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A B S T R A C T

In the near future, pedestrians will face highly automated vehicles on the roads. Highly automated vehicles
(HAVs) should have safety-enhancing communication tools to guarantee traffic safety, e.g., vehicle kinematics
and external human–machine interfaces (eHMIs). Pedestrians, as highly vulnerable road users, depend on
communication with HAVs. Miscommunication between pedestrians and HAVs could quickly result in accidents,
and this, in turn, could cause severe impairments for pedestrians. Light-band eHMIs have the potential to
enhance traffic safety. However, eHMIs have been less explored in Japan so far. As a first-time approach, this
experimental online study shed light on the effect of a light-band eHMI on Japanese pedestrians (N=99). In short
video sequences, the participants interacted with two differently sized HAVs equipped with light-band eHMI. We
investigated the effect of vehicle size (small vs. large), eHMI status (no eHMI vs. static eHMI vs. dynamic eHMI),
and vehicle kinematics (yielding vs. non-yielding) on pedestrians’ willingness to cross, trust, and perceived
safety. To investigate possible side effects of eHMIs, we also included experimental conditions in which the eHMI
mismatched the vehicle’s kinematics. Results revealed that Japanese were more willing to cross the street and
indicated higher trust- and safety ratings when they received information about the vehicle’s intention and
automation status (dynamic eHMI) compared to when they received no information (no eHMI) or only about the
vehicle automation status (static eHMI). Surprisingly, Japanese participants tended to rely on the eHMI when
there was mismatching information between eHMI and vehicle kinematics. Overall, we concluded that light-band
eHMIs could contribute to a safe future interaction between pedestrians and HAVs in Japan under the
requirement that the eHMI is in accordance with vehicle kinematics.

1. Introduction

Highly automated vehicles [HAVs; SAE 4 (SAE International, 2021)]
have the potential to enhance safety with other traffic participants in the
future (Edelmann et al., 2021). Focusing on today’s traffic, pedestrians,
cyclists, and motorcyclists are involved in more than half of all fatal
traffic accidents. The total annual number of deaths due to traffic acci-
dents was approx. 1.3 million (World Health Organisation, 2022). Pe-
destrians highly depend on communication with other traffic
participants in the road environment, e.g., to anticipate the vehicle’s
future behavior (Habibovic et al., 2018; Rasouli & Tsotsos, 2020). Thus,
the potential of HAVs will depend to a large extent on the

communication capabilities of the HAVs (Dey et al., 2022; Habibovic
et al., 2018; Schieben et al., 2019). While a human driver still controls
the vehicle today, HAVs will execute the driving task in the future (SAE
International, 2021; Schieben et al., 2019). Therefore, HAVs should
have tools to communicate with pedestrians to enhance safe interactions
(Bengler et al., 2020; Lau et al., 2022b). Moreover, those communication
tools should be investigated not only in one country but in multiple
countries to globally ensure traffic safety in the future (Atchley et al.,
2014).
Derived from today’s interactions, vehicle kinematics are a signifi-

cant indicator for pedestrians to understand the vehicle’s intention and
to plan their future behavior (Dey & Terken, 2017; Y. M. Lee et al.,
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2021). Focusing on future interactions, other studies also underlined the
importance of vehicle kinematics for pedestrians’ interactions with
HAVs (Ackermann et al., 2018; Ackermann et al., 2019; Dey, Matviienko
et al., 2020; Lau et al., 2022b). Soshiroda et al. (2021) showed that the
vehicle’s deceleration impacted pedestrians’ crossing behavior, i.e.,
pedestrians crossed the street faster with an early deceleration. External
human–machine interfaces (eHMIs) are an additional source of infor-
mation and could present explicit communication signals, e.g., about the
vehicle’s yielding intent (Dey et al., 2022; Faas & Baumann, 2019; Faas,
Mathis, & Baumann, 2020; Lau et al., 2022a). Different eHMI ap-
proaches stand in the focus of current research, e.g., projection-based,
text-based, or light-band eHMIs (Bazilinskyy et al., 2019; Bengler
et al., 2020; Dey, Habibovic et al., 2020). Light-band eHMIs can
communicate with pedestrians through light patterns (Dey, Habibovic
et al., 2020; Faas, Mathis, & Baumann, 2020; Lau et al., 2022a) and are
culturally independent (Weber et al., 2019). The light-band eHMI
approach proved particularly promising as it is easy to learn (Avsar
et al., 2021) and increased perceived safety and trust (Lau et al., 2022b).
As design recommendations for eHMIs, Wilbrink et al. (2023) described
several eHMI principles, addressing situations, in which an eHMI should
communicate. One principle is the “identification of the automation
level (p. 8; Wilbrink et al., 2023)”, meaning that the eHMI should
communicate the vehicle automation status when the vehicle drives in
automated mode. This could be communicated, e.g., by a LED light-strip
positioned around the vehicle (Wilbrink et al., 2023). As an additional
eHMI principle, the vehicle’s yielding intent should be communicated
via eHMI, which could be communicated by light signals to inform the
surrounding traffic environment (Wilbrink et al., 2023). Lau et al.
(2022b) investigated a 360◦ LED light-band eHMI, which was positioned
on the vehicle’s outer body, for the interaction between pedestrians and
differently sized HAVs (car, bus). The eHMI presented different explicit
information to the pedestrian, e.g., information about the automation
status and the vehicle’s yielding intent. The vehicle automation status
was presented by a continuously enlightened light-band eHMI, and, in
addition, the yielding intent was presented by a pulsation of the light-
band eHMI (Lau et al., 2022b). The results revealed that pedestrians
perceived an eHMI that transmitted information about the vehicle
automation status and the vehicle’s yielding intent as safety-enhancing
(Lau et al., 2022b).
The effect of eHMIs has been investigated in different countries, e.g.,

