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A Self-Training Approach Using Benchmark Dataset
and Stereo-DSM for Building Extraction

Xiangtian Yuan ", Jiaojiao Tian

Abstract—Deep learning has been the state-of-the-art solution to
numerous remote sensing tasks, especially for building extraction.
However, the performance of learning-based building extraction
approaches depend to a large extent on the similarity of the source
and target domain data. To alleviate the dependence on annotated
data, and to exploit the potential of multimodal remote sensing
data, a 3-D assisted semisupervised method for building extraction
is proposed. The proposed method is based on self-training, a
semisupervised method that utilizes both labeled and unlabeled
data. In addition, photogrammetric digital surface model and belief
function are exploited to bridge the domain gaps between the source
and target data. The performance is evaluated with ISPRS Potsdam
and Vaihingen benchmark datasets, and a WorldView-2 satellite
multimodal dataset. Compared with the direct cross-domain test
baseline, improvement of Jaccard score ranging from 8.91% to
21.39% is achieved, demonstrating the efficacy of the proposed 3-D
self-training method.

Index Terms—Aerial imagery, DSM, deep learning, domain gap,
multimodal, pseudolabeling, satellite imagery, self-training.

I. INTRODUCTION

UILDING extraction has been a fundamental remote sens-
B ing (RS) task for decades, since the results are indispens-
able for urban planning and management, disaster relief opera-
tions, mapping, etc. Before the overwhelming adoption of deep
learning methods in building extraction, hand-crafted features
and machine learning methods such as support vector machine
and random forest (RF) were widely applied. However, the
traditional machine learning methods have poor generalization
ability with data from different domains, and the hand-crafted
features are sometimes susceptible to noise in data. Thereafter,
the advancement of deep learning methods and hardware has
brought about a paradigm shift in the solutions for many RS
tasks. Since 2014, end-to-end trainable fully convolutional net-
work (FCN) [1] has enabled the rapid emergence of research
using deep neural networks to tackle semantic segmentation,
which assigns a label to each pixel and is one of the solutions to
building extractionin RS. FCN replaces the fully connected layer
with a fully convolutional layer, enabling pixelwise fine predic-
tion of the same size as the input image. Henceforth, numerous
classic network architectures have been developed to tackle
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semantic segmentation, such as U-Net [2], Deeplabv3+ [3], and
HRNet [4]. In addition, to accommodate for the peculiarities
of RS data, innovative network structures and modules are
proposed [5], [6], [7] and have achieved improved performance
on several RS semantic segmentation datasets.

The performance of supervised deep learning approaches is
dependent on the amount of data. As networks get deeper, the
amount of parameters also grows substantially, requiring more
annotated data to avoid overfitting. In addition, for deeper neural
networks to learn informative features, training data need to
have a high level of diversity and variability. As a consequence,
the amount of publicly available building extraction datasets
has been spurred by the rapid development of deep learning
methods to satisfy the demand for the data-driven approach.
Numerous datasets have been curated for RS building extraction
task, such as ISPRS Potsdam' and Vaihingen,?> Inria aerial
labeling dataset [8], WHU building dataset [9] and SpaceNet,’
which consist of remotely sensed imagery with corresponding
human-annotated ground truth. This emergence of data has
significantly elevated the performance of building extraction
techniques based on deep learning and promoted research.

Nevertheless, despite the advancements, there remain persis-
tent challenges within the RS community. One critical challenge
is the domain gap between source and target domain datasets,
which results in deteriorated performance of methods tasked
with extracting buildings. Domain gap issues arise when source
domain and target domain data are captured by different sen-
sors [10], [11] are from regions with dissimilar building types,
or are captured under distinct acquisition conditions [10]. One
may argue that the domain gap could be closed with sufficient
annotated data. Nevertheless, annotating RS data are another
challenge. RS data annotation is a complex, time- and labor-
intensive task that demands annotators to possess professional
knowledge of the ground objects in RS images or even require
region-specific knowledge. Moreover, the amount of data from
satellite and aerial earth observation missions is so large that
it is impossible to keep data annotation at the speed of data
acquisition. As a consequence, the challenges posed by domain
gaps and the impracticability of intensive data annotation incen-
tivize RS researchers to explore learning paradigms that do not
necessitate large amounts of annotated data.
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Semisupervised learning (SSL) is a potential solution to the
aforementioned problems. SSL. methods harness the potential
of unlabeled data with the help of annotated data. In the RS
community, SSL methods have been adopted and tailored ac-
cording to the demands of various RS tasks [12], [13], [14], [15].
Among the SSL paradigms, self-training is a pseudo-labeling-
based method of SSL and has been widely adopted due to its
simplicity and practicality. However, domain shifts will result in
inaccurate building pseudolabels for the target domain data. In
building extraction specifically, the pseudolabels could contain
nonbuildings mistakenly labeled as buildings, or buildings that
are not labeled.

Very high resolution (VHR) stereoscopic imagery and its
corresponding stereo-matched DSM have enabled more accurate
building extraction, thanks to the finer ground sampling distance
(GSD) as well as supplemental height information [11], [16].
Intuitively, the resulting 3-D elevation models can contribute
to better pseudolabels by fusing additional height information
that is not available in 2-D spectral imagery. As DSM contains
discernible features of buildings, it can serve to provide supervi-
sory signals for the task of building extraction [17], [18]. While
extensively explored in numerous RS tasks, the benefits of the
multimodal RS data are not adequately exploited in most of the
pseudolabeling-based SSL methods in RS applications. There-
fore, it is worthwhile to investigate the potential of stereo DSM
for pseudolabeling-based semi-supervised building extraction.

