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Abstract: Companies generate terabytes of raw, unstructured data daily, which requires processing and organization to
become valuable data assets. In the era of data-driven decision-making, evaluating these data assets’ quality is
crucial for various data services, users, and ecosystems. This paper introduces ”Scalability Assurance Forms”
(SAF), a novel framework to assess the quality of data assets, including raw data and semantic descriptions,
with essential contextual information for cross-domain AI systems. The methodology includes a comprehen-
sive literature review on quality models for linked data and knowledge graphs, and previous research findings
on data quality. The SAF framework standardizes data asset quality assessments through 31 dimensions and
10 overarching groups derived from the literature. These dimensions enable a holistic assessment of data
set quality by grouping them according to individual user requirements. The modular approach of the SAF
framework ensures the maintenance of data asset quality across interconnected data sources, supporting reli-
able data-driven services and robust AI application development.The SAF framework addresses the need for
trust in systems where participants may not know or historically trust each other, promoting the quality and
reliability of data assets in diverse ecosystems.

1 Introduction

In the context of the exponential growth of Artificial
Intelligence (AI) and big data, the effective organ-
isation and presentation of vast amounts of knowl-
edge have become crucial. Across various domains
and applications, the quality of data and its linked
(meta) data descriptions are essential for making well-
informed, data-driven decisions. This is evidenced by
different findings (Günther et al., 2019; Loh et al.,
2020; McCausland, 2021), who states that due to dif-
ferent data processing approaches, it cannot be as-
sumed that the quality and applicability of the data
is uniform in different organisations and applications.

High-quality research and analysis depend on re-
liable data (Arias et al., 2020), a concept epitomized
by the adage ”garbage in, garbage out” (Kilkenny and
Robinson, 2018). Although in literature, discussions
on Data Quality (DQ) appear relatively recent , the
concern with DQ is as longstanding as the practice of
data collection itself, even once termed ”a key issue
of our time” during an era of less digitization (Naroll
et al., 1961; Jensen et al., 1986).

Knowledge graphs (KGs) have been demonstrated
to be highly effective tools for collecting and articu-
lating knowledge about the real world in the form of
graph data. Their capacity to represent complex in-
formation is widely recognized, and they are rapidly
gaining traction in both academia and industry (Peng

et al., 2023). Linked Data (LD), the foundation of
KGs, promotes the publication and linking of data in
a machine-readable format using web standards. This
approach enables the linking and reuse of data across
organizational silos and facilitates interoperability be-
tween different institutions (Radulovic et al., 2017).
Furthermore, these technologies facilitate a structured
and organized collection of data (NIST, 2020), which
we refer to as a Data Asset (DA) in the course of
this work. DA are used for business monitoring and
decision-making, such as databases or even an Excel
spreadsheet, as opposed to unorganized raw data that
has no immediate use. To illustrate, a database con-
taining information on the entry of identified persons
into a room can be considered a DA, whereas the raw
data generated by a key card reader is not considered
a DA.

Data Indicators vs. Semantic Indicators. Build-
ing on this foundation, the subsequent sections of this
paper will elaborate on a holistic approach to Data As-
set Quality (DAQ) assessment, categorized into Data
Indicators and Semantic Indicators. These categories
are devised to provide a comprehensive framework
for evaluating the robustness of datasets within KG
and across AI systems.

• Data Indicators (DI) focus on the intrinsic quality
of raw data, assessing aspects such as accuracy,
completeness, and consistency.



For example, in a healthcare dataset, a DI might
evaluate the precision of diagnostic codes and the
presence of patient records without missing val-
ues. This level of scrutiny ensures that the foun-
dational data used in AI algorithms is reliable and
robust, mitigating risks associated with poor DQ.

• Semantic Indicators (SI) pertain to the semantic
descriptions of datasets or applications, encom-
passing the structured interlinking and contextual
relevance of data. These indicators evaluate how
effectively data is described and linked, akin to the
metadata or LD standards used to enhance data
discoverability and usability. An instance of this
could be assessing the adequacy of annotations in
a scholarly database, where the clarity and cor-
rectness of metadata directly influence the ease of
data integration and retrieval across different aca-
demic platforms

As exemplified in the public transport domain by bus
departure time datasets: the use of DI would involve
rigorous verification of the accuracy of the dataset,
its temporal completeness, and the synchronicity of
schedules across different transit routes. A robust data
indicator would check that departure timestamps are
not only accurate to the minute but also consistently
formatted and complete for each route, with no miss-
ing or ambiguous entries. Such care ensures the reli-
ability of the dataset, a critical factor in the develop-
ment of AI systems for route optimization and predic-
tive modeling in urban mobility.