in the United Kingdom (Kaleefathullah et al., 2020; Y. M. Lee et al.,
2022), in Germany (Lau et al., 2022a; Wilbrink et al., 2021), in the
United States (Faas, Kao,& Baumann, 2020) or as a cultural comparison
between Germany and China (Lanzer et al., 2020). In an intercultural
study, Lanzer et al. (2020) investigated different eHMI interaction
messages for an autonomous delivery vehicle in an experimental online
study in Germany and China. The vehicle projected six interaction
messages on the ground to communicate with the surrounding traffic
environment. The results revealed cultural differences between Ger-
many and China, i.e., the Chinese participants were more compliant
when the autonomous delivery vehicle communicated politely than the
German participants. The authors concluded that a cross-cultural
transferability of eHMI designs is not directly possible (Lanzer et al.,
2020). However, as a limitation of this study, the eHMI communicated
via text messages in different languages, i.e., the eHMI was culturally
dependent. Overall, research on eHMIs still needs further investigation
in different countries to provide safe and efficient communication tools
for HAVs globally (Weber et al., 2019).
To the best of our knowledge, light-band eHMIs have not been under

investigation in Japan. Recent eHMI studies in Japan mainly focused on
the design of text-based eHMIs (J. Lee & Daimon, 2023, 2024; J. Lee
et al., 2021, 2022; Suzuki et al., 2022). For instance, J. Lee et al. (2021)
investigated possible side effects of a text-based eHMI showing “After
you” and “I will stop” messages in a virtual reality experiment. The re-
sults showed that when the eHMI presented information, pedestrians
scanned the ongoing traffic less and showed a more careless crossing

behavior than when the eHMI was off (J. Lee et al., 2021). The question
arises of whether those side effects also occur for light-band eHMIs and
could influence pedestrians’ willingness to cross, trust, and perceived
safety in Japan. Focusing on cultural differences in pedestrians’ traffic
behavior, past research showed that Japanese people have a high de-
mand for traffic safety, follow the rules, and tend to avoid uncertainties
(Atchley et al., 2014; Hell et al., 2021; Hofstede Insights, 2021; Money&
Crotts, 2003). Moreover, Hell et al. (2021) reported that Japanese have a
greater aspiration to avoid traffic risks than Germans. Building on this,
Money & Crotts (2003) described that Japanese show more risk-
avoiding behavior than Germany and other European countries. Over-
all, current research on eHMIs lacks the applicability of light-band
eHMIs in Japan to make assumptions on the transferability of eHMIs.
The overall goal is to create communication tools that solve ambiguities
and make future traffic safe for pedestrians.
As an additional limitation of current eHMI research, most studies on

cross-cultural differences in terms of eHMI have focused on only one
vehicle size so far (Joisten et al., 2021; Lanzer et al., 2020). Neverthe-
less, vehicle size can impact pedestrians’ perceived safety (Edwards &
Leonard, 2022; Lau et al., 2022a). Petzoldt et al. (2017) showed that
larger vehicles are perceived as more threatening than smaller vehicles.
Moreover, pedestrians felt safer and were more willing to cross when
interacting with a smaller HAV vs. a larger AV (Lau et al., 2022b).
Soshiroda et al. (2021) designed text-based eHMIs for service automated
mobilities, i.e., golf carts and bus. The results revealed that Japanese
pedestrians showed higher anxiety when interacting with an automated
bus than with an automated golf cart during the crossing. As a general
implication for future communication solutions in Japan, Hell et al.
(2021) suggested that yielding intents should be explicitly communi-
cated to meet their high need for traffic safety, e.g., via vehicle decel-
eration or lights (Hell et al., 2021). Overall, the critical challenge is to
ensure safe future interactions between pedestrians and differently sized
HAVs globally, and the prospective investigation of communication
tools is one key solution to master this challenge.

2. Objectives

To this point, light-band eHMIs have not been investigated in Japan.
As a replication of Lau et al. (2022b), this study investigated the effects
of light-band eHMIs, vehicle kinematics, and the interplay of both for
differently sized HAVs with a Japanese sample. Overall, this study had
two main objectives. First, we wanted to extend existing eHMI research
to achieve the overall goal of a safe future interaction of pedestrians with
HAVs. Thus, we examined if using light-band eHMIs for differently sized
HAVs contributed to pedestrians’ willingness to cross, trust, and
perceived safety in Japan. Second, we investigated the effects of the
interplay of eHMI and vehicle kinematics on pedestrians’ interactions
with HAVs in Japan. Current studies revealed side effects of eHMIs (e.g.,
Kaleefathullah et al., 2020; Lau et al., 2022b; J. Lee et al., 2021), e.g.,
pedestrians felt safe even if the eHMI communicated contradictory sig-
nals to the vehicle kinematics (Lau et al., 2022b). Therefore, we wanted
to investigate how the interplay of vehicle kinematics (yielding vs. non-
yielding) and eHMI status (no eHMI vs. static eHMI vs. dynamic eHMI)
subjectively affected Japanese participants. Additionally, we contrasted
the results of this study of the Japanese sample with the results of the
German sample based on Lau et al. (2022b) regarding possible cultural
differences and similarities between both countries.