With the above discussion in mind, in this work, we propose a
concise and elegant SSL framework for multimodal data (stereo
DSM and spectral imagery) to tackle the domain shift issue in
RS building extraction. The workflow is conceived based on the
real-world issues we encountered, including the performance
decrease in cross-domain tests, and the difficulty in annotating
incoming RS data. The method is designed to take advantage of
publicly available benchmark datasets as source domain data.
The main contributions of this work are as follows:

1) We present a 3-D self-training framework for building
extraction. The framework exploits the potential of optical
imagery and corresponding stereo DSM to reduce the
negative impact of domain shift efficiently and intuitively.

2) We use the decision fusion strategy to improve the pseu-
dolabels for self-training. The decision fusion strategy
aims to refine overly confident false positives (FPs) in
pseudolabel with the help of photogrammetric DSM,
which can effectively and accurately reject FPs.

3) We adopt a simple and self-explanatory Tversky loss
function that balances FPs and false negatives (FNs), and
the parameters can be easily selected for each specific case
individually.

4) We evaluate the proposed framework on one private
dataset of Munich captured by the WorldView-2 satellite
and two aerial multimodal benchmark datasets: ISPRS
Potsdam and Vaihingen datasets. The experimental results
are analyzed in detail, demonstrating the efficacy of the
proposed method for multimodal semisupervised building
extraction.

The remainder of the article is structured as follows: Section II

reviews in detail various SSL paradigms in computer vision and
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RS. Section III details the proposed methodology. Section IV
describes the experiments and introduces the results of the
experiments and ablation study, and compares with other similar
methods. In Section V, the results are discussed and analyzed
thoroughly. Section VI draws the conclusion and proposes po-
tential future improvements.

II. RELATED WORK
A. SSL and Self-Training

SSL is gaining momentum in the last decades. The core idea
is to leverage both labeled and unlabeled data to train a machine
learning model. For SSL to work, certain assumptions have to
be satisfied, including smoothness, cluster, and manifold as-
sumptions [19], [20]. SSL encompasses various approaches. For
example, consistency regularization is a class of methods based
on the smoothness assumption stipulating that classes must be
separated by low-density regions; or the manifold assumption
stating that high-dimensional input data can be represented in
its embedding space by multiple lower dimensional manifolds
on which neighboring data points have similar labels. It can
be understood as a way to leverage the unlabeled data to fit
the dataset on a smooth manifold [21]. The core intuition is
that perturbations applied to data should not drastically change
the model’s output, and such regularization can be enforced by
minimizing mean squared error or Kullback—Leibler divergence
between the outputs [22].

Besides consistency regularization, another SSL paradigm is
self-training, which is an inductive method [19] that utilizes
labeled data to train an initial model and apply the trained model
to a large amount of unlabeled data to generate pseudolabel.
Under the taxonomy proposed by Yang et al. [20], self-training
is a subcategory of pseudolabeling methods (which also in-
cludes cotraining methods that utilize more than one model).
A typical self-training scheme follows the pipeline illustrated
in Algorithm 1 with possible minor variations. In the first step,
a model My, is trained with source data D, in a supervised
manner. In the second step, the trained model My, makes
predictions on unlabeled target data D,. The predictions are
selected according to various rules. One of the most commonly
used rules is confidence filtering, which can be derived from
network softmax output or other confidence measures. After
the selection, only predictions with high confidence [23] are
kept as pseudolabel and combined with the labeled source data,
with which the model is retrained or fine-tuned (D)) in step
3. It could be viewed as a sort of entropy minimization that
aims to increase output confidence and has been achieved by
using minimum entropy regularizers [24]. Intuitively, selecting
high quality pseudolabel is of paramount importance. However,
pseudolabels with high-confidence prediction do not necessar-
ily indicate correctness and can propagate the error through
training.

SSL approaches are not mutually exclusive and can be used
hybrid. For example, MixMatch [25] uses a combination of
mixup [26] operations and label sharpening to train on both
labeled and unlabeled data. FixMatch exploits both consistency
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Algorithm 1: Self-Training Workflow.

Input: Source Domain (Dy), Target Domain (Dy)
Output: Trained model (M, )
procedure Step 1: (Mg, , Ds)
train My, with Dy
update model weights 0
return My,
end procedure
procedure Step 2: (My,, D)
Dyew = Dy
forallt € D; do
Pred; + My_(t) > inference
if Confidence(Pred;) > threshold then
assign Pred; as the label of ¢
Dnew = Dnew ) (t7 PTBdt)
else
discard ¢
end if
end for
return D,
end procedure
procedure Step 3: (My_, Dnew)
train My_ with Dy
update model weights 6
return My
end procedure

regularization and pseudolabeling strategies for image classifi-
cation [27].

In dense prediction tasks such as semantic segmentation, SSL
methods have been studied. However, semantic segmentation
with SSL is more challenging as the smoothness assumption
does not always hold, therefore hindering large-scale appli-
cations of consistency regularization in semantic segmenta-
tion [28]. Hung et al. [29] is one of the earlier frameworks uti-
lizing self-training for semantic segmentation. They employed
a generative adversarial network (GAN) based method with
a pixel-based discriminator, the output of which is used to
mask out low confidence regions of pseudolabels according to
a fixed threshold. Mittal et al. [30] proposed a framework that
comprises two network branches: semisupervised segmentation
and semisupervised multilabel classification. The segmentation
branch employs an adversarial strategy with feature matching
loss [31] to select high-quality pseudolabel for self-training;
the classification branch employs a mean teacher model to
predict image-level semantic classes that are late-fused with the
segmentation map to remove nonpresent classes. Ouali et al. [32]
leveraged unlabeled data with a cross-consistency training strat-
egy under the cluster assumption for semantic segmentation
tasks. The method consists of a common encoder and the main
decoder, which are trained with labeled data; and the auxiliary
decoders, which take as input different perturbations of output
from the encoder. Consistency between the outputs from the
common decoder and the auxiliary decoders is enforced to en-
hance the encoder’s representation of the data. The core intuition
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of this method is that in semantic segmentation, the low-density
regions (from the clustering assumption) are more salient in the
encoder’s output than in the input images.