SI, in this context, would delve into the seman-
tic richness of the dataset, ensuring that each de-
parture time is adequately described with contextu-
ally relevant metadata. This may include Resource
Description Framework (RDF) annotations linking
each timestamp to corresponding route identifiers, bus
capacities, accessibility features, or integration with
real-time traffic conditions. By embedding this se-
mantic layer, the dataset goes beyond simple planning
to provide a comprehensive set of information that
can integrate seamlessly with smart city infrastruc-
tures and deliver insightful, actionable information to
end users. In the remainder of this paper, we refer to
the manifestations of DI and SI as dimensions. Illus-
trative examples of these dimensions are presented in
Figure 1. Together, these indicators form the back-
bone of our methodology, addressing the dual aspects
of DQ (Kilkenny and Robinson, 2018; Hassenstein
and Vanella, 2022; Batini and Rula, 2021) and seman-
tic richness (Zaveri et al., 2015; Wang et al., 2021) to
enhance the utility and reliability of data-asset-driven
systems (Radulovic et al., 2017). This integrated as-
sessment approach not only aligns with the strate-
gic goals of semantic interoperability but also ensures

Figure 1: Conceptual model of the Holistic Quality Assess-
ment framework, delineating the DI (square shapes) and SI
(round shapes). DI like Completeness, Accuracy, and Con-
sistency evaluate raw DQ, while SI like Relevance, Inter-
linking, and Richness assess semantic aspects of data within
KGs. This ensures comprehensive quality assessment for
robust AI systems.

that both data and its contextual framework are opti-
mized for cross-domain applications.

ISO Standard 25012 Within the ISO Standard
25012 dimensions are defined as distinct aspects of
DQ that can be measured and assessed independently.
By differentiating these aspects, the standard delin-
eates a general DQ model for data held in a struc-
tured format within a data-driven system, emphasiz-
ing quality dimensions for target data used by humans
and systems. It categorizes DQ requirements and
measures aligned with these dimensions, enabling
an evaluation process to analyze data independently
from other components of the computer system. Our
approach adopts these established dimensions as a
template to guide our investigation, ensuring that our
methodology aligns with recognized standards and
provides a robust basis for assessing DQ in KGs
and AI systems. This strategic focus on dimensions,
rather than diving deeply into individual metrics, po-
sitions our research as a foundational reference point,
facilitating subsequent detailed studies aimed at re-
fining these quality assessments. Building upon the
foundation of holistic DQ assessment through DI and
SI, it is crucial to note that quality in this context is
measured using specific dimensions, which are qual-
ified through various metrics. In our work, we focus
on these dimensions to lay the groundwork for future
research, as they are commonly defined at the dimen-
sion level in existing literature and ISO standards. Ex-
amining the various metrics that can be employed to
quantify the different dimensions or to describe how
to measure the different dimensions for different DAs
is outside the scope of this study.

Research Questions (RQs). The goal of this re-
search is to analyze existing methods for assessing the
quality of structured data in order to identify needed
data in an opaque ecosystem. To achieve this goal, we
aim to answer how we can holistically evaluate data
by including DI and SI.



Thereby, we formulated the subsequent RQs:

• RQ1: What are the common quality dimensions
between raw data and Knowledge Graphs?

• RQ2: How can these dimensions be used to holis-
tically and individually assess existing data as-
sets?

By answering the formulated RQs, we formulate Scal-
ability Assurance Forms (SAF), a novel framework to
holistically assess the quality of data assets that in-
clude common data quality dimensions as formulated
by ISO 25012 and KG-specific quality dimensions.
Thereby, our contributions are four-fold:

• Introduction of SAF as a novel framework for or-
chestrating and assessing DAQ for raw data and
knowledge graphs.

• Development of a holistic evaluation approach for
DI and SI to ensure the quality and scalability of
AI systems.

