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Abstract— Robots are significantly enhancing a wide range
of applications, from industry and elderly care to space explo-
ration. However, the progress remains relatively slow compared
to other fields due to the lack of methods for sharing knowledge
and experiences, causing repeated efforts and hindering the
focus on solving new challenges. To address this, it is necessary
that robots are able to share their experiences through a formal
approach, eliminating the need to rewrite the software stack
for each robot. In this paper, we introduce a novel framework
designed to encode and then exchange error-related knowledge
from the robot to an operator with a particular focus on plan-
ning errors. The proposed framework is based on the OpenUSD
standards, employing the Universal Scene Description (USD)
format. In our proof-of-concept implementation, when an
error occurs, the robot communicates the error situation to
the operator, who can then make informed adjustments and
teleoperate the robot to address it. This demonstrates effective
error communication between a teleoperated robot and an
operator.

I. INTRODUCTION

Due to the lack of standardized methods for sharing expe-
riential information among robots, roboticists often develop
solutions for similar problems individually over and over
again. This is hindering the progress of robotics research
and preventing it from reaching its full potential. To address
this issue without the need to force everyone to utilize
the same software stack, it is essential to create a formal
approach that enables both robots and roboticists to share
their experiences. Humans understand that learning from
mistakes — whether one’s own or others’ — is highly
effective. Following this paradigm, our goal is to facilitate
the sharing of error situations among robots to accumulate
valuable experiences. In particular, we propose a concept for
encoding error situations encountered by robots to promote
the exchange of error-related knowledge.

Our contributions include (i) an analysis of existing spec-
ification languages and their ability to describe error scenar-
ios, (ii) a concept to model error situation in a formal way,
and (iii) a proof of concept implementation using a metaverse
approach to share information between agents. We showcase
our implementation as we improve the communication of
planning errors from a robot to a remote human operator in
a space exploration scenario.

II. RELATED WORK

To enable heterogeneous robots to communicate error sce-
narios to an operator, a robot-agnostic language is necessary.
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We analyze existing specification languages below.

A. Canonical Robot Command Language (CRCL)
CRCL [1] is a low-level messaging language designed

for the control of industrial robots and Automated Guided
Vehicles (AGVs). It enables the sending of commands,
specifically low-level geometric operations to the robot con-
troller, alongside the reception of status messages. These
status messages include both the commands status and the
robots joints status.

B. Enhanced Task Specification Language (eTaSL)
eTaSL [2] is a constraint-based task specification language

and controller for robot programming. It uses expression
graphs to define and control robot manipulation or navigation
tasks. The mathematical formulations that are represented in
these graphs, such as geometric relations, kinematic equa-
tions, and dynamic interactions, enable the execution tasks.

C. Linear Temporal Logic MissiOn Planning (LTLMoP)
LTLMoP [3] toolkit uses Linear Temporal Logic and

structured English to construct task plans that are then
automatically translated into executable robot controllers.

D. ProbRobScene
ProbRobScene [4] specification language allows the de-

scription of the scene graph of the robotic manipulation
environment. It enables the specification of the relational
constraints between the objects in a scene, as well as
specifying the positions and orientations of these objects.

E. Semantic Robot Description Language (SRDL)
SRDL [5] models robot components, actions, and capa-

bilities using Web Ontology Language (OWL). Components
include hardware components like sensors and actuators,
as well as the kinematic chain of the robot. SRDL also
facilitates the enrichment of the kinematic model with se-
mantic information. Additionally, components cover software
elements such as the control programs, alongside information
objects for instance object models. Actions are defined as the
tasks or operations that a robot can perform. Capabilities,
refer to services a robot can provide, they are derived from
the combination of its components and the actions.

These specification languages primarily focus on encoding
information about a single aspect, such as the robot, executed
commands, task plans, or the environment. In contrast, our
research highlights the crucial need to encode error scenar-
ios to facilitate error information sharing between different
agents.



III. CONCEPTUAL ANALYSIS OF ERROR TYPES

In this section, we introduce a taxonomy of errors, defining
each type, exploring their root causes, and providing exam-
ples. Then, we evaluate the effectiveness of the specification
languages discussed in Section II in modeling these errors.

