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Abstract: In this paper, a tracking controller for robots
is analyzed, which allows both the specification of the
convergence rate of the tracking errors and the parame-
terization of a desired contact stiffness and damping. It
is shown that the control approach can be interpreted as
a generalization of the well-known PD+ and Slotine-Li
controllers, combining the benefits of both approaches.
Although mentioned in the literature before, no thorough
theoretical and practical analysis of the aforementioned
passivity-based control concept has been performed so far.
In this work, the implications of the gains are discussed
w. r. t. convergence and interaction properties, addressing
possible tuning strategies. Finally, the performance of the
controller is evaluated in terms of tracking and interaction
experiments on a KUKA LWR IV+.

Keywords: Robot control, trajectory tracking, passivity-
based control, human-robot interaction

Zusammenfassung: In dieser Arbeit wird ein Trajektori-
enfolgeregler für Roboterarme analysiert. Dieser erlaubt
sowohl die Spezifikation einer Konvergenzrate für die Re-
gelfehler als auch die Parametrisierung einer gewünsch-
ten Kontaktsteifigkeit und Dämpfung. Es wird gezeigt,
dass der Regler als eine Verallgemeinerung der bekannten
PD+ und Slotine-Li-Regler interpretiert werden kann und
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dabei die Vorteile beider Ansätze vereint. Obwohl das
besagte passivitätsbasierte Regelgesetz in der Literatur
bereits bekannt ist, wurde bisher noch keine umfassende
Analyse der theoretischen und praktischen Eigenschaften
veröffentlicht. In dieser Arbeit wird daher insbesonde-
re die Bedeutung der Verstärkungsfaktoren hinsichtlich
der Konvergenz- und Interaktionseigenschaften diskutiert.
Dabei werden verschiedene Gain-Tuning-Strategien aufge-
zeigt. Die Performanz des Reglers wird schließlich anhand
von Trajektorienfolge und Mensch-Roboter-Interaktions-
Experimenten an einem KUKA LWR IV+ Roboterarm
evaluiert.

Schlagwörter: Roboterregelung, Trajektorienfolgerege-
lung, passivitätsbasierte Regelung, Mensch-Roboter Inter-
aktion

1 Introduction
Trajectory tracking control of robotic manipulators has
been a topic of interest for many decades, especially re-
garding the use of robots in industrial applications. In this
context, the tracking performance as well as convergence
rates are crucial indicators for the choice of a well-suited
control algorithm. Moreover, the capability to specify the
behavior in contact with the environment becomes more
and more important, particularly in scenarios with human-
robot collaboration.

Classical approaches for trajectory tracking include
among others feedback-linearizing algorithms such as in-
verse dynamics or computed torque control schemes [1, 2].
These methods yield linear closed-loop dynamics, poten-
tially at the cost of robustness issues in the presence of
modeling uncertainties and external disturbances [3]. To
overcome these drawbacks, an additional class of control al-
gorithms for trajectory tracking has been developed in the
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1980s. These controllers exploit inherent physical proper-
ties of the robot dynamics. They are based on the concept
of preserving passivity by shaping the energy of the closed-
loop system and thus are referred to as passivity-based
control [4, 5, 6]. Nowadays, these control algorithms are
widely used, since they are robust w. r. t. disturbances and
modeling uncertainties1. The historical and practical im-
portance of passivity-based control concepts is highlighted
among others in [7, 8]. One of the fundamental tracking
controllers for robots is the PD+ controller, that has been
introduced by Paden and Panja in [4]. It allows to spec-
ify a desired stiffness and damping behavior. However,
the stability analysis is limited to qualitative statements
about the convergence of the control error. An alternative
approach for tracking control has been presented in the
seminal work of Slotine and Li [5, 9, 10]. In contrast to
the PD+ controller, the Slotine-Li controller (SLC) allows
a direct parameterization of the convergence rate. This,
however, determines the contact stiffness and damping.

The focus of this work is a control algorithm which
combines the advantages of both PD+ control and SLC.
As the control law can be interpreted as a generaliza-
tion of the PD+ controller and the SLC, we will refer to
it as Generalized Robot Tracking Controller (GTC). On
the one hand, it allows to set the contact stiffness, while
quantitative statements about the convergence rate can
still be made. On the other hand, the convergence rate
can be specified directly. In that case, it is still possible
to influence the effective stiffness by weighting the gains
accordingly. The control law at hand has already been
introduced in [6], where exponential stability has been
proven based on a Lyapunov function. In [11], [12], and
[13], the control law is applied in the context of velocity
observer design, disturbance attenuation, and omnidirec-
tional mobile platforms, respectively. Still, to the best of
our knowledge, no thorough analysis of the GTC control
law – especially in comparison to PD+ control and SLC –
has been performed so far. This work reviews the GTC and
further analyzes it from an application perspective. The
theoretical as well as the practical advantages compared to
the pure PD+ and SLC approaches are shown. Regarding
the increasing importance of human-robot collaboration in
the industry, the analyses in this work focus particularly
on the contact properties of the controller. This aspect of