In the RS community, SSL. methods have been adopted and
tailored according to the demands of RS tasks. Lietal. [12] pro-
posed a framework combining both self-training and consistency
regularization for RS image semantic segmentation. A GAN
training strategy is adopted to produce a pixelwise confidence
score, which is used to reweight the loss of unlabeled data in self-
training. During the self-training, consistency regularization is
enforced by calculating cross-entropy loss between perturba-
tions of pseudolabels and unperturbed pseudolabels. Zhang
et al. [13] proposed an adversarial training model for road
segmentation of RS imagery. First, the target domain is aligned
to the source domain by a GAN-based model with a feature
pyramid fusion module. In the second stage, before self-training,
the pseudolabels of the target domain data are split based on
their confidence scores, and the low confidence split is aligned
with the high confidence split via adversarial learning. Sun
et al. [33] proposed a boundary-aware semisupervised semantic
segmentation network for VHR RS images based on adversarial
strategy, which also employs a boundary attention module and
a channel-weighted multiscale feature module. Peng et al.
[14] utilized the Wallis filter and adversarial learning to reduce
domain gaps between training and testing data and adopted the
mean teacher model and self-training strategy for unsupervised
domain adaptation (UDA) building extraction. Liu et al. [34]
proposed a UDA method based on self-training for landcover
mapping in urban and rural areas. Wang et al. [15] proposed
a method named RanPaste, which randomly pastes part of the
labeled image into the unlabeled image as a strong perturbation
and then the cropped label is merged with the output of the
teacher’s model as the new ground truth. An adaptive threshold
method to weigh the supervised loss and the semisupervised loss
was used to improve the pseudolabel quality. Among myriads
of SSL methods, pseudolabeling seems to be falling out of favor
in the face of new state-of-the-art SSL methods. Conventional
pseudolabeling-based methods (which select high-confidence
pseudolabels) fared poorly due to incorrect pseudolabeled sam-
ples, which lead to noisy ground truth and therefore weak
generalization ability. Nevertheless, Rizve et al. [35] argued that
in addition to the simplicity, pseudo-labeling-based methods can
still perform on par with consistency regularization methods, and
proposed to use both confidence and uncertainty for pseudolabel
selection. The uncertainty measurement is estimated by using
Monte Carlo Dropout [36] and calculating the standard deviation
of 10 stochastic forward passes. Cascante-Bonilla et al. [37]
also argued in favor of pseudo-labeling methods. The authors
stated that pseudo-labeling methods can achieve comparable
results to other state-of-the-art methods and are more resilient
to out-of-distribution samples. Inspired by curriculum learn-
ing [38], an algorithm named Curriculum Labeling was proposed
to progressively select harder samples by varying percentile
thresholds. Moreover, numerous recent works still exploit the
potential of pseudo-labeling-based methods with other SSL
paradigms [34], [39], [40]. Therefore, the pseudo-labeling-based
methods are still worth attention, especially in multimodal RS
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where additional data sources can be used to verify and improve
the pseudolabel quality.

B. Stereoscopic Imaging (Spectral and DSM)

RS data encompass multiple modalities that can potentially
complement one another, which is one of the very distinct
features. Intuitively, additional modalities could have a positive
impact on learning tasks by providing additional information.
Therefore, multimodal methods have been extensively studied
in RS tasks. For example, as representative RS modalities,
hyperspectral and light detection and ranging data have been
jointly explored and proven to effective in improving the result
of the other modality [41], [42]. In satellite and airborne imagery,
the photogrammetric digital surface model (DSM) is usually
available along with the optical images by stereo matching
methods such as semiglobal matching [43]. The derived DSM
provides an additional dimension to the optical imagery and
can potentially benefit many RS downstream tasks. In orthorec-
tified images, extracting building and other semantic classes
from optical images is intrinsically constrained by the lack of
height information. The height information from DSM robustly
distinguishes objects such as buildings and trees from roads
and grass, respectively. Despite good performances in building
extraction achieved by solely using optical imagery, errors that
can be easily eliminated with height information can still be
observed on top of the domain shift issue mentioned before.
In fact, before the widespread adoption of deep learning, at-
tempts have already been made to extract buildings from DSM
alone [44], [45]. However, this paradigm is constrained by the
process of DSM generation. In stereo-derived DSM, the coarse
boundary and uncertainty in filled regions pose difficulties for
accurate building extraction, which have stimulated the devel-
opment of RS multimodal methods. Multimodal RS data have
been explored in many new learning paradigms. Xie et al. [17]
proposed a colearning method that exploits optical imagery and
photogrammetric point clouds for building extraction. Zhou et al.
[46] proposed an UDA method that fuses image and DSM during
both supervised training and UDA.

III. METHODOLOGY
A. Overview

In this work, the main purpose of using the self-training
scheme is to improve the model’s performance on the target do-
main data, which exhibits a large domain gap between the source
domain data. Therefore, the proposed self-training framework
also serves the purpose of domain adaptation. The complete
workflow of the proposed self-training method is shown in
Fig. 1. In the first stage, a semantic segmentation network is
trained with labeled benchmark datasets (source domain) under
the conventional supervised learning paradigm. In the second
stage, target domain data are fed into the trained network for
inference. The softmax output is fused with the nDSM using a
decision fusion method detailed in the next section. In the third
stage, the fused pseudolabel is used to fine-tune the network with
the earlier layers frozen.
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B. Initial Prediction

The initial prediction of the building is from HRNet [4],
the structure of which is illustrated in Fig. 2. The schematic
illustration is shown in phase 1 of Fig. 1. The backbone and
decoder can be substituted with any semantic segmentation
network. In phase 1, the network is trained with the source
domain dataset in a supervised manner. Typical loss functions
can be used here. The details about the used loss functions are
described in the following section.

