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Abstract: As energy demand and electricity costs continue to rise, consumers are increasingly
adopting energy-efficient practices and appliances, underscoring the need for detailed metering
options like appliance-level load monitoring. Non-intrusive load monitoring (NILM) is particularly
favored for its minimal hardware requirements and enhanced customer experience, especially in
residential settings. However, commercial power systems present significant challenges due to
greater load diversity and imbalance. To address these challenges, we introduce a novel neural
network architecture that combines sequence-to-sequence, WaveNet, and ensembling techniques
to identify and classify single-phase and three-phase loads using appliance power signatures in
commercial power systems. Our approach, validated over four months, achieved an overall accuracy
exceeding 93% for nine devices, including six single-phase and four three-phase loads. The study
also highlights the importance of incorporating nonlinear loads, such as two different inverter-type
air conditioners, within NILM frameworks to ensure accurate energy monitoring. Additionally,
we developed a web-based NILM energy dashboard application that enables users to monitor and
evaluate load performance, recognize usage patterns, and receive real-time alerts for potential faults.
Our findings demonstrate the significant potential of our approach to enhance energy management
and conservation efforts in commercial buildings with diverse and complex load profiles, contributing
to more efficient energy use and addressing climate change challenges.

Keywords: non-intrusive load monitoring; deep neural network; WaveNet; ensemble learning;
nonlinear loads

1. Introduction

This research paper is a continuation of the research paper [1] published in IEEE
Access in May of 2023 and an extension of the conference paper [2], published in the 2023
IEEE World AI IoT Congress (AIIoT) held in Seattle, USA, in June of 2023. In addition to
the work presented in [2], this paper contains a detailed evaluation of the neural network
model’s capability on a more complex electrical system, including nonlinear loads. A web
application is also built, combining all the techniques implemented to test user interaction
with our approach to NILM.

As a consequence of the growing demand for energy and escalating electricity ex-
penses, electric utilities and consumers have started to adopt more enhanced energy-
efficient practices. Consequently, consumers are becoming more aware of their energy
usage day by day, leaning toward energy-efficient load components and lighting and adapt-
ing to energy-conservation habits. This shift has prompted electric utilities to acknowledge
the potential advantages of more detailed metering solutions capable of monitoring the
energy consumption of load components at the individual level. Such advanced, detailed
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metering empowers utilities and consumers to optimize their energy resources by offer-
ing heightened awareness. Currently, making well-informed decisions regarding energy
conservation remains challenging, primarily due to the limited availability of information
on energy usage at the individual load level, with most customers relying solely on their
monthly electricity bills for insights into their energy usage [3].

Monitoring loads have gained recognition as valuable tools in various applications,
with Building Energy Management Systems (BEMS) and Ambient Assisted Living (AAL)
being particularly prominent examples. The importance of Energy Management Systems
(EMS) has grown significantly to counter the ongoing upward trajectory of electrical energy
consumption. The building sector is the largest energy consumer within the economy.
According to the U.S. Department of Energy in 2015 (DOE, 2015), buildings accounted for
40% of total primary energy consumption, responsible for 74% of electricity sales. Non-
intrusive load monitoring (NILM) allows for the disaggregation of energy consumption
into individual load components in a building. A comprehensive analysis of existing
literature by Kelly and Knottenbelt in 2016 indicates that solely utilizing NILM feedback
can contribute to an average reduction in domestic electricity consumption ranging from
0.7% to 4.5%, instead of the more common approach of providing feedback on aggregate
electricity consumption [4].

Voltage imbalance represents a frequent concern within three-phase power systems.
In the United States, it is observed that around 66% of electrical distribution systems exhibit
voltage imbalances of less than 1%, while approximately 98% display imbalances of less
than 3%. It is important to note that voltage imbalances can have significant detrimental
effects on three-phase induction motors, such as increased losses, elevated temperatures,
diminished efficiency, and reduced torque generation [5]. One primary factor contributing
to voltage imbalances in three-phase systems is the uneven distribution of single-phase
loads. However, system imbalances can also arise due to variations in different loads’ ON
and OFF times. To mitigate the imbalances and empower users with increased control over
electricity, real-time load monitoring can be implemented, utilizing load classification and
identification techniques on live data.

Appliance load monitoring (ALM) is carried out using three different methods: in-
trusive load monitoring (ILM), semi-supervised intrusive load monitoring (SSILM), and
non-intrusive load monitoring (NILM). ILM necessitates the installation of individual
sensors for each load component, making it a hardware-centric approach with multiple
practical difficulties when it comes to a typical commercial building due to the increased
number of loads in the electrical system to be monitored, even though the ILM might be
the more suitable approach in small households [6]. In contrast, SSILM employs dedicated
sensors to gather local data alongside online datasets and adopts semi-supervised learn-
ing techniques for energy disaggregation. Unlike the preceding methods, NILM relies
on a single point of data sensing and leverages data-driven approaches using existing
data. Consequently, NILM proves to be more effective for commercial buildings as well as
households due to its consumer-friendly nature, as it reduces the requirement for hardware
compared to the previous approaches [7].