1 This means that the mentioned passivity-based control ap-
proaches cannot be destabilized by certain unmodeled effects like
joint friction. In comparison, control approaches laws using feed-
back linearization techniques can indeed be destabilized, which
is theoretically discussed and practically shown e. g. in [3].

the GTC has not been considered in the literature so far.
Thus, the contributions of this work include
– the analysis of the GTC as a generic case containing

both PD+ control and SLC,
– an extension of the GTC to task space trajectory

tracking,
– the presentation of a novel proof of stability, which

allows a reduction of the effective stiffness w. r. t. a
pure SLC implementation,

– discussions on the implications of the gain design
w. r. t. tracking and interaction properties,

– a proposition of possible tuning strategies for the
GTC,

– a performance evaluation of the tracking controller,
using experiments on a commercial industrial robot,
the KUKA LWR IV+.

The theoretical and experimental results reveal that it
is possible to significantly reduce the perceived stiffness
compared to a baseline SLC implementation while main-
taining the full tracking performance on velocity level.
Additionally, it is shown that the tracking performance
of the SLC implementation can be improved by increas-
ing the stiffness gain based on the control law at hand.
Note that both SLC and GTC are originally introduced
together with a parameter adaption part. However, we
omit this parameter adaption for the sake of clarity and
comparability, assuming perfect knowledge of the system
model.

The paper is organized as follows: The system model
and problem statement are given in Sec. 2. In Sec. 3.1,
the generalized robot tracking controller is described. A
discussion of its properties follows in Sec. 3.2, an extension
to task-space control is proposed in Sec. 3.3. In Sec. 4,
experimental results are shown. In Sec. 5, the findings of
this work are discussed. Sec. 6 concludes the paper.

2 System model
A serial robotic arm with 𝑛 joint coordinates 𝑞 ∈ 𝒬 ⊂ R𝑛

can be modeled by the second-order rigid-body dynamics
equations2

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝑔(𝑞) = 𝜏 + 𝜏 ext. (1)

2 Geometrically, the (unconstrained) configuration manifold
ℳ of an 𝑛-link revolute joint serial robot is the 𝑛-torus (𝒮1)𝑛.
We parameterize (𝒮1)𝑛 through the minimal joint coordinates
(𝑞1, . . . , 𝑞𝑛) ∈ 𝒬 ⊂ R𝑛, where 𝒬 describes the admissible joint
angles in a subset of [−𝜋, 𝜋) each, given by the operation limits of
the robot. We therefore perform trajectory tracking and stability
analysis in a subspace of Euclidean space.
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The following well-known properties hold:
1. The inertia matrix 𝑀(𝑞) ∈ R𝑛×𝑛 is symmetric pos-

itive definite (also written as s.p.d. or 𝑀 ≻ 0) [14,
p.171] and uniformly bounded [15].

2. The effect of Coriolis/centrifugal forces is modeled
by 𝐶(𝑞, �̇�)�̇� with 𝐶 ∈ R𝑛×𝑛, such that �̇� − 2𝐶 is
skew-symmetric [14, p.171].

Gravitational forces are written as 𝑔(𝑞) ∈ R𝑛. The con-
sidered robot features a torque interface in each joint and
is assumed to be fully actuated through 𝜏 ∈ R𝑛. External
torques are denoted by 𝜏 ext ∈ R𝑛.

A desired, time-dependent trajectory in the joint space
is given by 𝑞des(𝑡), �̇�des(𝑡), �̈�des(𝑡). It is assumed to be
continuous in time and feasible. Moreover, all desired joint
positions, velocities, and accelerations are assumed to be
bounded. The corresponding tracking error is defined as

̃︀𝑞(𝑡) = 𝑞 − 𝑞des(𝑡) (2)

with the time derivatives ̃̇︀𝑞(𝑡), ̃̈︀𝑞(𝑡). In the following, time
dependencies are only written where strictly necessary for
the understanding.

3 Passivity-based robot tracking
control

In this section, the GTC as a unifying passivity-based
tracking controller for (1) is discussed with reference to
two standard tracking controllers in robotics. For the sake
of comparison and discussion, both the PD+ controller
[4] as well as the SLC [5] with some relevant properties
will be recapitulated in the following.