3. Method

This study’s approach is based on Lau et al. (2022b), who conducted
an experimental online study focusing on the interplay of eHMI and
vehicle kinematics in Germany. In multiple steps, the German ques-
tionnaire was translated from German into Japanese by native speakers.
In addition, the stimulus material was adjusted to Japanese traffic rules,
i.e., driving on the left hand. This research was approved by the
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Institutional Review Board at Keio University (REF No. 2022-053 and
No. 2022-124). Informed consent was obtained from each participant.

3.1. Sample

In total, 128 participants participated in the experimental online
study. We excluded 29 participants from the analysis as they did not pass
the manipulation check after the experiment. The manipulation check at
the end of the experiment included four check questions with a
dichotomous answer format (yes vs. no): (1) Could you perceive the
vehicles in the videos well?; (2) Could you perceive the light-band in the
videos well?; (3) Did you notice any changes in the vehicle behavior of
the car in the videos?; (4) Did you notice any changes in the vehicle
behavior of the bus in the videos? Participants were excluded from the
analysis when they denied one of the manipulation check questions.
This study’s sample included in the further analyses 99 (42 female)

Japanese participants with an average age of M = 44.66 (SD = 18.13;
age range = 18 – 77 years). The Affinity-for-Technology Interaction
questionnaire (Franke et al., 2018) was rated higher than average with
M = 3.69 (SD = 0.68) on a 6-point Likert scale from completely disagree
(1) to completely agree (6). Eighty-three participants possessed a
driver’s license. Moreover, 66 participants indicated that they would run
their errands in urban areas, and 33 said they would run their errands in
rural areas. Of all the participants, five had not heard of HAVs before.
The interest in HAVs was rated with M = 3.72 (SD = 1.14) on a 5-point
Likert scale from not at all (1) to very strong (5). Moreover, we asked
how carefully the participants conducted the questionnaire on a 5-Likert
scale, from very careless (1) to very careful (5). All participants included
in the analysis answered with “rather careful” (N = 27), “careful” (N =

54), and “very careful” (N = 18).

3.2. Experiment design

This study followed a 2 x 2 x 3 repeated-measures research design
with vehicle size (smaller vehicle vs. larger vehicle), vehicle kinematics
(yielding vs. non-yielding), and eHMI status (no eHMI vs. static eHMI vs.
dynamic eHMI), which were manipulated within-participants. For the
dynamic eHMI condition, the non-yielding condition was considered a
non-matching condition since the eHMI provided explicit information
that indicated the vehicle would yield, but the actual behavior was non-
yielding. Two non-matching trials were provided, one for the smaller
vehicle and one for the larger vehicle. The other eHMI conditions did not
provide yielding information. Thus, the non-yielding conditions would
not be perceived as a conflict.

3.3. Independent variables

3.3.1. Vehicle size
The videos showed two differently sized HAVs (Fig. 1). The smaller

vehicle was a BMW i3, and the larger vehicle was a Mercedes Benz bus.

3.3.2. Vehicle kinematics
The distance of the vehicles to the pedestrian was 32.5 m when the

video started. All reported distances (in meters, m) are measured from
the pedestrians’ position. Vehicle kinematics varied in two stages:
yielding and non-yielding. In the yielding conditions, the HAVs per-
formed a two-step deceleration. First, the HAVs decelerated at a 25 m
distance from 30 to 20 km/h (deceleration rate: − 1.92 m/s2). Second,
the vehicles decelerated at a 15 m distance from 20 to 2 km/h (decel-
eration rate: − 3.83 m/s2). In the non-yielding conditions, the vehicles
did not decelerate, and the vehicle drove continuously at 30 km/h to-
ward the pedestrian. All videos stopped when the vehicle was 11 m from
the pedestrian. This point was called the freezing point and should
represent a point in time with high uncertainty for the pedestrians
without frightening the participants (Fig. 2).

3.3.3. eHMI status
The light-band eHMI used in this study was based on Dietrich et al.

(2018). The eHMI lit up in the color cyan, which is a color that is not
occupied in the traffic context so far (de Clercq et al., 2019; Faas, Mathis,
& Baumann, 2020). Moreover, the light-band was positioned under the
windshield (Fig. 3). We investigated three different eHMI statuses, i.e.,
no eHMI, static eHMI, and dynamic eHMI. The no eHMI condition served
as a baseline, and the eHMI was completely turned off in this condition.
The static eHMI condition showed a continuously enlightened light-band
eHMI from the beginning of the trial. The continuously enlightened
eHMI indicated the vehicle’s automation status (Fig. 3). The dynamic
eHMI condition presented the vehicle’s automation status and the
yielding intent (Fig. 3). The pulsation of the light-band indicated the
vehicle’s intent and started at a 25 m distance from the pedestrian. The
light-band eHMI pulsated at a frequency of 0.66 Hz. In two experimental
conditions (one condition with the car and one with the bus), the mes-
sage of the dynamic eHMI did not match the vehicle’s kinematics,
referred to as “non-matching” conditions.