• Facilitation of integration and analysis through
standardized DAQ assessments, reducing redun-
dancy and ensuring data integrity.

• Provision of customization to individual user re-
quirements, which is particularly important in in-
terconnected data ecosystems to support the relia-
bility of data-driven services.

In the following, we will first provide informa-
tion on the required theoretical background (Chap-
ter 2) on data quality standards, data ecosystems,
linked data, and knowledge graphs. Subsequently, we
describe our methodology (Chapter 3) and resulting
SAF (Chapter 4). We conclude in Chapter 5 by dis-
cussing and recapitulating our study.

2 Theoretical Background

A broadly used definition for DQ is the “fitness for
use” principle (Juran et al., 1974), which states that
“Data are of high quality if they are fit for their
intended uses, by customers, in operation, decision
making, and planning” (Redman, 2001). More pre-
cise definitions, which make clear that DQ depends
on the use case and its requirements, are provided by
standards such as ISO 25012 (ISO25012, 2008) and
DAMA (Kwaliteit, 2023). The ISO standard 25012
defines DQ as the “degree to which the characteristics
of data satisfy stated and implied needs when used un-
der specified conditions” (ISO25012, 2008).

Data Quality Standards. Existing DQ dimensions
and standards, such as ISO 25012 and ISO 8000-2,
play a crucial role in the evaluation and assurance
of DQ in various contexts. ISO 25012, titled ”Data
Quality Model”, provides a framework for assess-
ing the quality of data based on fifteen key dimen-
sions, including accuracy, completeness, consistency,
and timeliness. These dimensions describe various at-
tributes of data that collectively determine the overall
quality. For instance, accuracy pertains to the cor-
rectness of data, completeness refers to the extent to
which expected data is present, consistency ensures
data is free from contradictions, and timeliness ad-
dresses the relevance of data at a given time. By
differentiating these aspects, ISO 25012 provides a
comprehensive framework for evaluating the multi-
faceted nature of DQ within structured data systems.
However, its limitations lie in its generality, as it is
not tailored specifically to the complexities of Knowl-
edge Graphs (KGs) or Linked Data (LD), which in-
volve intricate relationships and semantic structures.
ISO 8000-2, known as the ”Data Quality: Vocabu-
lary” standard, focuses on defining terms and con-
cepts related to DQ, aiming to create a common un-
derstanding and language for discussing DQ issues.
While it provides valuable terminological clarity, it
does not offer specific guidelines for implementing
quality assessments in dynamic and interconnected
data ecosystems. Both standards, while foundational,
do not fully address the unique challenges posed by
the rapidly evolving fields of AI and big data, where
DQ needs to be evaluated in a holistic and scalable
manner, especially in federated and distributed envi-
ronments.

To assess DQ, a data quality model (or frame-
work) is typically established, defined by ISO 25012
as a “defined set of characteristics which provides a
framework for specifying data quality requirements
and evaluating data quality”. These characteristics
(dimensions) encompass both quantitative and qual-
itative assessments. ISO 25012 distinguishes between
inherent DQ, which refers to the intrinsic potential
of data to meet quality needs, and system-dependent
DQ, which is influenced by the technological environ-
ment. ISO 8000 defines three meta-characteristics:
syntactic quality, which pertains to conformity to
specified syntax; semantic quality, which concerns
the accurate representation of entities; and pragmatic
quality, which relates to conformance to usage-based
requirements. These standards provide a foundational
basis for DQ assessment, yet they fall short in ad-
dressing the specific needs of emerging data architec-
tures (Zhang et al., 2021).