PD+ controller [4]: The control law is

𝜏 PD+ = 𝑀(𝑞)�̈�des + 𝐶(𝑞, �̇�)�̇�des + 𝑔(𝑞)−
−𝐾̃︀𝑞 − 𝐷(𝑞)̃̇︀𝑞 (3)

with 𝐾 ∈ R𝑛×𝑛 and 𝐷(𝑞) ∈ R𝑛×𝑛 being s.p.d. gain ma-
trices. Applying (3) to (1), the closed-loop dynamics be-
come

𝑀(̃︀𝑞, 𝑡)̃̈︀𝑞 + (𝐶(̃︀𝑞, ̃̇︀𝑞, 𝑡) + 𝐷(̃︀𝑞, 𝑡))̃̇︀𝑞 + 𝐾̃︀𝑞 = 𝜏 ext. (4)

It is, with some intermediate considerations, possible to
show uniform exponential stability of (̃︀𝑞*, ̃̇︀𝑞*) = (0, 0) for
the undisturbed system (𝜏 ext = 0) with the Lyapunov
function

𝑉PD+(̃︀𝑞, ̃̇︀𝑞, 𝑡) = 1
2 ̃̇︀𝑞𝑇

𝑀(̃︀𝑞, 𝑡)̃̇︀𝑞 + 1
2̃︀𝑞𝑇 𝐾̃︀𝑞 +

+ 𝜖̃̇︀𝑞𝑇
𝑀(̃︀𝑞, 𝑡)̃︀𝑞 (5)

with a sufficiently small positive constant 𝜖 (see e. g. [14,
p. 194-195]). One major advantage of the use of a PD+
controller is the direct realization of a desired contact
stiffness and damping through 𝐾 and 𝐷(𝑞), respectively3.

Slotine-Li controller [5]: The control law (assuming
no parameter uncertainties) is given as

𝜏 SLC = 𝑀(𝑞)�̈�ref + 𝐶(𝑞, �̇�)�̇�ref + 𝑔(𝑞) − 𝐻(𝑞)𝑠. (6)

with a s.p.d. gain matrix 𝐻(𝑞) ∈ R𝑛×𝑛. Thereby, the
reference trajectory is constructed as a combination of the
desired velocities with weighted position errors

�̇�ref = �̇�des − Ω̃︀𝑞, (7)

with a diagonal p.d. matrix Ω ∈ R𝑛×𝑛. The so-called
sliding variable is defined as

𝑠 = �̇� − �̇�ref = ̃̇︀𝑞 + Ω̃︀𝑞. (8)

Then, the closed-loop dynamic equations become

𝑀(̃︀𝑞, 𝑡)�̇� + (𝐶(̃︀𝑞, 𝑠, 𝑡) + 𝐻(̃︀𝑞, 𝑡))𝑠 = 𝜏 ext (9)
̃̇︀𝑞 = 𝑠 − Ω̃︀𝑞. (10)

In [16], uniform exponential stability of the origin
(̃︀𝑞*, 𝑠*) = (0, 0) for the undisturbed system is shown with
the Lyapunov function

𝑉SLC(̃︀𝑞, 𝑠, 𝑡) = 1
2𝑠𝑇 𝑀(̃︀𝑞, 𝑡)𝑠 + ̃︀𝑞𝑇 Ω𝐻̃︀𝑞, (11)

under the additional assumption that 𝐻 is constant and
diagonal. Using (11) as storage function, it is also possible
to directly show passivity with input 𝜏 ext and output 𝑠.
In contrast to the PD+ controller, the convergence of the
error and the error rate can directly be specified through
𝐻 and Ω. On the other hand, it is not possible to assign
decoupled physical stiffness and damping properties via
an appropriate choice of the gains.

3.1 Generalized robot tracking controller

Some theoretical and practical drawbacks arise from the
use of PD+ controller and SLC. The most obvious is that
for both control laws, the stability analysis uses Lyapunov
functions which are not directly related to the physical
energy of the system. Thus, computing the convergence

3 Typically, 𝐾 is chosen diagonal and constant in joint space
tracking control, whereas the damping matrix 𝐷(𝑞) might be
configuration-dependent.
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rate of the tracking errors does not necessarily give infor-
mation about the decay of potential and kinetic energy
of the robot. Also, tuning the gains is restricted to either
influencing contact properties directly (PD+) or tuning
the pure tracking performance (SLC).

To address the aforementioned disadvantages, the gen-
eralized robot tracking controller will be reviewed in the
following. It features the following beneficial properties:
a) Uniform exponential stability with a more physically

motivated Lyapunov function than for PD+ (5) and
SLC (11), which allows to examine potential as well
as kinetic “pseudo-energy” (originating from the devi-
ations from the desired trajectory).

b) Independent parameterization of contact stiffness and
damping gains (in contrast to SLC)

c) The possibility to impose an exponential convergence
rate directly by choice of the gains (in contrast to
PD+)

The properties as well as some insights about the con-
vergence behavior and concerning the choice of gains are
discussed in the following. The control law was first in-
troduced in [6]. A slightly modified4 version is presented
here:

Proposition 1. Let the control law be

𝜏 GTC = 𝑀(𝑞)�̈�ref + 𝐶(𝑞, �̇�)�̇�ref + 𝑔(𝑞)
−𝐾̃︀𝑞 − 𝐻(𝑞)𝑠, (12)

with the uniformly bounded s.p.d. gain matrix
𝐻(𝑞) ∈ R𝑛×𝑛 and the diagonal p.d. gain matrix
𝐾 ∈ R𝑛×𝑛.