3.4. Dependent variables

After each experimental condition, the participants indicated their
willingness to cross (“How willing are you to cross the street?”; 7-Likert
scale from 1 = low to 7 = high), trust (“I would trust the vehicle to stop
for me”; 7-Likert scale from 1 = disagree to 7 = agree) and perceived
safety (“For my personal safety, I perceived the behavior of the vehicle
as safety-enhancing.”; 7-Likert scale from 1 = disagree to 7 = agree).

3.5. Procedure

This study was an experimental online study conducted with the
online questionnaire platform SoSci (Leiner & Leiner, 2022). Initially,

Fig. 1. The smaller HAV (left) and the larger HAV (right) in this study.
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participants started the online questionnaire independently and were
guided throughout the experiment via written instructions. In the
beginning, the participants gave their written informed consent for their
participation. Afterward, the training phase started, in which the par-
ticipants received written information about the study environment and
the presented HAVs. The study environment was a shared space where
explicit communication between pedestrians and AV is essential (Dey
et al., 2017; Lau et al., 2022b; Y. M. Lee et al., 2021). A shared space is a
traffic-calmed area without traffic signs or lane markings. However, the
central principle of a shared space is mutual consideration (Clarke,
2006; Hamilton-Baillie, 2008).
As part of the training phase, we explained the different eHMI sta-

tuses in tutorial videos (Fig. 4). Hence, the participants were not naïve
before starting the experimental phase. This study did not focus on first
contact with eHMIs or the learnability of the eHMIs, and therefore, we
decided to provide information about the different eHMI statuses. The
learnability of eHMIs was already investigated by Avsar et al. (2021),
who showed that participants could understand different eHMI statuses
shortly after only a few interactions. In the experimental phase, the
participants experienced twelve experimental trials in randomized
order. As part of the experimental trials, the participants experienced
two “non-matching” conditions (for each vehicle size one trial), in which
the HAVs did not yield; however, the eHMI started to pulsate to indicate
a yielding intent. These trials were considered to investigate possible
side effects of a malfunctioning eHMI. The experimental trials consisted
of short video sequences from the pedestrians’ egocentric perspective.
At the beginning of each video sequence, the participants looked to the
other street side, turned their heads to the right-hand side, and faced the
approaching HAV. The movement should increase the immersion.
Following Lau et al. (2022b), pedestrians should have the right of way in
the experiment. In Japan, the vehicles drive on the left-hand side (Hell
et al., 2021), and thus, the vehicles in this study approached from the

right-hand side (Fig. 5).
After each video, the participants evaluated their willingness to

cross, trust, and perceived safety. The experiment ended with a final
questionnaire in which the participants had to evaluate both AVs in the
videos. Based on Petzoldt et al. (2017), the participants evaluated the
smaller and larger HAVs based on selected adjectives (threatening,
large, pleasant, dangerous, strong, familiar, safe, close) on a 7-point
Likert scale from disagree (1) to agree (7). The experiment lasted 30
min, and the participants received 1200 Yen (approximately 9 euros) for
their participation.

3.6. Statistical approach

The statistical approach aligns with Lau et al. (2022b). Firstly, we
conducted a data validation check and multiple t-tests to investigate if
participants’ evaluations of specific adjectives differed for both vehicle
sizes in this study. Therefore, eight t-tests were conducted with a
Bonferroni-adjusted p < 0.006. The used effect size for the t-tests was
Cohen’s dz and interpreted with dz = 0.2 as a small effect, with dz = 0.5
as a medium effect, and dz = 0.8 as a large effect (Cohen, 1988).
Moreover, we conducted a repeated-measures ANOVA with vehicle size
(small vs. large), vehicle kinematics (yielding vs. non-yielding), and
eHMI status (no eHMI vs. static eHMI vs. dynamic eHMI). The three
independent variables were manipulated within the participants. The
prerequisites of a repeated-measures ANOVA were tested and were
given. Huynh-Feldt correction was used when sphericity was not given
(Field, 2013). For the interpretation of the ANOVA, we used partial eta-
squared (ƞp2) as effect size with ƞp2 ≤ 0.01 as small effect, with ƞp2 ≤ 0.06
as medium effect, and with ƞp2 ≤ 0.14 as large effect (Cohen, 1988). All
statistical analyses were implemented in the statistical software IBM
SPSS Statistics Version 26 (IBM Corp., 2019).

Fig. 2. Description of the vehicle kinematics in the yielding conditions of this study. Note. Distances are measured from the pedestrians’ positions in meters (m).

Fig. 3. Demonstration of the static eHMI (left) and pulsation of the dynamic eHMI (right) for the bus.

