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Abstract — The paper proposes a novel approach for in-orbit 

satellite antenna pattern measurement by means of a dedicated 

small measurement satellite that flies in Double-Cross-Helix 

formation. For establishing and maintaining the quality of a 

satellite mission and its products, antenna pattern measurement 

while the satellite is in orbit is crucial. In remote sensing missions 

like Synthetic Aperture Radar (SAR), the pattern is measured 

using calibration targets on the Earth’s surface. Such on-ground 

measurements are costly, time-consuming, and only offer one-

dimensional azimuth or elevation patterns within constrained 

angular ranges. The novel approach provides a two-dimensional 

in-orbit measurement that covers the full angular range. The two-

dimensional pattern is obtained from numerous central cuts 

resulting from small modifications of the measurement satellite’s 

orbit parameters that establish the Double-Cross-Helix formation. 

The measurement is performed in free space with a single free-

flying measurement satellite. This avoids all distortions from 

atmosphere, ionosphere, ground clutter and multipath effects, 

ambiguities, and volume scattering. The approach is of great value 

for future satellite missions that are increasingly based on a huge 

number of electronically steered antenna beams and/or digital 

beamforming. The Dual-Cross-Helix approach provides faster, 

cheaper, and more accurate pattern measurements. The paper 

discusses a high-level system concept of a feasible in-orbit pattern 

measurement of a SAR satellite similar to TerraSAR-X by means 

of a passive measurement satellite that is equipped with a 

reflecting sphere. Orbit simulations, measurement gain and 

angular sampling accuracy analyses verify that the Double-Cross-

Helix approach is feasible and advantageous for in-orbit antenna 

pattern measurement. 
 

Index Terms—In-Orbit Antenna Pattern Measurement, Satellite 

Formation, Double-Cross-Helix, Reflecting Sphere. 

I. INTRODUCTION 

In the course of a radar satellite mission, an up-to-date 

knowledge of the antenna pattern is a precondition for 

establishing and maintaining the mission product quality. The 

antenna pattern is usually measured pre-launch - fully for small 

satellites and often only partially in case of large antennas.  
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However, due to launch, antenna un-folding in space, 

hardware and structure aging or failure, the antenna pattern 

alters constantly during the mission. Therefore, the pattern is 

required to be measured again after launch as part of the 

commissioning phase, e.g. [1]-[2], and then repeatedly at 

regular intervals during the operational phase. 

For radar satellites in Low Earth Orbiting (LEO) orbits, the 

post-launch antenna pattern measurements are based on on-

ground calibration targets and calibration test sites. This is 

expensive and time consuming since effortful on-ground 

campaigns have to be carried out. The on-ground measurements 

are limited in accuracy, and cannot provide individual transmit 

(Tx) and receive (Rx) patterns over wide angle-ranges. Only 

azimuth or range patterns can be measured, which are one-

dimensional cuts through the two-dimensional antenna pattern 

in only two fixed directions.  

The paper introduces a novel approach for two-dimensional 

in-orbit satellite antenna pattern measurement. A small 

measurement satellite flies in Double-Cross-Helix formation 

with the radar satellite. The orbit parameters of the 

measurement satellite are configured in a way that - with respect 

to the spherical antenna coordinate system of the radar satellite 

- it flies through all polar angles at a selectable constant 

azimuthal angle. This provides a central cut, and numerous 

central cuts combine to a two-dimensional pattern. All the 

measurements are performed in free space, which avoids the 

distortions arising when using on-ground calibration targets. 

These distortions are caused by atmosphere, ionosphere, ground 

clutter and multipath effects, ambiguities, and volume 

scattering. The paper provides a feasible high-level system 

concept for in-orbit measuring the two-dimensional pattern of a 

TerraSAR-X like radar satellite, e.g. [1]-[2], with a passive 

measurement satellite that carries a reflecting sphere as radar 

reflector. 

The literature reports about in-orbit antenna pattern 

measurement for Medium (MEO) and Geostationary Earth 

Orbiting (GEO) satellites. The in-orbit Tx pattern measurement 

of a GPS satellite in 20000 km altitude by means of 8 LEO 

measurement satellites is discussed in [5] and [6]. Visibilities 

of the GPS satellite from the LEO measurement satellites are 

taken as opportunities to obtain cuts through the two-

dimensional GPS antenna pattern. After about 3 weeks of 

measurement with 8 satellites, sufficient cuts are obtained for a 

two-dimensional Tx azimuth/elevation pattern at a polar angle 

range constrained to ±13.8°. Also [7] describes a concept for 

MEO SAR Tx elevation pattern measurement. It measures the 

high-gain part of the main lobe by a LEO calibration satellite 

that is on receive when it crosses this part of the main lobe. 
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Within 1 year 15 measurement opportunities can be found, and 

one of them is close to the elevation pattern, i.e. the azimuth 

angle deviation from the central cut is 0.007°. Concepts for 

swarms of radar calibration satellites that measure GEO and 

MEO SAR are provided in [8]. 

The Double-Cross-Helix measurement as it is derived in this 

paper is applicable to radar satellites in polar LEO orbits. 

However, the adaption also to different LEO as well as MEO 

and GEO orbits appears possible by adapting the derivation to 

different radar satellite orbits. 

The novel approach can contribute to future satellite missions 

by providing faster, cheaper, more accurate and frequent in-

orbit antenna pattern measurements, especially in case of a huge 

number of electronically steered antenna beams and/or digital 

beamforming. 

For the derivations in the paper, the antenna centers of radar 

and measurement satellite are assumed to be at their centers of 

gravity. A right looking acquisition geometry is considered. 

However, the approach and the formulas provided are valid for 

left looking as well. It is presumed that the radar satellite is 

capable to steer its attitude in yaw, pitch and roll angles. 

Besides radar satellites, the proposed two-dimensional in-

orbit satellite antenna pattern measurement is also of interest for 

other remote sensing satellites, navigation and communication 

satellites, too. For the ease of reading, the satellite with the 

antenna to be measured is denoted as radar satellite in the 

following, which is nonetheless abbreviated as RSS (Radio 

Signal Satellite) to address the wider spectrum of satellite types 

that potentially benefit from the novel approach. The small 

satellite that shapes the Double-Cross-Helix orbit formation and 

carries a radio reflector or a measurement antenna is referred to 

as measurement satellite (MES). 

The paper is organized as follows. In Section II, a feasible 

high-level system concept is provided that is dedicated to a 

radar satellite similar to TerraSAR-X. Section III introduces the 

Double-Cross-Helix concept, and Section IV derives the 

Double-Cross-Helix orbit parameters for desired central cuts at 

constant azimuthal measurement angles. Section V provides the 

measurement satellite orbits calculated for the measurement 

system. Section VI introduces an alternative calculation 

approach for the measurement orbits that is based on the 

difference in the radar and measurement satellite’s ascending 

node drift rates. Section VII provides a first estimation of 

measurement accuracy and measurement angle sampling 

distance based on the beforehand calculated Double-Cross-

Helix. 

II. HIGH-LEVEL SYSTEM CONCEPT OF IN-ORBIT ANTENNA  

PATTERN MEASUREMENT 

This Section provides a high-level description of a feasible 

measurement system for a SAR satellite similar to 

TerraSAR-X. The focus is on distance, power and Signal-to-

Noise Ratio (SNR). The system concept is complemented in 

Section VII by accuracy and sampling analyses that consider 

the Double-Cross-Helix orbits calculated in the succeeding 

sections. A two-way pattern measurement is considered as is 

shown in Fig. 1.  

 
Fig. 1. Two-way pattern measurement. Measurement satellite (MES) with 

reflecting sphere facing the radio antenna of the radar satellite (RSS). 

The measurement satellite MES carries a reflecting sphere 

that faces the radar satellite’s antenna. A reflecting sphere is 

advantageous in several ways. It has a small radar cross section 

 that allows for short measurement distances in terms of 

power, a direction-independent reflection, and it shields the 

MES bus structure from the radar illumination. For a constant 

radar reflection, i.e., a constant  and to permanently shield the 

MES bus structure, the MES attitude should orient the sphere 

towards the RSS antenna during the entire orbits. In other 

words, there should always be a virtual straight line between 

MES satellite bus, reflecting sphere and RSS antenna. 

The radar satellite transmits radar pulses, which are reflected 

from the measurement satellite and then received again from 

the radar satellite. A chirp waveform, e.g. [19], [22], is selected 

as measurement signal since it provides an inherent frequency 

scan of the antenna pattern. It also allows for a range 

compression to improve the SNR of the measurement signal at 

larger distances. Fig. 2 (a) illustrates several measurement 

chirps. The blue window is a partial chirp that is to be 

compressed. The window moves along the chirp and by this, the 

center frequency of the partially compressed chirp moves as 

well. Such a partial moving range compression maintains the 

frequency dependence of the antenna pattern measurement. 

A further option to improve the SNR is to transmit a small 

number of measurement pulses with a high Pulse Repetition 

Frequency (PRF) at one pseudo-static measurement position, 

i.e., the measurement angle variation is small versus the 

measurement angle sample interval (cf. Section VII.C), and to 

compress the reflected pulse echoes in azimuth. Fig. 2 (b) 

provides an example number of azimuth compressed (AC) 

pulses that increase with distance, and is based on the TABLE I 

and TABLE II parameters. A minimum SNR of 35 dB is 

maintained by transmitting more than 1 pulse for distances 

above 8 km. 

The power design of the system concept is discussed with 

respect to a TerraSAR-X like illumination of a 3 m corner 

reflector with the parameters in TABLE I. The video power Pvideo 

at the radar antenna output is calculated using  

( )

2

3 44

   
=

 

Pk Tx Rx

video

Atm

P G G
P

d L

 



 
(1) 

with PPk being the radar peak power, the wavelength , the 

maximum Tx and Rx antenna gains GTx and GRx, respectively, 

the radar cross section  of the corner reflector, the distance d 

between radar and on-ground corner reflector, and the two-way 

atmospheric loss LAtm. The equation is also used for the 

measurement satellite’s reflecting sphere with the 

corresponding inter-satellite distance, and no atmospheric loss. 
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       (a) (b) 

Fig. 2. (a) Partial moving range compression of measurement chirps (blue color) 

that allows for a frequency-dependent pattern measurement while improving 

the SNR. Additionally, a small number of pulses are coherently integrated via 

azimuth compression to further improve the SNR (green color). (b) Number of 

azimuth pulses to achieve a minimum SNR of 35 dB. The number of required 

pulses increases with distance. 

