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Abstract: Land degradation, desertification and tree mortality related to global climate change have
been in the spotlight of remote sensing research in recent decades since extreme climatic events
could affect the composition, structure, and biogeography of forests. However, the complexity of tree
mortality processes requires a holistic approach. Herein, we present the first global assessment and a
historical perspective of forest tree mortality by reviewing both remote sensing and meteorological
ground-based studies. We compiled 254 papers on tree mortality that make use of remotely sensed
products, meteorological ground-based monitoring, and climatic drivers, focusing on their spatial and
temporal patterns and the methods applied while highlighting research gaps. Our core results indicate
that international publications on tree mortality are on the increase, with the main hotspots being
North America (39%) and Europe (26%). Wetness indicators appear as the barometer in explaining
tree mortality at a local scale, while vegetation indicators derived from multispectral optical sensors
are promising for large-scale assessments. We observed that almost all of the studies we reviewed
were based on less than 25 years of data and were at the local scale. Longer timeframes and regional
scale investigations that will include multiple tree species analysis could have a significant impact on
future research.

Keywords: tree mortality; land degradation; desertification; remote sensing; meteorology; review;
earth observation; climate change

1. Introduction
1.1. Drought Relevance with Tree Mortality

The frequency with which climate change is exerting pressure on ecosystems and the
living environment constitutes a major threat to sustaining natural resources in the future.
According to the World Meteorological Organization, global temperature projections for the
next five years suggest an increase by about 1.5 ◦C, with a 40% chance [1]. Nevertheless, this
reduction of the predicted average warming of 1.5 ◦C from the initially assumed increase
of 2.0 ◦C will be very beneficial for the ecosystems, reducing stress and maintaining their
balance [2]. However, under further warming, forest decline may accelerate in many
regions due to a concurrent increase in water deficit. Hence, water shortage and drought
might reduce tree productivity and affect forest ecosystems [3]. Drought is a major factor
that influences vegetation [4], while related pests and pathogens that can grow on weak
trees can unavoidably lead to tree mortality. Significant uncertainty exists as to how these
effects and relevant processes will impact the risk of future tree mortality events within
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the context of a changing climate. While a mix of responses is to be expected, instances of
increased tree mortality due to drought and/or high temperature may already be occurring
in some areas in response to global climate change (notable examples of recent tree mortality
events are well documented in Section 3).

Furthermore, natural processes and exhaustive human activities can lead to a reduction
of plant cover, loss of soil and organic matter, as well as increases in run-off [5,6]. The
decrease in vegetation coverage can lead to land degradation and even to desertification of
dryland ecosystems [7].

One key challenge is to understand and predict changes that may be abrupt, nonlinear
and irreversible [8]. These changes are hereafter referred to as “critical transitions”. Critical
transitions are experienced when an ecosystem loses its resilience due to sudden drastic
changes, such as lake eutrophication or land desertification [9]. In view of the above,
various studies investigate the response of forests under extreme droughts and/or high
temperatures, which have a high probability of occurrence in several forest regions, thus en-
hancing the rate of tree mortality [10]. Forested ecosystems, especially in the Mediterranean
area, appear to have experienced climatic-induced physiological stress under extreme
droughts and warming, raising concerns that forests may become increasingly vulnerable
to mortality.

Extreme droughts and wet conditions drastically affect vegetation dynamics, causing
abrupt yearly changes in phenological cycles [11]. Water limitations primarily impact
four biome types: (i) savannas, (ii) conifer forests, (iii) the Mediterranean woodlands,
(iv) temperate evergreen and deciduous forests, and (v) evergreen broadleaved tropical
forests [10].

Uncertainty remains as to when and how extreme climatic events will trigger tree
mortality. Analyses and investigations from empirical observations are limited, and real-
world studies are rare [12]. Continuous observations are key in monitoring environmental
variables. Observational limitations lead to difficulties in measuring long-term variables
related to high-frequency time series.

1.2. Efforts in Remotely Sensed and Meteorological Monitoring of Tree Mortality

Assessment of desertification is based on three methodological approaches: expert
judgment, satellite observation of net primary productivity, and use of biophysical models
that, when combined, provide a holistic contemplation of desertification and land degrada-
tion; none of these alone can capture the full picture [13]. To monitor complex phenomena,
meteorological monitoring of air temperature and precipitation from ground-based stations
is essential to assess short-term weather impacts and long-term climatic evolution and
to evaluate the effects of atmospheric and climate change processes [14]. For this reason,
meteorological station networks improve the understanding of various environments [15]
and abrupt changes [16] related to tree mortality. However, individual meteorological
stations cannot provide an adequate analysis of spatial and temporal variability over an
area [15]. However, remote sensing observations with high temporal resolution can provide
important datasets that may be used in retrieving appropriate indicators for assessing
critical transitions through the years [8].

The vulnerability of a region to desertification can be assessed with several methods.
Today, with the advancement of remote sensing technology, it is possible to investigate
desertification using a large number of parameters [17], such as responses of vegetation
under human pressure and environmental disturbances, low cost of collecting data, greater
spatiotemporal resolution, continuous update and ease in availability of data [18]. Remote
sensing has the potential to monitor the long-term dynamics of complex ecosystems in real-
time, such as abrupt changes [16]. The utilization of thermal, multispectral and microwave
remote sensing could effectively characterize the spatiotemporal characteristics of drought
conditions. It is important to note that a number of space-borne sensors can illustrate longer
drought events due to the longer-term availability of continuous high-resolution imagery,
such as the Landsat sensor operating since 1984 [18]. Other multispectral optical sensors
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can be used effectively to monitor greenness, tree mortality and density of vegetated areas,
such as the Advanced Very High-Resolution Radiometer (AVHRR), Moderate Resolution
Imaging Spectroradiometer (MODIS) and Sentinel-2 [19] (for a complete list of all the
acronyms and abbreviations used in this paper, please see the Abbreviations section).

The major constraint of various sensors, such as that of multispectral Landsat, is the
low revisit time and data gaps due to cloud coverage. The launch in 2015 of Sentinel-2,
with a 10 m spatial resolution and revisit time every 10 days, allows an efficient analysis of
drought [20]. Also, various sensors provide other opportunities, such as the multispectral
imagery of MODIS and NOAA-AVHRR, with low spatial resolution (250 m to 1 km) but
with higher temporal resolution up to twice daily [21,22].