M. Lau et al.
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4. Results

4.1. Data validation check

The goal of the data validation check was to check if the participants
perceived the HAVs differently, as found in previous work (Dey et al.,
2017; Petzoldt et al., 2017). Petzoldt et al. (2017) showed that a larger
vehicle was evaluated as more threatening than a smaller vehicle. The
present study was conducted online. Thus, we wanted to see if the
participants perceived similar differences for both vehicles in terms of
eight adjectives. The results are presented in Fig. 6. T-tests showed a
significant difference that a larger vehicle was evaluated as more
threatening compared to a smaller (t (98) = − 6.74, p < 0.001, dz = 0.68;
Ms = 4.78 vs. 3.81, SDs = 1.44 vs. 1.55), as larger (t (98) = − 14.01, p <
0.001, dz = 1.42;Ms = 5.72 vs.Ms = 3.09, SDs = 1.44 vs. 1.37), as more

dangerous (t (98) = − 4.42, p < 0.001, dz = 0.44;Ms = 4.65 vs. 4.01, SDs
= 1.33 vs. 1.43) and as stronger (t (98)= − 8.39, p< 0.001, dz= 0.84;Ms
= 4.91 vs. 3.82, SDs = 1.25 vs. 1.16). These results stand in accordance
with previous research (Lau et al., 2022b; Petzoldt et al., 2017).

4.2. Willingness to cross

The repeated-measures ANOVA revealed that the main effects for
vehicle kinematics [F(1, 98) = 94.74, p = 0.001, ƞp2 = 0.49] and for
eHMI status [F(1.57, 153.70) = 54.99, p = 0.001, ƞp2 = 0.36] were sig-
nificant. Regarding the vehicle kinematics, post-hoc tests with Bonfer-
roni corrections showed that the willingness to cross was significantly
higher in yielding conditions (M= 3.92, SD= 1.44) than in non-yielding
conditions (M = 2.66, SD = 1.37; pBonf < 0.001). Regarding the eHMI
status, the participants were more willing to cross with dynamic eHMI

Fig. 4. Extract from the online questionnaire: Experimental condition showing the dynamic eHMI for the bus.

M. Lau et al.
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(M = 4.12, SD = 1.56) vs. static eHMI (M = 3.00, SD = 1.50, pBonf <
0.001) and vs. no eHMI (M = 2.75, SD= 1.38; pBonf < 0.001). Moreover,
the participants were more willing to cross with static eHMI than
without eHMI (pBonf = 0.03). Moreover, we found a significant inter-
action between eHMI status and vehicle kinematics [F(1.96, 192.39) =
5.50, p = 0.005, ƞp2 = 0.05], as shown in Fig. 7. For yielding and non-
yielding conditions, pedestrians’ willingness to cross was higher with
dynamic eHMI (yielding: M = 4.86, SD = 1.80; non-yielding: M = 3.37,
SD = 1.70) than with static eHMI (yielding: M = 3.50, SD = 1.68; non-
yielding: M = 2.50, SD = 1.63) or no eHMI (yielding: M = 3.38, SD =

1.72; non-yielding: M = 2.12, SD = 1.50; Fig. 7). Moreover, pedestrians
reported a mid-ranged willingness to cross in the non-matching condi-
tion, i.e., non-yielding vehicle kinematics with dynamic eHMI (M =

3.37, SD = 1.70; the condition is marked in bold frames in Fig. 7). This
finding indicated that the eHMI influenced pedestrians’ willingness to
cross, although it presented contradictory information about the vehi-
cle’s kinematics. No significant differences were found for vehicle size [F
(1, 98) = 3.68, p = 0.06, ƞp2 = 0.04], the interactions vehicle size *
vehicle kinematics [F(1, 98) = 0.00, p = 1.00, ƞp2 = 0.00], vehicle size *
eHMI status [F(2, 196) = 2.40, p = 0.09, ƞp2 = 0.02], and vehicle size *
vehicle kinematics * eHMI status [F(1.91, 187.48) = 1.69, p = 0.19, ƞp2

= 0.02].

4.3. Trust

We found a significant main effect for vehicle kinematics [F(1, 98) =
58.14, p < 0.001, ƞp2 = 0.37]. The participants perceived a higher trust
when the vehicle yielded (M= 4.02, SD= 1.29) compared to when it did
not yield (M = 3.06, SD = 1.42; pBonf < 0.001). Moreover, pedestrians’
trust significantly differed depending on the eHMI status [F(1.79,
175.50) = 57.46, p = 0.001, ƞp2 = 0.37]. Post-hoc comparisons revealed
that the participants trusted the vehicle with dynamic eHMI signifi-
cantly more (M = 4.37, SD = 1.33) compared to static eHMI (M = 3.24,
SD = 1.53; pBonf < 0.001) or no eHMI (M = 3.02, SD = 1.43; pBonf <
0.001). There was no significant difference between static eHMI and no
eHMI (pBonf = 0.12). The interaction between eHMI status and vehicle
kinematics was also significant for pedestrians’ trust [F(2, 196) = 3.44,
p = 0.03, ƞp2 = 0.03; Fig. 8]. For the non-yielding conditions, the results
showed that the participants perceived the vehicles with dynamic eHMI
(M = 3.79, SD = 1.69) as more trustworthy vs. the static eHMI (M =

2.86, SD = 1.67) or no eHMI (M = 2.54, SD = 1.66; Fig. 8). For the
yielding conditions, the results revealed that the participants also
evaluated the vehicles with dynamic eHMI (M = 4.96, SD = 1.49) with
higher trust ratings than with static eHMI (M = 3.61, SD = 1.63) or
without eHMI (M = 3.49, SD = 1.62). Overall, we did not find any

Fig. 5. Egocentric view of the smaller HAV, which approached from the right-
hand side.