The resulting Pvideo of -84.6 dBm for the on-ground corner 

reflector is shown by the red horizontal line in Fig. 3 (a). It is 

constant due to the fixed slant range distance d of 600 km. After 

range compression of the full 300 MHz Range Bandwidth Br 

and the full Pulse Length Tp with the parameters in TABLE I, the 

corner reflector reference SNR is 35 dB. This value can be 

found as red horizontal line in Fig. 3 (b). TABLE II provides the 

parameters that are applied in addition to or instead of TABLE I 

in the power and noise calculations of the antenna measurement 

using MES.  
TABLE I 

TerraSAR-X like parameters for 3 m corner reflector illumination 

wavelength  0.03106 m standard temperature 290 K 

peak power PPk 2200 W system noise figure Fsys 4 dB 

waveform chirp Tx antenna gain GTx 46.3 dB 

range bandwidth Br 300 MHz Rx antenna gain GRx 46.3 dB 

PRF 6800 Hz slant range d 600 km 

duty 0.062  corner reflector inner leg 3 m 

pulse length Tp 9.1 s corner reflector  55.5 dBm2 

  two-way atmosph. loss LAtm 2 dB  

TABLE II 

Measurement satellite’s (MES) and radar satellite’s (RSS) parameters 

MES reflecting sphere illumination range and azimuth compression 

radius rr 0.15 m Br,int , Tp,int 30 MHz, 0.91 s 

 

-11.5 dBm2 

minimum SNR 35 dB 

azimuth pulses 1 to 39 

LAtm 0 dB    

Fig. 3 (a) provides Pvideo for the two-way measurement with 

the reflecting sphere on-board the measurement satellite as a 

function of distance d in black color. Within the calculated 

distance variation from 1.5 km up to 20 km, Pvideo decreases 

from about 40 dB above to 6 dB below the TSX reference. 

The black line in Fig. 3 (b) shows the SNR after partial 

moving range compression with a Br,int of 30 MHz and a Tp,int 

of 0.91 s. Again, the horizontal line in red color shows the SNR 

of a TerraSAR-X like illumination of a 3 m corner reflector 

after range compression with 300 MHz at a constant distance of 

600 km. The dashed green line shows the SNR after additional 

azimuth compression of the small number of pulse echoes 

Naz,int(d) from Fig. 2 (b), which increases with distance d to keep 

the SNR above 35 dB, which is the identical value of the on-

ground corner reflector, and which provides a gain accuracy 

better than 0.05 dB (cf. Section VII.A). The small spikes are 

due to the integer pulse numbers. The SNR after partial range 

compression and a distance-dependent number of integrated 

azimuth pulses is calculated by (2). 

 
       (a)       (b) 

Fig. 3. Power at radar antenna output and SNR in comparison to a 3 m on-

ground corner reflector illumination (red horizontal lines). (a) Power at antenna 

output for two-way measurement. (b) SNR for two-way measurement with 

partial moving range compression (black) and additional azimuth compression 

of few pulses (green). TSX reference with full range compression and without 

azimuth compression (red). 
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(2) 

The length of the total chirp Tp in the example is 9.1 s, 

which corresponds to a minimum required two-way distance d 

of 1.37 km considering the echo window timing of a pulsed 

radar system.  

The conclusion of this subsection is that for a TerraSAR-X 

like example SAR system and a 15 cm radius reflecting sphere, 

a distance range between 1.5 and 20 km is reasonable in terms 

of signal power, SNR and echo timing. After deriving the 

Double-Cross-Helix orbits in the next Sections, the discussion 

of the high-level system concept continues in Section VII using 

these orbits. 

III. DOUBLE-CROSS-HELIX ORBIT 

The Double-Cross-Helix is an extension of the Helix concept 

known from the TanDEM-X mission [13],[14],[15]. In a Helix-

configuration, in one orbit revolution the measurement satellite 

completely revolves the radar satellite, and thus sweeps through 

a 360° angular range. This characteristic can be utilized to 

implement an in-orbit antenna pattern measurement. A 

TanDEM-X Helix [10],[11],[12] is created by two polar orbits 

with small differences in the eccentricities e and the 

arguments of the ascending nodes  in combination with 

identical arguments of perigee  = 90°.  

The two left drawings of Fig. 4 schematically show the effect 

of e and . The eccentricity difference e causes a radial 

baseline Brad,e that is maximum at the poles and zero at the 

equators. The term baseline (B) is widely used to denote the 

distance between two antennas. Radial means the projection 

into the radial direction, and the creator e of this baseline 

component is annotated in the subscript. An along-track 

baseline component Balong,e is also generated by e. It is 

maximum at the equator and zero at the poles. The difference 

in the ascending nodes  causes a cross-track baseline Bcross, 

that is maximum at the equator and zero at the poles.  
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Fig. 4. Illustration of the basic radial, along-track and across-track baseline 

components that are generated by one different orbit parameter, i.e. either 

eccentricity, inclination or argument of the ascending node. The argument of 

perigee  is 90°. 

A TanDEM-X Helix is a safe orbit formation because the 

radial and the cross-track baseline components are never zero 

at the same time, which means the two orbits do never cross. 

Below in this Section, it will be shown that a TanDEM-X Helix 

can be used to measure the pattern of a nadir looking antenna. 

To measure also side-looking antennas as for example a SAR 

antenna, the TanDEM-X Helix is complemented to a Double-

Cross-Helix by a second cross-track component that is induced 

by an inclination difference i. The resulting cross-track 

baseline component Bcross,i is schematically shown in the right 

drawing of Fig. 4. It is maximum at the poles and minimum at 

the equator. An inclination difference causes different rotation 

rates of the ascending nodes and should be considered (cf. 

Section VI). 

The Double-Cross-Helix orbit concept is developed in the 

succeeding subsections, starting from the radar antenna 

coordinate system and after introducing several coordinate 

systems that are required in the derivations.  

A. Antenna Coordinate System 

Fig. 5 illustrates the antenna pattern of the radar satellite in 

its Cartesian Antenna coordinate system A with the axes xA, yA, 

and zA. The superscript letter indicates the respective reference 

system. The Cartesian coordinates can unambiguously be 

transformed into the spherical coordinates radial distance d, 

polar angle ψ and azimuthal angle ξ by using  

( ) ( )
 

( ) ( )
 

( ) ( ) ( )

2 2

2 2

2 2 2

sin 90 90

tan 90 90

A

cross

A A

along cross

A A

along cross

A

rad

A A A

along cross rad

B
  ; ,

B B

B B
; ,

B

d B B B

 

 

=  −  

+

+
=  −  

= + +

 (3) 

The components of the vector formed between the origin of 

A and the position of the measurement satellite are the along-

track baseline BA
along, the across-track baseline BA

cross, and the 

radial baseline BA
rad. This vector is the baseline vector. Its 

length is d and equal to the distance between the radar and the 

measurement satellite. 

 
Fig. 5. Cartesian Antenna coordinate system A of the radar satellite RSS, and 

corresponding spherical coordinates radial distance d, polar angle ψ and 

azimuthal angle ξ. The position of the measurement satellite MES w.r.t. the 

antenna center is composed of the orthogonal baseline components BA
along, 

BA
cross, and BA

rad. On its orbit, the MES relative movement shall provide all polar 

angles ψ at a fixed azimuthal angle ξ.  

For the measurement, the antenna pattern is considered to be 

two-dimensional in polar angle ψ and azimuthal angle ξ 

whereas the distance d is available from the measurement 

geometry for each ξ-ψ-combination, i.e., it can be considered to 

be known to high accuracy. In the following, the measurement 

satellite orbit parameters are derived in such a way that the 

relative movement of the measurement satellite along its orbit 

spans all polar angles ψ at a constant and adjustable azimuthal 

angle ξ. This is shown in Fig. 5 by the blue bow that symbolizes 

this relative movement. By changing the orbit parameters of the 

measurement satellite, different central cuts through the two-

dimensional pattern can be obtained. 

B. Satellite Coordinate Systems 

For the derivation of the Double-Cross-Helix orbit the 

following radar satellite coordinate systems need to be 

considered. Apart from the Inertial system, all systems have 

their origin at the radar satellites antenna center. The 

approximation of identical satellite center of mass and antenna 

center is made.  

• The Inertial system I is an Earth-centered inertial frame. 

The Earth’s equatorial plane is the fundamental xI-yI-plane 

where the xI-axis points in the vernal equinox direction. The 

zI-axis is along the direction of the North Pole [17]. This 

system does not rotate, and the satellites’ position and 

velocity vectors are estimated in this system.  

• The Local system L is a rotating frame that is different for 

each orbit position and is built from the radial direction 

vector and the anti-angular-momentum direction vector, 

both in Inertial system coordinates.  

• The Body system B is rigidly coupled to the radar satellite’s 

body and is obtained from the Local system through 

rotations by the attitude angles.  

• The Antenna system A (cf. also Fig. 5) is oriented into the 

side-looking direction of the acquisition. It arises from the 

Body system by rotation with the side-looking offset angle 

off that spans between nadir direction and main antenna 

illumination direction. 
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• The rotated Antenna system Ar is rotated around the 

antenna’s zA-axis w.r.t. the Antenna system by the azimuthal 

offset angle off. It is interposed between the Body and 

Antenna systems in order to optimize the azimuthal angle of 

the antenna pattern measurement. The rotated Antenna 

system is applied below in Section IV.B. 

The Local system is defined by the orthogonal vectors in 

equation (4) with rI
RSS and vI

RSS being the radar satellite’s 

Inertial system position and velocity vectors.  

( ) ( )

I I I
L L L L LRSS RSS RSS

I I I

RSS RSS RSS
L

along
T

L L L L I I L I I I L

MES RSS MES RSS cross

L

rad

ˆ ˆ ˆ ˆ ˆ; ;
r r v

B

ˆ ˆ ˆ D B

B

r r v
z    y   x = y z

B x y z r r r r


= − = − 


 
 

 =  − =  − =   
 
 

 

(4) 

The circumflex indicates unity vectors and rI
RSS and vI

RSS are 

position and velocity absolute values, respectively. 

Transforming the difference of the measurement and radar 

satellites’ position vectors from the Inertial into the Local 

system provides the baseline vector BL in the Local system. In 

(4), LDI is a rotation matrix that transforms a vector from the 

Inertial into the Local system. Next, the radar satellite’s attitude 

steering angles yaw , pitch  and roll  in (5) rotate the 

baseline vector from the Local into the Body system.  

B B L L

1 0 0 cos 0 sin cos sin 0

0 cos sin 0 1 0 sin cos 0 D

0 sin cos sin 0 cos 0 0 1

   

   

   

−     
     

=   − = 
     
     −     

B B

 

(5) 

For the further derivation, we assume that the initial radar 

satellite’s attitude steering angles    and   are zero, and 

thus BB equals BL. The next system is the rotated Antenna 

system that is an intermediate system towards the Antenna 

system. The side-looking offset angle off transforms the 

baseline vector from the Body into the rotated Antenna system. 

off is a rotation about the xB-axis of the Body system and 

describes the offset rotation of the zAr axis away from the nadir 

direction. For |off| ≤ 90°, a positive side-looking offset angle 

off results in a so-called right looking system.  