Apart from multispectral and thermal sensors, microwave sensors play a vital role
in drought monitoring and assessment. In this respect, various sensors can observe atmo-
spheric variables, such as ozone content, precipitation (e.g., Global Precipitation Measure-
ment Mission—GPM) and soil moisture by the Soil Moisture Active and Passive (SMAP)
mission. Global coverage allows These sensors to penetrate through cloud cover, haze
and dust in near-real-time [23]. It is noteworthy that the utilization of the online platform
of Google Earth Engine makes the processing of vast cloud-based datasets possible in
order to characterize and assess drought and desertification events [24–26]. Nonetheless,
integrating ground-based measurements of meteorological variables with data from remote
sensing technologies [27], such as radar and LiDAR, makes detecting various environmental
anomalies and changes more tangible [28].

In sum, meteorological ground-based monitoring data in real-time [29], including
temperature and precipitation, may be used to fill in gaps in remotely sensed data due to
cloud cover, haze or dust.

The optical sensors onboard Landsat and MODIS constitute the primary source of
data, with NDVI being the most common indicator in mortality detection. Monitoring tree
growth, water content, and physiological responses using remotely sensed data has further
enhanced the interest of the scientific community in studying forest tree mortality.

1.3. The Objectives and Structure of This Review

In this comprehensive review, our analysis encompasses 254 scientific articles, with a
focus on tree mortality due to drought, including 206 studies employing remote sensing
and 48 utilizing meteorological ground-based monitoring. We explore the historical de-
velopment of the field of remote sensing and identify global forest tree mortality research
hotspots. This is the first global assessment and a historical perspective of forest tree mortal-
ity from a remote sensing perspective, alongside meteorological ground-based approaches,
providing an analysis of the indicators employed, the methods used, and the spatiotempo-
ral resolution adopted, while identifying relevant deficiencies and gaps, upon which future
research directions are proposed. Subsequently, we address key research questions, explore
the historical development of the field, identify tree mortality hotspots, examine spatial and
temporal scales, detail sensor usage, elucidate methods for understanding tree mortality,
discern prevalent indicators, and highlight predominant research focuses. To enrich our
capacity to identify trends in tree mortality, we discuss identified gaps and propose future
research directions.

In the upcoming sections, we provide details of our review method (Section 2) and the
results related to the research questions set (Section 3). Section 4 discusses the implications
of the findings, followed by conclusions and future outlook in Section 5.

2. Materials and Methods

For our analysis, we used the Web of Science digital database, including the Science
Citation Index (SCI) (last accessed on 16 October 2023). A systematic review assesses the
progress of tree/forest mortality research papers globally based on remote sensing and
meteorological ground-based ones. Figure 1a illustrates the workflow adopted, resulting
in n = 254 peer-reviewed publications (the list of References does not cover all the papers
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used in the current analysis; instead, the complete list is given in Supplementary Materials
S1). Remote sensing and meteorological ground-based studies are depicted as overlapping
circles in Figure 1b. We incorporate the all-possible synonymous terms with tree mortality
by combining various groups of terms related to “remote sensing” and “meteorology”.
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Science “topic” search using search strings.

We considered tree mortality studies that mentioned keywords such as “tree mor-
tality”, “dieback”, or “die-off”, along with specific terms such as “meteorology”, “clima-
tology”, “meteorological station” and “meteorological data”, or any term starting with
“meteorolog*” and “climatalo*”. Separately, for studies related to remote sensing, we
included those mentioning words such as “remote sensing”, “aerial imagery”, “RS”, “earth
observation”, “EO”, or “mapping”.

Using these specific search criteria, our initial query generated more than 18,000 results.
To narrow down the scope to publications with a focus on climatic-induced tree mortality,
we refined the search by including the terms such as “drought”, “desertification”, “climate
change”, and terms beginning with “resilien*” and “disaster*” in the search string. This
adjustment resulted in a more manageable set of 3124 results (Figure 1b).

Here, TS means “topic”. Publications are considered if they are focused on the topic,
peer-reviewed, and keywords appear in a given paper’s title, abstract, and/or keyword,
whereas AND and OR are Boolean conditions used to formulate the search. In light of
the above, the returned total number of combinations is n = 3124. Finally, we removed all
duplicate articles, manually filtered each article, and selected papers that focused on tree
mortality remote sensing and meteorological monitoring. In this filtering stage, we selected
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results that meet all search terms and additional filters applied so far while specifically
addressing tree mortality. In a second step, we manually eliminated any publications
that remained but did not align with our scope of tree mortality and focused on: non-
forested areas, non-use of meteorological indicators/analysis (for meteorological articles
only), “insects”, “pathogens”, “deforestation”, “fire”, “beetle”, “human-induced”, “human
practices”, “fertilizers” or ”grazing” (the combinations of searching strings of remote
sensing and meteorology of articles is given in the Supplementary Materials S2).

From the beginning, we refined our search by restricting accepted document types
to review papers, ensuring that the selected publications underwent peer review scrutiny.
Subsequently, we conducted manual filtering of the publications based on full text/topic,
identifying and excluding results that did not match our thematic focus despite meeting
all search terms and other filtering criteria up to that point. In this final filtering step, only
studies focusing on the combination of tree mortality, remote sensing, climatic-induced
tree mortality and meteorological monitoring were retained, while those lacking a focus on
those fields were filtered out. Regarding tree mortality, our inclusion criteria encompassed
specific tree species such as pine, oak, cedar, fir, spruce and beech.

We did not set a temporal frame for the publication year of the included publications,
but the first publication that fit our search criteria was from 1993. However, the majority
of the works included have been published within the last fifteen years. Taking the above
into consideration, we finally reviewed a total of 254 research articles. Each publication
was categorized into groups. Given the plethora of variables in this systematic review, we
produce the graphs and tables presented in Section 3. Table 1 displays a list of 20 variables
relevant to this review.

Table 1. Summary of the extracted and analyzed variables in this study.

Variables Recorded

Article code; Authors; Publication year; Article title; Journals;
Drought event; Study country; Study area; remote sensing Monitoring; Meteorology Monitoring;

Starting year of investigation; Ending year of investigation; Spatial scale a; Spatial resolution
(m/km); Satellite sensors; Article Focus; remote sensing Indicators; Ground-based indicators;

Meteorological indicators; Statistical Analysis.
a local, regional and global.

3. Results

In the following, we first expose the spatial distribution of papers based on remote
sensing and meteorological parameters over time and their global distribution. Then, we
present the spatial distribution of meteorological drought indicators, biomes monitored,
the type of sensors used, as well as the methods and indicators of remote sensing and the
meteorological ground-based monitoring applied.