Applying (12) together with (7) and (8) to the robot
dynamics (1), the equilibrium (̃︀𝑞*, 𝑠*) = (0, 0) is rendered
uniformly exponentially stable for 𝜏 ext = 0.

Proof. Inserting (12), (7) and (8) into (1), the closed-loop
equations become

𝑀(̃︀𝑞, 𝑡)�̇� + (𝐶(̃︀𝑞, 𝑠, 𝑡) + 𝐻(̃︀𝑞, 𝑡))𝑠 + 𝐾̃︀𝑞 = 𝜏 ext (13)
̃̇︀𝑞 = 𝑠 − Ω̃︀𝑞. (14)

The following function 𝑉GTC : 𝒬 ×R𝑛 ×R+ → R is con-
sidered:

𝑉GTC(̃︀𝑞, 𝑠, 𝑡) = 1
2𝑠𝑇 𝑀(̃︀𝑞, 𝑡)𝑠 + 1

2̃︀𝑞𝑇 𝐾̃︀𝑞, (15)

which is p.d. in (̃︀𝑞, 𝑠) for all 𝑡. The time derivative of (15)
along the trajectories of (13)–(14) is

�̇�GTC(̃︀𝑞, 𝑠, 𝑡) = 𝑠𝑇 𝜏 ext − 𝑠𝑇 𝐻(̃︀𝑞, 𝑡)𝑠 − ̃︀𝑞𝑇 𝐾Ω̃︀𝑞. (16)

4 Modification mainly in terms of notation. Also, [6] introduced
scalar gains instead of gain matrices.

Note that 𝐾Ω ≻ 0 due to the definition of 𝐾 and Ω
as diagonal p.d. matrices. This result immediately shows
passivity of (13)-(14) w. r. t. the power port (𝜏 ext, 𝑠).

Furthermore, from (15) and (16) and with (2) follows
that 𝑞 (and thus 𝑀(𝑞)) is bounded. Using the min-max-
theorem5, it is possible to give time-independent bounds
for 𝑉GTC(̃︀𝑞, 𝑠, 𝑡):

𝑉 GTC(̃︀𝑞, 𝑠) = 1
2 inf

𝑞∈𝒬
(min(𝜆(𝑀(𝑞))))‖𝑠‖2+

+1
2 min(𝜆(𝐾))‖̃︀𝑞‖2 (17)

𝑉 GTC(̃︀𝑞, 𝑠) = 1
2 sup

𝑞∈𝒬
(max(𝜆(𝑀(𝑞))))‖𝑠‖2+

+1
2 max(𝜆(𝐾))‖̃︀𝑞‖2 (18)

with 𝜆(·) denoting the eigenvalues of a matrix. Moreover,
for 𝜏 ext = 0, (16) is bounded by

�̇� GTC(̃︀𝑞, 𝑠) = − inf
𝑞∈𝒬

(min(𝜆(𝐻(𝑞))))‖𝑠‖2−

− min(𝜆(𝐾Ω))‖̃︀𝑞‖2, (19)

such that

𝑉 GTC(̃︀𝑞, 𝑠) ≤ 𝑉GTC(̃︀𝑞, 𝑠, 𝑡) ≤ 𝑉 GTC(̃︀𝑞, 𝑠) (20)

and
�̇�GTC(̃︀𝑞, 𝑠, 𝑡) ≤ �̇� GTC(̃︀𝑞, 𝑠) < 0 (21)

for all (̃︀𝑞, 𝑠) ̸= 0. Uniform exponential stability of the
origin (̃︀𝑞*, 𝑠*) = (0, 0) follows directly from [18, Theo-
rem 4.10, p. 154].

Remark 1. The Lyapunov function (15) is radially un-
bounded for 𝑞 ∈ 𝒬. In this sense, the proof of stability
holds “globally” for the relevant working space of the
robot.

Remark 2. For the sake of completeness, it should be
mentioned that the stability properties derived for (̃︀𝑞, 𝑠)
do also apply for the full system error state (̃︀𝑞, ̃̇︀𝑞), as 𝑠

can be considered as input of the asymptotically stable
̃︀𝑞-dynamics (14). Thus, convergence of 𝑠 directly implies
convergence of ̃̇︀𝑞 (cf. [19, p. 399]).