Ar B Ar B B

1 0 0

0 cos sin D

0 sin cos

B B B

 
 

= −  =  
 + 

off off

off off

θ θ

θ θ

 
(6) 

The rotated Antenna system allows the use of azimuthal 

offset angles off that optimize the azimuthal angle of the 

antenna pattern measurement. off is a rotation around the 

zAr-axis and is discussed in detail in Section IV.B. 
A

along off off

A A Ar A Ar Ar

cross off off

A

rad

B cos sin 0

B sin cos 0 D

B 0 0 1

 

 

  + 
   

= −  =    
     

= B B B
 

(7) 

Finally, from the components BA
along, BA

cross, and BA
rad of the 

baseline vector, the polar angle ψ and the azimuthal angle  can 

be calculated using (3).  

C. Standard-Helix Orbit 

The kind of Helix-orbit flown by the TanDEM-X mission 

[10], [13] is a good starting point for the derivation of a suitable 

orbit that allows for the measurement of antenna pattern central 

cuts. It is denoted by Standard-Helix in the following. The 

reason is that during an orbit one satellite revolves the other 

completely in all three dimensions of the Local coordinate 

system of the revolved satellite. For a Standard-Helix, the 

along-track baseline BL
along,e and the radial baseline BL

rad,e of 

Fig. 4 can be approximately described by  

( )L L

rad,Δe rad,Δe,maxB B sin sin u u a  e u    

( )L L

along,Δe along,Δe,maxB B cos 2 cosu  u a  e  u    −     
(8) 

with the perigees  of the measurement and the radar satellites 

both being at the argument of latitude u = 90°, the semi-major 

axis being denoted as a and the difference of the eccentricities 

[16] being denoted as e = eMES - eRSS. The maxima of the radial 

baseline BL
rad,e,max are at an argument of latitude u = ± 90°, and 

the ones of the along-track baseline BL
along,e,max are at equator. 

The cross track-baseline BL
cross,  of the Standard-Helix is 

induced by a difference in the right ascension of the ascending 

nodes  = MES - RSS [10], [13]. As is shown by Fig. 4, the 

maxima of this cross-track baseline BL
cross,,max are at the 

equator, and a value of zero results for an argument of latitude 

u = ± 90°.  

( )

( ) ( )

L 2

cross,ΔΩ,max

L L 2

cross,ΔΩ cross,ΔΩ,max

B sin 1 sin

B B cos sin 1 sin cos

RSS RSS

RSS RSS

i a e

u u i a e u





   − 

     −  

 
(9) 

From Fig. 5, it can be concluded that a Central Orbit Position 

(COP) is required w.r.t. the Antenna system, where both the 

cross-track and the along-track baseline components are zero, 

i.e. BA
cross = BA

along = 0, and the radial baseline component BA
rad 

is positive and significantly greater than zero. If this condition 

is fulfilled, then the one-dimensional central cuts for all differ-

ent azimuthal angles intersect at this central orbit position COP. 

For the Standard-Helix and by setting - in addition to the zero 

attitude angles - also the angles off and off to zero, i.e. BA = BL, 

the central orbit position is located at the perigee u = 90°. This 

is illustrated in Fig. 6 (a).  

Since the cross-track baseline BA
cross of the Standard-Helix is 

generated by a difference in the ascending nodes , it is zero 

at u = 90°. Thus, at u = 90° also the along-track baseline BA
along 

needs to be zero, and therefore, the perigees of radar and 

measurement satellites are set to be at u = 90°. Since a Standard-

Helix has the just described baseline configuration of Fig. 6 (a), 

the main radar antenna illumination at u = 90° is into the 

direction of the zL-axis, which is with  =  =   = off = off = 

0° identical to the zA-axis. The zL-axis directs toward nadir and 

thus, a nadir looking antenna can principally be measured with 

an additional measurement satellite flying in a Standard-Helix. 

 
       (a) (b) 

Fig. 6. (a) Baseline components for a Standard-Helix with  =  =  = off = off 

= 0° in the radar satellite’s Antenna system. BA = BL. (b) The two cross-track 

baselines of the Double-Cross-Helix in the radar satellite’s Local system (light-

blue color) and the sum of the two (dark-blue color). 
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D. Cross-Track Baseline Component Rising from i 

In the more general case of a side-looking system like SAR, 

the side-looking offset angle off is different from zero, and the 

Standard-Helix cannot be used since the baseline vector in the 

Local and in the Antenna coordinate systems are different, i.e., 

BL ≠ BA. For the right looking acquisition geometry of the high-

level system concept considered in this paper, the side-looking 

offset angle off is 33.8°. This corresponds to the value used in 

TerraSAR-X.  

Fig. 7 illustrates how a generic side-looking offset angle off 

of a side-looking geometry can be accounted for by using an 

inclination difference i = iMES - iRSS between the measurement 

and radar satellites’ orbits. The inclination difference generates 

a second cross-track baseline component, which positions the 

measurement satellite into the radar satellite’s main 

illumination direction. 

 
Fig. 7. Radar satellite’s orbit in blue color and measurement satellite’s orbit in 

green color for e > 0, i < 0° and  = 0°. The measurement satellite is 

positioned into the main illumination direction of the radar antenna at u = 90° 

for a right-looking system with a positive side-looking offset angle off. For 

illustration,  is set to 90°. The assumption is made that the attitude steering 

angles  =  =  = , and thus BB = BL.  

An inclination difference generates maxima of the cross-

track baseline BL
cross,i,max in the Local system at u = ±90° and 

its minima at the equator. BL
cross,i,max can be derived from Fig. 

7 and is given in (10). The cross-track baseline BL
cross,i (u) that 

is induced by an inclination difference i can be approximated 

by a sinusoidal function. 

( ) ( )( )L L

cross,Δi cross,Δi,maxB B sin 1 sin sinRSSu u a e e i u     +    (10) 

The minus of the ∓sign is for a measurement around the 

central orbit position COP at perigee, the plus is for apogee. 

This is discussed in detail in Appendix A. 

For a positive eccentricity difference e, i.e. eMES > eRSS, the 

maximum of the radial baseline BL
rad,e,max is positive at u = 90° 

as is shown in Fig. 7. Following the discussion before, the 

maximum of the cross-track baseline BL
cross,i,max must also be 

positive in order to position the measurement satellite into the 

main illumination direction of the radar satellite, which points 

obliquely downward toward the Earth's surface. As it can be 

seen in Fig. 7, the ratio of these cross-track and radial baseline 

components is equal to the tangent of the side-looking offset 

angle off. 
L

cross,Δi,max

L

rad,Δe,max

B
tan

B
off   

(11) 

A detailed discussion on the radial and cross-track baseline 

components and the positioning of the measurement satellite 

into the main illumination direction of the radar antenna is 

provided in Appendix A. Here, the approximation is made that 

the attitude steering angles  ≈  ≈  ≈ , and thus BB = BL. In 

case     and  deviate considerably from zero, the 

components of the baseline vector BB in the Body system should 

be used in (11). Otherwise, the components of the Local system 

baseline vector BL the can be used. This is more convenient for 

the derivations and was also done so in Sections III and IV. 

E. Double-Cross-Helix Geometry 

A Helix built only by means of an inclination difference i 

and an eccentricity difference e is not safe since at the equator 

both the radial and the cross-track baseline components BL
rad, e 

and BL
cross,i are zero, which means the orbits are crossing. Fig. 

6 (b) shows an example BL
cross,i(u) in light blue color 

continuous line style.  

In order to obtain a safe Helix-configuration, a further cross-

track baseline contribution induced by a difference in the 

ascending nodes  is required, since this cross-track baseline 

contribution is maximum at the equator where the radial 

baseline component is zero (cf. [10]). Fig. 6 (b) shows an 

example cross-track baseline BL
cross, that is induced in this 

way by a  in light blue dotted line style. The sum of the 

cross-track baselines BL
cross that results from the i and  

induced contributions is plotted in dark blue color. In case 

equation (11) is fulfilled, the transformation of the baseline 

vector BL from the Local into the Antenna system BA by means 

of the side-looking offset angle off (with  =  =  = off = 0°) 

results in a total cross-track baseline component BA
cross in the 

manner of Fig. 6 (a) that is zero at u = 90°, and has its maximum 

at the equator. 

The geometry of a Double-Cross-Helix is provided in Fig. 8. 

From this geometry and the lower enlarged area, the maximum 

of the cross-track baseline component BL
cross,,max that is 

induced by  can be derived to the first line of (12). The 

second line is an approximation for a small i that is identical 

to the first line in (9). 

( )
( )

( )

2

L

cross,ΔΩ,max

L 2

cross,ΔΩ,max

sin 1 sin
B

cos

B sin 1 sin

  − 
=

−

   − 
MES RSS

MES RSS

MES RSS

i i RSS RSS

i a e

i i

i a e





 
(12) 

Because of the two cross-track contributions, at perigee 

position u = 90°, an additional small baseline BL arises whose 

radial and cross-track components can be neglected for the 

derivations in this paper. Its along-track component BL
along is 

required below in Section IV.D, and it can be derived from Fig. 

8 and the upper enlarged area to the expression in (13).  

( ) ( )L

alongΔB 1 sin 90 sinMESRSSe )ea ( i  −   −  +  (13) 

For the ∓sign please refer to Appendix A. 
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Fig. 8. Double-Cross-Helix geometry with cross-track baseline contributions 

from an inclination difference i < 0° and an eccentricity difference e 

   The difference in the ascending nodes  is positive. From this geometry 

the maximum cross-track baseline BL
cross,,max due to  and the along-track 

component of the additional small baseline BL
along can be derived. For 

illustration  is set to 90°. 

IV. DOUBLE-CROSS-HELIX ORBIT PARAMETERS 

The derivation of the Double-Cross-Helix parameters is 

supported by plots that are generated from the orbit parameters 

in TABLE III that are similar to the ones of TerraSAR-X. The 

measurement satellite’s orbit parameters result from the derived 

differences between the orbit parameters of the radar and 

measurement satellite. The semi-major axis a and the argument 

of perigee  are identical for both satellite orbits. 

TABLE III 
Example Orbit Parameters 

 RSS  MES  

semi-major axis aRSS 6892 km aMES = aRSS 

argument of perigee RSS 90° MES = RSS 
eccentricity eRSS 0.0011 eMES = eRSS + e 

inclination iRSS 97.455° iMES = iRSS + i 

right ascension of the 

ascending node RSS 90° MES 
= RSS 

+ 

orbit time at COP RSS 0 s MESS = RSS +  
side-looking offset 

angle (right looking) off 33.8°   

A. Pattern Measurement at a Constant Azimuthal Angle  

This Section derives the eccentricity difference e and the 

inclination difference i that are required to obtain a central cut 

through the two-dimensional antenna pattern at a desired fixed 

azimuthal angle , while the relative motion of the measurement 

satellite around the radar satellite results in a continuous 

variation of the polar angle  (cf. Fig. 5). The difference in the 

ascending nodes  is an input to the derivation. In Section 

IV.C, it is explained how  has to be set by considering the 

desired measurement distances and the orbit altitude of the 

measurement satellite. 