3.1. Tree Mortality Studies over Time

Tree mortality papers appear to have increased over the years (Figure 2). The first
pioneer study on tree mortality monitoring related to frequent drought events appeared for
patches of California Cuyamaca State Park in 1993 [30]. A few peer-reviewed articles appear
until 2009, with data gaps in 1998–2002, 2006, and 2008. Figure 2 depicts an increasing
trend, starting from 2010, in the number of published research articles, which will peak
in 2021.

The significant increase in tree mortality papers is mostly due to remote sensing-based
publications, whereas publications based on meteorological parameters remain relatively
stable (ca. two to six per year). In 2021, publications of remote sensing measurements
peaked with 29 articles, while meteorological-based publications peaked in 2022 with
six articles.
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3.2. Spatial Distribution of Reviewed Research Articles

The hotspots of tree mortality publications applying remote sensing or using meteoro-
logical ground-based indicators are shown in Figure 3a,b, respectively. Various areas of
interest (AOI) are counted separately, and all research articles per country are visualized.
Emphasizing this, some studies have multiple AOI. Each country contains the respective
number of AOI of tree mortality. In these figures, the classification was performed using
five Jenks Natural Breaks clusters to underline the most significant AOI, but also contains
the lowest counters, spotting the differences between the countries and regions.

Tree mortality events in diverse ecosystems, from monsoonal savannas with less
than 400 mm of annual precipitation to sub-alpine forests in Mediterranean climates and
tropical rainforests receiving more than 3000 mm of annual precipitation, are gathering
significant attention from researchers. Extensive die-offs are often linked with prolonged
water shortages, such as those experienced in savannas and temperate conifer forests during
multi-year droughts. In the case of temperate forests, short-term seasonal droughts are more
likely to lead to mortality in broadleaved (deciduous angiosperm) trees rather than conifers
(evergreen needleleaf trees) due to their higher vulnerability to xylem cavitation [10].

Remotely sensed tree mortality research studies are more frequent in the United States
of America (65), followed by Spain (16), China (13), Australia (9), Canada (9), Italy (7), and
Germany (6). The five major hotspots in the United States of America (USA) are California
(31), New Mexico (7), Arizona (7), Colorado (6), Utah (4), and Texas (4). Dryland forests
are a common characteristic of all five areas. Research activity in South America (i.e., 6) is
concentrated in the Amazon basin. Research articles focusing on the European continent
amount to 54.

Meteorological ground-based research studies on tree mortality have been conducted
in the USA (13), Spain (7), Greece (3), Canada (3), Germany (3), and Switzerland (3). Based
on Figure 3a,b and Figure 4, eleven papers using remotely sensed and meteorological
drought indicators focus on Mediterranean Basin forests. Furthermore, a few papers
focused on Africa (five were based on remote sensing, and one was using meteorological
parameters), while South America had just one entry from Brazil, which was based on
remote sensing.
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Interestingly, the review revealed that only 61 meteorological ground-based research
studies were combined with remote sensing data, providing a more holistic approach
to monitoring tree mortality. USA appears in one-third of all research publications (72)
using the two methods. The Amazonian Forest is less often investigated (seven studies
overall) despite reports of severe drought events that increased tree mortality rates in the
region [31].

To enable a better overview of articles on tree mortality under climatic water stress and
high temperatures in forests, we focused on studies founded on meteorological ground-
based drought indicators only. To estimate the impact of climate on tree mortality papers
globally, we grouped countries with research publications that include Potential Evapotran-
spiration (PET), Precipitation minus Potential Evapotranspiration (P-PET), Palmer Drought
Severity Index (PDSI), Self-Calibrated Palmer Drought Severity Index (scPDSI), Standard-
ized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI),
and Actual Evapotranspiration (AET), as it is shown in Figure 4. meteorological drought
indicators are determined by the location of the country, the impact of climate and the
number of cases of tree mortality per country. Figure 4 illustrates an increasing research
interest in the USA (37), Spain (13), and China (10), followed by Canada, Germany, and the
Russian Federation (6 articles each). Equally important is that studies with the combined
use of PDSI, PET, SPI, and remote sensing have not been recorded in Europe. The SPEI
indicator was by far the most frequently used meteorological indicator, applied in roughly
49% of the papers published.

3.3. Temporal Scale and Spatial Resolution of Tree Mortality Publications

Drought and tree mortality research has become increasingly available since the
launch of the first Landsat program in 1972, which provided a plethora of multi-sensor
products [23,32]. The timeframe adopted in each research article is shown in Figure 5,
separately for each of the two approaches (remote sensing and meteorological ground-
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based). The tree mortality study, using meteorological indicators with the longest timeframe
of 100 years, was conducted in Switzerland [33]. The average time span of all tree mortality
studies is approximately 39 years. Remote sensing articles cover an average time span of
about eleven years. Only three research publications based on meteorological monitoring
were recorded before 2010, while 57% of tree mortality articles based on remote sensing
were published in the last five years. In response to this evidence, tree mortality can be a
slow and gradual process, requiring long-term monitoring to document its dynamics and
the factors affecting it. An extended timeframe allows for a more detailed understanding
of long-term ecological trends, favoring the meteorological ground-based approach instead
of remote sensing, which undoubtedly offers large-scale information on forest health.
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Figure 5. Overview of yearly publications on remote sensing and meteorological-based studies for
monitoring and analyzing tree mortality.

The major interest in long-term tree mortality monitoring through remote sensing
started in 2010. Noticeably, 42 tree mortality research papers covered a time span of
over 20 years out of 206 articles using remote sensing. For meteorological ground-based
monitoring, there was only one study with a time span of 100 years, whereas 30 out of
48 papers reviewed covered less than 50 years.

The spatial resolution and spatial extent utilized in the studies covered herein are
depicted in Figure 6. Spatial extent is categorized based on three different scales: local,
regional and global. The majority of tree mortality studies are deployed on a local scale.
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Figure 6. The extent of study areas versus spatial resolution for publications utilizing remote sensing.
The shades of blue are proportional to the scale (Local scale = dark blue, Regional scale = medium
blue, Global scale = light blue).

Most research articles utilize high (≤10 m) or medium (≤100 m) spatial resolution on
mostly Landsat data, although the temporal resolution of Landsat data is restrained by
infrequent revisit times, gaps due to cloud presence, shadows or nighttime. In 2022, the
time series used in studies at the local scale had an average timeframe of about 13 years,
while for the period 2010–2020, the average time series length was 9 years. Additionally,
Landsat provides monthly time series due to its temporal resolution of 16 days [34–38],
while MODIS provides daily time series due to its higher temporal resolution [39,40].