3.2 Discussion of properties

As mentioned above, the GTC combines components from
the PD+ and the SLC. In particular, both of these classical

5 From the Courant-Fischer theorem follows the min-max
theorem, which states that min(𝜆(𝐴))‖𝑧‖2 ≤ 𝑧𝑇 𝐴𝑧 ≤
max(𝜆(𝐴))‖𝑧‖2 for a s.p.d. matrix 𝐴 [17, p. 224-225].
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Tab. 1: Effective control gains of the different control laws
control law ̃︀𝑞: effective P-gain ̃̇︀𝑞: effective D-gain

PD+ −𝐾 −𝐷(𝑞)

SLC −𝐶(𝑞, �̇�)Ω − 𝐻(𝑞)Ω −𝑀(𝑞)Ω − 𝐻(𝑞)

GTC −𝐶(𝑞, �̇�)Ω − 𝐻(𝑞)Ω − 𝐾 −𝑀(𝑞)Ω − 𝐻(𝑞)

control algorithms can be derived as corner cases of the
GTC:
– For Ω → 0, (12) becomes a PD+ controller (3).
– For 𝐾 → 0, (12) becomes a Slotine-Li controller (6).

Comparison of control gains: In order to compare the
control gains, the SLC and GTC control laws (6) and
(12) are written in in the form of the PD+ control law
(3), i. e. the “+”-part equals the first three terms of (3),
and is contained in all three control laws. The other parts
are sorted by ̃︀𝑞 and ̃̇︀𝑞. The resulting proportional and
derivative gains are denoted as effective control gains.
They are listed in Table 1.

It can be seen that the SLC as well as the GTC in-
troduce dynamic couplings in the feedback terms. For the
SLC, stiffness and damping are coupled via the choice of
𝐻(𝑞) and Ω. The additional proportional gain 𝐾 in the
GTC allows a “decoupling” of effective stiffness and damp-
ing (i. e. you can change the effective stiffness by choosing
a suitable 𝐾 without changing the effective damping).
This might be beneficial under certain circumstances, e. g.
when intrinsic elastic properties of a system can be used
in order to perform a motion more efficiently. In practice,
it is possible to implement and tune an SLC, and then
add the additional stiffness term 𝐾̃︀𝑞 in order to adjust
or improve convergence and/or compliance behavior.

Stiffness and damping parameterization: An interest-
ing possibility for gain tuning is to look at 𝐾 as influ-
encing the behavior in physical contact situations. From
(13) and (14), it can be verified that the perceived contact
stiffness behavior is (𝐻Ω + 𝐾)̃︀𝑞 = 𝜏 ext by regarding the
static case �̇� = �̇�des = 0 and �̈� = �̈�des = 0. This means
that with a given choice of 𝐻 and Ω, it is possible to
enforce a desired contact behavior 𝐾eff̃︀𝑞 = 𝜏 ext by setting

𝐾 = 𝐾eff − 𝐻Ω. (22)

However, 𝐾 must be positive definite to ensure stability
with the given Lyapunov function (15). In other words, the
perceived contact stiffness for the GTC should be chosen
always equal to or larger than 𝐻Ω (which is the per-
ceived contact stiffness of the SLC). In order to overcome
this theoretical restriction, another Lyapunov function
candidate can be inspected:

𝑉 *
GTC(̃︀𝑞, 𝑠, 𝑡) = 1

2𝑠𝑇 𝑀𝑠 + 1
2̃︀𝑞𝑇 𝐾̃︀𝑞 + ̃︀𝑞𝑇 𝐻Ω̃︀𝑞, (23)

where 𝐻 equals the gain matrix 𝐻 from (12), which is
additionally required to be constant and diagonal. Then,
the time derivative w. r. t. (13)-(14) is

�̇� *
GTC = −

(︂̃︀𝑞
𝑠

)︂𝑇 (︂
𝐾Ω + 2𝐻Ω2 −𝐻Ω

−(𝐻Ω)𝑇 𝐻

)︂ (︂̃︀𝑞
𝑠

)︂
(24)

which is negative definite if 𝐻 ≻ 0 and

𝐾Ω + 2𝐻Ω2 − (𝐻Ω)𝑇 𝐻−1𝐻Ω ≻ 0 (25)

according to the Schur complement condition [20]. Choos-
ing 𝐾 = 𝛾𝐻Ω, it can be verified that

(𝛾 + 1)𝐻Ω2 ≻ 0, (26)

which holds for 𝛾 > −1. This shows that the effective
stiffness of the GTC can be changed from arbitrarily close
to zero up to higher stiffness values compared to the SLC.
The effect will be shown in Sec. 4.

Convergence properties: The error dynamics (14) can
be regarded as a first-order system in ̃︀𝑞 with 𝑠 as input.
Thus, through the choice of Ω, it is possible to prescribe
the rate of convergence of ̃︀𝑞. The convergence behavior of
the GTC in the error state 𝑧 = (̃︀𝑞𝑇 , 𝑠𝑇 )𝑇 can be analyzed
as a second step. Recalling (19) and (21), it becomes clear
that it is possible to directly parameterize the decrease
rate of the energy function by choice of the gains 𝐻 and
𝐾Ω. In particular, it is possible to keep the convergence
rate of the energy-like function (15) constant by selecting
a constant value Γ = 𝐾Ω. Then, weighting 𝐾 versus Ω
“shifts” the behavior of the closed-loop system between
convergence of the position error within the sliding variable
(parametrized by Ω, see (8)) and the parameterization of
a desired stiffness (choice of 𝐾).