Fig. 6. Boxplots for the subjective assessment of the selected adjectives for the smaller and larger vehicles. Note. Crosses = Means; lines = medians. Bonferroni-
corrected p-value * < 0.006.

Fig. 7. Significant interaction for vehicle kinematics and eHMI status on pe-
destrians’ willingness to cross. Note. The bold frame marks the non-matching
condition (dynamic eHMI, non-yielding), Error bars ± 1 SE.

M. Lau et al.



Accident Analysis and Prevention 207 (2024) 107719

7

significant differences for vehicle size [F(1, 98) = 0.007, p = 0.93, ƞp2 =
0.00], the interactions vehicle size * vehicle kinematics [F(1, 98)= 1.06,
p = 0.31, ƞp2 = 0.01], vehicle size * eHMI status [F(2, 196) = 1.22, p =

0.30, ƞp2 = 0.01], and vehicle size * vehicle kinematics * eHMI status [F
(1.87, 183.30) = 1.81, p = 0.17, ƞp2 = 0.02].

4.4. Perceived safety

The results manifested a significant main effect for vehicle kine-
matics [F(1, 98) = 45.59, p < 0.001, ƞp2 = 0.32] and for eHMI status [F
(1.75, 171.01) = 41.17, p = 0.001, ƞp2 = 0.30]. The participants
perceived a higher safety when the vehicle yielded (M = 4.15, SD =

1.27) compared to when it did not yield (M = 3.47, SD = 1.46; pBonf <
0.001). Moreover, participants perceived a higher safety when there was
a dynamic eHMI (M = 4.48, SD=1.37) vs. static eHMI (M = 3.67, SD =

1.57; pBonf < 0.001) vs. no eHMI (M = 3.29, SD = 1.53; pBonf < 0.001).
Moreover, post-hoc comparisons with Bonferroni corrections revealed
that the perceived safety was higher for the static eHMI than no eHMI
(pBonf= 0.001). Additionally, the interaction for eHMI status and vehicle
kinematics was significant [F(1.93, 189.48) = 5.69, p = 0.004, ƞp2 =

0.06; Fig. 9]. For non-yielding conditions, pedestrians’ perceived safety
was the highest with dynamic eHMI (M = 4.96, SD = 1.46) vs. static
eHMI (M = 3.46, SD = 1.78) vs. no eHMI (M = 2.97, SD = 1.74),
although the dynamic eHMI presented contradictory signals in the non-
yielding condition (Fig. 9). For the yielding conditions, the pedestrians
felt safer with dynamic eHMI (M= 3.99, SD= 1.65) vs. static eHMI (M=

3.87, SD = 1.59) vs. no eHMI (M = 3.61, SD = 1.61). We found no
significant differences for vehicle size [F(1, 98) = 0.64, p = 0.43, ƞp2 =
0.01], the interactions vehicle size * vehicle kinematics [F(1, 98)= 0.24,
p = 0.62, ƞp2 = 0.002], vehicle size * eHMI status [F(2, 196) = 0.26, p =

0.77, ƞp2= 0.003], and vehicle size * vehicle kinematics * eHMI status [F
(1.92, 188.05) = 1.67, p = 0.19, ƞp2 = 0.02].

4.5. Contrasting the Japanese and German sample

In this section, we contrasted our results to those of Lau et al.
(2022b), who conducted the study with German participants using the
same methodological approach. In Table 1, we present the inferential
statistics of the Japanese sample from this study and the results of the
German sample based on Lau et al. (2022) in terms of pedestrians’
willingness, trust, and perceived safety. The results demonstrated
similar effects for the Japanese and German sample. For both samples,
pedestrians’ willingness to cross, trust, and perceived safety different
depending on the eHMI status, i.e., the dynamic eHMI was evaluated
with a higher willingness, higher trust ratings, and a higher perceived
safety compared to a static eHMI or no eHMI. From this, we concluded
that the use of a dynamic light-band eHMI that presented the vehicle’s
automation status and the vehicle’s intention could contribute to a safe
future interaction between pedestrians and HAVs in both countries.
Moreover, pedestrians were more willing to cross, trusted the HAVs
more, and felt safer when the vehicles yielded compared to when they
did not yield in Japan the same way as we found in Germany (Table 1).
For the Japanese sample, the interaction between eHMI status and
vehicle kinematics was significant for pedestrians’ willingness to cross,
trust, and perceived safety. However, for the German sample, the
interaction between eHMI status and vehicle kinematics was only sig-
nificant for pedestrians’ perceived safety (Table 1). There were signifi-
cant differences in vehicle size for the German sample (Lau et al.,
2022b); however, there were no significant differences for the Japanese
sample.