Taking all of the above into account, there appears to be a tendency for high spatial res-
olution studies to adopt a low temporal resolution, while studies with low spatial resolution
are associated with a longer time span analysis. In order to overcome temporal and spatial
gaps, a fusion of various data is pursued by combining remote sensing and meteorological
ground-based monitoring. Adopting meteorological drought indicators with long time
series and high spatial resolution could allow for a more realistic analysis [10], permitting
an assessment of forest health, even for forest patches, in heterogeneous forest landscapes.
Collectively, there is a need to link temperature and precipitation climatic drivers with
broad-scale remote sensing to permit more accurate modeling simulations of drought stress
responses in trees [10].

3.4. Remotely Sensed Sensors’ Distribution

This review identified 29 satellite sensors used in tree mortality studies. The spatial
scale, the AOI, and the time span of available data are the three major factors that de-
termine the choice of a particular sensor for monitoring tree mortality. In view of this,
we categorized the various satellite sensors into three single types: “active microwave”,
“passive microwave” and “optical”. Considering also the multi-type sensors usage, three
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additional types are added: “optical and active microwave”, “passive, thermal and optical
microwave”, and “passive microwave and optical”. The percentages of each of these six
categories of sensors used are illustrated in Figure 7a.
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Figure 7. Remote sensing (a) sensors and (b) sensor types utilized in the studies for tree mortality
monitoring.

The choice of a sensor largely depends on the study’s objectives, such as whether it
focuses, the AOI and the length of the timeframe under consideration.

Landsat satellites were the most commonly used sensors for observing and characteriz-
ing tree mortality (31.0%), followed by MODIS (27%) and LiDAR (8.2%). Unmanned Aerial
Vehicles (UAV), Sentinel-2 and Aerial Imagery sensors are ranked fourth, fifth and sixth
place, with a representation of 6.1%, 4.9% and 3.3%, respectively. Studies on AVHRR, Quick-
Bird 1-2, Spectroradiometer, WorldView 2-3, and National Agriculture Imagery Program
(NAIP) amounted to between 1% and 3%. The remaining active and passive microwave
sensors’ usage had a very low contribution of less than 1% globally.

The major categories of satellite sensor types were divided into passive, active, optical
and their combinations. Passive sensors, including multispectral and hyperspectral optical
sensors, rely on solar radiation reflected from the Earth’s surface and are sensitive to
atmospheric conditions such as clouds and haze. While passive sensors like those on
Landsat and MODIS were the most popular (88%) for their high spatial and temporal
resolution, they can face challenges with cloud cover, affecting their ability to accurately
analyze dynamic changes (Figure 7b). In contrast, a considerable number of studies (6.4%)
relied on active microwave sensors, namely LiDAR and SAR sensors, generating their own
radiation, which is measured after interacting with an object. LiDAR uses light in visible and
infrared wavelengths, while SAR uses microwave radiation to assess backscatter. Active
sensors are less affected by atmospheric conditions like clouds, making them valuable
for reliable data collection. Although LiDAR is well-suited for topographic and altimetry
studies, it is commonly used for forest biomass and structure. Overall, the choice between
passive and active sensors depends on the specific needs of the study, such as spatial
resolution, temporal frequency, and atmospheric conditions.

Utilizing sensors separately could potentially result in specific limitations that influ-
ence their usability. In light of the above, active sensors that are sensitive to the returning sig-
nal can be deployed to compensate for anomalies in topography at heterogeneous/uneven
areas [36,41]. Combined optical and active sensors are less frequently used (3.9%). The
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combined use of passive and optical sensors and optical, passive and active microwaves
provides opportunities for improved tree mortality monitoring but accounts for only 0.5%
of the reviewed studies.

3.5. Methods for Tree Mortality Analysis

Several remote sensing indicators have been developed and applied to analyze and
characterize tree mortality events and assess their causes. These causes are frequently not
attributable to a single factor but to the interaction of biotic and abiotic factors. Bearing this
in mind, the indicators reviewed are categorized as biotic and abiotic.

Figure 8 presents the various indicators extracted from remote sensing articles on tree
mortality monitoring and assessment since the first studies of tree mortality in 1993 and
1994 [30,42]. The Normalized Difference Vegetation Index (NDVI) is the most frequently
used indicator to monitor tree mortality, represented in 28% of the studies. A notable
9% of publications employ advanced techniques such as unsupervised classification as
an approach based on natural patterns, without using sample classes and supervised
classification based on chosen samples to delineate tree mortality areas, followed by the
Enhanced Vegetation Index (EVI, 6%).
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Figure 8. Remotely sensed biotic and abiotic indicators used for assessing tree mortality during
drought events. The remaining remotely sensed indicators are gathered in the «other» category.

The Normalized Difference Water Index (NDWI) is another less frequently used
indicator, used in nearly 4% of the studies; this indicator aims at monitoring the structure
and biomass of trees affected by drought [30,43,44]. Noticeably, the Leaf Area Index (LAI)
ranked in fifth place with 3.4% of the studies; 2.3% of the studies involve the Normalized
Difference Moisture Index (NDMI), Gross Primary Production (GPP), and Normalized
Burn Ratio (NBR). LAI takes into account plant or canopy water content [45,46] and is
useful in estimating forest density and mortality [47,48]. The remaining indicators are used
in less than 2.3% of the literature reviewed.

Associated with the remote sensing approach for understanding tree mortality, in situ
measurements appeared in various articles in an effort to deliver accurate information on
tree mortality, e.g., related to vegetation, ground and soil data (moisture, biomass, tree
diameter etc.). However, in situ measurements vary in scale, accuracy and the application
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of the data that is obtained at specific locations, leading to gaps in the time series [49].
This approach is mostly based on expensive and limited data collection over large areas,
inducing issues with the spatial upscaling of the data.

Figure 9 exhibits the application of biotic (in situ) variables in articles pertaining to
remote sensing and meteorological indicators related to tree mortality. The variable with
the largest share (15%) is the Diameter at Breast Height (DBH), portraying the available
growing, basal area, biomass and carbon stock [50], followed by Tree Ring Width (TRW;
12%). Basal Area Increment (BAI), ranked in third place (8%), has been found to exhibit a
strong connection to tree mortality [51]. Water potential of xylem, leaf or soil was used in
4% of the papers reviewed as a robust indicator to monitor the response of plants to drought
events; this indicator depicts the movement of water, for instance, from roots to leaves,
identifying critical levels or thresholds characterizing the vulnerability of forest biomes to
droughts [52]. Other indicators are reported in less than 4% of the papers reviewed.
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Figure 9. Biotic and abiotic forest components were investigated using both meteorological ground-
based and in situ indicators for assessing tree mortality during drought events.