In the 1980s, George Hart conducted pioneering research on data-driven methods for
NILM, where he focused on extracting several features from voltage and current waveforms.
His study concludes that NILM is a solid approach for ON/OFF load components and
specifies the limitations of NILM for some loads, such as for small load components
and continuously variable load components. The paper also identifies that multistate
load components require more sophisticated methods and that the technology needed for
monitoring continuously variable load components is currently lacking [6].

Later, as the capabilities of Artificial Intelligence (AI) advanced, it became evident
that integrating AI methods into NILM significantly enhanced the accuracy of energy
disaggregation, even for the multistate variable load components [8–11].

Research by J. Kelly and W. Knottbelt explores using deep neural networks (NNs) to
estimate individual load electricity consumption from a single meter, known as energy



Energies 2024, 17, 3802 3 of 21

disaggregation. Three NN architectures, including recurrent NNs, denoising autoencoders,
and regression networks, are applied to actual aggregate power data from five appliances to
evaluate their performance. The results indicate that all three NNs outperform traditional
methods, such as combinatorial optimization, and can generalize well to unseen houses.
However, the study only focuses on single-phase loads [8].

Research by C. Athanasiadis et al. proposes a method that includes three key compo-
nents: An event-detection system that identifies active power changes related to turn-on
events, A CNN binary classifier that determines whether a turn-on event was caused by
a specific target appliance, A power estimation algorithm that calculates the appliance’s
real-time power usage per second, allowing for accurate energy consumption measurement.
The authors highlight that the approach is most suitable for the single-state appliance but
not for the multistate or nonlinear devices due to the inherent nature of the algorithm used
for the power estimation [12].

Research by W. A. T. Wickramarachchi et al. proposes an NN architecture where a
separate convolutional NN (CNN) model is trained for each load with different window
sizes. They tested their approach for four loads from the UK-DALE dataset, which includes
a fridge, microwave, kettle, and washing machine. They also mention the further research
needed on some loads they have considered in their study [9].

In a subsequent study by B. Gowrienanthan et al., they introduce a cost-effective
ensemble method employing sequence-to-sequence learning for enhancing the energy
disaggregation performance of deep neural network models. Their evaluation of the UK-
DALE dataset demonstrates a significant enhancement in load disaggregation performance,
highlighting its potential for practical applications [10].

Later research by Nalmpantis et al. proposes a paper that suggests a novel neural
architecture that has fewer learning parameters, smaller size, and fast inference time
without trading off performance. Even though that is the case, this research is also limited
to a few household devices, not including nonlinear loads or three-phase loads [11].

Incorporating nonlinear loads into Non-Intrusive Load Monitoring (NILM) has be-
come imperative due to their prevalence in electrical systems, driven by their energy-saving
attributes. Nonlinear loads exhibit intricate and unpredictable power patterns, character-
ized by a substantial number of power stages during operation. The complexity of these
patterns poses a significant challenge in integrating nonlinear loads into NILM systems.
Research conducted by Mahmood Akbar et al. explores the viability of employing cur-
rent harmonics for monitoring nonlinear loads. The primary focus of this research lies in
the monitoring and analysis of current harmonics. Subsequently, the frequency domain
spectrum, in conjunction with real and reactive power, is employed to discern nonlinear
loads. The study concentrates on developing appliance signatures in frequency and time
domains, facilitating the identification of nonlinear load components. The scope of this
research is limited, as it does not extend to the identification of high power-consuming
nonlinear loads, such as inverter-type air conditioners, and does not address their impact
on the load monitoring of other conventional loads typically assessed using NILM [13].

The Non-intrusive Load Monitoring Toolkit (NILMTK) is an open-source platform to
compare diverse energy disaggregation techniques in a replicable fashion systematically.
The challenge of comparing distinct data-driven methods for Non-intrusive Load Monitor-
ing (NILM) arises from the difficulty in achieving generalization. NILMTK encompasses
parsers tailored for diverse datasets, preprocessing algorithms, statistical tools for data set
characterization, benchmark algorithms, and precision metrics [14].

Research by Batra, Nipun, et al. explores the application of NILM algorithms, in-
cluding the Combinational Optimization (CO) model, specifically designed for residential
settings, to a commercial dataset with a sampling time of 30 s. They have also created their
own dataset called “COMBED”, with the main focus of testing their approaches for Air
Handling Units (AHUs) in a Heating, Ventilation, and Air Conditioning (HVAC) system.
The naive CO approach they have used fails to model the continuously varying power
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demand of the AHU. However, they conclude that disaggregation performance improves
significantly when we perform disaggregation at the floor level [15].