5. Discussion

This study investigated the interplay of eHMI status and vehicle ki-
nematics for pedestrians’ interactions with two differently sized HAVs in
Japan. This study was conducted in Japan and was a follow-up with
Japanese participants of the study by Lau et al. (2022b), which took
place in Germany. Light-band eHMIs have great potential to support the
communication between HAVs and pedestrians (Faas, Mathis, & Bau-
mann, 2020; Lau et al., 2022a,b; Wilbrink et al., 2021). However, light-
band eHMIs were primarily under investigation in Europe (Faas, Mathis,
& Baumann, 2020; Habibovic et al., 2018; Wilbrink et al., 2021) and
have not been investigated in Japan yet. The overall goal is to design
eHMIs that are culturally independent and easily understood (Avsar
et al., 2021; Tabone et al., 2021). Therefore, we wanted to examine the
effects of light-band eHMIs, vehicle kinematics, and their interplay in
Japan as one step toward a global communication strategy for HAVs.
Miscommunication with larger vehicles can have fatal consequences

for pedestrians due to their high vulnerability (Edwards & Leonard,
2022). In this study, we included two differently sized HAVs to examine
the effect of vehicle size on pedestrians’ future interactions with HAVs.
The results showed that the Japanese participants perceived larger HAVs
as more threatening, larger, dangerous, and stronger. The results align
with findings by Petzoldt et al. (2017) and Lau et al. (2022b), which also
highlighted differences in the subjective assessment of differently-sized
vehicles in video-based experimental studies. We expected that differ-
ences in vehicle sizes would also influence pedestrians’ subjective as-
sessments of automated vehicles. However, the effect of vehicle size on
pedestrians’ willingness to cross, trust, and perceived safety did not
become significant in this study. One explanation for the significant
effect of vehicle size in Germany but no significant effect in Japan could
be the different sample sizes, i.e., 99 in Japan and 149 in Germany.
Nevertheless, the results revealed a similar trend regarding the vehicle
size for both samples, i.e., similar effect sizes for the Japanese and the
German samples. Future research should vary the vehicle size in more
detail to learn how different automated vehicles, as part of the road

Fig. 8. Significant interaction for vehicle kinematics and eHMI status on trust.
Note. The bold frame marks the non-matching condition (dynamic eHMI, non-
yielding), Error bars ± 1 SE.

Fig. 9. Significant interaction for vehicle kinematics and eHMI status on
perceived safety. Note. The bold frame marks the non-matching condition
(dynamic eHMI, non-yielding), Error bars ± 1 SE.
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environment, might affect pedestrians’ perceptions. For instance,
Soshiroda et al. (2021) manifested higher anxiety levels of pedestrians
for an automated bus compared to an automated golf cart during the
crossing. Hence, as presented in this study, Japanese pedestrians might
regard golf carts as safer mobility than the BMW i3 or the automated
bus. Therefore, a subsequent study should investigate cultural differ-
ences of vehicle size on pedestrians’ perceived safety ratings in more
detail. Moreover, pedestrians’ attitudes toward automated vehicles
could generally differ between Germany and Japan (Edelmann et al.,
2021), which should also be investigated in future studies. Additionally,
objective measures should be considered in combination with subjective
measures to evaluate a holistic picture of the crossing behavior of pe-
destrians and their subjective well-being.
This study investigated how the eHMI status influenced pedestrians’

willingness to cross, trust, and perceived safety. The results showed that
pedestrians were more willing to cross when the vehicle had a dynamic
eHMI than a static eHMI or no eHMI. Additionally, they trusted the
vehicle more and felt safer with dynamic eHMI compared to the static
eHMI or no eHMI. These findings are in line with previous studies
(Habibovic et al., 2018; Lau et al., 2022b; Wilbrink et al., 2021). Our
results underlined that light-band eHMIs can contribute to safe in-
teractions between pedestrians with differently sized HAVs in Japan
when the eHMI message is in accordance with the vehicle kinematics. To
our knowledge, this study is the first experimental study investigating
light-band eHMIs in Japan. As one of the few eHMI studies in Japan, J.
Lee et al. (2021) investigated the effect of text-based eHMIs placed on an
automated vehicle. The results revealed possible negative effects of
eHMI, i.e., pedestrians focused less on the traffic and crossed the street
less carefully when the eHMI was on vs. when the eHMI was off. In this
study, the results also revealed possible side effects of eHMIs, i.e., Jap-
anese participants relied on the explicit communication by the dynamic
eHMI, which is underlined by a mid-ranged pedestrians’ willingness to
cross, trust, and perceived safety in conditions in which the dynamic
eHMI indicated to yield, even though the vehicle did not yield. Such
non-matching conditions represented high-risk traffic situations for pe-
destrians as vulnerable road users (Lau et al., 2022b). In contrast, Lau
et al. (2022b) only found a significant effect of eHMI and vehicle kine-
matics on perceived safety, i.e., pedestrians felt safe with dynamic eHMI,
even though the vehicle did not yield. A possible reason could be that the
Japanese participants saw the dynamic eHMI and trusted the eHMI
functions. Japanese drivers are highly reliable in following the rules in

traffic (Atchley et al., 2014; Hell et al., 2021; Hofstede Insights, 2021).
Thus, Japanese participants might have built up high confidence in
eHMIs functionalities, which were explained in the training phase, so
they assumed that the pulsating eHMI meant that the HAVs were stop-
ping. Japanese and German participants received the same information
about the eHMI functions in the training phase with online tutorials. In
future studies, we would like to investigate such side effects in VR to
enable pedestrians to interact in a more realistic traffic environment and
in more complex traffic situations with more than one pedestrian.
Overall, the interplay of eHMI and vehicle kinematics could support
pedestrians’ willingness to cross, trust, and perceived safety when both
communication tools (eHMI and vehicle kinematics) are in accordance.
This study contributed to ongoing eHMI research and the standard-