Abiotic indicators have an essential role in the analysis and characterization of tree
mortality. As shown in Figure 9, the majority of studies utilize the meteorological drought
indicator SPEI in roughly 15% of the cases. SPEI is a useful indicator in dry regions with
high temperatures suffering from water losses through evapotranspiration [53]. The SPEI
and SPI indicators are generally similar, with their basic difference being that SPI does not
include temperature [54]. Topographic factors, such as PDSI and vapor pressure deficit
(VPD), were represented in 4% of the cases. PDSI can monitor the influence on tree growth
by assessing the combined effects of both temperature and precipitation [55], while VPD,
as an indicator to monitor plant water stress, is linked to stomatal water loss and carbon
fixation during photosynthesis [56,57]. Lastly, indicators such as PET, SPI, ET, scPDSI,
P-PET, and AET are used in less than 4% of studies each.

3.6. Documented Cases of Drought and/or Heat-Induced Forest Mortality across Biomes

Most papers on drought and/or heat-induced forest mortality have been produced
for the Mediterranean Forests, Woodlands and Scrub biome from the Mediterranean Basin
and California (43 cases, see Figure 10). California, known for its diverse landscapes and
rich biodiversity, is facing a severe crisis of tree mortality, especially in its Mediterranean
Forests, Woodlands and Scrub biome, as detailed in 28 publications. An immediate impact
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is noted in conifer species (13 cases), such as pines or oaks. Considering this aspect, with
17 publications documenting this issue in Spain, too, ten of them were found to refer
to conifers.
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The Temperate Broadleaf and Mixed Forests biome exhibits a large share of publica-
tions, mostly from Central Europe, Eastern USA, and Eastern Asia/China, with 59 publica-
tions (Table 2). Extensive interest was demonstrated in evergreen-dominated ecosystems
of the Temperate Conifer Forests biome (52 cases). Tree mortality in the exceptional
biodiversity of Tropical and Subtropical Moist Broadleaf Forests has been explored in
25 publications. The Boreal Forests or Taiga, known for their resilience in cold climates and
distinct coniferous forests, are represented in 20 publications.
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Table 2. Summary of the number of papers per type of biome.

Type of Biome Number of Papers

Mediterranean Forests, Woodlands and Scrub 64

Temperate Broadleaf and Mixed Forests 59

Temperate Conifer Forests 52

Tropical and Subtropical Moist Broadleaf
Forests 25

Boreal Forests/Taiga 20

Temperate Grasslands, Savannas and
Shrublands 17

Deserts and Xeric Shrublands 8

Tropical and Subtropical Grasslands, Savannas
and Shrublands 6

Tundra 2

Tropical and Subtropical Coniferous Forests 2

Temperate Grasslands, Savannas and Shrublands, important for their diverse plant
communities, were covered in 17 publications. Crucial for understanding the adaptation
to arid conditions, the Deserts and Xeric Shrublands biome account for eight publications.
Tropical and Subtropical Grasslands, Savannas and Scrublands are documented in six
publications. The Tundra, characterized by its cold and almost treeless coverage expanses,
and Tropical and Subtropical Coniferous Forests are each featured in two publications. This
varied distribution highlights the unique ecological characteristics and research challenges
of each biome.

3.7. Thematic Foci Analysis of the Remote Sensing and Meteorological Monitoring

The reviewed works were categorized on the basis of two methodological approaches:
“remote sensing” and “meteorological ground-based”. We classified 254 publications using
these two methods and, further on, into specific subgroups (Figure 11). Some research
publications focused on two or three types of methods/indicators/research focus. For
instance, in the remote sensing methods classification, the water response of trees related to
stem and leaves moisture content is monitored through NDWI, Vegetation Optical Depth
(VOD), Normalized Difference Infrared Index (NDII), Canopy Water Content (CWC), Rela-
tive Water Content (RWC), and Normalized Difference Moisture Index (NDMI) [59], thus
categorized within the Water Content group. For the comprehensive list of all indicators
used in this article, the reader is referred to Supplementary Materials S3.
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Figure 11. Thematic foci rely on remote sensing (right) or on ground-based (left) measurements. The
numbers are rounded up.

3.7.1. Remote Sensing Sphere

The majority of the reviewed studies (81.1%) have based their analysis on applying re-
mote sensing methods. The most prevalent subcategory within this group is the monitoring
of the chlorophyll content in the canopy, thus indicating the level of photosynthetic activity
or “greenness” (27%). High chlorophyll levels enable trees to produce the energy they need
for growth through photosynthesis. Chlorophyll levels affect foliage greenness and can be
used as an indicator of the trees’ water use [60]. Chlorophyll-rich foliage guarantees tree
health and can be related to vulnerability and mortality rates [61]. The second larger the-
matic focus of the published articles was based on Random Forest Classification, analyzing
stand density through optical imagery classification (11% of the cases). This method relies
on high-resolution multispectral imagery in forest and heterogeneous areas to identify the
occurrence and severity of tree mortality [62]. Since forest structure and tree characteristics
could play a vital role in assessing mortality, some published articles apply LiDAR (11%) to
monitor forest distribution [45,63]. Variations in factors such as canopy cover, tree density,
and size can significantly influence a forest’s resilience to environmental stressors such as
droughts. For instance, depending on their age and size, tree species exhibit differences in
their recovery under various environmental stressors. Analyzing structural characteristics
helps identify vulnerable forest areas and localized interventions to prevent widespread
tree mortality [10]. In 9% of reviewed cases, water stress and consequent hydraulic failure
were investigated using remote sensing. These indicators are very critical in understanding
tree mortality patterns. Hydraulic failure occurs during prolonged dry periods, preventing
the transportation of water from roots to leaves due to the collapsing of trees’ vascular
system. As a result, water stress impairs the tree’s physiological functions and ability to
produce leaves, leading to mortality [64]. Another 9% of the investigations focused on
the role of the environment and topography on tree mortality. For example, 90% of the
south-facing slopes of Mount Gokurakujisann in Hiroshima were reported to have been



Forests 2024, 15, 1357 17 of 29

affected by an extreme drought event [65]. With a focus on environmental conditions, sev-
eral studies highlighted the adverse impact of low soil moisture levels and the subsequent
impacts on tree productivity (7% of the studies). It is an undeniable fact that soil moisture
limitations affect the readiness of trees to absorb water and nutrients efficiently, impairing
tree growth [66]. The cascading effects of insufficient soil moisture disrupt forest ecosystem
services, wildlife, and biomass [67]. It is noteworthy that forecasting models (with a share
of 6%) have been reported as a potential solution for the creation of early warning signals
to protect vulnerable forest areas during periods of physiological stress and high risk of
mortality [68,69].

