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The role of the ion-neutral collision frequency
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[Nygrén, Adv. Space Res., 18, 79-82, (1996).]

• ion-neutral collision frequency 𝜈𝑖𝑛 determines the transition from a collisional 

to a collision-less ionosphere

➔ determines maxima of ionospheric conductivities 𝜎𝑃 and 𝜎𝐻

• 𝜈𝑖𝑛 impacts the ISR spectrum due to the ion adiabatic coefficient 𝛾𝑖
➔ 𝛾𝑖𝑇𝑖 term is ambiguous, assumptions (𝑻𝒊 = 𝑻𝒆) required

• 𝜈𝑖𝑛 determines the drag force between ion and neutral particles

➔ vertical ion momentum equation can be applied (𝑼𝒛 = 𝟎, 𝑬 ≳ 𝟐𝟎 mV/m)

• previous measurements indicated considerable differences between 

climatology (MSIS) and measurement 𝝂𝒊𝒏 profiles (Nygrén, 1996; Oyama

et al., 2012)



The difference spectrum method
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Measured difference function:

𝐷 𝜔𝑈𝐻𝐹 + 𝛿𝜔 = 𝑆 𝜔𝑈𝐻𝐹 + 𝛿𝜔 − 𝛽 ⋅ ሚ𝑆(𝜔𝑈𝐻𝐹 + 𝛿𝜔)

𝛽 determined for 𝐷 𝜔𝑈𝐻𝐹 + 𝛿𝜔 = 0 (F region)

scaled VHF spectrum: 𝜁 =
𝜔𝑈𝐻𝐹

𝜔𝑉𝐻𝐹
= 4.15

ሚ𝑆 𝜔𝑈𝐻𝐹 + 𝛿𝜔 = ൝
𝜁2 ⋅ 𝑆 𝜔𝑉𝐻𝐹 + 𝛿𝜔

𝑠(𝜔𝑈𝐻𝐹 + 𝛿𝜔, 𝜻𝟐 ⋅ 𝑵𝒆, 𝑇𝑒 , 𝑇𝑖 , 𝜻 ⋅ 𝝂𝒊𝒏, 𝑣𝑖)

Theoretical difference function:

𝑑 𝜔𝑈𝐻𝐹 + 𝛿𝜔,𝑁𝑒, 𝑇𝑒 , 𝑇𝑖 , 𝜈𝑖𝑛, 𝑣𝑖 = 𝑠 𝜔𝑈𝐻𝐹 + 𝛿𝜔,𝑁𝑒, 𝑇𝑒 , 𝑇𝑖 , 𝜈𝑖𝑛, 𝑣𝑖 − 𝛽 ⋅ 𝑠(𝜔𝑈𝐻𝐹 + 𝛿𝜔, 𝜻𝟐 ⋅ 𝑵𝒆, 𝑇𝑒 , 𝑇𝑖 , 𝜻 ⋅ 𝝂𝒊𝒏, 𝑣𝑖)

[Günzkofer et al., Atm. Meas. Tech., 16, 5897-5907, (2023).]

[Grassmann, J. Atmos. Terr. Phys., 55, 

573-576, (1993).]



Comparison to Nicolls et al., 2014
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Nicolls et al., 2014:

• dual-frequency EISCAT campaign from

29 August 2013 analyzed following

Grassmann, 1993b 

• simultaneous fit of both spectra with

combined error function applied

➔ not possible with GUISDAP

Difference spectrum method:

• separate single-frequency analysis

➔ analysis possible with GUISDAP

• obtained median profile strongly

resembles Nicolls et al., 2014

➔ interquartile errorbars are

considerably increased

[Nicolls et al., Geophys. Res. 

Lett., 41, 8147-8154, (2014).]

[Günzkofer et al., Atm. Meas. 

Tech., 16, 5897-5907, (2023).]



Analyzed dual-frequency campaigns
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DLR EISCAT dual-frequency campaigns:

• 27 September 2021

beata, el 45°, az 180°

• 14 October 2022

manda zenith (CP 6)

Other EISCAT dual-frequency campaigns:

• Geminids 13-15 December 2022 (Sweden)

manda zenith (CP 6)

• SEP Event 16 May 2024 (UK)

manda zenith (CP 6)

[Günzkofer et al., Atm. Meas. Tech., 16, 5897-5907, (2023).]



Impact of particle precipitation – Geminids campaign 2022

6

• original idea: investigate impact of atmospheric tides, but: 

significantly low tidal amplitudes during campaign

• strong particle precipitation detected

• electron density at 95 km altitude 𝑁𝑒(95 km) is applied as proxy 

for particle precipitation

[Günzkofer et al., in preparation]

[Günzkofer et al., in preparation]



Impact of particle precipitation – neutral upwelling
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• collision frequency profiles binned for:

1. 𝑁𝑒 95 𝑘𝑚 < 5 ⋅ 109 m−3

2. 5 ⋅ 109 < 𝑁𝑒 95 𝑘𝑚 < 1.3 ⋅ 1010 m−3

3. 𝑁𝑒 95 𝑘𝑚 > 1.3 ⋅ 1010 m−3

• neutral particle density profile calculated 

from collision frequency

• difference of neutral particle density 

profile for high and low particle 

precipitation calculated

• neutral atmosphere heating at 90 – 100 

km altitude with consequent atmospheric 

upwelling

[Günzkofer et al., in preparation]



Impact of particle precipitation – SEP event May 16, 2024
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➔ profiles similar to December 2022 measurement for 

𝑁𝑒 95 𝑘𝑚 > 1.3 ⋅ 1010 m−3

➔ neutral uplift becomes more pronounced for stronger 

particle precipitation
[Günzkofer et al., in preparation]

[Günzkofer et al., in preparation]



Summary
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➔ dual-frequency ISR campaigns allow for 𝜈𝑖𝑛 measurements without restrictions on the state of the ionosphere

➔ investigation of the neutral atmosphere in the MLT region possible since 𝑛𝑛 ∼ 𝜈𝑖𝑛

➔ ionospheric conductivities and currents are strongly impacted by the collision frequency which therefore have 

a direct impact on the space weather

Advantages Disadvantages

based on standard ISR analysis software (GUISDAP) increased uncertainties due to two-step analysis (1. 

single-frequency ISR fit, 2. difference spectrum fit)

easily adaptable for different radar modes 𝛽 parameter required to compensate technical 

differences of the two radars

Difference spectrum method
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