A study by Zheng, Chen, et al. categorizes NILM implementation into two categories:
optimization methods and pattern recognition methods. The solution to the optimization
problem is described as knowing appliances that are on in the household at a specific time,
while the objective of pattern recognition methods is to recognize appliances one by one
using pattern recognition algorithms such as event-based algorithms and deep learning
(DNN)-based algorithms. In this paper, a supervised event-based NILM framework is
proposed and validated using both public datasets and laboratory experiments. The
experiment shows that harmonic current features’ additive properties are independent
of power network states, which is suitable for event-based NILM. This approach only
considers nonlinear appliances with on/off and multistate appliances. Although there are
many nonlinear loads in buildings, including appliances with little current distortion, such
as vacuums, air conditioners, and fridges, they cannot be distinguished by steady-state
harmonic features-based methods [16].

More recent research introduces ELECTRIcity, an efficient, fast transformer-based ar-
chitecture for energy disaggregation. They test their approach on several public datasets, in-
cluding UK-DALE, which has increased performance for some appliances when compared
with several other approaches: GRU+ [17], LSTM+ [17], CNN [18,19], and BERT4NILM [20].
Even though this is the case, their approach is not tested with highly nonlinear loads or for
complex commercial or industrial electrical systems [21].

In this research study, we propose a deep neural network (NN)-based methodology to
tackle the complexities of NILM in classifying and identifying single- and three-phase loads
within a complex commercial power system. We test our approach by applying NILM to
a three-phase system with 10 high-power-consuming loads and 21 low-power distractor
loads like fans, TVs, and lights. The approach integrates a data preprocessing model
and the training and testing of a NN model. Results demonstrate the effectiveness of the
proposed method in accurately identifying and classifying loads in a complex commercial
environment. Accurate load identification and classification using NILM can optimize
energy distribution and utilization, improve energy efficiency, and reduce overall energy
costs in commercial power systems. We have also developed a web application that runs
our NN model in the backend to predict the power pattern for the selected load component
for the selected period in the electrical power system, and it also shows how each load
component has consumed electrical energy for the same period chosen using a pie chart as
well. We built the web application to show how close we are to having WIFI-like awareness
for electricity usage. We have also examined the capability of our model for nonlinear load
components by including two inverter-type ACs in the dataset. The power patterns of these
nonlinear load components varied, with one exhibiting a more straightforward pattern
than the other. Our evaluation also delves into how including load components with more
nonlinearity impacts the pre-existing NILM system designed for linear load components.

2. Our Approach

In this research, we have developed a deep NN model combining WaveNet [22],
sequence-to-sequence, and Ensemble [23] techniques. To train and test the NN model, we
have created a year-long, three-phase dataset with a frequency of 6 s, which includes nine
target load components in the first step. In the second step, we developed a web-based
application capable of predicting the selected load component’s power pattern and energy
consumption for the time period selected. The web application also plots a pie chart to
visualize each load component’s contribution to the energy usage in the system. In the
next step, we experiment with including a load component with higher nonlinear behavior
than the previous loads into the three-phase dataset to test our model’s capability on highly
nonlinear loads and to test the effect on the accuracy of the existing load components due
to the added nonlinearity of the electrical system.
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The pipeline of the proposed approach comprises two sub-models: data preprocessing
and training and testing. The data preprocessing model creates the three-phase dataset and
the standardizing required before the data are fed to the NN. For that, we use the NILMTK
tool kit. The training and testing model uses this preprocessed data to train and test the
NN. Here, we train separate NN models for each target load component. In inference, the
three-phase power data that we obtain from the customer power mains are fed to these NN
models so that each model predicts the power pattern of the load component it is trained
to identify and classify, as shown in the following simplified Figure 1.

Figure 1. Proposed System Architecture.

2.1. Data Preprocessing

Dataset creation was significant for us since our goal was to develop an NN model that
has the capability of disaggregating power into individual load components in complex
power systems. For the first step, we included nine target load components in the dataset,
which include a washer–dryer, dishwasher, microwave, water pump, and AC as single-
phase load components and two fridges, a washing machine, and an exhaust fan as three-
phase load components and power pattern are shown in Figures 2–6. Later, we added
inverter-type AC to test on nonlinear loads. The loads that are not high power but affect the
NN model’s capability to disaggregate the power to each target load are distractor loads.
Distractor loads include lights, fans, desktop computers, chargers, TVs, etc. As you can
see, the dataset already included some low-power nonlinear loads without inverter-type
ACs, even though we did not have any high-power nonlinear loads. It proves that the NN
model performs well even in the presence of nonlinear loads in the electrical system.

