4 2, 2, 2 2, 2, 2
7 3, 3, 3 ∅ 1, 1, 1
8 2, 2, 2 2, 2, 2 2, 2, 2 2, 2, 2
9 ∅ ∅ ∅ 1, 1, 1
10 4, 4, 4 3, 3, 3 2, 2, 2 2, 2, 2 2, 2, 2

Table 10 provides some examples of the Hamming weight distributions. This shows that in

Table 10: Weight enumerator of θ2-Hermitian dual-containing cyclic module (θ, δ) codes over F4.

[n, k] Hamming Weight Enumerator Constructed with (θ, δ)

[4,3]
1 + 18w2 + 24w3 + 211w4 all maps
1 + 6w + 12w2 + 18w3 + 27w4 (θ2, δ2)

[5,4] 1 + 9w + 30w2 + 54w3 + 81w4 + 81w5 (θ2, δ2)

[6,5]
1 + 45w2 + 120w3 + 315w4 + 360w5 + 183w6 all maps
1 + 12w + 57w2 + 144w3 + 243w4 + . . . (θ2, δ2)

[7,6] 1 + 15w + 93w2 + 315w3 + 675w4 + . . . (θ2, δ2)

[8,7]
1 + 84w2 + 336w3 + 1470w4 + . . . all maps
1 + 18w + 138w2 + 594w3 + 1620w4 + . . . (θ2, δ2)

[9,8] 1 + 21w + 1922 + 1008w3 + 3402w4 + . . . (θ2, δ2)

[10,9]
1 + 135w2 + 720w3 + 4410w4 + 15120w5 + . . . all maps
1 + 24w + 255w2 + 1584w3 + 6426w4 + . . . (θ2, δ2)

Hermitian case, non-zero derivation does produce other code than in the δ = 0 case. In the δ = 0
case we could not exhibit new codes.

8 Computation Results for the Galois Ring A = GR(4, 2)

The galois ring A = GR(4, 2) = Z4[u] = (Z/4Z)[u]/(u2+u+1) is a Frobenius ring of order 16. This
ring has two automorphisms: θ1 = id and θ2(u) = 3u+3 of order 2. The zero derivation is the only
id-derivation. The θ2-derivations are all inner (i.e. δ : a 7→ βa−θ2(a)β,∀β ∈ A): δ1(u) = 0, δ2(u) =
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u, δ3(u) = 2u, δ4(u) = 3u, δ5(u) = 1, δ6(u) = u+ 1, δ7(u) = 2u+ 1, δ8(u) = 3u+ 1, δ9(u) = 2,
δ10(u) = u+ 2, δ11(u) = 2u+ 2, δ12(u) = 3u+ 2, δ13(u) = 3, δ14(u) = u+ 3, δ16(u) = 3u+ 3.

We computed all [4, 2] self-dual and [4, 3] dual-containing cyclic left module (θ, δ)-codes over
A = GR(4, 2) by Algorithm 1. For the [4, 2] codes, there are 8 g’s given by each map in Table 11.
They generate [4, 2, dH = 3] codes with distinct codebooks (i.e. the codewords in the codes are not
all equal), however, with the same weight enumerator 1 + 60w3 + 195w4. For each g there are 16
f ’s which are all central and including one in the form of Xn − a for some a ∈ Z4. The [4, 3] codes
can be obtained from all maps. From each map, there are four unique g’s. For each g there are
more than 1000 f ’s which include at least one central f and an f in the form of Xn − a for some
a ∈ Z4. All the codes have the same weight enumerator given in Table 11.

Table 11: The best Hamming distance dH of dual-containing codes Rg/Rf ⊂ R/Rf over GR(4, 2).

[n, k] existing code for map (θi, δj) best dH Weight Distribution

[3,2]
(1, 1), (2, 2), (2, 4), (2, 6), (2, 8),

2
1 + 45w2 + 210w3

(2, 10), (2, 12), (2, 14), (2, 16)
[4, 2] (2, 1), (2, 3), (2, 9), (2, 11) 3 1 + 60w3 + 195w4

[4, 3] All maps 2 1 + 90w2 + 840w3 + 3165w4

[5, 3] ∅ / /
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