C. Decision Fusion Based 3-D Pseudolabel Refinement

Since the self-training workflow uses the pseudolabel for fine-
tuning, the quality of the pseudolabel is paramount to the final
result. Due to the domain gap between source and target data,
predictions with high confidence do not indicate correctness.
On the contrary, it can indicate FP for building, or FN for other
classes. One typical error in building extraction is predicting
ground objects such as tennis courts and stages as buildings, as
those objects in the target domain might not be present in the
source domain and have similar features (shape and texture).
Intuitively, FP can be eliminated with DSM by simple height
comparison with surrounding pixels. Therefore, different from
the typical pseudolabel filtering based on confidence, we use the
local height information from the nDSM to refine the pseudola-
bel as shown in phase 2 in Fig. 1. Specifically, we adopt decision
fusion to fuse the initial pseudolabel with the corresponding
DSM. The method is detailed in Algorithm 2. Decision fusion
is a powerful and lightweight tool to combine various indicators
from multiple sources. It has been successfully introduced to
various RS image processing tasks, including landcover clas-
sification, building extraction, and change detection [16], [47].
The general introduction of DST can be found in [48], [49],
and [50].

Generally, let © be a frame of discernment of a problem under
consideration. © = {6;,6,,...,0y} consists of a list of N
exhaustive and mutually exclusive elements #;,7 = 1,2,..., N.
Each 6; represents a possible state related to the problem we want
to solve. The assumption of exhaustively and mutual exclusivity
of elements of O is classically referred as Shafer’s model of
the frame ©. A basic belief assignment (BBA) also called a
belief mass function (or just a mass for short), is a mapping
m(.) : 29 — [0, 1] from the power set* of © denoted 2° to [0,1],
that verifies [48]

m(@) =0 and > m(X)=1. (1)

Xe29

m(X) represents the mass of belief exactly committed to X.
An element X € 29 is called a focal element if and only if
m(X) > 0. In DST, the combination (fusion) of several inde-
pendent sources of evidence is done with Dempster—Shafer (DS)
rule of combination, assuming that the sources are not in total
conflict.’ DS combination of two independent BBAs m (.) and

“The power set is the set of all subsets of ©, including empty set.
3Otherwise DS rule is mathematically undefined because of 0/0 indetermi-
nacy.
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Fig. 1.  General framework of the proposed 3-D self-training method. The first phase is conventional supervised training, in which the trained model is then used
in phase 2 to generate Prediction (I). Henceforth, Prediction I is fused with the corresponding nDSM by 3-D decision fusion rule to produce the pseudolabel. In
phase 3, the weights of certain layers are frozen, and the model is fine-tuned with the pseudolabel.
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Fig. 2. Network structure of the HRNet. In each stage, the gray part denotes parallel multiresolution streams and the pink area denotes where multiresolution
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Algorithm 2: 3-D Pseudolabel Refinement.

Input: initial pseudolabel (PLg), DSM (DSM)
Output: refined pseudolabel (PL)
procedure 1. DSM Normalization(DSM, 6,,,)
nDSM = Morph(DSM, 0,,) > 6,,: parameters
of Morphological filter
return nDSM
end procedure
procedure 2. BBA construction(nDSM)

my = PLO
mg = Sigmoid(nDSM — €) D> e: translation
parameter

return my, mo
end procedure
procedure 3. DST Fusion(m, m2)
Calculate K from (3)
Calculate mP* from (2)
return PL; = mPS
end procedure

msz(.), denoted symbolically by D.S(my,ms), are defined by
mP3(f)) = 0, and for all X € 2°\ {0} by

1
DS _
m (X) T 1— KDs Z

X17X2€2®
X1NXo=X

ml(Xl)m2(X2) (2)

where the total degree of conflict K ”* is defined by

> ma(Xy)ma(X). 3)

Xl,X2€2®
X1NX2=0

KDS L

Focusing on building extraction, we use the initial result from
the pretrained semantic segmentation model and DSM as two in-
dicators. Two classes, which are buildings (B) and no-buildings
(NB), are considered to define the frame of discernment.

The building probability map is generated by the softmax
function applied on output logits. The softmax function is de-
fined as

a exp(z;)
ZJK:1 exp(z;)

where K is the number of classes and x; is the logits score of the
ith class. The resulting Softmax (z; ) is between O and 1. The BBA
extraction approach described in [16] has been adopted in this
step. A morphological filter is applied to the DSM to derive the
normalized DSM (nDSM), which contains the absolute height
of the land cover object. We have reprojected the nDSM to a
sigmoidal curve with values ranging from 0 to 1 and used it as
one set of BBA.

“

Softmax (z;)

D. Loss Function

In the self-training workflow, the network is trained with real
labels in phase 1, and fine-tuned with pseudolabels in phase 3,
both in a supervised fashion. Consequently, the loss function
is crucial for learning. One of the most common loss functions
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used is cross entropy (CE), which measures the similarity of the
label and prediction probability distributions. In the first phase
of the workflow, the online hard example mining (OHEM) CE
function is employed; in the third phase, the CE loss, OHEM
CE loss, and Tversky loss are tested.

1) Cross Entropy: The CE loss is one of the fundamental loss
functions used in classification. The ground truth in training is
converted to one-hot encoded vectors of each class. The soft
cross-entropy is defined as

M
CE=—> gclog(p.) )
c=1

where M is the number of classes, q. is the one-hot label (either O
or 1) forclass ¢, and p.. is the model’s prediction of the probability
distribution.