A. Classification of Error Types

One of the most generic classifications of robot errors is
the classification presented by Nakamura et al. [6]. Errors
are categorized into four classes: execution errors, planning
errors, modeling errors and sensing errors. Execution errors
arise form a problem with the mechanisms of the robot
usually leading to a hardware malfunction ranging from tem-
perature changes to aged deterioration. Planning errors occur
when the software representation of the system deviates from
the actual system. Modeling errors surface when the geom-
etry model used in the software does not accurately reflect
the real object. Sensing errors refer to discrepancies in the
information collected by the robot’s sensors, usually due to
incorrect calibrations or sensitivity issues. The classification
of Nakamura et al. primarily targets industrial robots which
are used in structured manufacturing and assembly lines for
repetitive and precise tasks. In contrast, service robots are
designed to interact with humans and provide assistance
in various situations such as healthcare, domestic chores
or space exploration. This leads service robots to operate
in an unstructured and dynamic environments, making the
effectiveness of pre-programmed tasks limited. To solve this,
often times planning algorithms are used, such as Task and
Motion Planning (TAMP), to determine the optimal actions
for service robots. As the actions and motions may vary from
trial to trial, the likelihood of errors increases. In this work,
we extend the taxonomy introduced by Nakamura et al. by
redefining execution errors, planning errors and modeling
errors to address the context of service robots to better
suit their characteristics and functionalities. Please note that
sensing errors are not detailed further, as they may be the root
cause of other error types. We now extend the definition of
each error type, list possible causes, and provide examples.

Modeling errors occur when the robot internal model of
the robot itself or the model of the world (or both) do not
accurately reflect the real world. This can happen due to
discrepancies in initial conditions, different object states, or
changing environments, where the root cause may actually be
a sensing error. Additionally, incorrect or incomplete models
of robot kinematics or robot dynamics may be the cause
of a modeling error. For example, if a robot is tasked with
opening a door, the planned actions might be to navigate to
the door, grasp the handle, and open it. However, if the door
is locked with a key and the robot believes it to be unlocked,
the robot will fail because it was not expecting to unlock the
door at first.

Planning errors occur when the planner fails to produce
a plan that achieves the desired goals. These errors can
result from collision restrictions, joint limits, and kinematic
singularities. Again, the root cause may be a sensing error,
yet this is not of relevance for the overarching problem. For

example, a robot tasked with grasping a mug might fail to
produce a collision-free plan due to the planner’s inability to
avoid singular configurations while considering joint limits
and obstacles.

Execution errors occur when the ensemble of actions
generated by the planner are feasible but fail to produce
the expected outcome in the real world. These errors can
be caused by uncertainties in the environment (which may
again be related to sensing errors), inaccuracies in actuation,
or hardware malfunctions. For example, if a robot is tasked
with grasping a mug, an unforeseen complication might arise
during execution, causing the mug to slip from the grasp of
the robot.

To accurately encode different types of errors and sub-
sequently share information about them, it is essential to
express relevant information about their key components.
These components can be categorized as follows:

• Scene description: Provides a detailed representation of
the robot’s belief state, describing the geometries of dif-
ferent objects, their positions within a global reference
coordinate system, and their parent-child relationships.

• Object semantics: Offers contextual information about
the objects in the scene, necessary for decision-making.
Such as the object’s type and functional properties.

• Kinematics model: Outlines the kinematic chain of the
links and joints of the robot.

• Dynamics model: Builds upon the kinematics model by
incorporating dynamic parameters.

• Task plan: Specifies the actions the robot must follow
to achieve a desired goal on a symbolic level.

• Geometric expressions: Represent the different joints’
spatial configurations attempted in simulation and then
in real-world conditions to execute a task.

• Joints status: Includes the positions of the joints and the
applied torques.

• Commands status: Provides detailed information about
each action within the task at a granular level.

By categorizing and detailing these components, we can
effectively encode error information and facilitate the sharing
of this knowledge among robots and roboticists. In the fol-
lowing, we analyze which specification language, introduced
in Section II, is able to express which error key component.

B. Comparative Analysis of Specification Languages

In Table I we present a comparative analysis of speci-
fication languages used in robotics, outlining their abilities
to model the different error types. Our analysis reveals that
none of the examined frameworks in Table I offer a solution.
Each falls short of modeling the full spectrum of the three
categories of error types—modeling, planning, and execution
errors. Addressing the deficits observed, we propose a novel
concept in Section IV.