Figure 2. Single-Phase Washer–Dryer power pattern.
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Figure 3. Single-Phase Dishwasher power pattern.

Figure 4. Single-Phase Microwave power pattern.

Figure 5. Single-Phase Water Pump power pattern.

Figure 6. Single-Phase AC (Browns BG) power pattern.

For the creation of the three-phase dataset, data are collected from three online datasets,
namely UK Domestic Appliance-Level Electricity (UK-DALE) [24], Industrial Machines
Dataset for Electrical Load Disaggregation (IMDELD) [25], and Pecan Street Dataport [19],
which are supported by the NILMTK toolkit. These datasets were selected based on their
relevance, diversity, and the specific requirements of our study.

UK-DALE is a widely known dataset for load identification and classification, chosen
due to its detailed appliance-level data and high sampling frequency, providing valuable
insights into residential energy consumption patterns. The UK-DALE dataset contains in-
formation on the electricity consumption of five houses, including the total power demand
of each house’s mains every six seconds and the power demand of individual appliances
in each house every six seconds.

IMDELD is a dataset containing heavy machinery used in Brazil’s industrial sector,
collected from a poultry feed factory in Minas Gerais, Brazil. This dataset was selected
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for its representation of industrial loads, offering a different perspective from residential
datasets and aiding in the development of a robust NILM model capable of handling
various load types.

The Pecan Street Dataport dataset contains circuit-level and building-level electricity
data from 722 households. A subset that supports NILMTK was used due to its extensive
coverage of residential energy usage and the variety of electrical appliances monitored,
which enhances the diversity of our training data.

Due to the lack of online datasets representing nonlinear load components, we decided
to record data locally. We selected two inverter-type ACs inside the University of Moratuwa
premises to address the gap in existing datasets. Data are recorded using a Fluke 435 series-
2 device and a PZEM-004T power sensor module, both with a 1 Hz sampling frequency.
These data are also added to the three-phase dataset created.

We also use the NILMTK toolkit to preprocess this locally recorded data, ensuring
consistency and compatibility with the online datasets. This comprehensive approach in
dataset selection and data recording enhances the robustness and generalized of our NILM
model across various load types and operational conditions.

The target load components we have selected cover a wide variety of loads in the
commercial power systems we see today. Some loads are closer to ON-OFF power patterns,
some have multi-stage power patterns, and loads like exhaust fans have continuous power
patterns with small variations in power. The following figures illustrate the power patterns
of each target load component we used to create the three-phase dataset.

Even though a wide variety of loads were selected to test the NN model for more
complex loads, we also included loads close to similar power patterns. You can see that
from the two three-phase fridges in the figures: Figures 7 and 8 and three-phase washing
machine and exhaust fan pattern in Figures 9 and 10.

Figure 7. Three-Phase Fridge 1 power pattern.

Figure 8. Three-Phase Fridge 2 power pattern.
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Figure 9. Three-Phase Washing Machine power pattern.

Figure 10. Three-Phase Exhaust Fan power pattern.

As can be observed from Figure 11, the aggregated three-phase power patterns represent:

• A very complex aggregated power pattern. This is desirable since a commercial
electrical power system typically contains many loads with different power signatures.

• A noisy electrical system. Usually, this is the case with commercial power systems.
• An unbalanced electrical power system. This is the case with most industries due

to highly complex electrical systems. Adding different loads to the system without
proper design can lead to inherent imbalances. Even though loads are distributed
among the three phases to have phase balance due to the turn ON and OFF times of
loads, unbalances can occur, as explained in the introduction.

When creating the three-phase dataset, we created a Python object with the aggregated
power of the three phases and each load’s power. After adding all the data, the Python
object is saved in Pickle format. We followed this method to retrieve data quickly when
training and testing the NN model.

Figure 11. Aggregated data.

Now, let us move into the NN model we have implemented. From the three-phase
dataset, 75% of the data are used to train the NN model to obtain the trained weights. These
weights are later loaded into the NN model with the rest of the 25% of the dataset to test
our approach.

2.2. Deep Neural Network Architecture

We have tried several techniques to convince ourselves that our final NN architecture
can capture any load component’s features. Because of this same reason, we created a more
complex and diverse dataset. Here, we discuss our approach to give you an overview of
the implemented NN architecture.