From the first line of (3) and (6), and with  ≈  ≈  ≈ off ≈ 0°, 

the angle  can be written as a function of the components of 

the baseline vector BL in the Local system. Equation (14) results 

from using the sum of the  and i contributions to the total 

cross-track baseline BL
cross(u), which are defined in (9) and (10). 

The along-track and radial components are defined in (8). 

( ) ( ) ( )

( )

L L L

cross,ΔΩ cross,Δi rad,Δe

L

along,Δe

B B cos sin B
tan

B

 +  −  =
off offu u u

u

 
  

(14) 

Equation (11) is valid for an argument of latitude u = 90°. In 

approximation, it is also used for the surrounding, and the side-

looking offset angle off is approximated by (15). 

( )

( )

L

cross,Δi

L

rad,Δe

B
tan

B
off

u

u
  

(15) 

Substituting BL
cross,i(u) in (14) with (15) eliminates BL

rad(u), 

and after insertion of (9) and (10), the equation can be resolved 

for the eccentricity difference e. 

( )2sin 1 sin cos

2 tan

 −  
 −



RSS RSS offi e
e

  

 



 (16) 

This equation calculates for a desired azimuthal angle  the 

eccentricity difference e that places the measurement satellite 

at u = 90° into the main illumination direction off of the radar 

satellite. The associated inclination difference i is obtained 

from (15) by inserting the expressions for BL
rad(u) and 

BL
cross,i(u) from (8) and (10), respectively. 

( )
( )

tan
1 asin

1

off

RSS

e
i

e e

 




 
 −    + 

 
(17) 

Appendix A explains the term (-1), the ∓sign, and whether it 

is necessary to measure around the central orbit position COP 

at perigee or apogee. 

B. Azimuthal Offset Angle off 

Considering (16), the difference in the eccentricities e 

becomes too large for azimuthal angles  close to 0° because 

that would mean a too elliptical orbit of the measurement 

satellite with too large altitude variation. On the other hand, 

azimuthal angles close to ±90° result in a too small eccentricity 

difference e, that would mean almost identical and thus unsafe 

radar and measurement satellite orbits in terms of radial and 

along-track baselines. For the orbit parameters in TABLE III, Fig. 

9 (a) provides e as a function of the azimuthal angle  for 

different values of  in different colors. 

Small rotations of the radar satellite around its antenna z-axis 

zA by an azimuthal offset angle off are therefore introduced to 

keep the measurement satellite’s orbit close to circular and 

distinct enough from that of the radar satellite. Rotations by an 

azimuthal offset angle off have already been introduced by 

equation (7).  

The azimuthal angle  is split-off into an azimuthal cut angle 

cut and an azimuthal offset angle off. As is indicated in (18) by 

the superscripts, the azimuthal angle  refers to the Antenna 

system A, while the azimuthal cut angle cut refers to the rotated 

Antenna system Ar.  
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Please note that these superscripts are often omitted in the 

following to allow for a better reading flow. Fig. 9 (b) shows an 

example of off values that keep a margin of 25° for || away 

from the extreme values 0° and ±90°. 

 
       (a) (b) 

Fig. 9. (a) Eccentricity difference e as a function of the azimuthal angle  for 

various differences in the ascending nodes   in distinct colors. (b) Example 

for a minimum required azimuthal angle  margin of 25° at 0° and ±90°. 

Fig. 10 illustrates the rotation by the azimuthal offset angle 

off around the zA-axis. The top drawing shows a relative 

measurement orbit that follows a pattern cut at a negative 

desired azimuthal cut angle -cut, which is for off = 0° identical 

to - (cf. Fig. 5).  

A small example might be helpful. Suppose the desired 

azimuthal cut angle Ar
cut   is -80°, and for an offset angle off of 

zero the azimuthal angle A is -80°, too. Suppose further that 

the -80° are too close to -90° since it causes a too small 

difference in the eccentricities e (cf. Fig. 9 (a)), and that the 

limit for the azimuthal angle A is set to -65° due to a 

25°-margin. Thus, the antenna is rotated around its zA-axis by 

and offset angle off of 15° into the rotated Antenna System Ar 

that is shown in the bottom drawing of Fig. 10. In this system, 

the azimuthal angle A is reduced to the allowed -65°, but the 

desired azimuthal cut angle Ar
cut  is obtained with the means of 

the additional off-rotation. The measurement orbit parameters 

are calculated from the azimuthal angle A of -65° (c.f. Fig. 9 

(b)). 

Appendix B shows that the mechanical rotation of the radar 

satellite by the azimuthal offset angle off can be realized by 

updating the yaw , pitch  and roll  angles of the radar 

satellite into the values̂ , ̂ , and ̂ . 

C. Trade-Off for Delta Ascending Node   

A suitable value for the difference in the ascending nodes  

is found by trading-off with the maximum difference in orbit 

altitude hmax, and the minimum and maximum length of the 

baseline vector, dmin and dmax, respectively. In Section II, d is 

the distance of the reflecting sphere on-board the measurement 

satellite to the radar satellite’s antenna. The approximated 

equations in (19) are derived in Appendix C. 

( )90 900 5 sin sin tan maxmin RSS off , off ,d . a i ,  +  − 
       

 

2

0

cos
sin sin 1

tan

off

max RSS

off ,

d a i
  




 

 
    +  

 

 

( )0

1
0 5 sin sin cos

tan
max RSS off

off ,

h . a i  
 

     
 

(19) 

 
Fig. 10. (top) Orbit of the measurement satellite in the radar satellite’s Antenna 

system that provides a desired azimuthal angle -  that is equal to an azimuthal 

cut angle -cut for an azimuthal offset angle off =0°. (bottom) After a rotation 

around the zA-axis by the azimuthal offset angle off into the rotated Antenna 

System Ar,  is divided into an azimuthal cut angle cut  and an azimuthal offset 

angle off. The measurement orbit’s parameters are derived from the azimuthal 

angle . 

with off,+90°, off,-90° and off,0° being the distinct azimuthal offset 

angles assigned to the azimuthal cut angles cut of 90°, -90° and 

0°, respectively. For several values of off,-90° and off,0°, and the 

parameters of the high-level system concept, Fig. 11 provides 

in distinct colors the resulting minimum and maximum 

distances dmin and dmax, respectively, and the maximum 

difference in the satellite’s orbit altitude hmax as a function of 

the difference in the ascending nodes . The top plot provides 

dmin for several values of the distinct azimuthal offset angle off,-

90°. In the bottom plot, the maximum distance dmax and the 

maximum difference in orbit altitude hmax are plotted for 

several values of the distinct azimuthal offset angle off,0°. Note 

that in accordance to Fig. 9 (b), only off,-90° is considered here.  

The trade-off should also consider that the difference in the 

ascending nodes  should be rather small in order to keep the 

required V for the adjustment of different measurement orbits 

low. The power at the radar antenna output as well as the two-

way time delay are also to be considered (cf. Section II). 

Finally, the absolute values of the distinct azimuthal offset 

angles off,±90° and off,0° should be moderate in order not to rotate 

the radar satellite too much out of its nominal position, i.e. 

moderate updates of the attitude angles ,  and  . 

= +  = +  = −A Ar

cut off cut off cut off          (18) 
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Fig. 11. Trade-off parameters minimum and maximum measurement distance 

dmin, dmax and maximum difference in orbit altitude hmax for the high-level 

system concept for several values of the distinct azimuthal offset angles off,-90° 

and off,0° as a function of the difference in the ascending nodes . The blue 

horizontal and vertical lines indicate the parameter values that correspond to the 

selected trade-off value of   for  

Using the parameters of the high-level system concept, we 

start the trade-off by setting the minimum distance dmin to 1.8 

km. This is sufficient in terms of orbit formation safety, w.r.t. 

the two-way time delay, and in terms of signal power and SNR 

(cf. Fig. 3). A value of 25° is selected for the distinct azimuthal 

offset angle off,-90°, and the difference in the ascending nodes 

 is traded from (19) and Fig. 11 to a value of 0.065°. 

Selecting the distinct azimuthal offset angle off,0° to -25° results 

in a maximum distance dmax of 15.8 km and a maximum 

difference in orbit altitude hmax of 6.9 km.  

According to (16), for positive azimuthal angles, the 

eccentricity difference e is negative. This adds an additional 

constraint to the trade-off for the azimuthal offset angle off, i.e. 

the eccentricity of the measurement satellite eMES must not be 

negative. This means the eccentricity difference e cannot be 

larger than the eccentricity of the radar satellite eRSS. 

D. Final Adjustments and Derivation Summary 

One effect of the mutual influence of the difference of the 

ascending nodes , the eccentricity difference e, and the 

inclination difference i is the additional small along-track 

baseline BL
along in (13) that has been derived from Fig. 8. It 

causes a polar angle different from zero at the central orbit 

position COP at perigee or apogee. It can be corrected by a 

small phasing of the measurement orbit equivalent to a small 

orbit time-shift . With vs being the measurement satellite’s 

velocity at the respective COP,  is calculated by (20). 
L

alongB sv = −   (20) 

Fig. 12 (a) provides a summary of the Double-Cross-Helix 

orbit parameters calculation so far. It shows the calculation 

sequence of the differential orbit parameters which are 

required to measure the radar satellite’s antenna pattern at a 

desired azimuthal cut angle cut.  

Due to the approximations in the derivation of the differen-

tial orbit parameters small deviations occur at the central orbit 

position COP. First, the along-track baseline is not exactly zero. 

Second, the measurement satellite is not exactly in the main 

radar antenna illumination direction w.r.t. the side-looking 

offset angle off. 

  
       (a) (b) 
Fig. 12. (a) Sequence of calculating Double-Cross-Helix parameters that are 

required to measure a polar angle span at a desired fixed azimuthal cut angle 

cut, which is input to the calculation as well as the side-looking offset angle off. 

The trade-off from the previous Section IV.D results in a value for the fixed 

difference in the ascending nodes  an azimuthal offset angle off, and an 

azimuthal angle . The minimum and maximum distances dmin and dmax as well 

as the maximum difference in the orbit’s altitude hmax is varied in the trade-off 

until a suitable value for  is found. Next, the difference in the eccentricities 

e is calculated, followed by the inclination difference i, and finally the small 

phasing orbit time-shift . (b) Numerical fine adjustment to compensate for 

necessary approximations in the calculation of the differential orbit parameters. 

To account for these small deviations, the numerical fine 

adjustment in Fig. 12 (b) is carried out in a few iterations. In a 

first step, the radar and measurement satellites orbits are 

generated. Then the baseline vector BA is calculated in the 

Antenna system with the equations of Section III.B at the 

central orbit position COP. Its along-track component is 

approximately converted into a residual phasing orbit-time res 

of the measurement orbit with the first line of (21). Following 

(15), a residual elevation angle el,res is calculated in the second 

line of (21), and with (17) converted into a residual inclination 

ires. Then  and i are updated for the next iteration as is 

shown in Fig. 12 (b) using these residual values. For the high-

level system concept parameters, the residual deviations res 

and ires at the central orbit position COP after 5 iterations are 

in the order of 10-8 s and 10-10 °, respectively.  