3.7.2. Meteorological Ground-Based and In-Situ Sphere

As mentioned above, in situ methods appeared in various articles. Meteorological
ground-based and in situ indicators were used in 18.9% of papers monitoring forest mor-
tality (Figure 11). Most attention in studies was paid to tree growth (44%), impacted by
warming climate and decreasing precipitation, by utilizing in situ indicators, such as TRW,
DBH, and BAI. More specifically, measurements of the annual growth of trees via tree
ring width provide insights into how temperature and soil moisture influence tree growth
patterns [70]. Tree circumference at breast height can indicate tree size and overall tree
health, which are directly tied to its survival prospects [71]. Tracking BAI over time can
reveal how environmental stressors affect tree size (cross-sectional area), thus shedding
light on growth dynamics [72]. Various studies focused on water responses (11% of the
studies), exploring growth and resilience levels as indicators of mortality risk [73]. Recov-
ery from water-related stressors is linked to tree resilience, providing long-term survival
insights for trees [74]. By tracking the photosynthetic rate (8%) to assess physiological
stress, researchers can predict potential effects on tree health, growth trends and energy
production [75]. Soil moisture/water was monitored in 7% of studies, 6% focused on VPD,
and 4% on low precipitation. It is noteworthy that elevated VPD can lead to physiological
stress and even to high mortality risk, characterized by reduced stomatal conductance,
impaired photosynthesis, and water stress [64]. SPEI and SPI indicators have been used
to evaluate the spatial and temporal characteristics of drought, while Evapotranspiration
(ET), AET, and PET indicators have been applied to estimate water loss resulting from soil
surface evaporation and plant transpiration. In addition, extended drought conditions
identified by meteorological drought indices are related to atmospheric dryness, physiolog-
ical stress, and growth reduction, leading to tree mortality [76]. As a tool in the hands of
forest managers aiming at preventing tree mortality, 4% of the reviewed studies focus on
early warning signals. In summarizing the above, it can be noted that by utilizing remotely
sensed, meteorological ground-based and in situ indicators, researchers are able to generate
accurate early warning signals. The establishment of these signals contributes to the timely
adoption of measures to protect the ecological functions of forest ecosystems by designing
preventive measures such as targeted watering, pest control or thinning.

3.7.3. Remote Sensing and Meteorological Ground-Based Monitoring Scales

On the one hand, it was noted that 83% of the remote sensing studies focus on the
forest scale. In certain instances, detailed observation of mortality is feasible using sensors
like LiDAR and UAVs, but for short time series. Cluster or forest plot monitoring was
performed in 8% of reviewed articles, while individual tree monitoring in 9%. On the
other hand, 33% of papers using meteorological ground-based monitoring focused on
individual tree mortality, as such methods could provide more accurate individual tree
mortality analysis compared to the cluster or plot scale (this approach comprised 17% of
the studies). Forest-scale monitoring was observed in half of meteorological ground-based
studies (Figure 12).
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3.8. Geographical Distribution of Tree Mortality Research
3.8.1. North America

Most tree mortality publications were recorded in North America, adding up to
100 cases. Using remote sensing, the most common tree mortality indicators/methods were
founded on NDVI and classification through Landsat and MODIS satellites, coupled with
the influence of topography and NDWI indicators.

California produced the highest number of tree mortality papers [77]. In the Sierra
Nevada, scientists utilized the Random Forest algorithm to detect the presence and severity
of tree mortality by using the multispectral satellite time series of MODIS [62] while to assess
biomass and carbon emissions, both meteorological ground-based indicators and remotely
sensed measurements have been taken into account [78]. The PDSI indicator appeared often
in the USA, analyzing long-term drought periods, thus providing a detailed soil moisture
dataset, making it particularly relevant for agricultural and water resource management.

3.8.2. Europe

Half of meteorological studies focusing on European forests investigate mortality
events [33,79–93]. The majority of studies, not only in Southern Europe but also in
Northern Europe, investigate the interactions between tree growth and climatic condi-
tions [33,79,81,82,84,85]. Tree ring width and soil variables have been linked to drought
meteorological indicators, such as SPEI [83,84,86,87,93–97], while the MODIS satellite
has been used frequently to evaluate tree growth in Mediterranean holm oak forests [98].
Drought has been found to kill trees much faster than carbon starvation [99]. Stable isotopes
δ13 and δ18 have been used to access Water Use Efficiency (WUE) [81,95,100], while TRW,
DBH and BAI are common indicators for growth conditions for papers from Spain [93]. In
Portugal, satellite images from Sentinel-2 were utilized in order to map the damage from
drought events [101]. Furthermore, NDVI has been used to investigate seasonal variations
and changes in tree species phenology related to mortality events [102]. Prediction models
were presented in fewer European remote sensing studies [103,104] and often focused on
analyzing the hydraulic status [105–114].
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3.8.3. South America

In South America, several studies focus on tree mortality in the Amazonian region,
using remote sensing to monitor tree canopy loss through very high-resolution (VHR) satel-
lite imagery [115–117]. Remote sensing studies from this continent utilize high-resolution
imagery from Landsat, Planet Dove, and airborne LiDAR to detect tree loss and plant
biomass, which is responsible for carbon emissions [68,116,118,119].

In South America, there was less research interest in tree-water relations. However,
the findings in the western Amazon show that water stress affected more than 70 million
hectares of forest during the dry season of 2005, leading to canopy shrinkage and moisture
deficit [117]. Scientists in southwestern America have also monitored consecutive droughts
to assess forest response and develop early warning signals for predicting the spatial
distribution of mortality [68]. NDVI was one of the most significant predictor indicators
under logistic regression, especially utilizing high-resolution satellite imagery [119]. In
South America, few studies were recorded documenting the distribution of tree mortality.

3.8.4. Australia

In Australia, multi-year droughts have been observed. These have triggered widespread
eucalyptus, as well as Pine and Fir mortality. The majority of studies focused on changes
in tree structure and canopy, characterizing the observable stress symptoms [120–122].
Fewer studies concentrate mainly on water dynamics during drought. As hydraulic failure
is often experienced, stomatal control and drought tolerance traits are considered [122].
With a focus on different species responses, studies in north Adelaide in South Australia
analyzed eucalyptus species, utilizing topography, solar irradiance, and airborne imagery
in an effort to understand the mechanisms of drought-related tree mortality [110,123,124].