2) OHEM Cross Entropy: Online hard example mining
(OHEM) CE loss is first proposed for object detection [51].
OHEM loss is motivated by the overwhelming amount of simple
examples in many datasets, and therefore automatically selects
difficult samples for more effective and efficient training. The
loss function can be adapted for semantic segmentation. It selects
the outputs with a confidence score lower than a threshold and
only uses those outputs for optimization. The formulation of
OHEM loss for semantic segmentation can be written as

N
1
CEonem = T E H(p, —T)x; (6)
i=1

K = Max(minkeep, |{p;|li C N,p; >T}|) (7)

where H () is the Heaviside step function. ; is the cross entropy
loss of sample 7, p; is the softmax output of sample ¢, and 7" is
the confidence threshold. N is the total number of samples in
each batch. To avoid no sample being used in loss calculation,
a minimum number of samples is specified by minkeep.

3) Tversky Loss: The 3-D decision fusion of building pseu-
dolabel combines initial prediction with corresponding DSM,
which significantly reduces FPs. However, the fused pseudolabel
does not correct all FNs when the mass of belief from one indi-
cator (initial prediction) strongly contradicts the other indicator
(nDSM). Nevertheless, the problem could be greatly alleviated
by simply penalizing more FP than FN in phase three, assuming
the network learns effective representation for both building and
nonbuilding. Tversky loss function can satisfy the demand by
balancing the penalty of F'P and F'N with two parameters. It is
defined as

TP+o
TP+ axFP+38xFN+o
In (8), TP stands for true positive, and « and /3 control the
relative penalty for F'P and F'N, respectively. When oo = 3 =

0.5, the equation is the dice coefficient. o is added to avoid the
0 denominator.

Tversky =1 —

®)

IV. EXPERIMENT AND RESULTS

In this section, the details of the experiment and the results are
presented. First, source and target domain data are characterized
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TABLE I
OVERVIEW OF THE DATASETS

Name Type GSD (cm) Size (pixel) Tiles Bands
Train

xBD satellite 50 1024 x 1024 11034 RGB
Test

MUC satellite 50 6000 x 6000 1 RGB
Potsdam UAV 30 1000 x 1000 14 RGB
Vaihingen UAV 20 711> 1150 to 17 IRRG

1717 x 1148

in Table I, followed by descriptions of the experiment setup and
the evaluation metrics used. Then the results are presented in
detail. Comparisons with other related works are presented in
the end.

A. Dataset

1) Source Domain Dataset: In this work, we adopt a large-
scale open-source WorldView satellite dataset named xBD as
source domain data (training data). The xBD [52] is originally
intended for building damage classification and comprises pre-
and postdisaster satellite image pairs, in which the building poly-
gons are based on the pre-event image. The dataset encompasses
diverse building and land cover types and has extensive coverage
on various continents. To repurpose it for building extraction, we
use only the pre-event images and the building annotations to
train the initial model. The images are cropped into patches of
512 x 512 pixels with 256 pixels overlapping.

2) Target Domain Datasets: To evaluate the cross-domain
adaptability of the proposed method, we select one VHR satellite
dataset and two benchmark aerial datasets for testing, all of
which come with stereo-DSM. Specifically, we select test data
from different modalities, and locations, as well as with different
GSDs, and band compositions as the typical contributors to
domain shift. The satellite test data is from the WorldView-2
satellite, whose corresponding DSMs are generated by dense
stereo matching (see [53] for details). The multispectral image
is pan-sharpened in ENVI software using the Gram-Schmidt
method. The aerial datasets are the official test sets of ISPRS
Potsdam and Vaihingen. The test regions of interest (Rols) in this
study are summarized in Table I. The test images are cropped in
the same way as the training data for inference, the predictions
of which are then mosaicked back into the original shapes. To
alleviate the border effect, each patch is multiplied with a weight
matrix, which has a value of 1 for pixels in nonoverlapping
regions and linearly decreases to O at the patch’s border. With
the help of the weight matrix, the artefact at the patch border can
be effectively eliminated. To summarize, the target datasets are
as follows:

1) Munich Urban Area (MUC): Shown in Fig. 3, satellite
imagery with RGB band, comprises midrise residence
buildings, office buildings, large factories and parks. Size:
6000 x 6000.

2) ISPRS Potsdam dataset (Potsdam): Aerial imagery with
RGB bands. Downsampled to 30 cm from 5 cm. The
official test set contains 14 images with 1000x 1000 at
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5 cm. The DSM was generated via dense image matching
with Trimble INPHO 5.6 software and Trimble INPHO
OrthoVista was used to generate the TOP mosaic.

3) ISPRS Vaihingen dataset (Vaihingen): Aerial imagery
with IRRG bands (near-infrared, red and green bands),
down-sampled to 20 cm from 9 cm, official test split with
17 images with different sizes are selected. DSM was
generated via dense image matching with Trimble INPHO
5.3 software and Trimble INPHO OrthoVista was used to
generate the TOP mosaic.

B. Training Details

All the experiments are carried out on NVIDIA TITAN Xp
GPU with 12 GB memory with the Pytorch framework.® For
the source domain training phase, the model is trained on two
GPUs with a batch size of 16. The learning rate is set to 0.01
and then linearly decreases to 0. The stochastic gradient descent
(SGD) optimizer with a Nesterov Momentum of 0.9 and weight
decay of 0.001 is selected. Random scaling between 0.5-2.0 and
random cropping are used as data augmentation. The objective
function used (L41) is OHEM Loss with a threshold of 0.9. The
model is trained for 50 epochs. For the self-training phase, the
weights of the first three stages (see Fig. 2) of the network are
frozen, and the network is trained on two GPUs with a batch size
of 16. The learning rate is set to 0.004 and then linearly decreases
to 0. SGD optimizer is selected with a Nesterov Momentum of
0.9 and weight decay of 0.0005. No random scaling or cropping
is employed in this stage. The training epoch is 10. All loss
functions introduced in Section III-D are tested (for L42). When
using the Tversky loss, a and [ combinations from 0 to 1
with an interval of 0.1 are tested, and the best combination is
reported.