IV. A PRELIMINARY CONCEPT TO SHARE ERROR
KNOWLEDGE BETWEEN AGENTS

In this section, we detail our concept to share error-
knowledge between agents, focusing on the design justi-
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CRCL – – – – – ✓ ✓ ✓

eTaSL – – ✓ ✓ – ✓ – –

LTLMoP – – – – ✓ – – –

ProbRobScene ✓ – – – – – – –

SRDL ✓ ✓ ✓ – ✓ – – –

TABLE I: Comparative analysis of specification languages in
robotics and their ability to model the different error types.

fication of the Universal Scene Description (USD) format
and introducing the Robotic Error Extension for the USD
language.

A. A Metaverse Concept to Share Error Knowlegde

The concept of the metaverse, an interconnected virtual
space that merges physical and digital realities, holds signif-
icant potential for enhancing the interaction between human
operators and robotic systems. By bridging the physical
world with the digital world, the metaverse can provide
unprecedented access to the internal states of robots, enabling
more intuitive control, monitoring, and collaboration. This
integration can facilitate seamless information exchange,
enabling humans to better understand and influence robot
behavior, thus optimizing overall team performance.

USD, developed for describing complex 3D scenes, has
become the de facto standard in 3D modeling and is widely
adopted in tools like Maya, Blender, and robotics simulators
such as Isaac Sim [7], Unity3D [8], and Gazebo [9]. USD
organizes 3D data into hierarchical scene graphs, where
basic elements, so-called prims, can hold other child prims,
attributes, and relationships. Attributes define the charac-
teristics and behavior of prims and can vary over time,
encompassing properties like location, orientation, and visual
appearance. Relationships establish connections within the
scene, building a comprehensive scene hierarchy. Supported
by the evaluation of Agbossou [10], we adopt the USD file
format as the foundation of our concept. This evaluation
highlights the superior capabilities of USD in encoding 3D
geometry, attributes, semantics, and textures necessary for
modeling various types of errors.

In robotics, USD facilitates the modeling of robots and
their environments. The hierarchical structure of USD make
it a robust choice for robotics applications, surpassing other
3D data formats such as DXF, Collada, and X3D. In par-
ticular, robots can be represented as nested hierarchies of

prims that articulate their kinematic structures, with semantic
information added to provide context to both objects and
robot components. USD’s extensibility allows for custom
schema classes to define unique properties and structures,
enabling the modeling of any 3D scene component. USD
files can be generated and manipulated programmatically,
allowing for dynamic updates to scene attributes without the
need for new files, optimizing the maintenance and updating
of 3D scenes in response to environmental changes.

B. Proof-of-Concept Implementation

In this section, we present the proof-of-concept implemen-
tation of our approach, the Robot Error Extension for Univer-
sal Scene Description (REUSD), to encode error situations
in USD. Focusing on planning errors for now, the REUSD
framework is triggered once a planning error occurs. Initially,
REUSD converts the URDF model of the robot to a USD
model and semantically annotates the relevant manipulators.
Using telemetry data, REUSD sets the robot to its current
joints configuration and assigns an attribute to each joint,
indicating its status as either OK or in Failure mode.

When a planning error occurs, the motion planner reports
the encountered planning error, specifying whether it is a
collision error or an unreachability one, the manipulator in
question, all the joint configurations attempted during the
search for a feasible solution, and for each of them the colli-
sion report detailing which robot body part and environment
entity are colliding. REUSD then requests the current World
State Representation (WSR) [11], i.e. the environment belief
state of the robot and converts it into a USD scene graph.
The REUSD framework queries the 6D pose of the robot
in world coordinates, incorporates a reference of the robot
USD model into the scene graph of the environment USD
model, and positions the robot accordingly.

Based on the collision report, REUSD assigns semantic
annotations to the colliding robot body part and the object.
The object is tagged with an inCollision attribute naming
the robot part it collides with, and the robot part is similarly
tagged, pointing to the object in collision.

REUSD then parses the generated USD scene, authors a
red material prim, and binds it to any prim that possesses
an inCollision attribute. The final USD file includes the
scene graph of the environment, the robot in the reported
configuration for solving the task, and the colliding entities
highlighted in red to visually indicate a collision error to
the operator. This configuration results from simulating the
task, during which a wide array of different poses were
systematically evaluated by the planner. While a USD file
can be created for every configuration tested, our framework
generates one USD file from one attempted configuration
for the most collided robot body part. Listing 1 shows a
section of one of the auto-generated USD file. It defines a
Xform for the Solar Panel Unit 3 (SPU3) object, specifying
its position and orientation with a transformation matrix
and marking it as in collision with the robot body part right
thumb finger distal.