( ) ( )

( )

A

COP,along

A

COP,cross

,
2 2

A A

COP,cross COP,rad

,

B

B
asin

B B

tan
asin

1

res s

el res

el res

res

RSS

v

e
i

e e





 






 
− 

=  
 +
 

 
 −  + 

 

(21) 

V. ORBIT PARAMETER OF HIGH-LEVEL SYSTEM CONCEPT  

Based on the equations of the previous Section, the Double-

Cross-Helix parameters are calculated for the high-level system 

concept in steps of 10° of azimuthal angle. As is described in 

Section IV.C, the difference in the ascending nodes  is set to 

0.065° for a desired minimum distance dmin of 1.8 km. The 

applied azimuthal offset angles off are the ones provided in Fig. 

9 (b) in purple color together with the desired azimuthal cut 

angles cut in red color, and the resulting azimuthal angles  in 

black color. The values of the azimuthal offset angles off are 

25°, 15°, 5° 0°, -5°, -15°, and 25°. The calculation of the 
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eccentricity differences e, the inclination differences i, and 

the phasing orbit-times of the measurement orbits  was 

carried out in the sequence of Fig. 12(a) with the equations of 

Section IV. The resulting measurement satellite orbit 

parameters are exposed in Fig. 13 (b)-(d). For completeness, 

Fig. 13 (a) shows the constant difference in the ascending 

nodes. 

 
             (a) (b) 

 
            (c) (d) 
Fig. 13. Resulting differences in the radar satellite RSS and measurement 

satellite MES orbit parameters. The values for azimuthal angles  < 0 are in 

blue color, the ones for  > 0 are in orange color. Differences in (a) ascending 

nodes (fixed), (b) eccentricities, (c) inclinations, and (d) orbit time at central 

orbit position (COP). 

Using the calculated orbit parameters, the orbits of radar and 

measurement satellites were generated and the measurement 

satellite’s position was transformed into a baseline vector BL(u) 

in the Local system of the radar satellite and its correspondence 

BA(u) in the Antenna system. The components of these baseline 

vectors are provided in Fig. 14 together with the absolute value 

of B, which equals to the distance d between the two satellites. 

In the plots (a)-(d), the curves of the largest and smallest 

azimuthal angles  are labeled.  

Due to the selected azimuthal offset angles off (cf. Fig. 9b), 

the azimuthal angle  is identical for several azimuthal cut 

angles cut. This means identical measurement orbits in the 

Local system. In the Antenna system, the baselines are different 

due to the different azimuthal offset angles off that transform 

the rotated system into the final Antenna system. 

Fig. 14 (c) shows that in the Local system at the equator, the 

cross-track baseline BL
cross,,max due to the ascending node 

difference   is 7.75 km for all azimuthal cut angles cut. This 

value results from (12) and is indicated by a grey line.  

Fig. 14 (b) and (d) show the resulting baseline components 

in the Antenna system. As was the intention, at the central orbit 

position COP at perigee for  < 0 and apogee for  > 0, the radial 

baseline is positive and larger than zero, which means the 

measurement satellite faces the radar antenna. Likewise, the 

along-track baseline and the cross-track baseline are both zero, 

the latter consisting of the two components induced by a 

difference in the ascending nodes  and an inclination 

difference i. The courses of the Local system cross-track 

baselines in Fig. 14 (c) correspond qualitatively to those of Fig. 

6 (b) in dark blue color.  

  
          (a) (b) 

 
           (c) (d) 

                           
 (e) 

Fig. 14. (a)-(d) Baseline components in the Local and Antenna coordinate 

systems of the radar satellite RSS for different azimuthal angles . Largest and 

smallest positive and negative azimuthal angles  are labeled. (e) The absolute 

values of the baseline vectors. The overall minimum dmin of 1.54 km is indicated 

by a horizontal line. 

Fig. 14 (e) shows the absolute values of the baseline vectors 

B, i.e. the distance d, for the different azimuthal angles , and 

indicates the overall minimum distance dmin of 1.54 km. The 

maximum distance dmax is 16.06 km. The trade-off in Section 

IV.C started with a dmin of 1.8 km and led to a dmax of 15.8 km. 

The small deviations are due to the approximated formulas that 

assumed dmin and dmax at u = ±90° and u = 0°. As can be seen in 

plot (e), the minimum and maximum values are not exactly at 

these orbit positions. This displacement corresponds to the 

small orbit-time shift  of equation (20). 

From the baseline components in the Antenna system, the 

azimuthal  and polar ψ measurement angles were calculated at 

each orbit position using (3). Simultaneous signal power 

measurements provide the central cuts through the two-

dimensional antenna pattern. 

The azimuthal cut angles in plot Fig. 15 (a) and the polar 

angles in plot (b) are versus argument of latitude and indicate 

the orbit Sections where the antenna pattern measurements are 

taken. Measurements are considered for positive values of the 

radial component of BA, i.e. in the case the measurement 

satellite faces the front of the radar antenna. Fig. 17 

demonstrates that the desired azimuthal cut angles can be 

obtained from the measurement orbits that result from the 

calculated Double-Cross-Helix orbit parameters. 



>TGRS< 

 
11 

   
          (a) (b) 
Fig. 15. (a) Azimuthal pattern measurement angles derived from the baseline 

components in the radar satellite’s Antenna system. Those orbit positions are 

plotted where the measurement satellite faces the front of the radar antenna. The 

colors indicate an azimuth angle  < 0 (blue) and  > 0 (orange). (b) 

Corresponding polar angles in the same color coding. 

A. Antenna Pattern in Azimuth/Elevation Angle Representation 

The high-level system concept is a Synthetic Aperture Radar 

SAR. In SAR, the representation of the antenna pattern in 

azimuth and elevation angles is most relevant - from overall 

system design to image generation, e.g. [19].  

Fig. 16 shows, again in the radar satellite’s Antenna system 

(cf. Fig. 5), the antenna azimuth and elevation angles θaz and θel, 

respectively. Fixing either the azimuth or the elevation angle 

provides one-dimensional cuts through the antenna pattern. In 

case of a central cut through the antenna’s main beam direction, 

these two cuts are denoted by elevation and azimuth pattern, 

respectively.  

As well as the azimuthal ξ and the polar ψ angles, the azimuth 

and the elevation angles can be obtained from the components 

of the baseline vector in the Antenna system. In contrary to ξ 

and ψ, the azimuth angle θaz and the elevation angle θel are not 

part of a spherical coordinate system. There is only an 

unambiguous relation from the baseline components in along-

track, cross-track and radial direction BA
along, BA

cross, and BA
rad, 

respectively, to the azimuth angle θaz and elevation angle θel, if 

the sequence of rotations is defined as well. For this paper, a 

vector pointing into zA-axis direction is first rotated by the 

elevation angle θel around the xA-axis, and then the resulting 

vector is rotated by the azimuth angle θaz around the yA-axis. 

For visualization, Fig. 16 shows also a rotation of the whole 

xA-zA-plane by the elevation angle θel.  

 
Fig. 16. Antenna pattern with azimuth angle θaz and elevation angle θel in the 

radar satellite’s Antenna coordinate system A. The selected sequence of rotation 

is first elevation angle θel and then azimuth angle θaz. 

Following the above rotation sequence, the equations of (22) 

provide the transformation from the Antenna system’s baseline 

components into azimuth θaz and elevation θel angles. The 

distance d is defined in (3). 

( ) ( )
2 2

sin

sin
cos

A

cross

el
A A

cross rad

A

along

az

el

B

B B

B

d






−
=

+

=


 
(22) 

From the baseline components in the Antenna system that are 

shown in Fig. 14 (b) and (d), the azimuth θaz and elevation θel 

angles were calculated at each orbit position. The resulting 

antenna pattern cuts are provided in Fig. 17 (a) in the two-

dimensional azimuth/elevation angle domain. 

 
                                    (a)   (b) 
Fig. 17. (a) Locations of the antenna pattern cuts in the two-dimensional 

azimuth/elevation angle space. Same color coding as in Fig. 15. (b) Same plot 

for the drifted measurement approach that is discussed in Section VI. 

VI. ASCENDING NODE DRIFT 

For near-circular orbits, the secular variation rate of the 

ascending node   can be well approximated based on the 

J2-term of the geopotential [24]: 

( )

2

E,equator

2 3 2

r3
J cos

2 1
i

a a e


 
  −    
  −
 

 (23) 

with  being the product of the gravitational constant and the 

Earth’s mass, and rE,equator being the Earth’s radius at the 

equator. The variation of  can be exploited to adjust a sun-

synchronous orbit [24]. This is the case for the RSS orbit and 

the inclination iRSS results from there to 97.455°. For the 

following analysis the term e2 can be neglected since it is very 

small compared to 1. 

The difference in the RSS and MES inclinations i causes 

different variation rates   that cause a drift of the MES 

ascending node w.r.t. the RSS one. The difference in the drift 

rates   is  

( ) ( )MES RSS RSS RSSi Δi i  = + −  (24) 

with 
MES  and 

RSS being the drift rates of the MES and RSS 

satellites, respectively.  

The following sub-sections discuss the effect of  . First, 

for the calculation approach of the Double-Helix-Parameters 

presented in Section V with a fixed difference in the ascending 

node , the deviation of this fixed value due to the drift rate 
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difference   is quantified. Second, a variation of the Double-

Helix-Parameters calculation approach is presented that 

exploits the drift rate difference   for the antenna pattern 

measurement at the different azimuthal cut angles cut.  

In the following, the calculation approach of Section V is 

denoted by fixed , and the variation that exploits the 

ascending node drift is denoted by drifted . 

A. Deviation in Fixed  Parameter Calculation 

From the inclination differences of Fig. 13 (c), the 

corresponding deviation from the fixed  value per orbit was 

estimated by using (24). Fig. 18 (a) shows the result on the left 

vertical axis. The right vertical axis provides a conversion into 

a cross-track baseline deviation at the equator. The maximum 

drift per measurement orbit is -0.33 mdeg that is 0.5% of the 

fixed  value of 65 mdeg, which corresponds to 7.2 km cross-

track baseline at the equator. 

The deviation is rather small and can be considered in the 

measurement satellite’s orbit parameter calculation by an 

adjustment of the input parameter  in Section V.A. However, 

the antenna pattern measurement should be carried out without 

longer delays between the individual measurement orbits. 

Otherwise, the deviations from the fixed ascending node 

difference  requires corrections by orbit maneuvers. 