Data Ecosystems. An example of such distributed
environments are data ecosystems, a concept that
is rapidly materializing, particularly in Europe, em-
bodying a transformative approach to data manage-
ment and use (Otto et al., 2022). These ecosystems
are designed to give individuals and organizations
greater sovereignty over their data, embodying the
principles of empowerment and control. Within these
federated environments, data from multiple sources is
brought together, facilitating the creation of interop-
erable applications that harness the collective power
of shared information. The anticipated value of such
ecosystems lies in their potential to streamline col-
laboration, drive innovation, and improve the effi-
ciency of services across sectors (Theissen-Lipp et al.,
2023). This new paradigm aims to transcend tradi-
tional data silos and promote an open and dynamic
exchange of data that is securely accessible and us-
able within the broader digital economy. As these
ecosystems evolve, they are expected to become key
pillars in the realization of a unified digital market-
place, fostering economic growth and digital auton-
omy (Otto et al., 2022). This requires trust not only
in the inherent quality of the data but also in the de-
scriptions, context, and semantics that accompany the
data (Theissen-Lipp et al., 2023). Therefore, there is a
growing need for a holistic approach to assessing the
quality of data sets and data-driven applications, par-
ticularly in the context of the Semantic Web, where
understanding the structure depends on distinguishing
between LD and KGs.

Linked Data and Knowledge Graphs. LD is a set
of best practices for distributing structured data on
the Web (Zaveri et al., 2015). It uses Uniform Re-
source Identifiers (URIs) and RDF to make data both
machine-readable and interoperable (Ji et al., 2022).
KGs build on the principles of LD by forming an in-
tricate network of data that encodes knowledge in a
machine-understandable format, often supported by
inference capabilities (Ban et al., 2024). This struc-
ture allows KGs to exploit these semantic connec-
tions, creating an advanced, integrated data architec-
ture that is central to sophisticated analytics and AI
applications (Pan et al., 2017). In its formal sense,
a KG is a graph-based knowledge base consisting of
interconnected entities characterized by specific types
and attributes. Emerging from the foundations of se-
mantic networks and the principles of LD (Quillian,
1967), KGs have demonstrated their versatility across
multiple sectors and are recognized as essential com-
ponents of modern industrial information systems (Li
et al., 2021). Within AI systems, the importance of
KGs is underlined by their contribution to metadata

quality. This is critical for providing accurate descrip-
tions of data sets, which is essential for developing
interoperable systems across domains. By improving
metadata quality, KGs mitigate the risk of misinfor-
mation, thereby enhancing the trustworthiness and re-
liability of AI systems (Pan et al., 2024). This syn-
ergy of LD and KGs provides a solid foundation for
evaluating the quality of data sets and data-driven ap-
plications, which is crucial for domain-spanning in-
teroperable systems.

While there are several quality models for KGs
and LD, they tend to be broad in scope. However, de-
spite the fundamental nature of LD quality, efforts to
standardize quality tracking and assurance are scarce,
with a notable lack of consensus on the definition of
quality dimensions and metrics (Zaveri et al., 2015;
Radulovic et al., 2017). Given the open nature of
LD, the diversity of information it contains, and the
limitless and dynamic number of autonomous data
sources and publishers, conventional methods are in-
adequate. These challenges call for innovative assess-
ment methods that can accommodate the dynamic and
open characteristics of LD and support the automated
and scalable exchange of high-quality data across dif-
ferent systems (Zaveri et al., 2015).

3 Methodology

Our methodology is based on a Structured Literature
Review (SLR) with a subsequent analysis and syn-
thesis of existing frameworks. To derive new high-
level sets of DAQ dimensions for both DI and SI,
we first anchored our clustering process to the pre-
existing structure provided by the ISO 25012 frame-
work (ISO25012, 2008). This approach ensured that
our categorization was in line with recognized stan-
dards and provided a solid basis for our analysis.

To mitigate researcher bias, two scientists (RS1
and RS2) from different institutions independently
conducted this SLR according to the literature review
process as described by (Moher et al., 2010; Kitchen-
ham, 2004). We chose a systematic literature review
as a reasonable methodology to: (i) identify open is-
sues and (ii) contribute to a common conceptualiza-
tion that encompasses the various approaches devel-
oped in a field. Thereby, we aim to summarize the
established dimensions from the ISO 25012 standard
with various methods for evaluating KGs and LD. As
a result, we propose a novel framework to enable in-
dividual assessments of various data assets within a
data ecosystem.