C. Evaluation Metrics

To quantitatively evaluate the performance, we calculate the
following metrics, where TP, FP, FN stand for true positive, FP,
and FN, respectively:

1) Precision= 5555, which is highest if the model extracted

only correct objects (i.e., no FP)
2) Re.call = TPFS—iPFN’ which is highest if the model missed no
object (i.e., no FN).
__ 2xPrecision xRecall
3) Fj].SCOV€ ~ Precision+Recall
cision and recall scores
4) Intersection over union (loU) = ﬁ, which mea-
sures the accuracy of our network by quantifying the
percentage of overlapping pixels between the ground truth

and our predictions.

is the harmonic mean of pre-

D. Results

1) Baseline Results: The baseline results are the direct
output from the network trained with a large benchmark dataset.
It is essentially the result of utilizing the knowledge from
the source domain only. The numeric results are shown in
Table II. In MUC, the IoU score, precision and recall scores

%[Online]. Available: https:/pytorch.org
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Potsdam

Visualization of three test areas in Germany (marked by yellow polygons). The images of Potsdam and Vaihingen are taken from the websites noted in

Section I. The corresponding federal states are highlighted in darker gray, and the surrounding areas are highlighted in green. The capital city Berlin is highlighted

in pink and marked by a red triangle.

TABLE II
BUILDING EXTRACTION PERFORMANCE 3-D SELF-TRAINING

Location Loss Precision [%] Recall[%] F1[%] IoU [%]

MUC CE 83.22 74.90 78.84 65.07
T (0.4,0.6) 78.32 82.97 80.57 67.47

Initial Prediction
- 68.95 79.52 73.86 58.56
Potsdam CE 89.40 90.51 89.95 81.73
T (0.6,0.4) 91.72 90.13 90.92 83.35

Initial Prediction
- 79.63 89.69 84.36 72.95
Vaihingen CE 98.42 22.99 37.27 22.90
T (0.0,1.0) 75.92 89.33 82.08 69.61

Initial Prediction
- 81.02 54.36 65.07 48.22

The best scores are marked in bold.

are 58.56%, 68.95%, and 79.52%, respectively. Higher recall
indicates that the network fares better at extracting building
pixels than ensuring extracted pixels are buildings, as shown in
the lower left of Fig. 4(b) and lower right of Fig. 4(e) where a
significant number of nonbuilding pixels are falsely classified
as building, such as the paved surface near a building and
the inner courtyard. At the same time, in the aforementioned
areas, multiple buildings are not extracted or are only partially
extracted as a result of domain gaps.

In the Potsdam scene, despite the imaging modality differ-
ence, a similar relationship between precision and recall (recall
10% higher than precision) can be observed. With an 89.69%
of recall, only a small fraction of buildings is not extracted. In
Fig. 4(h) and (k), the basketball court and the enclosed gardens
are mistakenly segmented as buildings.

An entirely different phenomenon is observed in the Vaihin-
gen data, where the recall is only 54.36% and around 27% lower
than precision. As exemplified in Fig. 4(n), due to the different
spectral bands, FNs are prevalent, and only a fraction of building
are extracted.

2) 3-D Self-Training Results: The numeric results of the
proposed 3-D self-training approach are presented in Table II. 7
refers to Tversky loss with the best o and (3 in the parenthesis.
Compared with the baseline, the building extraction IoU scores
in MUC, Potsdam, and Vaihingen improved around 8.91%,
10.40%, and 21.39%, respectively. In addition, in terms of
precision and recall scores, both MUC and Potsdam see improve-
ments in both metrics while the precision score of Vaihingen
decreases slightly. In the MUC scene, as can be seen in Fig. 4(f),
FPs such as the inner courtyard and bare ground are correctly
classified. In Fig. 4(c) and (f), the buildings omitted in the
baseline are correctly extracted. In the Potsdam results, similar
improvements can be observed. In Fig. 4(i), the basketball
court that shares similar geometric and spectral features with
a building is not mistakenly segmented as building in the 3-D
self-training method. As is the case in Fig. 4(1), the ground in the
garden, which is misclassified in the baseline due to the domain
shift, is correctly classified as nonbuilding. In the Vaihingen
data, the best IoU is achieved with Tversky loss with o =0
and 5 = 1, meaning that only FNs will be punished in the loss
calculation. With the 3-D self-training approach, most missing
buildings are extracted as can be seen in Fig. 4(0).

3) 2-D Self-Training Results (Ablation Studies): To quantify
how much improvement can be attributed to the DSM-based
pseudolabel refinement, self-training experiments using only the
2-D pseudolabels are conducted. All experiment settings are the
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(h)

(k)

(m) (n)

Fig. 4.

(0)

Results visualization of the three test areas. 3DST denotes the proposed 3-D self-training method. Initial prediction refers to the baseline prediction.

Legend: ® True Positive M False Positive B False Negative. True Negative is not displayed. (a) Test area in Munich. (b) Initial prediction. (c) 3DST. (d) Test area
in Munich. (e) Initial prediction. (f) 3DST. (g) Test area in Potsdam. (h) Initial prediction. (i) 3DST. (j) Test area in Potsdam. (k) Initial prediction. (1) 3DST. (m)

Test area in Vaihingen. (n) Initial prediction. (o) 3DST.

same as in 3-D self-training. The results are listed in Table III.
The IoU scores in all three test areas are lower than that of the
3-D self-training method by 5.74%, 7.07%, and 3.56% for MUC,
Potsdam, and Vaihingen, respectively. The only metric better is
the precision score of Vaihingen, where o = 0.3 and 5 = 0.7.
This is in accordance with the definition of Tversky loss. In
the 3-D self-training, « is set to zero, which can potentially
lead to increased FPs. In addition, the quality evaluation of the
pseudolabels is presented in Table IV for analysis. Since the
height-aware DSM fusion does not aim to improve the evaluation

metrics of the pseudolabel, the pseudolabels actually all have
lower evaluation metrics (F1 and IoU) than the final results.
Improving the pseudolabel needs many ad-hoc parameters and
would be trivial and time-consuming.