B. Parameter Calculation with Drifted   

The drift effect of the ascending node due to the inclination 

difference i can also be useful in the orbit parameter 

calculation. This is accompanied by an increase of the 

measurement time, but gets by with a reduction of the required 

V for a full two-dimensional antenna pattern measurement, 

independent off the sampling density of the azimuthal angle. 

The eccentricity and inclination differences e and i are fixed, 

and depending on the drifting rate difference  , the desired 

azimuthal angles  adjust after particular times. 

The derivation of the dependency of the azimuthal angle  

from the ascending node difference  starts with an 

approximation of (17) into a linear relation between the 

differences in eccentricity e and inclination i: 

tan   tanοff οff

i
i e

e


   


 −    −  (25) 

Then, the approximation of sin() by  in (16) and insertion 

of (25) provides: 
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 − 
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The difference in the drift rates   in (24) can be 

approximated by: 

( )
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     − −     −    

 

(27) 

Then,  is split into a start value start and a drifting part 

start orbit driftedT n  = +    
(28) 

with Torbit being the orbit period and ndrifted being the number of 

drifted orbits from measurement start to current measurement, 

the azimuthal angle  in (26) becomes 

( )
( ) ( )2sin 1 sin

tan
2  

RSS RSS off start orbit drifted

drifted

i e T n
n

i

  


 

 −  +  
   (29) 

In the following, the approximation is made that the 

difference in the ascending nodes   is constant during an 

orbit, and its variation due to drift only happens once per orbit. 

The approximation can be made since the drift difference of the 

ascending nodes is relatively slow.  

The first orbit parameter to be estimated is the starting value 

of the ascending node difference start that results from the 

desired minimum distance dmin and the assigned azimuthal 

offset angle off,±90° (cf. (41)). 

902 tan 902 tan
sin

sin sin

min off ,min start

start

RSS RSS

dd

a i a i




−   −  + 
 =

 
 (30) 

For better comparability, dmin and the azimuthal offset angles 

(cf. Fig. 9 b) of the previous calculation with fixed ascending 

node difference  continues to be used also for the drifting 

case discussed here. Next, the required inclination difference i 

follows by setting ndrifted in (29) to zero 

( ) ( )2sin 1 sin

2 tan

start RSS RSS off

start

i e
i

 




  − 



 (31) 

The eccentricity difference e is coupled via the mechanical 

offset angle off to the inclination difference i, and is obtained 

from (17) with the upper signs for  < 0 and the lower signs for 

 > 0. 

( )RSS

off

sin i 1 e
e

tan sin i

−  
 

 

 
(32) 

The number of drifted orbits ndrifted() until  adjusts for the 

measurement of a desired azimuthal angle  is derived from (29) 

( )
( )

( ) ( )2

2 tan tan

sin 1 sin

start

drifted

RSS RSS off Orbit

n
i e k T

 




 −
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 −   

 
(33) 

Note that in the derivation the dependency of i vanishes for  

but is present in start. This means that the duration of a two-

dimensional measurement is with the above approximations 

independent off i, or rather from its absolute.  

The final adjustments are identical to the fixed   

calculation in Section IV.D. The small phasing of the 

measurement orbit equivalent to a small orbit time-shift  to 

correct for the central orbit position COP at perigee or apogee 

is calculated by (20). Finally, the same numerical fine 

adjustment in i and  is executed as described in Fig. 12 b.  

C. High-Level System Concept Parameters Calculated with 

Drifted  

The same azimuthal cut angles cut in steps of 10°, and the 

same azimuthal offset angles cut (cf. Fig. 9 b) as for the fixed 

  calculation approach were simulated for the drifted   

approach. Since the minimum distance dmin and the assigned 

azimuthal offset angles off,±90° were selected identical to the 

fixed   calculation, the starting value of the ascending node 

difference start results to the same 65 mdeg that were selected 

for the fixed   calculation in Section IV.C.  



>TGRS< 

 
13 

The number of drifted orbits ndrifted until  adjusts for the 

measurements is provided Fig. 18 (b) versus the azimuthal cut 

angle cut. The comparison with Fig. 19 (a), which provides the 

difference in the ascending nodes  required for the 

measurement at dedicated cut angles, reveals the sequence of 

measurements. This sequence is requiring the smallest change 

in the differential orbit parameters and is thus better in terms of 

required V. With start = 65 mdeg, the cut angles from -90° 

to -70° are measured in successive orbits, then about 200 orbits 

later, the measurement at cut = -60° takes place. Before the 

measurement at cut = 0°, an orbit maneuver changes the sign of 

the difference in inclination i and eccentricity e as is shown 

in Fig. 19 (b) and (c). The sign change in i reverts the direction 

of the difference in the ascending node drifts and the 

measurements at the positive cut angles can start. After 93 days, 

a full two-dimensional measurement is completed. It is 

reasonable to start a next measurement in reversed sequence 

starting with positive cut angles, without an additional orbit 

maneuver. Again, after measuring cut = 0°, the signs of i and 

e are switched. 

 
      (a) (b)  

Fig. 18. (a) Fixed -Approach. Deviation from the fixed  value per orbit 

due to the difference in the ascending node drifts of measurement (MES) and 

radar (RSS) satellites. (b) Drifted -Approach. Number of drifted orbits until 

the difference in the ascending nodes  adjusts for the measurements of at 

dedicated azimuthal cut angles cut. Due to the azimuthal offset angles off (cf. 

Fig. 9 b), the same azimuthal angle  is used for several cut angles. This causes 

the horizonal course of the curve in some sections, e.g. from -90° to -70° 

azimuthal cut angle. 

Fig. 19 provides the differences in the orbit parameters of the 

measurement satellite MES w.r.t. the radar satellite RSS for the 

drifted −approach. In contrast to Fig. 13, the differences in ec-

centricity e and inclination i are, apart from the sign-change 

constant, and the difference in the ascending nodes varies. The 

orbit time  at central orbit position COP in Fig. 19 (d) depends 

on the difference in the ascending nodes  (cf. (13), (20)), and 

thus shows a larger variation with cut as it was the case in Fig. 13. 

Fig. 20 provides the resulting baseline components in the 

local and the antenna systems. In can be compared with Fig. 14 

for the fixed calculation approach. The local system along and 

radial baselines follow two curves only, one for azimuthal 

angles  above 0° and one for  below. This is due to the 

constant differences in eccentricity e. Since the difference in 

the ascending node varies , the cross-track baseline in plot 

(c) follows different curves. The reduction of the radial and 

along-track local system baselines causes also a decrease of the 

absolute of the baselines in plot (e) compared to Fig. 14.  

The resulting azimuthal cut cut and polar ψ measurement 

angles are identical to the ones of the fixed  measurement 

approach that already are provided in Fig. 15. The same holds 

for the locations of the antenna pattern cuts in the two-

dimensional azimuth θaz and elevation θel angles measurement 

angle space. For completeness, the azimuth/elevation angle plot 

for the drifted measurement approach discussed in this section, 

is added in Fig. 17 (b). 

   
             (a) (b) 

  
            (c) (d) 

Fig. 19. Drifted -Approach. Differences in the radar RSS and measurement 

satellites MES orbit parameters. (a) Ascending nodes, (b) eccentricities, (c) 

inclinations, and (d) orbit times at central orbit position COP. 

D. Comparison of Fixed  and Drifted  Approaches 

The fixed  approach provides the two-dimensional 

measurement in shorter time. In case of 10° azimuthal cut angle 

steps and with the assumption of an update of the measurement 

orbit parameters in each orbit, the measurement lasts 18 times 

the orbit period, i.e. 29 hours. The duration of the drifting  

approach in the example is 93 days. 

 
          (a) (b) 

 
           (c) (d) 

                           
 (e) 
Fig. 20. Drifted measurement approach. (a)-(d) Baseline components in the 

Local and Antenna coordinate systems. (e) The absolute values of the baseline 

vector, i.e. the distances between the satellites.  
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A finer sampling of the azimuthal cut angle cut increases the 

duration of the fixed  approach but does not increase the 

duration of the drifted  approach. The required V for the 

orbit maneuvers of the measurement satellite MES does not 

increase in both approaches for an increased cut sampling. 

The V for the fixed  approach is generally higher due to 

more active maneuvers for changing the measurement orbits. 

For the drifting  approach only one considerable maneuver 

is required to switch the signs of i and e in one full two-

dimensional measurement. A first order and not optimized 

analysis of the required V was performed based on separated 

changes of the orbit parameters in Fig. 13 and Fig. 19. It is 

expected that a more elaborated and combined maneuver 

strategy will reduce the required V. However, Fig. 21 provides 

the estimate for both approaches. Note the difference in the 

measurement sequences for more economical V. 

 
            (a)  (b) 

Fig. 21. Required V for changing the measurement orbits for the fixed  

approach (a) and the drifting  approach (b). The individual V contributions 

for changing the eccentricity, the orbit phasing due to an eccentricity change, 

the inclination, and the phasing for equalizing the times at central orbit position 

COP are indicated by different symbols.  

The total V for one two-dimensional measurement is about 

45 m/s for the fixed  approach, and 11 m/s for the drifted  

approach. The drifted  approach requires only one larger 

maneuver for the sign switching.  

The minimum distance dmin between the radar RSS and the 

measurement satellite MES is above 1.5 km for both 

approaches, but the maximum distance for the drifted  

approach is with 8.3 km about half that of the 16 km of the fixed 

 approach. The maximum difference in the orbit altitude is 

1.5 km for the drifted  approach and about 7 km for the fixed 

 approach. 

VII. HIGH-LEVEL SYSTEM CONCEPT - MEASUREMENT 

ACCURACY AND ANGULAR SAMPLING 

The high-level system concept of Section II is complemented 

by a measurement gain and pointing error analysis. The angular 

sampling distance is discussed based on the Double-Cross-

Helix orbits that were calculated in the previous Section V. 

A. Accuracy of Pattern Gain Measurement 

A first order error analysis of the measurement gain is 

provided with contributions from noise and relative 

measurement distance deviation. The assumption is made that 

the reflecting sphere can be fabricated accurately enough to 

avoid significant RCS variations. As mentioned in the 

beginning of section II, the reflecting sphere should always be 

oriented towards the RSS antenna. The gain error due to noise 

Gerr,SNR is estimated from the SNRRC,AC in (2), which relates the 

noise power PN to the measurement signal power after range 

and azimuth compression PS,RC,AC, which depends on the 

distance d. The noise power PN is constant with d, and the gain 

error due to noise can be expressed by 

1
1

S ,RC ,AC N

err ,SNR

S ,RC ,AC RC ,AC

P P
G

P SNR


+
= = +

 
(34) 

For the high-level system concept, Gerr,SNR is shown in Fig. 