A remarkable observation6 can be made by inspecting
the Lyapunov function and its derivative at 𝜏 ext = 0:
Making the particular choice of gains

𝐻(𝑞) := 𝛼𝑀(𝑞) (27)
Ω := 𝛼𝐼 (28)

with some constant 𝛼 > 0, it can be verified that

�̇�GTC = −2𝛼𝑉GTC. (29)

This means that

𝑉GTC(𝑡) = 𝑉GTC(𝑡0) 𝑒−2𝛼(𝑡−𝑡0) (30)

With this finding, it is directly possible to conclude expo-
nential decay of the norm of the error states 𝑧 w. r. t. the
matrix

𝑃 e =
(︂

𝐾 0
0 𝑀(𝑞)

)︂
. (31)

6 Similar considerations exist for the classical SLC [19, p.409 ff]
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Defining 𝑧𝑇 𝑃 e𝑧 = ‖𝑧‖𝑃 e
leads to

‖𝑧(𝑡)‖𝑃 e
= 𝑒−2𝛼(𝑡−𝑡0)‖𝑧(𝑡0)‖𝑃 e

. (32)

In this case, ‖𝑧(𝑡)‖𝑃 e
models a “pseudo-energy”, origi-

nating from the deviations from the desired trajectory7.
Information about the decay of this energy-like function
is directly related to physical properties of the system.
Thus, adding the proportional term 𝐾̃︀𝑞 to the SLC con-
trol law (6) can be beneficial in terms of physical meaning
of the derived convergence behavior. Note that the consid-
erations above hold independent of 𝐾. Thus, tuning the
GTC boils down to the choice of 𝐾 while 𝛼 can be used
as a second design parameter specifying the decay rate
of the storage function. Here, 𝐾 can be interpreted as
weighting the “potential energy”-like term vs. the “kinetic
energy”-like term in (15) and thus, again, as shifting a
constant convergence rate between ̃︀𝑞 and 𝑠.

Remark 3. For the particular choice (27) and (28),
the contact stiffness becomes configuration-dependent:
𝐾eff = 𝛼2𝑀(𝑞) + 𝐾. Thus, it is only possible to specify
a contact stiffness at a given operating point in this case.

Remark 4. For (27) and (28), the position and velocity
error feedback terms in the control law (12) become inertia-
dependent. This can be problematic in terms of robustness
(see e. g. [3] for a detailed discussion).

Remark 5. Adding a second positive but possibly time-
dependent parameter 𝐻 := (𝛼 + 𝛽(𝑡))𝑀(𝑞) with Ω :=
𝛼𝐼 means adding a negative semi-definite term to the
righthand side of (29). Thus, the equality in (30) and (32)
becomes a “less or equal”. Therefore, the given exponential
function becomes an upper bound to describe the real
convergence.

3.3 Task-level control for non-redundant
robots

The task space is defined by the coordinates 𝑥 ∈ R𝑚 to
be computed from the joint space via 𝑥 = ℎ(𝑞). The cor-
responding velocities can be derived by �̇� = 𝐽(𝑞)�̇� with
the task Jacobian matrix 𝐽(𝑞) = 𝜕ℎ(𝑞)/𝜕𝑞. The desired
(bounded, feasible and time-continuous) task-space trajec-
tory is given by 𝑥des(𝑡), �̇�des(𝑡), �̈�des(𝑡). The correspond-
ing tracking error is then defined as ̃︀𝑥(𝑡) = 𝑥 − 𝑥des(𝑡)
with the time derivatives ̃̇︀𝑥(𝑡) and ̃̈︀𝑥(𝑡). Similar to the
joint space, a control law that ensures tracking of a desired

7 The above considerations do also hold for 𝑧𝑒 = (̃︀𝑞, ̃̇︀𝑞) .

trajectory in the task space can be derived by constructing
a control law which renders the time-derivative of

𝑉𝑥(̃︀𝑥, 𝑠𝑥, 𝑡) = 1
2𝑠𝑇

𝑥 𝑀(̃︀𝑥, 𝑡)𝑠𝑥 + 1
2 ̃︀𝑥𝑇 𝐾𝑥̃︀𝑥 (33)

with a diagonal, p.d. 𝐾𝑥 ∈ R𝑚×𝑚 negative definite. For
non-redundant robots (𝑚 = 𝑛), the mapping 𝑥 = ℎ(𝑞) is
1:1 and locally invertible, thus (33) is positive definite and
thus a Lyapunov function for the complete state (𝑞, �̇�).
The resulting control law is derived as