4) Upper Limit: To establish the upper limits of the building
extraction results in the test regions, we use the ground truth
as the pseudolabel for phase 3. The experiment settings are
identical to the other experiments, the loss function used is
OHEM CE as it yields slightly better results than CE loss.
The results of Munich, Potsdam, and Vaihingen are listed in
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TABLE III
BUILDING EXTRACTION PERFORMANCE 2-D SELF-TRAINING

Location Loss Precision [%] Recall [%] F1[%] IoU [%]
MUC CE 69.44 79.66 74.20 58.98
CE Soft 69.59 80.62 74.40 59.62
CE Ohem 70.61 80.65 75.30 60.38
T(0.7,0.3) 74.68 78.06 76.33 61.73
Potsdam CE 78.91 92.16 85.02 73.95
CE Soft 81.07 91.22 85.85 75.20
CE Ohem 78.91 92.16 85.02 73.95
T(0.7,0.3) 84.08 89.15 86.54 76.28
Vaihingen CE 83.25 59.93 69.69 53.48
CE Soft 81.81 56.65 66.94 50.31
CE Ohem 84.79 56.75 68.00 51.51
T(0.3,0.7) 80.65 78.49 79.56 66.05
TABLE IV
DSM-FUSED PSEUDOLABELS (PL) EVALUATION AND RESULTS UPPER LIMITS
(UL)
Location Precision [%] Recall [%] F1[%] ToU [%]
MUC PL 79.87 75.23 77.48 63.24
UL 89.68 85.66 87.63 77.98
Potsdam PL 82.91 87.80 85.28 74.34
UL 94.11 93.60 93.85 88.42
Vaihingen PL 96.32 30.73 46.59 30.37
UP 94.63 88.93 91.69 84.66

the second row for each area in Table IV, which indicates how
well the model can learn under the same condition with perfect
ground truth. It can be seen that within only 10 epochs, the
IoU scores for Potsdam and Vaihingen datasets have increased
to well above 80%, while the IoU score of Munich is at around
77%. These numbers indicate that the satellite data, while having
larger number of pixels, also encompasses more diverse building
types, making it more difficult for the model to converge.

5) Comparison With Other Similar Methods: To demon-
strate the effectiveness of the proposed self-training workflow,
we compare the building extraction results with other works that
have reported results on the Potsdam and Vaihingen datasets.
Specifically, we focus on work utilizing semisupervised, weakly
supervised methods. Igbal et al. [54] proposed a weakly super-
vised domain adaptation method named LT-WAN, which tested
different permutations of training and testing data. Besides se-
mantic segmentation, the method employs an additional image-
level label to facilitate domain adaptation. Li et al. [55] manually
assigned each patch to a building or nonbuilding based on the
percentage of building areas. Patches with 25% or more build-
ings are assigned an image-level label of building. Conditional
random field is employed twice for pseudolabel refinement and
prediction refinement (denoted as Image label in the table).
In the work from [14], an UDA building extraction method
termed FDANet was proposed, which exploits image-, feature,
and output-level information with a self-training strategy. The
comparison is shown in Table V. The source domain datasets
are listed in parentheses. MASS, VF, Rwan, and WHU stand
for Massachusetts Building Dataset [56], Village Finder [57],
Rwanda dataset [54], and WHU Building Dataset [9] respec-
tively. Our method achieves a 37.98% to 54.55% margin in
IoU scores compared with LT-WAN. With respect to FDANet
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TABLE V
BUILDING EXTRACTION PERFORMANCE, 3-D SELF-TRAINING COMPARED
WITH OTHER METHODS ON POTSDAM AND VAIHINGEN DATASETS

Data Method F1 Score [%] ToU Score [%]

Potsdam LT-WAN (MASS) [54] 62.43 45.38
LT-WAN (VF) [54] 44.70 28.80
LT-WAN (Rwan) [54] 57.30 40.20
Image label [55] - 81.00
FDANet (WHU) [14] 89.65 81.23
FDANet (MASS) [14] 82.70 70.50
ours (xbd) 90.92 83.35

Vaihingen
Image label [55] - 72.50
ours 82.08 69.61

In the parenthesis after each method, training data are specified, where MASS, VF,
Rwan, and WHU represent the Massachusetts building dataset, Village Finder
dataset, Rwanda dataset, and WHU building dataset, respectively.

with self-training, our method scores 2.12% to 12.85% higher in
terms of IoU score. With no postprocessing, compared with the
Image label results, our result in Potsdam has a 2.35% higher
IoU score, but a 2.89% lower IoU score in Vaihingen.

V. DISCUSSION

The proposed method bridges the domain gap between train-
ing and testing data by exploiting the intrinsic information from
photogrammetric DSM, as opposed to other methods that center
on image-level features. In addition, contrary to the common
practice in self-training that eliminates unreliable pseudolabels
by confidence, our method utilizes the belief function to fuse
DSM with pseudolabels and adopts the Tversky loss to offset
the negative effects of inaccurate pseudolabels. The proposed
method has significant practical implications for many RS ap-
plications where the test data have large domain gaps from
the training data. Our method is fast to implement, which is
crucial for time-sensitive tasks such as disaster relief operations.
In addition, the network in the framework can be substituted
with any semantic segmentation network, making it flexible
and adaptable. In this chapter, details of domain gaps will be
analyzed. To elucidate the most pivotal aspects of the method,
the influence of the pseudolabel quality and the crucial role of
DSM are discussed.