3.8.5. Asia

Gradual changes in forest cover in Asia comprise the central point in many research
articles. In the Zagros Forest of Iran, a study aimed to evaluate the forest decline trend and
associated factors through the application of remote sensing techniques during a six-year
period between 2012–2017 [125]. In order to understand forest resilience, NDVI was used
in studies focusing on stomatal and hydraulic traits between several species with growth
affected by drought [95,126]. Tree growth-climate relationship has been used to evaluate
the spatial distribution of affected trees [127]. Furthermore, a study in the northern Yunnan-
Guizhou Plateau in southwest China investigated the response of tree growth to climate
change by studying tree-ring cores [95]. With a focus on forest resilience and resistance,
studies aimed to evaluate the feasibility of remotely sensed vegetation/drought indicators
through comparisons of meteorological indicators [102]. Zang et al. [128] proposed and
compared vegetation indicators to detect the early dying process of the damaged trees.

4. Discussion
4.1. Limitations of Review Methodology

In this review, the focus was placed on the applications of meteorological ground-based
and remote sensing methods on forest tree mortality. An initial search in meteorological-
related publications utilized keywords relevant to meteorology, drought and mortality.
Our Web of Science search returned more than 18,000 results. In view of this, we worked
with several combinations to reduce the results to about 1000. Eliminating meteorological
articles that did not report on meteorological indicators (such as PDSI, SPEI etc.) or detailed
meteorological analysis resulted in a reduced number of articles. In both the meteorology
and remote sensing approaches, we excluded articles that mentioned tree mortality in
non-forest areas, insects or pests pathogens, fire or beetle grazing or pasture or harvesting
and cutting. Lastly, it is worth noting the date of accession of Web of Science, namely 16
October 2023, as this affects the final number of results.
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4.2. Discussion of the Review Results

This review represents the first comprehensive examination of forest tree mortality
that combines remote sensing and meteorological ground-based approaches, identifying
research gaps and highlighting the increasing trend due to the availability of open high-
resolution satellite data [129,130]. A noticeable increase in the number of publications
addressing tree mortality was observed since 2010 on a global scale. Most of the studies
are concentrated in North America, followed by Europe. Notably, South America and
Africa have received less attention regarding remote sensing and meteorological monitoring
studies. A key observation is that the timeframe length of European tree mortality studies
is generally limited (10.3 years). Only six studies in Portugal, Hungary and Spain have
utilized a remote sensing approach to investigate tree mortality over a period exceeding
25 years. However, none of them conducted a holistic analysis comparing remotely sensed
and meteorological drought indicators. Only one Spanish study combined five remotely
sensed indicators with the drought meteorological indicator SPEI, utilizing 30 m Landsat
spatial resolution [104,114]. This study concluded that there is no significant relationship
between land surface phenology and dieback. Nonetheless, wetness indicators showed
greater responses than vegetation indicators, suggesting a potential early warning signal
of tree mortality. Among the studies with the longest timeframes (35 years or more) are
those in Tanzania (39 years), Canada (36 years), Spain (36 years), China (35 years), North
America/California (35 years), and North America/Montana (35 years). However, only
one case in California analyzed tree mortality using meteorological drought indicators such
as PDSI, SPI, and SPEI, along with only two remotely sensed indicators, namely, NDVI and
NDMI [131].

Following this analysis, the discussion turns briefly to the spatial resolution utilized.
The most used spatial resolution ranges between 10 m to 100 m and 100 m to 1000 m. Most
of the studies with a timeframe of 25 years are conducted on a local scale (18 studies).
Long-term studies in Europe did not comprehensively monitor tree mortality, especially in
specific species, such as pine and oak. Consecutively, most studies rely on optical sensors,
particularly Landsat and MODIS, followed by LiDAR, which is an active sensor.

4.3. Analysis of Tree Mortality Indicators

There is an obvious trend favoring the use of remote sensing approaches, as visualized
in Figure 8. The studies show an increasing interest in NDVI, optical imagery/classification
and EVI as tools for assessing tree mortality, followed by the NDWI indicator. In 28% of
the studies, NDVI is utilized to assess forest resilience and evaluate vegetation activity in
response to climatic circumstances [132]. Despite this, the classification technique (used
in 9% of the cases) is adopted to detect the presence and severity of tree mortality [68].
Moreover, almost 6% of studies employ the EVI indicator to explore the connection between
tree mortality and land surface phenology [104].

Beyond remote sensing, in situ biotic observations can provide accurate measurements
(i.e., tree height and biomass) but are generally limited to smaller study areas due to
monitoring constraints. As shown in the studies, the most common method is the DBH
(15% of studies), which documents smaller diameter trees (stems 0–10 cm diameter) under
extreme climatic circumstances [133]. Equally important is the TRW (12% of studies), which
investigates the relationship between growth and climate [93], followed by BAI (8% of
studies), which helps in understanding the growth and metabolic trend of trees.

Meteorological ground-based abiotic observations often use the SPEI indicator (15%
of the cases) as a pivotal tool to understand the causes of tree mortality. Topographic
parameters evident with a 4% share provide valuable insights on landscape characteristics.
PDSI is another key indicator that estimates relative dryness by considering temperature
and precipitation in 4% of the studies. It is important to note that, with a 4% share, VPD
appears in research publications, monitoring transpiration and assessing the potential for
further tree decline under drought.
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4.4. Applicability and Research Gaps in Monitoring Tree Mortality

Regarding the application of tree mortality assessment of the two methods discussed
in this review, it was found that remote sensing studies have a clear advantage in the
spatiotemporal monitoring of tree mortality through a comparative analysis of satellite
image changes, while meteorological studies focus on growth and physiological responses.
Still, the applicability of the above approaches is limited, and as a result, the following gaps
should be borne in mind:

• It is evident that some continents have a limited representation in their thematic
foci and the application of indicators. Specifically, the analysis of remotely sensed
thematic foci in Europe lacks detailed water response. There is a notable lack of
European tree mortality research utilizing indicators like NDWI and SAVI despite
considerable interest. Furthermore, the LAI indicator is notably absent, except in
studies from France and Spain. Additionally, Oceania shows a deficiency in remotely
sensed indicators such as NDWI and LAI. Topographic variables are also poorly
investigated in remote sensing studies. In the Mediterranean, elevation or slope are
not comprehensively utilized.

• Meteorological drought indicators provide a substantial amount of information on
tree mortality time series, which exhibit considerable variation. Specifically, the
PDSI drought indicator is not reported in studies on Europe, Oceania, and South
America. Furthermore, the most frequently used meteorological indicator, SPEI, has
not been analyzed in South America and Oceania. Therefore, any comparison between
meteorological and other monitoring methodologies must consider these factors in
investigating tree mortality effectively and accurately.