Figure 12 represents the implemented NN architecture. The input layer accepts
the aggregated power data from the three phases. We also use an ON/OFF classifier
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to determine whether the target load component is ON or OFF before predicting the
power curve using a power ON threshold to generate labels to train the classifier. The
classification layer increases the model’s accuracy by predicting ON times, suppressing the
power prediction by the NN model’s regression layers when the load component is OFF.
The classifier’s output and the aggregate input are then fed to the concatenate layer. After
concatenation, the data undergoes a series of convolution layers to extract the features.
Finally, a regression layer is used to predict the power of the target load component. As
Figure 12 indicates, both the classification and regression sub-models use the WaveNet
architecture. When considering the final weights of the NN model for a particular load
component, We use a low-cost ensemble technique to obtain more generalized model
weights. Here, we used a sequence-to-sequence approach instead of a sequence-to-point
approach [18].

Figure 12. Proposed Model Archietecture.

2.2.1. WaveNet Architecture

Figure 13 represents the WaveNet architecture we used to implement the classification
and regression model layers. We selected WaveNet because it effectively learns long-range
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temporal dependencies in data through dilated and causal convolutions. Dilated convo-
lutions capture long-term features and incorporate larger context information without
significantly increasing the number of parameters, making it suitable for tasks such as im-
age segmentation and sequential data analysis. Causal convolutions ensure that the output
at each time step only depends on previous time steps, mimicking a causal relationship cru-
cial for time series analysis. Previous researchers used models like Sequence-to-Sequence,
Sequence-to-Point, and Long Short-Term Memory (LSTM) for non-intrusive load moni-
toring. However, these older architectures are optimized for natural language processing
and may not be ideal for power pattern recognition. We found WaveNet to be particularly
suitable for this purpose, effectively capturing signal variations with noise and distinct
features and outperforming the previously mentioned models, especially for three-phase
devices. We further enhanced the WaveNet model using ensemble techniques, which
significantly improved performance. Given these successful results across various devices,
we chose to stick with this architecture.

Figure 13. WaveNet Architecture.

Here are some other main components and characteristics of the WaveNet architecture:

• Residual Connections: WaveNet utilizes residual connections inspired by the ResNet
architecture to improve the flow of information through the model. Residual connec-
tions enable the model to retain and propagate important information through the
layers, which helps alleviate the vanishing gradient problem and speed up training.

• Gated Activation Units: WaveNet employs gated activation units, specifically the
combination of a sigmoid and a hyperbolic tangent activation function, to control the
flow of information within the network. This gating mechanism allows the model to
selectively update and pass information through the layers, enhancing the modeling
capabilities of the network.

• Skip Connections: Skip connections, similar to the residual connections, are used
in WaveNet to create shortcut connections between the early and late layers of the
network. These connections enable the model to capture both short-term and long-
term dependencies simultaneously, facilitating the generation of coherent and realistic
audio samples.

2.2.2. Low-Cost Ensemble Technique

Ensembling is a technique used in NNs to improve the performance and generalization
of the model by combining predictions from multiple individual models. It leverages the
idea that multiple models with diverse characteristics can provide more accurate and robust
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predictions than a single model. There are different methods to perform ensembling in
neural networks, but two commonly used techniques are:

• Model averaging: In model averaging, multiple individual models are trained in-
dependently on the same dataset using different initializations or hyperparameters.
During prediction, the outputs of all models are averaged or combined in some way
to obtain the final prediction. This approach helps reduce the impact of individual
model biases or overfitting and improves overall performance.

• Model stacking: Model stacking, also known as a stacked generalization, involves
training multiple individual models on the same dataset, similar to model averaging.
However, instead of directly combining their predictions, a meta-model is trained
to learn how to best combine the predictions from the individual models. The meta-
model takes the outputs of the individual models as inputs and learns to make a final
prediction based on them. This approach allows for more sophisticated combination
strategies and potentially captures more complex relationships between the individual
models.

Ensembling techniques can be applied to different types of neural networks, including
feed-forward networks, convolutional neural networks (CNNs), and recurrent neural
networks (RNNs). It is important to note that ensembling requires training and maintaining
multiple models, which increases computational resources and training time. However, the
improved performance and generalization often justify the additional complexity.

Our Low-Cost Ensembling approach, shown in Figure 14, involves the first technique
by continuously training our same NN model. After convergence, we obtain multiple
models with high accuracy and average them to obtain the final model weights. The reason
it is called low-cost is that we only use one model to obtain multiple model weight combi-
nations, which saves a lot of computational resources. By combining weights from multiple
models, we could reduce errors and improve the model’s overall accuracy. Ensembling
provided us with several benefits:

• It could help capture different aspects or patterns in the data that a single model may miss.
• Improved generalization: Ensembling helps reduce overfitting by incorporating di-

verse models. Each model weight combination may have its strengths and weaknesses,
and ensembling can mitigate the impact of individual model weaknesses, leading to
better generalization on unseen data.

• Enhanced robustness: Ensembling can improve the robustness of the model by reduc-
ing the impact of outliers or noisy data points. Outliers may affect the predictions of
individual models differently, but ensembling combines the predictions, reducing the
influence of individual errors.

