APPLICATION OF DUAL-FREQUENCY EISCAT MEASUREMENTS TO DETERMINE ION-NEUTRAL COLLISION FREQUENCIES WITH THE DIFFERENCE SPECTRUM METHOD

21ST INTERNATIONAL EISCAT SYMPOSIUM, TROMSØ, NORWAY

02 AUGUST 2024

Florian Günzkofer

Gunter Stober Johan Kero David R. Themens Yasunobu Miyoshi Dimitry Pokhotelov Claudia Borries Institute for Solar-Terrestrial Physics, DLR Institute of Applied Physics, University of Bern Swedish Institute for Space Physics University of Birmingham Kyushu University Institute of Physics, University Greifswald Institute for Solar-Terrestrial Physics, DLR

ALTITUDE / km 110 1828-1922 UT 2044-2154 UT MSIS-86 100 0.01 0.1 10

COLLISION FREQUENCY / kHz

[Nygrén, Adv. Space Res., 18, 79-82, (1996).]

2

- \rightarrow determines maxima of ionospheric conductivities σ_P and σ_H
- v_{in} impacts the ISR spectrum due to the ion adiabatic coefficient γ_i $\rightarrow \gamma_i T_i$ term is ambiguous, assumptions $(T_i = T_e)$ required
 - v_{in} determines the drag force between ion and neutral particles \rightarrow vertical ion momentum equation can be applied ($U_z = 0, E \ge 20 \text{ mV/m}$)

previous measurements indicated **considerable differences between** climatology (MSIS) and measurement v_{in} profiles (Nygrén, 1996; Oyama et al., 2012)

The difference spectrum method

[Günzkofer et al., Atm. Meas. Tech., 16, 5897-5907, (2023).]

Theoretical difference function:

[Grassmann, *J. Atmos. Terr. Phys.*, **55**, 573-576, (1993).]

Measured difference function:

$$D(\omega_{UHF} + \delta\omega) = S(\omega_{UHF} + \delta\omega) - \beta \cdot \tilde{S}(\omega_{UHF} + \delta\omega)$$

 β determined for $D(\omega_{UHF} + \delta \omega) = 0$ (F region)

scaled VHF spectrum:

$$\zeta = \frac{\omega_{UHF}}{\omega_{VHF}} = 4.15$$

$$\tilde{S}(\omega_{UHF} + \delta\omega) = \begin{cases} \zeta^2 \cdot S(\omega_{VHF} + \delta\omega) \\ s(\omega_{UHF} + \delta\omega, \zeta^2 \cdot N_e, T_e, T_i, \zeta \cdot \nu_{in}, \nu_i) \end{cases}$$

$$d(\omega_{UHF} + \delta\omega, N_e, T_e, T_i, \nu_{in}, \nu_i) = s(\omega_{UHF} + \delta\omega, N_e, T_e, T_i, \nu_{in}, \nu_i) - \beta \cdot s(\omega_{UHF} + \delta\omega, \boldsymbol{\zeta}^2 \cdot \boldsymbol{N}_e, T_e, T_i, \boldsymbol{\zeta} \cdot \boldsymbol{\nu_{in}}, \nu_i)$$

Comparison to Nicolls et al., 2014

Nicolls et al., 2014:

- dual-frequency EISCAT campaign from 29 August 2013 analyzed following Grassmann, 1993b
- simultaneous fit of both spectra with combined error function applied
 → not possible with GUISDAP

Difference spectrum method:

- separate single-frequency analysis
 analysis possible with GUISDAP
- obtained median profile strongly resembles Nicolls *et al.*, 2014
 - interquartile errorbars are considerably increased

[Nicolls et al., Geophys. Res. Lett., **41**, 8147-8154, (2014).] [Günzkofer *et al.*, *Atm. Meas. Tech.*, **16**, 5897-5907, (2023).]

Analyzed dual-frequency campaigns

[Günzkofer et al., Atm. Meas. Tech., 16, 5897-5907, (2023).]

DLR EISCAT dual-frequency campaigns:

- 27 September 2021
 beata, el 45°, az 180°
- 14 October 2022 manda zenith (CP 6)

Other EISCAT dual-frequency campaigns:

- Geminids 13-15 December 2022 (Sweden)
 manda zenith (CP 6)
- SEP Event 16 May 2024 (UK) manda zenith (CP 6)

Impact of particle precipitation – Geminids campaign 2022

14-Dec-2022 12:00

15-Dec-2022 00:00

15-Dec-2022 12:00

- original idea: investigate impact of atmospheric tides, but: significantly low tidal amplitudes during campaign
- strong particle precipitation detected
- electron density at 95 km altitude N_e (95 km) is applied as proxy for particle precipitation

[Günzkofer et al., in preparation]

14-Dec-2022 00:00

13-Dec-2022 12:00

13-Dec-2022 00:00

6

Impact of particle precipitation – neutral upwelling

- collision frequency profiles binned for:
 - 1. $N_e(95 \ km) < 5 \cdot 10^9 \ m^{-3}$
 - 2. $5 \cdot 10^9 < N_e(95 \text{ km}) < 1.3 \cdot 10^{10} \text{ m}^{-3}$
 - 3. $N_e(95 \text{ km}) > 1.3 \cdot 10^{10} \text{ m}^{-3}$
- neutral particle density profile calculated from collision frequency
- difference of neutral particle density profile for high and low particle precipitation calculated
- neutral atmosphere heating at 90 100 km altitude with consequent atmospheric upwelling

[Günzkofer et al., in preparation]

Impact of particle precipitation – SEP event May 16, 2024

[[]Günzkofer et al., in preparation]

- → profiles similar to December 2022 measurement for $N_e(95 \text{ km}) > 1.3 \cdot 10^{10} \text{ m}^{-3}$
- neutral uplift becomes more pronounced for stronger particle precipitation

8

 \rightarrow dual-frequency ISR campaigns allow for v_{in} measurements without restrictions on the state of the ionosphere

Advantages	Disadvantages
based on standard ISR analysis software (GUISDAP)	increased uncertainties due to two-step analysis (1. single-frequency ISR fit, 2. difference spectrum fit)
easily adaptable for different radar modes	β parameter required to compensate technical differences of the two radars

Difference spectrum method

- → investigation of the neutral atmosphere in the MLT region possible since $n_n \sim v_{in}$
- ionospheric conductivities and currents are strongly impacted by the collision frequency which therefore have a direct impact on the space weather
 References:

florian.guenzkofer@dlr.de

References: Günzkofer *et al.*, *Atm. Meas. Tech.*, **16**, 5897-5907, (2023). Nicolls *et al.*, *Geophys. Res. Lett.*, **41**, 8147-8154, (2014). Oyama *et al.*, *J. Geophys. Res.*, **117**, A05308, (2012). Nygrén, *Adv. Space Res.*, **18**, 79-82, (1996). Grassmann, *J. Atmos. Terr. Phys.*, **55**, 573-576, (1993).