ization of eHMIs by giving insights into the effects of light-band eHMIs
in Japan. Light-based eHMIs could be a cultural-independent commu-
nication solution for HAVs, and we demonstrated that Japanese partic-
ipants could interact and understand light-band eHMI communication
messages in this study. The participants received an online tutorial on
how to understand the eHMI messages. We did not focus on first contact
with eHMIs but whether light-band eHMIs are also beneficial in Japan.
Overall, we saw similar findings when comparing Japan and Germany, i.
e., a dynamic light-band eHMI indicating the vehicle’s yielding intent
and automation status contributed to pedestrians’ willingness to cross.
Pedestrians’ willingness to cross was slightly higher in Germany
compared to Japan (referring to Lau et al., 2022b). Nevertheless, a
greater sample size in Germany could also explain higher ratings.
Additionally, Japanese participants relied on explicit communication
and indicated a high willingness to cross, high trust, and high perceived
safety when the eHMI displayed a false yielding intent. In future studies,
we would like to investigate the perceptual processes of pedestrians
during the interaction with HAVs in more detail, e.g., by considering
eye-tracking data.

5.1. Limitations

The current study presents several limitations. First, the German
sample in the previous study (Lau et al., 2022b) was larger compared to
the Japanese sample, which could influence the comparison of both
samples. Also, the participants in this study conducted the online study
independently by clicking on a weblink. Therefore, the test environment
could not be fully controlled, e.g., light sources in the participants’

Table 1
Test statistics for the Japanese sample (N=99) and German sample (N=149) based on Lau et al. (2022b).

Japan (N=99) Germany (N=149)

Effect df1 df2 F p ƞp2 df1 df2 F p ƞp2

Willingness to cross Vehicle size 1 98 3.68 0.06 0.04 1 148 6.69 0.006** 0.04
Vehicle kinematics 1 98 94.74 0.001** 0.49 1 148 255.67 0.001** 0.63
eHMI status 1.57 153.70 54.99 0.001** 0.36 1.48 216.49 136.09 0.001** 0.48
Vehicle size x vehicle kinematics 1 98 0.00 1.00 0.00 1 148 1.29 0.26 0.01
Vehicle size x eHMI status 2 196 2.40 0.09 0.02 1.96 290.13 1.17 0.31 0.01
Vehicle kinematics x eHMI status 1.96 192.39 5.50 0.005* 0.05 1.88 278.84 0.17 0.84 0.00
Vehicle size x vehicle kinematics x eHMI status 1.91 187.48 1.69 0.19 0.02 1.99 295.79 1.82 0.16 0.01

Trust Vehicle size 1 98 0.007 0.93 0.00 1 148 2.21 0.07 0.02
Vehicle kinematics 1 98 58.14 0.001** 0.37 1 148 212.59 0.001** 0.59
eHMI status 1.79 175.50 57.46 0.001** 0.37 1.53 226.34 133.85 0.001** 0.48
Vehicle size x vehicle kinematics 1 98 1.06 0.31 0.01 1 148 1.59 0.21 0.01
Vehicle size x eHMI status 2 196 1.22 0.30 0.01 2 296 0.78 0.39 0.01
Vehicle kinematics x eHMI status 2 196 3.44 0.03* 0.03 1.90 281.40 1.46 0.23 0.01
Vehicle size x vehicle kinematics x eHMI status 1.87 183.30 1.81 0.17 0.02 1.97 291.41 1.62 0.20 0.01

Perceived safety Vehicle size 1 98 0.64 0.43 0.01 1 148 0.05 0.41 0.00
Vehicle kinematics 1 98 45.59 0.001** 0.32 1 148 129.70 0.001** 0.48
eHMI status 1.75 171.01 41.17 0.001** 0.30 1.57 232.96 120.99 0.001** 0.45
Vehicle size x vehicle kinematics 1 98 0.24 0.62 0.00 1 148 0.37 0.54 0.00
Vehicle size x eHMI status 2 196 0.26 0.77 0.003 1.91 282.50 0.73 0.48 0.01
Vehicle kinematics x eHMI status 1.93 189.48 5.69 0.004** 0.06 1.59 234.61 19.33 0.001** 0.12
Vehicle size x vehicle kinematics x eHMI status 1.92 188.05 1.67 0.19 0.02 2 295.37 2.14 0.12 0.014

Note. * p < 0.05, ** p < 0.01. Significant effects are printed in bold.
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surroundings. However, we provided written guidelines throughout the
experiment and asked the participants to dim the lights in their current
environment. Additionally, we conducted manipulation checks in both
countries to ensure that all study participants understood the task and
perceived the light-band and the vehicles. Participants were only
included in the analysis when they answered the check questions in the
affirmative. Additionally, this study investigated the interaction be-
tween pedestrians and HAV as a one-to-one interaction. Pedestrians’
crossing behavior and their subjective evaluation in the interaction with
HAVs can be influenced by the group size (Joisten et al., 2021).
Therefore, future studies should address more than one participant in
terms of pedestrians’ interaction with HAVs.
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