A. Domain Gaps Analysis

In RS tasks, the domain gaps can be attributed to differences
in modality, sensor design, GSD, band compositions; as well as
variations in data location, urban types, building styles, etc. Gen-
erally speaking, the common domain gaps come from varying
acquisition locations of the source and target domain datasets. In
our experiments, the different locations result in dissimilarities
in landcover, urban types, and building styles. In addition, differ-
ences in modality, GSD, and band composition are considered.
Within the experiments, different modalities do not necessarily
lead to worse performance, as evidenced by MUC and Potsdam,
where the baseline result of MUC is lower than that of Potsdam.
In fact, the difference in GSDs plays a bigger role according
to our experiments using the original 5 cm resolution Potsdam
data (numeric results not shown). It is intuitive that the extracted
building features in high-resolution imagery are different from
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those extracted from lower resolution imagery, as more details
are available. As the GSD difference decreases, the resulting
domain gap also shrinks. Band composition is a factor that
contributes to the largest domain shift, as evidenced by the
results of Vaihingen, where the baseline IoU is the lowest.
The responses of ground object to electromagnetic waves with
distinct wavelengths can be drastically different. Consequently,
the model could potentially fail to extract meaningful spectral
features that characterize building, resulting in alow recall score.
As a consequence, the Vaihingen dataset is less used than the
Potsdam dataset in literature.

B. Influence of the Quality of Pseudolabels

Different from methods that filter pseudolabel based on the
confidence score, which is actually not a true measurement
of confidence, our method exploits the dichotomy in predic-
tion, i.e., either hit or miss. Looking at the evaluation met-
rics of the pseudolabels, it can be observed that the best «
and f values are related to the relationship between precision
score (Precision) and recall score (Recall). Specifically, when
Precision > Recall, the best performance is achieved with
«a < (B and vice versa. When the difference between Precision
and Recall is small, o and 3 are both closer to 0.5. With
different ratios between the penalty factors on FP and FN, drastic
improvements can be observed in all test regions, especially in
Vaihingen where the baseline result is the worst. In Tables II
and IV, the pseudolabel DSM fusion does not necessarily im-
prove the overall evaluation metrics of the pseudolabel. Instead,
the DSM fusion drastically increases the precision scores at
the cost of the recall score. Nevertheless, the performance of the
3-D self-training method triumphs over the self-training without
DSM fusion, despite that the pseudolabels of the latter have
higher F1 and IoU scores. Therefore, we can conclude from the
experiments that with respect to building extraction, the overall
quality of the pseudolabel is not pivotal to the final results,
when the errors can be accounted for during the optimization.
Nevertheless, the role of the quality of the pseudolabel should
not be totally downplayed, as evidenced in the Vaihingen results,
which have the lowest IoU and F1 scores among all the test sets,
as well as the evaluation metrics of the pseudolabel. Therefore,
it should be in mind that the quality of the pseudolabel still plays
a nonnegligible role in the final results, as it is constrained by
the number of correct supervision signals.

C. Impact of DSM Accuracy on the Fusion Model

In the ablation study, the positive influence of the DSM on the
pseudolabel has been verified. The improvement introduced by
the height information through decision fusion seems counter-
intuitive when looking at the decreased IoU and F1 scores of the
fused pseudolabel. Nevertheless, the decision fusion serves to
accurately remove FPs in the pseudolabel, which in many cases
are difficult to remove without referring to height information.
With a more precise but less complete pseudolabel, and a loss
function penalizing more FNs, the network can learn meaning-
ful building representation while discounting false supervisory
signals. Therefore, as can be seen in the result visualization, the
DSM-fused pseudolabels help to eliminate FPs in the baseline
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TABLE VI
TRAINING TIME

Location  Time (s) Speed (km?®/s) Speed (mpzx/s)
MUC 472 0.019 0.076
Potsdam 415 0.003 0.034
Vaihingen 420 0.0017 0.043

predictions. Moreover, the DSM-fused pseudolabels can also
contribute to removing FNs, as the features extracted by the
fine-tuned network in areas with correct building pseudolabels
tend to be similar to features extracted in areas where buildings
are not annotated in pseudolabels, assuming that the target data
do not exhibit large intravariance.

D. Advantages

This work is driven by real-world demands where accurate
building prediction is needed within a short period of time. The
training time for all three area is summarized in Table VI, where
the speed with respect to both square kilometer and megapixel
is calculated. The proposed workflow requires around 330 s for
building extraction of 1 km? with 30 cm GSD. In addition, the
workflow is clean and requires minimum ad-hoc parameters and
hyperparameter tuning to derive reasonable results. Moreover,
the height information and the Tversky loss function enable
an explainable interpretation of the building extraction perfor-
mance, which is difficult for GAN-based models. The workflow
can also work without DSM and achieve results better than the
baseline. With the development of real-time DSM generation
methods, the workflow could be further expedited. For example,
dAngelo and Kurz [53] proposed a real-time sliding window-
based bundle adjustment method, which significantly improves
image orientations and DSM quality and allows generating
detailed DSMs with a resolution of 2xGSD.

VI. CONCLUSION

In this work, we propose a fast and effective 3-D self-training
method for building extraction. The method exploits publicly
available benchmark datasets by tackling the domain shift issues
with DSM, which has significant implications for real-world
applications. To our knowledge, it is the first work that adopts
DSM for self-training and pseudolabel refinement.

We conduct comprehensive experiments to evaluate the per-
formance of the proposed workflow with one private dataset and
two public benchmark datasets, and the results show significant
improvements compared with the baseline and other domain
adaptation methods on the ISPRS benchmark datasets.

The method can handle the domain shift issues attributed to
different sensors, modalities, or spectral bands, without needing
ad-hoc adjustment for specific domain issues. Contrary to do-
main adaptation methods that employ consistency regularization
and GAN that require often different perturbations, our method
has the advantage of saving computation power and time. The
method is evaluated with HRNet, which can be substituted with
any semantic segmentation network.
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In the future, we intend to determine the parameters « and 3
in an automatic manner depending on the target domain data.
In addition, we will exploit the potential of DSM within a
self-supervised framework for domain adaptation on RS appli-
cations.
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