Title Source
A compendium and evaluation of taxonomy quality attributes (Unterkalmsteiner and Abdeen, 2024)
A comprehensive quality model for Linked Data (Radulovic et al., 2017)
A Data Quality Framework for Graph-Based Virtual Data In-
tegration Systems

(Li et al., 2022)

A Data Quality Scorecard to Assess a Data Source’s Fitness
for Use

(Grillo, 2018)

A Quality Framework for Data Integration (Wang, 2012)
A Quality Model for Linked Data Exploration (Cappiello et al., 2016)
A Quality Model for Mashups (Cappiello et al., 2011)
A Review on Data Quality Dimensions for Big Data (Ramasamy and Chowdhury, 2020)
A Semiotic Approach to Investigate Quality Issues of Open
Big Data Ecosystems

(Krogstie and Gao, 2015)

Architecture and quality in data warehouses (Jarke et al., 1999)
Big Data Quality Models: A Systematic Mapping Study (Montero et al., 2021)
Classification of Knowledge Graph Completeness Measure-
ment Techniques

(Issa et al., 2021)

Data Infrastructures for Asset Management Viewed as Com-
plex Adaptive Systems

(Brous et al., 2014)

Data Quality Management in the Internet of Things (Zhang et al., 2021)
DQ Tags and Decision-Making (Price and Shanks, 2010)
EPIC: A Proposed Model for Approaching Metadata Im-
provement

(Tarver and Phillips, 2021)

Evolution of quality assessment in SPL: a systematic map-
ping

(Martins et al., 2020)

Exploiting Linked Data and Knowledge Graphs in Large Or-
ganisations

(Pan et al., 2017)

Information quality dimensions for the social web (Schaal et al., 2012)
KGMM - A Maturity Model for Scholarly Knowledge
Graphs Based on Intertwined Human-Machine Collaboration

(Hussein et al., 2022)

Knowledge Graph Quality Management: a Comprehensive
Survey

(Xue and Zou, 2022)

Knowledge Graphs: A Practical Review of the Research
Landscape

(Kejriwal, 2022)

Prioritization of data quality dimensions and skills require-
ments in genome annotation work

(Huang et al., 2012)

Quality assessment for Linked Data: A Survey: A systematic
literature review and conceptual framework

(Zaveri et al., 2015)

Quality Evaluation Model of AI-based Knowledge Graph
System

(Xu et al., 2021)

Quality factory and quality notification service in data ware-
house

(Li and Osei-Bryson, 2010)

Quality model and metrics of ontology for semantic descrip-
tions of web services

(Zhu et al., 2017)

Rating quality in metadata harvesting (Kapidakis, 2015)
Towards a Critical Data Quality Analysis of Open Arrest
Record Datasets

(Wickett and Newman, 2024)

Towards a Data Quality Framework for Heterogeneous Data (Micic et al., 2017)
Towards a meta-model for data ecosystems (Iury et al., 2018)
Towards a Metadata Management System for Provenance,
Reproducibility and Accountability in Federated Machine
Learning

(Peregrina et al., 2022)

Table 1: Presentation of the 32 articles identified as a result of the systematic literature search



Search Strategy. Following Kitchenham et al.
(2004), we first defined a search string based on key-
words from known base literature (Stvilia et al., 2007;
Batini and Scannapieco, 2006; Pernici and Scanna-
pieco, 2003; Madnick et al., 2009).

The title, abstract, and full text of the results
were then filtered based on pre-defined inclusion and
exclusion criteria. Finally, we conducted a back-
ward search to identify further relevant studies. An
overview of our search methodology, including the
number of articles found at each step, is presented in
Figure 2 and described in detail below. The resulting
search string is as follows:

(”meta data” OR ”meta-data” OR ”meta-
data” OR ”knowledge graph” OR ”knowl-
edgegraph” OR ”knowledge-graph”) AND
(”quality model” OR ”quality framework” OR
”quality concept”)
The broader field of ”data quality” encompasses

”data asset quality” because ensuring the accuracy,
consistency, and reliability of data assets is essen-
tial for their effective use in business monitoring and
decision-making. A total of 395 papers were identi-
fied through the search string described (Step 1). The
initial filtering removed duplicates and only included
studies that were accepted at a peer-reviewed confer-
ence, accessible to the authors (open access), written
in English or German, and belonging to the research
field of computer science or any related subfields. A
full overview of the inclusion and exclusion criteria is
provided in Table 2.

Subsequent steps focus on filtering and refining
these aspects to enhance the overall utility of specific
data assets. The filtering and evaluation steps were
conducted separately to mitigate researcher bias and
ensure comprehensive coverage of all relevant articles
(Step 3).