Fig. 1: The humanoid robot Rollin’ Justin picking up a
sample tube in a Martian mock-up environment.

d e f Xform ”SPU3”
{ custom s t r i n g I n C o l l i s i o n = ”

r i g h t t h u m b f i n g e r 4 d i s t a l ”
m a t r i x 4 d xformOp : t r a n s f o r m =
( ( 1 , 0 , 0 , 0 ) , ( 0 , 1 , 0 , 0 ) , ( 0 , 0 , 1 , 0 ) , ( 4 . 4 , 3 . 6 , − 0 . 0 2 , 1 ) )
un i fo rm t o k e n [ ] xformOpOrder = [ ” xformOp : t r a n s f o r m ” ]

d e f Mesh ” SPU3 mesh ” (
p repend r e f e r e n c e s = @. / SPU3 ob jec t . usda@
)
{

r e l m a t e r i a l : b i n d i n g = </ M a t e r i a l s /
M a t e r i a l C o l o r 2 5 2 8 8 8 8>

m a t r i x 4 d xformOp : t r a n s f o r m =
( ( 0 , 1 , 0 , 0 ) , ( − 1 , 0 , 0 , 0 ) , ( 0 , 0 , 1 , 0 ) , ( 0 , 0 , 0 , 1 ) )
un i fo rm t o k e n [ ] xformOpOrder = [ ” xformOp : t r a n s f o r m ” ]

}
}

Listing 1: A snippet of the REUSD-generated error
description defining the transformation and mesh for a
Solar Panel Unit (SPU), including collision information and
material bindings

V. EVALUATION

We demonstrate our proof-of-concept implementation in
a remote operation scenario originating from the Surface
Avatar experiment [12]. In this experiment, the humanoid
robot Rollin’ Justin [13] is remote controlled by an astronaut
from aboard the International Space Station (ISS) in prepa-
ration for future Mars exploration scenarios. Considering the
limited situation awareness of the operator in this setup, it
is crucial to communicate errors as efficient as possible.

For example, if the operator commands the robot
to execute a certain high-level command (e.g. pick
sample tube right arm), the robot may face a plan-
ning error, e.g. due to a collision. As the robot fails to
complete the assigned task, a notification panel appears on
the User Interface (UI) stating ”Execution Failed”. In the
past, this information came without offering further details
about the cause of the failure. Using our REUSD approach,
a USD file encoding the error scenario is automatically
generated, sent, and displayed on the UI as shown in Fig. 2.
As a result, the operator gains a clearer understanding of the

Fig. 2: The visualization of a planning error as it is displayed
on the UI of the operator. The REUSD-generated error
description (see Listing 1) can be visualized as an interactive
3D-view as it is suggested on the bottom right.

cause of the error, including a visual representation of which
robot body part is colliding with which environmental object.

VI. DISCUSSION AND FUTURE WORK

In this workshop paper, we have demonstrated a prelim-
inary concept to communicate different types of errors to
a remote operator by leveraging a metaverse approach. The
REUSD proof-of-concept implementation was showcased in
a remote Human-Robot-Interaction scenario, where a plan-
ning error was displayed to an operator to enhance situation
awareness in the presence of planning errors experienced by
a remote robot.

Going forward, we plan to extend REUSD to cover a full
range of error types. In addition, we intend to develop a
recommendation system where the robot suggests corrective
actions based on the type of error encountered. For instance,
upon detecting a planning error, the robot could propose
adjustments like repositioning and retrying, or attempting to
pick up the object in question with another manipulator.

As a long-term goal, we aim to implement the commu-
nication of error situations from robot to robot. By sharing
information about encountered errors, robots can adjust their
operations based on the experiences of other robots within
the network. This poses significant challenges, such as belief
divergence when robots share their perceived states of the
environment, raising several important research questions:
How can robots process and use information received from
other robots? How can a robot distinguish correct informa-
tion from erroneous beliefs? And ultimately, how can robots
and humans mutually benefit from shared error information
in both directions?

In conclusion, our preliminary work shows promising
potential for improving error communication in robotics.
By expanding this approach and addressing the associated
challenges, we hope to enhance the reliability and efficiency
of robotic systems, ultimately fostering greater collaboration
and understanding between robots and their human operators.
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