22 (a), in blue color for the pattern peak since PS,RC,AC in (2) is 

calculated for the maximum antenna pattern gain. It is due to 

the increasing number of azimuth pulses that the SNRRC,AC is 

kept above 35 dB for increasing distance d and thus, Gerr,SNR 

remains below 0.001 dB. The serrated shape of the curve is due 

to the integer number of azimuth pulses. In red color, Fig. 22 

(a) also provides the gain error at the edge of the typically 

processed antenna pattern, i.e. -6 dB below the peak of the two-

way pattern. For an assumed local pattern gain maximum at the 

first sidelobe’s peak of -26.4 dB below the two-way gain 

maximum, the gain error contribution due to noise is 0.6 dB. 

The pattern around the first sidelobes is of particular importance 

for ambiguity calculations, e.g. [20],[21].  

The knowledge of the relative measurement distance error 

also contributes to the error of the antenna pattern gain. Fig. 22 

(a) shows in orange color the distance error contribution in the 

signal power equation (1) assuming a 5 cm knowledge of the 

relative radar and measurement satellites distance d.  

In this paper we assume the same viewing angle from the 

reflecting sphere towards the RSS antenna at all orbit positions. 

Even if the absolute RCS of the reflecting sphere is not known 

perfectly, it is very constant due to the steering of the sphere 

always towards the RSS satellite. Additionally, before launch, 

the RCS of the reflecting sphere with the MES bus structure can 

be measured to estimate the absolute RCS and the RCS 

variations versus the viewing aspect. These measurements can 

be used to correct residual viewing angle variations. 

 
            (a)  (b) 
Fig. 22. (a) Measurement gain error contribution from noise at the peak of the 

two-way pattern (blue), and at the edge of the processed antenna pattern (red). 

The gain error for the peak of a first sidelobe at -26.4 dB below the two-way 

main lobe peak is 0.6 dB. The gain error due to an assumed relative distance 

error knowledge of 5 cm (orange). (b) Total pointing error (black), and the 

contributions of relative position error knowledge (orange) and the different 

considered radar satellite attitude error knowledges (green). 

B. Angular Accuracy of Pattern Measurement  

The angular accuracy of the pattern measurement is 

estimated with the following assumptions: 

• A 5 cm knowledge of the relative satellite’s position error 

pos is assumed, and approximately converted into a 

pointing error pos that decreases with distance d by 
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(35) 

• The radius of the reflecting sphere rr is much larger than the 

wavelength  and thus well in the optical region. The ratio 

2·π·rr/ is 30, and the optical region starts at a ratio of 10 

following [18]. A deviation of the direction of the reflected 

signal from the incident signal is thus not considered.  

• The following radar satellite’s attitude knowledge error 

assumptions were analyzed: 0.001°, 0.002° (measured 

pointing knowledge in TerraSAR-X [3]), 0.005° (specified 

pointing knowledge of ROSE-L [26]), and 0.01°. Due to the 

shape of the reflecting sphere the measurement satellite’s 

attitude error is neglected. 

Fig. 22 (b) provides the resulting total pointing error in black, 

and the contributions of relative position error knowledge and 

the different radar satellite’s attitude error knowledges in 

orange and green colors, respectively, as function of distance d. 

The radar satellite’s pointing accuracy is driving to a great part 

the total pointing accuracy of the measurement. 

The time-variant distance between the RSS and MES can be 

estimated on-ground when the precise post-flight orbit data 

from both satellites have been calculated on-ground. The same 

holds for the precise post-flight attitude data. The precise orbit 

and attitude data derive usually from the GNSS and star sensor 

data in the telemetry. 

C. Polar Angle Sampling Distance 

Based on the Double-Cross-Helix orbits and the high-level 

system concept, the polar angle sampling is discussed.  

A dense angular sampling of the antenna pattern central cuts 

is desirable, i.e. a short sampling interval. On the other hand, 

several measurement pulses, i.e. a burst of pules, may be sent at 

a quasi-fixed angular position for high gain measurement 

accuracy (cf. varying azimuth compression length in Section 

II). So, the length of a burst needs to be discussed w.r.t. the 

length of a sampling interval. 

Fig. 23 (a) symbolizes several bursts of measurement pulses 

in green color. The time interval between measurement pulses 

in one burst is the Pulse Repetition Interval PRI = 1/PRF, i.e. 

0.147 ms for the high-level system concept. The time length of 

the bursts TBLength(u) results from the number of azimuth pulses 

that are required to achieve a minimum SNR (cf. Fig. 2 (b)) and 

thus varies with argument of latitude u.  

The time intervals between the measurement bursts TBInterval 

correspond to polar angle sampling distances in degree. Due to 

the orbit geometry, equidistant time intervals TBInterval,const mean 

varying polar angle sampling distances ψ(u). Fig. 23 (b) shows 

for equidistant orbit time intervals TBInterval,const of 30 s the 

corresponding polar angle sampling positions versus argument 

of latitude u. The varying angular sampling distance can be 

observed. In order to obtain a constant angular sampling 

distance ψconst, the burst intervals TBInterval need to be adapted 

depending on u. This can be calculated by  

( ) ( )Interval Interval ,const constTB u TB u    (36) 

where ψ(u) and TBInterval,const can be obtained from an orbit 

calculation with constant time sampling, as was also done for 

Fig. 23 (b). 

For a desired dense angular sampling distance ψconst of 

0.01°, the resulting burst interval TBInterval(u) is shown in Fig. 

23 (c) together with the burst length TBLength(u) for the 

azimuthal angle  of -25° and a SNR of 35 dB. Fig. 23 (d) 

provides the difference for a  of -65°, the worst case with the 

smallest absolute separation between burst interval and burst 

length. This time gap is available for concurrent patterns 

measurement at identical azimuthal angle  and identical 

measurement orbit. On the other hand, the time gap indicates 

the densest possible polar angle sampling for measuring only 

one antenna pattern. Dividing the minimum time gap for 

 = -65° of 28.83 ms by the burst length at that minimum of 

0.15 ms, the number of patterns that could be measured 

concurrent is 196. The densest polar angle sampling in case of 

measuring only one pattern is 0.9 deg.  

The concurrent pattern measurement is possible due to the 

relatively slow variation of the baselines along one 

measurement orbit that provides one central cut. It is very 

advantageous for systems with many different patterns and/or 

feed-array elements that are electronically switched. For 

example, TerraSAR-X [1] combines electronic steering in 

azimuth and elevation that results in more than 20000 different 

antenna patterns. Another example is the Tandem-L proposal 

[25] with its feed array with 35 elevation and 6 azimuth 

elements. All the individual feed elements can be switched in a 

sequence and thus be measured quasi in-parallel in the same 

orbit. 

  
   (a)  (b) 

  
            (c)  (d) 
Fig. 23. (a) Pulses of a measurement burst (green). Burst length (blue) varies 

with argument of latitude u for a constant minimum SNR. Burst interval (red) 

varies with u for a constant angular polar angle sampling distance. (b) Polar 

angle measurement positions for orbit simulation with a measurement interval 

TBInterval,const fixed to 30 s. The polar angle curve is for an azimuthal angle of -65° 

and is identical to the one in plot (b) of Fig. 15. (c) Measurement burst length 

and measurement burst interval for the azimuthal angle  = -25° with a 

minimum SNR of 35 dB and a constant polar angle sampling ψ(u) of 0.01°. 

(d) Difference between burst length TBLength(u) and burst interval TBInterval(u) for 

measurement of  = -65°. The minimum, indicated by the vertical line, can be 

used to calculate the maximum number of concurrent measurements of the same 

azimuthal angle cut of different antenna patterns in one identical orbit. 
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VIII. DISCUSSION 

The minimum required cooperation from the radar satellite is 

to transmit and receive a measurement signal to and from the 

measurement satellite at specified times. The radar satellite 

does not need to change its orbit, but a small update of the 

usually available attitude steering is required.  

The high-level system concept considers a two-way pattern 

measurement. However, by equipping the measurement 

satellite with a transmitter and a receiver, and/or a transponder 

the one-way pattern in Tx and Rx can be measured as well.  

A two-dimensional measurement can be done within few 

days in case of a LEO satellite. This is much faster than the one-

dimensional on-ground measurements performed by calibration 

targets that are moreover only available in azimuth or elevation 

direction. The proposed method allows thus also for shorter 

maintenance intervals. On the other hand, a one-dimensional 

azimuth or elevation pattern measurement of the main lobe can 

be obtained within one orbit by the proposed Double-Cross-

Helix method.  

The Double-Cross-Helix orbit allows for a two-dimensional 

antenna pattern measurement over a wide polar angle range that 

can be up to ±90°. The measurement can even be extended to 

±180°, which means to include to the back side of the antenna, 

or rather the radar satellite. 

The numerical adjustment allows for more sophisticated and 

realistic orbit models than Kepler orbits.  

The modified yaw, pitch and roll angles should not become 

too large due to solar panel illumination and drag variations. 

This can be considered in the trade-off, too. The roll angle is 

considered to be the one with the strongest effect on the solar 

panel illumination. The effects of changes in yaw and pitch 

angle are considered to be small. On the other hand, in case of 

allowing also large updates of the attitude steering angles to 

realize large azimuthal offset angles, one sole measurement 

orbit can provide all azimuthal cut angles, which means no V 

at all for the acquisition of all azimuthal cut angles of a two-

dimensional antenna pattern measurement.  

Electronically steered antenna patterns with main 

illumination directions different from the antenna system’s 

zA-axis can be measured as well. An electronical steering in 

elevation angle can be accounted for by a modification of the 

side-looking offset angle off in the orbit parameter calculation. 

A pattern steered electronically in azimuth can be considered 

by incorporating the azimuth steering angle into the update of 

the radar satellite’s attitude angles. 

With a dense angular sampling, electronically steered 

antenna patterns can also be measured in the orbit configuration 

for the main illumination direction in-line with the Antenna 

system’s zA-axis. This is of special advantage if many different 

electronically steered beams should be measured. Since, even 

for dense measurement angle sampling, the required number of 

azimuth pulses per polar angle measurement position is small, 

the different antenna patterns can be electronically switched in 

one and the same measurement orbit. So, in only one orbit many 

different electronically steered patterns can be measured. This 

is also of great use in case of digital beamforming systems, e.g. 

Tandem-L that is designed with many feed array elements that 

need individual pattern measurements, and the pattern 

characteristics is required highly accurate for a wide angular 

range, not only for the high gain part of the pattern main lobe. 

In case of a distributed remote sensing system, i.e. several 

radar satellites fly in a formation, the measurement satellite can 

be part of the formation and measure the antenna pattern of all 

the formation satellites. In a remote sensing system with several 

radar satellites on Double-Cross-Helix orbits the radar satellites 

could even mutually measure their antenna patterns. 

Since the measurement satellite is small it could be launched 

piggy-bag with a larger radar satellite to be already close to its 

required orbit. In case of several small radar satellites, the 

measurement satellite could be launched together with the 

formation.  

In case of un-foldable RF antennas, the system budgets w.r.t. 

alignment stability before/after unfolding can be reduced since 

after unfolding, the resulting antenna pattern can be exactly 

measured in space.  