• Confidence estimation: Ensembling can provide estimates of prediction confidence
or uncertainty. By considering the variability of predictions across different models,
ensembling can offer insights into the reliability of the predictions.

Figure 14. Low-cost Ensemble technique.
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2.3. Web Application

The following Figures 15–17 represent the developed web application. As shown in
Figure 15, the user can select the load component that needs to be monitored and the time
period. The graph shown in Figure 15 is the three-phase power, which should be coming
from the sensor installed at the user’s power mains, ideally. According to the user selection,
the NN model, which runs in the backend, predicts the power pattern for the selected
load component. Energy usage for the load component chosen for the set period is also
shown. Users can zoom in and out of these graphs and view the power at any time. The
pie chart shown in Figure 17 shows how each high-power load component in the system
consumed energy.

Here, the load component is selected as “Single-Phase Inverter AC-2” and the period
as “day”. Users can also select “month” as the period to see the energy usage for the month.
This gives a WiFi-like approach by empowering users with information to gain control over
their electrical energy usage.

Figure 15. Landing Page of the Web Application.

Figure 16. Power Pattern of Selected Load Component (Inverter AC-2) in the Web Application.

Figure 17. Web Application: Energy Pie Chart.
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3. Experimentation and Results

This research is unique and innovative since it addresses quite challenging aspects of
NILM in today’s world. Our final dataset, which is used to train and test the NN model,
is very complex, and with the added randomness due to the nonlinear loads, it became
quite challenging to have good accuracies for the load components in the system. While
addressing these challenges, we also ran the NN in the web application’s backend to
experiment with the NILM on the user experience. We were able to give the users WIFI-like
awareness, as explained earlier.

3.1. Three-Phase Dataset

Initially, we tested our model with only limited loads. As explained earlier, the
dataset contains load components with somewhat similar power signatures, up to the load
components with highly random power patterns. We also made sure to use NILMTK to
process the datasets that we obtained online. We synthesized only the locally recorded data,
and we made sure to separate the training and testing data so that testing data are new to
the NN model.

3.2. Nonlinear Loads

We wanted to test our NN model for the nonlinear load components as well. However,
due to the unavailability of data online, we went with collecting data locally. For that, we
used a PZEM-004T power sensor to record the data continuously for 12 days. As a highly
nonlinear load component, we selected an inverter AC manufactured by LG located at
the Transport and Logistics Department of the University of Moratuwa. After carefully
examining its power pattern, we selected this AC to confirm its highly nonlinear operation.
You can see its power pattern in Figure 18. As can be seen from Figure 18 unlike the
previous non-inverter-type AC shown in Figure 6, its power pattern is very complex. When
it comes to this inverter-type AC, it is a load component that can run at any power in a
specified power range, which goes under Type-IV as described in [14]. The inverter AC we
have considered can run even at a hundred watts, but when it is running at full power, it
is about 2 kW. Also, its power pattern is highly dependent on the outside weather. This
behavior shows us how complex the inverter AC we have considered is. Later, under
the topic “Inverter-type AC integration”, we mainly assess the impact of this inverter AC
integration on the existing dataset.

Figure 18. Single-Phase Inverter AC 2 (LG) power pattern.

3.3. Evaluation Matrices

To assess the model’s performance and validate the accuracy of its predictions, we
employ three essential metrics: mean absolute error (MAE), mean squared error (MSE), and
F1-score. The mean absolute error (MAE) quantifies the average magnitude of the errors
between the observed and predicted values within a dataset. The calculation of MAE is
carried out by applying Equation (1). The mean squared error (MSE) assesses the average
of the squared differences between predicted and observed values within a dataset. The
calculation of MSE is carried out by applying Equation (2), as shown below.
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MAE =
1
T

T

∑
t=1

|yt − ŷt| (1)

MSE =
1
T

T

∑
t=1

|yt − ŷt|2 (2)

where

ŷt = The prediction o f the model at time t

yt = The actual power consumption at time t

The Following two equations help to calculate the F1_Score.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1_Score = 2 · Precision · Recall
Precision + Recall

(5)

where
TP = The model prediction indicates the loadcomponent

is ON, when the loadcomponent is actually ON

FP = The model prediction indicates the loadcomponent

is ON, when the loadcomponent is actually OFF

FN = The model indicates the loadcomponent is OFF

when the loadcomponent is actually ON

Predicted values are classified as ON or OFF using a threshold value; values over
the threshold are classified as ON, and values below it as OFF. The needs particular to
the application are used to calculate the suitable threshold value. For instance, we chose
a threshold value of 0.25 for most of the load components. The F1 score helps assess
classification algorithms, especially for imbalanced datasets, as it integrates precision and
recall into a single value. Recall is the percentage of genuine positive outcomes among
actual positive outcomes, whereas precision is the percentage of real positive outcomes
among anticipated positive outcomes.