Filtering Search Results. Both reviewers indepen-
dently evaluated the titles of the 127 articles identified
based on the inclusion and exclusion criteria. Follow-
ing this, they reviewed the abstracts to identify poten-
tially suitable studies. During the filtering process, the
two researchers independently excluded non-relevant
studies that either focused on data quality manage-
ment or did not focus on metadata and knowledge
graphs. Additionally, work that did not propose a
methodology or framework for assessing the quality
of metadata or knowledge graphs was excluded. In
cases of discrepancies during the merging of the lists,
issues were resolved either by mutual consensus or by
compiling a list of articles for a more detailed review.
The reviewers compared their selections and, by mu-
tual agreement, produced a final list of 48 articles for

Figure 2: Process of the systematic literature search

the first reviewer and 43 articles for the second re-
viewer to be included in the study.

To ensure comprehensive coverage of relevant ar-
ticles, a snowballing approach was employed by:

• Checking the references in the selected articles.

• Using Google Scholar to look up the article titles
and retrieving the ”Cited by” articles to compare
them with the eligibility criteria.

• Performing a search for related articles for each
individual data quality dimension.

This process identified 10 additional articles that met
the eligibility criteria (RS1: 7; RS2: 3). Lastly, a total
of 37 articles were identified as relevant to our survey.
Both reviewers compared their notes and reached a
consensus on the selection. Ultimately, 31 relevant
articles were chosen. The resulting research is listed
in Table 1, which shows the titles of the papers and
their authors.



Inclusion Criteria Exclusion Criteria
Be accepted at a peer-reviewed conference Have not been peer-reviewed or published, with the

exception of dissertations
Be written in English Use evaluation methods published only as poster

abstracts
Belong to the research field of computer science or
any related subfields

Focus on data quality management

Be freely available (open access) Do not focus on metadata or knowledge graphs
Be written in English. Do not propose a methodology or framework for

assessing the quality of metadata or knowledge
graphs

Table 2: Inclusion and exclusion criteria for literature

4 Scalability Assurance Forms
(SAF)

In this chapter, we present the results of our holistic
quality assessment framework. The sets of DAQ di-
mensions were derived from the extensive literature
review described in Section 3 and are shown in Fig-
ure 3. Throughout this process, we systematically
extracted and analyzed the quality dimensions men-
tioned in various papers. Through iterative clustering
and synthesis, we consolidated these dimensions into
the aforementioned groups, ensuring comprehensive
coverage and alignment with the dimensions defined
in ISO 25012.

• Accessibility: The degree to which a DA is avail-
able and obtainable for use by authorized enti-
ties, ensuring that users can access the DA when
needed.

• Accuracy: The closeness of DA values to the true
values or accepted standard, reflecting the correct-
ness and precision of the data.

• Connectivity: The capability of a DA to be con-
nected and interlinked with other data sources, en-
hancing its usability and integration across sys-
tems.

• Integrity: The extent to which a DA is complete,
consistent, and free from unauthorized modifica-
tion, ensuring its reliability and trustworthiness.

• Presentation: The clarity and interpretability of
a DA, including its format and structure, make it
comprehensible and usable by intended users.

• Relevance: The pertinence and applicability of a
DA to the context in which it is used, ensuring that
it meets the needs and requirements of users.

• Security: The protection of a DA against unau-
thorized access and breaches, ensuring confiden-
tiality, integrity, and availability of the data.

• Operational Efficiency: The degree to which a
DA supports effective and efficient business op-
erations, including performance and process opti-
mization.

• Regulatory Compliance: The extent to which a
DA adheres to laws, regulations, and policies rel-
evant to its use and management, ensuring legal
and regulatory conformance.

• System Flexibility: The adaptability and main-
tainability of DA systems to accommodate
changes and evolving requirements, ensuring
long-term usability and scalability.

Each group contains different dimensions, which are
shown in different colours and shapes. The color dis-
tinguishes the dependency of the dimensions between
inherent, inherent and system-dependent.

• Inherent Quality refers to the inherent poten-
tial of a DA to satisfy both explicit and implicit
requirements under certain conditions, including
domain values, constraints, data-asset-value rela-
tionships, and metadata.