• There is a significant gap in understanding species-specific responses to hydraulic
failure or carbon starvation. Certain regions lack literature investigating the mortality
of specific tree species using remotely sensed indicators. It is important to note that
due to their endemism, certain species remain beyond the scope of field studies, as
evidenced by the lack of remote sensing and meteorological analyses.

• Lastly, a critical aspect in assessing the risk of drought-induced mortality is clarifying
the impact of various global biomes (Figure 10). A notable challenge and research
gap remains in the elaboration of the relationship between forest resilience and biome-
specific traits [62].

5. Conclusions

In this paper, we present an extensive review of studies utilizing remote sensing and
meteorological monitoring for tree mortality. This review offers a global perspective of
tree mortality investigations by analyzing a total of 254 publications, focusing on spatial
and temporal resolution, timeframe, sensors used, methods/indicators for tree mortality,
thematic foci and sensor types. The review findings are briefly summarized below in an
attempt to provide answers to the research questions raised in Section 1.3:

• Several peer-reviewed contributions have been reported since 1993. From 2009 on-
wards, a gradual increase is evident in tree mortality research activity. The major peak
of the research activity was in 2021, with 35 publications.

• North America is a hotspot of research in tree mortality, with a 39% share, followed
by Europe (29%). Specifically, the USA (31%), Spain (7%), China (7%), Canada (4%),
and Australia (4%) are the areas most frequently investigated using a remote sensing
approach. Furthermore, meteorological monitoring studies are distributed as follows:
USA (27%), Spain (15%), Greece, Canada, Switzerland, and Germany (6%). It is evident
that certain research areas are addressed using both methods. More publications from
additional regions/countries may boost tree mortality research.

• Optical sensors are predominantly used, with Landsat and MODIS being the most
popular ones, accounting for approximately 89% of the studies, followed by active
sensors with around 6%. Landsat data was utilized in 31% of the studies, while MODIS
data was utilized in 27%. Furthermore, LiDAR has been used in 8% of studies, and
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UAVs have been used in 6% of studies. Apart from this, hybrid approaches combining
optical and active sensors are popular, accounting for roughly 4%.

• Roughly 72% of the studies focused solely on the local scale, while those relying on
the regional scale represent 24.5%. Global studies constituted 3.5% of the cases. Most
remote sensing studies investigated tree mortality on the local scale with a timeframe
of less than 25 years and with a spatial resolution of less than 100 m. Equally important
is the fact that regional scale studies often utilize spatial resolutions ranging between
10 m and 100 m (8%), followed by those with a spatial resolution of 100 m to 1000 m
(11.9%). In contrast, local scale studies often utilize resolutions of 0–10 m (26.4%),
while resolutions of 10–100 m are evident in merely 29.5% of the studies.

• Most remote sensing studies utilize NDVI as the primary indicator to identify tree
mortality (28.2%). Subsequently, many cases utilize the classification/optical imagery
methods or EVI indicator with 9% and 6.2%, respectively. The NDWI (3.6%) and LAI
(3.4%) indicators were used in a significant number of studies to depict this situation.
In situ biotic methods are frequently used, as well as the DBH method (15%). The TRW
method is also commonly used (12%) to evaluate tree mortality. Similarly, studies
assessing tree mortality focus on the role of the BAI method and tree water potential,
accounting for 8% and 4% of the cases, respectively. Meteorological ground-based
abiotic methods were mainly supported by the SPEI drought indicator (15%), while
aspect, elevation, slope and PDSI were adopted in 4% of studies. Another crucial
aspect of meteorological monitoring is the response of the VPD indicator, providing
detailed information on drought events (4%).

• Lastly, studies are classified according to their thematic foci. remote sensing studies
comprise 81.1%, while meteorological studies constitute 18.9%. Within the remote
sensing sphere, studies often focus on foliage greenness (27%) due to the frequent
use of indicators such as NDVI and EVI. As we mentioned above, analysis of stand
density (11%) is also well reported in various studies using classification methods.
Additionally, canopy and tree structures are highlighted to provide a comprehensive
assessment (11%). Further, the assessment of tree water content has the potential to
enhance analyses of tree mortality (9%). Also, meteorological studies often focus on the
growth rate and the physiological responses of trees (44%), followed by responses to
water content (11%). However, other meteorology-based studies exhibit a preference
for analyzing the photosynthetic rate (8%). Several studies analyze the soil water
balance (7%) and air humidity (6%). Further studies emphasize precipitation (4%),
evapotranspiration (4%) and forecasting (4%).

This comprehensive review provides insights into tree mortality assessment based on
remotely sensed and meteorological data, offering a global perspective. The methodologies
and applications used in tree mortality studies have been illustrated. The limitations and
strengths of the two approaches, namely meteorological-based and remote sensing-based,
have been addressed, and research gaps have been noted, encouraging the contemplation
of the remaining challenges in the study of tree mortality.
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Acronyms and Abbreviations
AET Actual Evapotranspiration
AOI Areas of Interest
AVHRR Advanced Very High-Resolution Radiometer
BAI Basal Area Increment
CHM Canopy Height Model
CWC Canopy Water Content
CWD Cumulative Water Deficit
DBH Diameter at Breast Height
ET Evapotranspiration
EVI Enhanced Vegetation Index
GNDVI Green Normalized Difference Vegetation Index
GPP Gross Primary Production
LAI Leaf Area Index
LiDAR Light Detection and Ranging
LST Land Surface Temperature
MODIS Moderate Resolution Imaging Spectroradiometer
MSAVI Modified Soil Adjusted Vegetation Index
NAIP National Agriculture Imagery Program
NBR Normalized Burn Ratio
NDII Normalized Difference Infrared Index
NDMI Normalized Difference Moisture Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NOAA National Oceanographic and Atmospheric Administration
PAR Photosynthetically Active Radiation
PDSI Palmer Drought Severity Index
PET Potential Evapotranspiration
PLC Percentage Loss of Conductance
PHDI Palmer Hydrological Drought Index
P-PET Precipitation minus Potential Evapotranspiration
RWC Relative Water Content
SAVI Soil Adjusted Vegetation Index
SCI Science Citation Index
scPDSI Self-Calibrated Palmer Drought Severity Index
SMAP Soil Moisture Active and Passive
SPEI Standardized Precipitation-Evapotranspiration Index
SPI Standardized Precipitation Index
SWC Soil volumetric water content
TCW Tasseled Cap Wetness
TRW Tree Ring Width
UAV Unmanned Aerial Vehicles
VHR Very High Resolution
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VOD Vegetation Optical Depth
VPD Vapor Pressure Deficit
WUE Water Use Efficiency
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