𝜏 = 𝑀(𝑞)�̈�ref + 𝐶(𝑞, �̇�)�̇�ref + 𝑔(𝑞) −
−𝐽(𝑞)𝑇 𝐾𝑥̃︀𝑥 − 𝐻𝑥(𝑞)𝑠𝑥 (34)

with 𝐻𝑥(𝑞) ∈ R𝑚×𝑚 s.p.d. and the reference trajectory

𝐽(𝑞)�̇�ref = �̇�des − Ω𝑥̃︀𝑥 (35)

with a diagonal p.d. Ω𝑥 ∈ R𝑚×𝑚. Similar to the joint-
space case, the sliding variable is defined as

𝑠𝑥 = 𝐽(𝑞)−1(̃̇︀𝑥 + Ω𝑥̃︀𝑥). (36)

Computing the closed-loop dynamics by inserting (34)
into (1), the time derivative of (33) becomes

�̇�𝑥(̃︀𝑥, 𝑠𝑥, 𝑡) = −𝑠𝑇
𝑥 𝐻𝑥𝑠𝑥 − ̃︀𝑥𝑇 𝐾𝑥Ω𝑥̃︀𝑥 (37)

and is thus negative definite (as long as 𝑥(𝑞) is locally
invertible). This shows uniform local exponential stability8

of the origin (̃︀𝑥*, 𝑠𝑥
*) = (0, 0). Using (36), it is also

possible to conclude uniform local exponential stability of
(̃︀𝑥*, ̃̇︀𝑥*) = (0, 0) by verifying that (37) is indeed negative
definite also in (̃︀𝑥, ̃̇︀𝑥).

4 Experimental results
The controller performance in the joint space is validated
with experiments on a KUKA LWR IV+ [21], see Fig. 1a.
The commercially available robot features 7 revolute joints.
The joint torque controllers [22], [23] operate at 3kHz,
the outer control loop which is used for implementing
the controllers for the experiments is running in 1kHz.
A selection of experimental results is also shown in the
accompanying video9.

Experiment 1: Tracking performance In the first ex-
periment, the tracking performance of the GTC is exam-
ined. The desired trajectory for all seven joints of the

8 Note that it is in general not possible to show task-space
stability globally due to singularities or tasks defined in SE(3).
9 The video is available under https://www.youtube.com/watch?
v=rQcEfocGjVY.
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Fig. 1: a) The KUKA LWR IV+ in its initial pose for the tracking
experiments 1 and 2, described in Sec. 4.
b) Comparison of joint position and velocity errors for different
stiffness parameterizations (cf. Experiment 1, undisturbed trajec-
tory tracking).

LWR is shown in the upper plot of Fig. 2. As a base-
line, an SLC is implemented and the gains are manually
tuned to reach decent tracking performance10. The result-
ing gains are Ω = diag(30, 30, 30, 30, 30, 30, 30, 30) 1

s and
𝐻 = diag(50, 50, 50, 20, 10, 5, 5) Nms

rad . The value of 𝐾 is
set to different values in order to compare the tracking
performance. Thereby, 𝐾 is chosen proportional to 𝐻 in
order to incorporate the different load and motor charac-
teristics of the single joints.
The tracking performance is displayed in the plots b)

and c) of Fig. 2, which shows the Euclidean norm of the
position and velocity errors. As expected, the position
error decreases with higher values of 𝐾, whereas the ve-
locity error remains unchanged. In fact, adding a positive
𝐾̃︀𝑞 to the control law means increasing the stiffness on
a given SLC implementation, while leaving the the ef-
fective D-gain unchanged (cf. Table 1). In Fig. 1b, the
root mean square (RMS) of the position and velocity er-
rors are depicted. Here, an additional parameterization
was added to the comparison: adding a negative 𝐾̃︀𝑞 in
order to reduce the effective P-gain. It turned out that
choosing 𝐾 negative up to 𝐾 = −𝐻Ω yields a stable
behavior, where the perceived stiffness 𝐾eff of the SLC
controller is reduced until 𝐾eff = 0. One can see that in
this case, the position error is significantly higher than for
the positive effective stiffness values, but in contrast, the
velocity error is lower. This shows that in fact, with the
GTC it is possible chose the effective P-gain and effective
D-gain completely independent. Moreover, it is possible
to assign an arbitrary contact stiffness to a given SLC
implementation.

10 A comparison of the tracking performance to the PD+ con-
troller is not considered to be meaningful, as the effective P- and
D-gains are configuration-dependent for SLC and GTC, cf. Table
1.

Experiment 2: Tracking with external torques For
the second experiment, the same trajectory as in Exp. 1
is commanded. In order to investigate the effect of dis-
turbances on the tracking performance, virtual external
torques of ±20Nm are applied at the first three joints
between 𝑡 = 1s and 𝑡 = 3s, see Fig. 3 a). The tracking
results for two parameterizations are shown in plots b) and
c). Another question investigated with this experiment
is how good the theoretically computed contact stiffness
would be perceived in a contact situation with the robot
moving on a trajectory. This can be estimated compar-
ing the measured joint deflections caused by the virtual
external torques to the expected joint deflections which
are computed for the static case as ̃︀𝑞comp. = 𝐾−1

eff 𝜏 ext,virt.
Plot d) shows the achieved joint stiffness for joint 2 ex-
emplarily. The dashed lines denote the computed joint
deflections, the other lines are the measured joint position
errors. Deviations originate among other things from the
Coriolis terms in the effective P-gain (cf. Table 1), which
is present during the execution of a trajectory. Still, it is
visible that the measured joint deflections fit the stiffness
parameterization.