• System Dependent Quality depends on the tech-
nological capability of computer systems, includ-
ing hardware and software, to access a DA, main-
tain its accuracy, recover it, and facilitate its porta-
bility.

• Inherent and System Dependent Quality is a
hybrid dimension that recognizes the complexity
of DQ that arises both inherently and through sys-
tem interaction and requires a holistic approach to
assessment.

The form of the dimension describes the quality di-
mension and distinguishes between DI, SI and hybrid
indicators (HI). The first two dimensions have already
been introduced in Chapter 1. The hybrid indicators
combine data and semantic indicators in order to thor-
oughly assess the suitability of data for cross-system
use. These dimensions, therefore, apply to both data
and semantic descriptions.



Figure 3: Holistic Quality Assessment overview: The dimensions are classified under overarching groups, reflecting their
inherent and system-dependent qualities, and are further mapped onto the ISO 25012 standard.

Figure 3 shows that there are both groups contain-
ing only inherent quality dimensions (presentation)
and groups containing only system-dependent dimen-
sions (system flexibility). Overall, however, the de-
rived groups correspond very well to the groups de-
fined in ISO 25012. ”System flexibility” is the only
group that cannot be mapped to a corresponding com-
plementary group in the ISO standard. A total of
31 dimensions and 10 superordinate groups were ex-
tracted from the literature. The dimensions are di-
vided into 5 DI, 6 SI, and 20 HI, as well as 17 inher-
ent dimensions, 9 system-dependent dimensions, and
5 inherent & system-dependent dimensions. The ob-
jective of this selection is to provide users with the
option to select the dimensions that are pertinent to
the specific application from a range of dimensions
and groups. The clustering of the quality dimensions
and the quality dependencies enables the user to be
even more specific in their selection.

4.1 SAF Scores

A deterministic calculation of scores is essential to
ensure comparability between different DAs and to
meet the individual needs of users and departments.
These scores should allow users to decide on an indi-
vidual and application basis whether the SI or the DI
is more important and should, therefore, be weighted
more heavily.

The SAF scores are calculated on the basis of a
systematic and mathematically sound method and the

dimensional assignments from Figure 1. The pro-
posed framework is based on the assumption that for
each dimension, there exists an appropriate metric
that can be collected and calculated for the corre-
sponding DA. The objective is to combine the metrics
for DI and SI in such a way that SAF = DI+SI. First,
the mean score for each parent group is calculated by
averaging the scores of the underlying features. Let
ci be the score for the ith dimension metric within a
group and n be the total number of dimension metrics
in that group. This means that a dimension can have
multiple metrics. The mean C for the group is given
by

C =
1
n

n

∑
i=1

ci

We then calculate the DI and SI values. For a dimen-
sion classified as a DI, labelled DIk and belonging to
a group with a mean value C its calculated value VDIk
is

VDIk = DIk ·C
Similarly, for a dimension SIk identified as a semantic
indicator, the value VSIk is calculated using the same
formula. Each feature within the DI and SI groups is
subjected to this calculation and the results are aggre-
gated to give the overall DI or SI score:

Total DI = ∑VDIk

Total SI = ∑VSIk
The SAF score is then the sum of the total DI and the
total SI. To allow for the weighting of DI and SI val-
ues, enabling users to prioritize dimensions according



Figure 4: The SAF assessment framework is a comprehensive approach for evaluating heterogeneous DA in three distinct
forms. The three diagrams illustrate the distribution of SAF levels based on the assessment focus: general (left), data-oriented
(center) and semantic-oriented (right). Furthermore, the framework is adaptable to the assessment priorities defined by the
user and the granularity of the SAF grading. It is at the discretion of the user to determine the number of SAF levels and the
respective thresholds for these levels for DI and SI. Different DA are shown in green as examples; the X and Y values of the
DA are identical in all three diagrams.

to their importance, we introduce weight factors wDIk
and wSIk for each dimension. The weighted values
WDIk and WSIk are calculated as follows:

WDIk = wDIk ·VDIk

WSIk = wSIk ·VSIk

The total weighted DI and SI scores are then:

Total Weighted DI = ∑WDIk

Total Weighted SI = ∑WSIk

Finally, the SAF score, incorporating the weights, is
calculated as the sum of the total weighted DI and the
total weighted SI:

SAF = Total Weighted DI+Total Weighted SI

Initial, the weight factors wDIk and wSIk are set to 1,
ensuring that the weighting between SI and DI is bal-
anced when no user-defined weights are applied.