3.4. Inverter-Type AC Integration

This study additionally presents a method to enhance the efficacy of non-invasive
load monitoring (NILM) in commercial buildings through the integration of nonlinear
load components into the current model. Because these load components can save energy,
their integration into power systems has much potential. Two inverter-type AC units were
used in this investigation, and pertinent data were collected as previously discussed. With
notable performance measures for both Inverter AC 1 and Inverter AC 2, the preliminary
results show promise.

3.5. Results

The Kaggle platform was employed in our study to train and test our model. To
improve computational efficiency, we specifically used the GPU P100 accelerator accessible
on the Kaggle platform. We conducted experiments on Kaggle to achieve the results that
are shown here.
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We systematically explored various hyperparameters to optimize performance for
appliance prediction. Our exploration ranged from simple to more complex models,
varying sample sizes, depths, the number of WaveNet layers, and initial learning rates.
Through manual iteration and parameter tuning, we identified two sets of hyperparameters
that yielded promising results. Notably, these parameters consistently demonstrated
efficacy across different appliances. The evaluation metrics employed include training
validation mean squared error (MSE), mean absolute error (MAE), and training time.

The accompanying Table 1 illustrates the performance of the two inverter AC units,
one single-phase device, and two three-phase devices, alongside other appliances. For
Hyperparameter Set One, with a sample size of 42,000 and an initial learning rate of 0.01,
the model depth was set at 16, with six WaveNet layers. Conversely, Hyperparameter Set
Two featured a sample size of 42,000, an initial learning rate of 0.01, a depth of 20, and
eight WaveNet layers. Despite exploring various configurations, these two sets consistently
outperformed others in terms of predictive accuracy and training time.

Table 1. Hyper Parameters: Analysis.

Appliance
Hyper Parameter 1 Hyper Parameter 2

MSE MAE
Training
Time (S) MSE MAE

Training
Time (S)

Inverter AC 1 0.00471 0.01578 741.51 0.00162 0.00679 965.925
Inverter AC 2 0.04241 0.12931 744.56 0.04360 0.13068 939.32

Washer–Dryer 0.00624 0.01079 717.77 0.00943 0.01326 957.73
Exhaust Fan 0.04882 0.03107 569.19 0.05176 0.02709 673.41

Fridge 2 (3-Phase) 0.00112 0.00777 706.49 0.00129 0.00701 828.73

A comparative analysis presented in the table suggests that Hyperparameter Set
Two generally outperformed Hyperparameter Set One, albeit with exceptions noted for
the washer–dryer appliance. Notably, while Hyperparameter Set Two exhibited superior
predictive performance, it incurred significantly longer training times. Thus, based on our
research findings, we elected to adopt Hyperparameter Set One as our final configuration.

The study of the learning curve offers insightful information about how each appliance
behaves throughout training. Examining the learning curves allows us to determine
whether overfitting or underfitting is occurring. The training and validation loss curves
must be closely examined for this analysis. We can successfully optimize the training
process using such an approach.

We conducted a comprehensive analysis of the learning curves for all appliances,
focusing initially on the single-phase microwave device as shown in Figure 19. Remarkably,
similar learning curves were observed across all other appliances studied. In this learning
curve, you can observe the fluctuation in the beginning that happens because of the ADAM
optimizer. Adam changes the learning rate according to the observed gradient, resulting
in a gradual reduction of the learning rate over time. The fluctuation of validation loss
decreases when the learning rate decreases. This scenario explains the adaptive nature of
the ADAM optimizer and its impact on the training dynamics.
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Figure 19. Microwave Learning Curve.

The deep NN model could accurately predict the single-phase and three-phase load
components’ power patterns for the three-phase test dataset. Some predictions done by
the NN model are shown in Figures 20–24. The test dataset includes the last 25% of the
three-phase dataset, which adds up to three months. The validation of results comprises
the utilization of classification and regression model losses. Specifically, validation classifi-
cation model loss is a metric to assess the classification model’s performance during the
training process’s validation phase. Similarly, validation regression model loss is employed
as a metric to evaluate the regression model’s performance during the training process’s val-
idation phase. Detailed load-specific validation classification loss and validation regression
loss values are presented in Table 2.

Figure 20. Dishwasher Target and Prediction.

Figure 21. Washer–Dryer Target and Prediction.

Figure 22. Water Pump Target and Prediction.
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Figure 23. Fridge 2 Target and Prediction.

Figure 24. Exhaust Fan Target and Prediction.

Table 2. Classification and Regression Validation Loss.