Experiment 3: Physical interaction The third experi-
ment considers physical interaction with a human operator.
Thereby, the robot is commanded to maintain a constant
configuration, which can be inspected in Fig. 4. The exter-
nal torques exerted on the robot are estimated by using
the momentum-based observer from [24, 25]. The observer
gain is chosen as 25 1

s . For the interaction, the parame-
ter 𝐻 is reduced to 𝐻 = diag(15, 15, 15, 6, 3, 1.5, 1.5) Nms

rad
in order to investigate the effect of the perceived stiff-
ness. 𝐾 was chosen as 𝐾 = −Ω𝐻, 𝐾 = 0 1

s 𝐻 (which
is equal to the SLC), and 𝐾 = 100 1

s 𝐻, respectively. It
could be observed, that the GTC is stable with all cho-
sen gains, even with very high perceived stiffness 𝐾eff =
𝐾 + 𝐻Ω = diag(1950, 1950, 1950, 780, 390, 195, 195) Nm

rad
and zero perceived stiffness at 𝐾 = −𝐻Ω. The stability
and the contact behavior can be verified exemplarily for
three choices of 𝐾 in Fig. 5 and Fig. 6. In Fig. 5, the SLC
is compared to a GTC with 𝐾 = 100 1

s 𝐻. In the upper
plots, the manually applied external torques are plotted,
the joint errors are shown in the lower plots. It is visible
that the external torques are in the same order of mag-
nitude, while the corresponding joint errors are smaller
and converge faster for the higher stiffness. In Fig. 6, the
behavior of the GTC with 𝐾 = −𝐻Ω is depicted. It
can be observed that application of external torques leads
to remaining deviations in the joints. Summarized, the
interaction experiments verify both stability and the theo-
retically resulting perceived stiffness of the GTC, in both
extreme configurations and extreme parameterizations.
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Fig. 4: Initial robot pose for the interaction experiments:
𝑞 = (−𝜋/2, 𝜋/2, 0, 0, 0, 0, 0)rad.

5 Discussion
Experimental setup: The robot dynamics are considered
to be rigid (1), even though the joints of the LWR are in
fact elastic. Due to the high joint stiffness (around 10k to
20k Nm

rad ), the link-side dynamics of LWRs can be treated
separately from the motor dynamics through the singular
perturbation assumption [26]. This property is exploited
in the low-level joint torque controllers [22], [23], which
justifies the assumption of a rigid body dynamics.

Applicability and future work: The GTC algorithm
can be used for trajectory tracking of robotic arms in the
joint space, an extension to the task space is possible as
proposed in Sec. 3.3. Regarding the implementation, the
GTC is not expensive. In fact, adding a position feedback
term to an SLC-implementation is sufficient. As pointed
out in Sec. 3.2, it is then possible to create both a PD+
controller and an SLC as corner cases by proper selec-
tion of the respective gains. From this insight, different
possible gain tuning strategies arise. One of several pos-
sibilities is experimentally examined in Sec. 4, where an
existing SLC implementation is used as a baseline w. r. t.
the trajectory tracking behavior. The additional P-gain
is then used to adjust the stiffness according to the task
(either tracking or interaction). Remarkably, it could be
shown that the effective stiffness can be reduced compared
to the SLC while maintaining the full velocity tracking
performance. If the model is sufficiently good (or the con-
troller is used together with a parameter adaption part,
see below), this creates the possibility to create a high
tracking performance, while the contact stiffness is still
low. This property predestines the GTC among others
to human-robot interaction scenarios. On the other hand,

increasing the effective stiffness w. r. t. the SLC creates the
possibility to create underdamped closed-loop behavior,
opening the door for control strategies which exploit the
inherent elasticity of the hardware in order to increase
efficiency.

Last, it is worth mentioning that it is possible to
extend the GTC with a parameter adaption part as in [6].
Similarly, a parameter adaption for the original SLC is
proposed in [5]. The adaption part is able to increase the
robustness w. r. t. parameter uncertainties.

6 Conclusion
In this work, a passivity-based control approach for the
trajectory tracking of robotic arms was analyzed. The
theoretical and practical knowledge about the Generalized
Robot Tracking Controller has significantly been extended
and experimentally verified using a commercially available
robot arm. The advantages of the control approach in
contrast to the well-known PD+ and Slotine-Li tracking
controllers were demonstrated and discussed.
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