Large antenna structures can often not be completely 

measured on-ground. Only parts of the antenna are then usually 

measured, and an antenna model is used to synthesize the 

pattern of the overall antenna. In such a case, the proposed 

approach can provide the measurement of the full antenna 

structure in space. 

One of the greatest advantages of the in-orbit antenna pattern 

measurement by using the Double-Cross-Helix orbit formation 

is that the measurement is performed in free space with one 

free-flying measurement satellite. All distortions from 

atmosphere, ionosphere, ground clutter and multipath effects, 

ambiguities, volume scattering do not apply. Therefore, also the 

measurement of the antenna phase pattern is possible as well as 

an exact polarimetric antenna pattern measurement. 

IX. CONCLUSIONS 

The paper introduced the Double-Cross-Helix orbit 

formation and proposed an approach for the two-dimensional 

in-orbit measurement of a nadir-looking or side-looking 

spaceborne antenna by means of a small satellite that flies in 

Double-Cross-Helix formation.  

By adjusting the Double-Cross-Helix parameters, one-

dimensional central cuts through the two-dimensional pattern 

are obtained at adjustable azimuthal angle positions. The full 

two-dimensional pattern is obtained from numerous cuts at 

different azimuthal angle positions and, if necessary, an 

interpolation of these cuts.  

A unique advantage is the possibility to measure the antenna 

pattern over a wide angular range, even at the satellite’s rear, 

i.e., the side opposite the radar antenna. 

The Double-Cross-Helix is mainly adjusted by differences in 

eccentricity e, ascending node , and inclination i, where 

the latter two generate two cross-track baseline components 

with maxima either at the equator or the perigee/apogee, 

respectively. A trade-off for estimating the difference in the 

ascending nodes  was provided that considers the distance 

variation between the satellites and the difference in the satellite 

orbit altitudes. Formulas were derived to calculate the required 
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differences in eccentricity e and inclination i.  

A second order along-track adjustment by a phasing orbit-

time , and a numerical adjustment were proposed to consider 

the approximations in the derivation of the Double-Cross-Helix 

orbit parameters. 

An analysis was provided that defines whether the 

measurement at a desired azimuthal angle needs to be around a 

central orbit position COP at either apogee or perigee. 

The concept of azimuthal offset angles was introduced, 

which first allows for exact one-dimensional azimuth and 

elevation pattern cuts, and second, minimizes the required 

changes of orbit parameters for the measurement at different 

azimuthal cut angles. It was shown that azimuthal offset angles 

can be realized by updating the yaw, pitch, and roll angles of 

the radar satellite. 

Two different approaches for the calculation of the 

differential orbit parameters were introduced, one with fixed 

difference in the ascending nodes  and one with drifted 

difference. The fixed approach is much faster and lasts few 

days, the drifted approach lasts months but requires less V.  

A high-level system concept was defined that consists of a 

side-looking SAR satellite and a small measurement satellite 

that carries a radar reflecting sphere. For this example, the 

system and orbit parameters were selected similar to the ones 

of the TerraSAR-X mission.  

Power and SNR were analyzed for the high-level system 

concept. The power variation at the antenna output appears 

feasible by taking reference to a 3 m corner reflector at a slant 

range of 600 km. The SNR of the corner reflector after full range 

and azimuth compression is 35 dB. A partial moving range 

compression was proposed that allows for a frequency-

dependent pattern measurement while improving the SNR, and 

maintaining the frequency dependence of the antenna pattern 

measurement. Additionally, an azimuth compression of a small 

number of pulses was proposed that keeps the SNR of the 

measurement signal above a desired value. The measurement 

gain and pointing errors were analyzed as well as the achievable 

angular sampling. A highly accurate measurement is possible at 

high angular sampling. 

The operational implementation of an in-orbit two-way 

antenna pattern measurement requires a small satellite with a 

reflecting sphere, the commanding of the measurement satellite 

to fly in close formation, and the commanding of the radar 

satellite to update its attitude during the measurement orbits. 

With respect to the close formation flying, experience with 

more than 10 years of the TanDEM-X mission is available. The 

measurement of individual transmit and receive patterns 

requires an additional transmit/receive antenna on-board the 

measurement satellite, e.g. at the opposite side of the reflecting 

sphere, and for the receive pattern measurement the 

measurement signal needs to be sent to ground for evaluation. 

This can be realized most economically by an optical and phase 

preserving MirrorLink to the radar satellite [9]. This avoids the 

complete radar receive chain on board the measurement 

satellite and allows to use the one anyhow available on-board 

the radar satellite. 

In future, the trend goes towards formations of small radar 

satellites, e.g. [27]-[29], and a small satellite in the formation 

can serve the formation with antenna pattern measurements. On 

the other hand, also for large constellations with individual 

stand-alone radar satellites, e.g. the large constellations being 

installed by the space industry, a dedicated small measurement 

satellite can serve one radar satellite of the constellation, and 

then move to the next radar satellite of the constellation. 
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APPENDIX A: PERIGEE/APOGEE MEASUREMENT 

Fig. 24 illustrates how the sign of the eccentricity difference 

e determines whether the measurement must be carried out 

around the central orbit position COP either at perigee or 

apogee. The figure is for a right looking system with positive 

side-looking offset angle off. 

 
        (a)   (b) 

Fig. 24. Determination whether the antenna pattern measurement at a fixed 

azimuthal angle needs to be either around perigee or apogee. Right looking 

system. (a) For a positive eccentricity difference e, the measurement needs to 

be around perigee and the inclination difference i is required to be negative. 

(b) For a negative eccentricity difference e, apogee measurement is required 

together with a positive inclination difference i. The main illumination always 

points obliquely downward toward the Earth's surface. 

In Fig. 24 (a) on the left, the eccentricity difference e is 

positive and thus the radial baseline is positive at perigee and 

negative at apogee. In order to position the measurement 

satellite into the main illumination direction of the radar 
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satellite, the cross-track baseline needs to be positive and the 

measurement needs to be carried out around perigee. At 

perigee, a positive maximum cross-track baseline in the Local 

system BL
cross,i,max is created by a negative inclination 

difference i, and therefore the negative sign has been 

introduced before the asin-function in (17).  

The geometry for a negative eccentricity difference e is 

illustrated in Fig. 24 (b) on the left. The radial baseline is now 

negative at perigee and positive at apogee. In order to position 

the measurement satellite into the main illumination, a 

measurement around apogee is required, and the cross-track 

baseline BL
cross,i,max needs to be positive at apogee, which can 

be created by a positive inclination difference i. So, it can be 

summarized that the sign of i is required to be opposite to e. 

For left looking geometry, equations (16) and (17) are 

applicable as well. For a positive e the radial baseline remains 

positive at the perigee but now a negative cross-track baseline 

BL
cross,i,max is required to position the measurement satellite to 

the left into the main radar satellite illumination, and thus i 

needs to be positive, which results from (17) since tan(off) is 

negative for a negative off. The analogue consideration shows 

that a negative eccentricity difference e requires apogee 

measurement for left looking as well as for right looking. 

Furthermore, the sign of the eccentricity difference e is 

determined by the sign of the azimuthal angle  in (16). An 

azimuthal angle  <0°requires measurement around perigee, 

and a measurement around apogee is required for  > 0°. 

APPENDIX B: ROTATION OF RADAR SATELLITE 

This appendix provides the equations to realize a 

mechanical rotation of the radar satellite by the azimuthal offset 

angle off around the Antenna system’s zA-axis by updating its 

attitude angles from yaw , pitch  and roll  angles into ̂ , ̂ , 

and ̂ . Using the rotational matrices introduced in Section III.B, 

the first line of (37) provides the transformation of the baseline 

vector from the Local into the Antenna system, i.e. from BL into 

BA, by means of a separate rotation with the azimuthal offset 

angle off. By equalizing with the second line of (37), the desired 

̂ , ̂ , and ̂  can be derived that result in the same BA.  
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For ̂ , the following unambiguous equation can be derived: 

( )( )asin cos sin sin cos cos sin sin cosoff off off off̂        =  −    −   
(38) 

For ̂ , two equations were derived, each with two possible 

solutions, and ̂  can be estimated by identifying the angle that 

resolves both equations. 

( ) ( )

( ) ( )

1

1

ˆˆcos cos sin sin cos cos cos cos

ˆsin sin sin cos sin cos cos sin sin cos cos

off off off

off off off off off off   +

       

          

−

−

 =   +   
 

 −       −  
 

 

 

( ) ( )

( ) ( )

1

1

ˆˆsin cos sin sin cos cos sin cos

ˆsin cos sin cos cos cos cos sin sin cos cos

off off off

off off off off off off

       

          

−

−

 =   +   
 

 +   +     −  
 

 

 

(39) 

The same holds for ̂ . In the equation for sin̂ , the previously 

calculated value for cos̂ has been included. 
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For the high-level system concept and the azimuthal offset 

angles of Section V, TABLE IV provides the updated attitude 

angles ̂ , ˆ   , and ̂  for initial attitude angles of zero.  

TABLE IV 

Update of radar satellite attitude angles to set the azimuthal offset angle off. 

off yaw ̂  pitch ̂  roll ̂  

-15° -12.55° -8.28° 0.91° 

-5° - -2.78°  

5° 4.16° 2.78° 0.10° 

15° 12.55° 8.28° 0.91 

25° 21.2° 13.6° 2.6° 

APPENDIX C: EQUATIONS FOR  TRADE-OFF 

This appendix derives the maximum difference of the 

measurement and radar satellites orbit altitude hmax as well as 

the minimum and maximum length of the baseline vector, dmin 

and dmax, respectively, as functions of the difference in the 

ascending nodes . With these approximated equations, a 

suitable value for  is obtained by trade-off in Section IV.C. 

In good approximation, dmin is the length of the baseline 

vector BL at the argument of latitudes u = ±90° for the largest 

absolute of the azimuthal angle | . At these orbit positions, the 

along-track baseline BL
along,e and the cross-track baseline 

contribution BL
cross, are close to zero and with (11), (16), and 

for small eccentricities the absolute of the baseline vector BL 

can be approximated to the third line of (41). The largest |  in 

the denominator of the second line results for cut = ±90° from 

the assigned azimuthal offset angle off, ±90°. Thus, the maximum 

of |off,±90°| determines dmin.  
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(41) 

The approximated maximum distance dmax is found at the 

equator where the radial baseline BL
rad,e and the cross-track 

baseline contribution BL
cross,i are close to zero. With (8), (9), 

and (16), the second line in (42) can be derived for small 

eccentricities. The smallest  in the second line is 0°. Therefore, 

dmax is determined by the distinct azimuthal offset angle off,0° as 

is shown in the last line of the equation.  
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The maximum difference in orbits altitudes hmax can be 

approximated by the radial baseline BL
rad,e at the argument of 

latitudes u = ±90°, and for small eccentricities, it results to the 

second line in (43). 
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