Load Component Validation
Classification Loss

Validation
Regression Loss

Dish Washer 2.45 × 10−8 7.75 × 10−3

Microwave 2.60 × 10−8 1.47 × 10−2

Washer-Dryer 2.90 × 10−8 4.76 × 10−3

Water Pump 2.38 × 10−8 7.23 × 10−1

Fridge 1 (3 Phase) 4.09 × 10−2 1.24 × 10−2

Fridge 2 (3 Phase) 1.09 × 10−2 5.33 × 10−3

Washing Machine (3 Phase) 2.66 × 10−8 8.87 × 10−3

Exhaust Fan (3 Phase) 2.08 × 10−2 2.48 × 10−3

Mean absolute error values for the load components are provided in Table 3. The
preliminary results of nonlinear devices exhibit promise, with noteworthy performance
metrics for both Inverter AC 1 and Inverter AC 2. Specifically, for Inverter AC 1, the mean
absolute error is 7.88 × 10−3, accompanied by a validation classification loss of 4.35 × 10−3

and a validation regression model loss of 1.19 × 10−3. Meanwhile, for Inverter AC 2, the
mean absolute error is 1.80 × 10−2, with a validation classification loss of 4.48 × 10−1 and a
validation regression model loss of 5.30 × 10−2. The visualization of our model predictions
is illustrated in Figures 25 and 26.
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Table 3. Mean Absolute Error Values for the Load Components.

Load Components MAE

Dish Washer 1.13 × 10−2

Microwave 1.35 × 10−2

Washer Dryer 1.17 × 10−2

Water Pump 7.88 × 10−3

Fridge 1 (3 Phase) 1.62 × 10−2

Fridge 2 (3 Phase) 9.17 × 10−3

Washing Machine (3 Phase) 1.92 × 10−2

Exhaust Fan (3 phase) 8.09 × 10−2

Upon integrating the inverter-type load component, we observed a marginal reduction
in prediction accuracy for specific load components, namely the washer–dryer and water
pump. This underperformance, as illustrated in Figure 27, can primarily be attributed to
the integration of inverter-type devices, which do not exhibit specific on-off power patterns.
Instead, they generate various power patterns, causing the model to misinterpret signals
from other devices, leading to errors in device identification and classification. To address
this issue, we recorded additional inverter-type device data locally to enhance the model’s
learning. The presence of inverter-type devices introduced marginal errors, particularly
affecting devices with small variations like water pumps and washer-dryers. However,
even with the inclusion of these marginal errors, our model still delivered very good results.
Future implementations will benefit from the continued recording and inclusion of diverse
inverter-type device data to mitigate these issues and further enhance model accuracy.

Figure 25. Inverter Ac 1 Target and prediction.

Figure 26. Inverter Ac 2 Target and prediction.
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Figure 27. (a) Washer–dryer before integrating inverter AC-2, (b) Washer–dryer after integrating
inverter AC-2, (c) Water pump before integrating inverters AC-2, (d) Water pump after integrating
inverter AC-2.

4. Conclusions

In this research, we have developed a robust, Non-Intrusive Load Monitoring (NILM)
technique utilizing a Convolutional Neural Network with the WaveNet architecture. Our
model is versatile and suitable for deployment in both domestic and commercial buildings.
Through rigorous experimentation and the implementation of inventive solutions, we have
proactively tackled the following challenges for the future.

• Energy Disparity: The higher consumption of three-phase load components can
overshadow the power usage of smaller single-phase load components, potentially
distorting accurate load monitoring.

• Customized Data Gathering and Model Training: Each customer’s building necessi-
tates tailored data collection and model training, introducing logistical complexities.

• Aging Load Patterns: Our research has thoughtfully addressed aging load components’
evolving power consumption patterns over time.

• Load Distinction Challenges: Our NN model could accurately distinguish between
similar load components using small differences in power signatures.

• Nonlinear Loads: Accurately predicted the power patterns of the two inverter-type
ACs. Also identified that the integration of nonlinear load types may marginally affect
overall accuracy, prompting consideration.

Our model has outstanding performance in both commercial building and home
applications, showcasing great precision in load identification, especially when confronted
with nonlinear load components. The exceptional efficiency and brief training period of this
technology result in practical advantages. In our study, we employed ten separate devices
with varying levels of distraction to evaluate the effectiveness of our concept. The model
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effectively processed datasets that were both noisy and imbalanced, accurately simulating
real-world scenarios. In our study, we used power data with a 6-s frequency. However,
our model is designed to be flexible and is expected to perform well with data frequencies
ranging from 1 s to 10 s. The effectiveness of the model may decrease if the data frequency
is too low, leading to noisy data, or too high, resulting in insufficient features for the model
to utilize effectively. This range provides a robust framework for various data granularities
while maintaining performance.
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