Finally, these values are presented in Figure 4,
where SI is on the X-axis and DI on the Y-axis. The
evaluation framework illustrates the methodological
rigor of the SAF. In the event that a data ecosystem
is comprised solely of disparate data assets, a cor-
responding SAF value would be calculated for each
asset, with a weighting defined by the user. These
values would then be transferred to the corresponding
diagram.

In the left-hand diagram, DI and SI are weighted
equally, enabling a balanced assessment. In contrast,
the middle diagram represents a semantics-centred
evaluation, while the right-hand diagram represents
a data-centred approach. Depending on the use case
and the focus of the intended application, the user can

decide whether to give equal weighting to DA and SI
or place a special emphasis on one of the two focal
points. For example, in the center diagram in Figure
4, it is important for a data asset to achieve a higher
overall rating for DI to advance from level 1 to level
2. A good semantic description and a higher over-
all SI score would not be as effective for this goal as
having high-quality raw data. The opposite is true in
the right diagram in Figure 4, where high semantic
descriptions (high SI value) are more important than
high-quality raw data (high DI value).

The exemplary positions of two different DAs in
each of the three graphs in Figure 4 demonstrate that
different levels are achieved in the SAF framework
depending on the weighting. Consequently, the same
DA is assigned a different rating in different contexts.
The framework’s flexibility is also reflected in the
variable SAF levels, which allow the user to define
different levels of granularity, represented by lines in
Figure 4.

In practice, these levels can be used as thresholds
for determining the suitability or usability of differ-
ent DAs. The delineation of scores in the diagrams
illustrates the nuanced interplay of quality attributes
within the two main dimensions. This visual tool fa-
cilitates a comprehensive assessment of data integrity
and highlights the complex dynamics at play in data
ecosystems. This adaptability is central to the SAF’s
usefulness as it allows users to calibrate the assess-
ment based on specific application requirements. It
also ensures that the SAF can be tailored to differ-
ent contexts and needs, thereby demonstrating its po-
tential as a robust tool for a holistic evaluation of
data quality. The SAF thus provides a solid frame-



work for a comprehensive, multi-dimensional assess-
ment of data quality, which is crucial for the integrity
and utility of data in today’s technologically diverse
ecosystem.

5 Discussion and Conclusion

In this paper, we developed the Scalability Assurance
Forms (SAF) framework, a comprehensive method
for assessing data asset quality in data ecosystems.
Grounded in ISO 25012, the SAF framework system-
atically integrates DI and SI to offer a holistic eval-
uation of data assets. This dual approach ensures
that both intrinsic DQ and contextual semantic rich-
ness are thoroughly addressed, which is essential for
the reliability and scalability of AI applications. The
SAF framework presents several advantages. It al-
lows users to prioritize dimensions according to their
importance through weight factors, offering a cus-
tomizable approach to DAQ assessment. This adapt-
ability is crucial for addressing the diverse needs of
different data-driven environments and ensures that
the quality assessments are both relevant and action-
able. Furthermore, by providing a structured method
for assessing data assets, the SAF framework supports
better decision-making and enhances the trustworthi-
ness of data used in various applications. The holis-
tic view offered by the SAF framework is crucial for
users, enabling them to make well-informed decisions
and select the most appropriate data assets from com-
plex data ecosystems.

However, there are limitations to the current
framework. One significant challenge is the absence
of predefined metrics for the various dimensions,
which often need to be individually defined and tai-
lored to specific contexts. This process can be com-
plex and time-consuming, requiring extensive domain
expertise. Additionally, the field of automated qual-
ity assessment in data ecosystems is still in its early
stages, and further research is needed to develop ro-
bust methodologies and tools. Despite these limita-
tions, future research will focus on defining specific
metrics for each dimension and developing a pro-
totype for automated quality assessment. This will
enhance the framework’s applicability and effective-
ness, providing users with more precise and action-
able quality assessments.
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