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Morphometry on the sphere: Cartesian
and irreducible Minkowski tensors
explained and implemented

Check for updates

Caroline Collischon 1 , Michael A. Klatt2,3,4, Anthony J. Banday5, Manami Sasaki 1 &
Christoph Räth 2,4

Minkowski tensors are comprehensive shape descriptors that robustly capture n-point information in
complex random geometries and that have already been extensively applied in the Euclidean plane.
Here, we devise a framework for Minkowski tensors on the sphere. We first advance the theory by
introducing irreducibleMinkowski tensors, which avoid the redundancies of previous representations.
We, moreover, generalize Minkowski sky maps to the sphere. These maps are a concept of local
anisotropy, which easily adjusts tomasked data. We demonstrate the power of our new procedure by
applying it to simulations and real data of the Cosmic Microwave Background, finding an anomalous
regionclose to thewell-knownColdSpot. The accompanyingopen-source software,litchi, used to
generate these maps from data in the HEALPix-format is made publicly available to facilitate broader
integration of Minkowski maps in other fields, such as fluid demixing, porous structures, or
geosciences more generally.

Minkowski functionals (MF) and Minkowski tensors (MT) from integral
geometry1,2 are powerful and versatile shape descriptors for random spatial
structures in real space. They provide a localized and comprehensive shape
analysis by characterizing, among others, symmetries and preferred direc-
tions. They provide robust access to information from n-point correlation
functions (since they can be expressed as a sum over all n-point correlation
functions)3. Yet, their calculation is much simpler than that of higher-order
correlation functions, which allows for an exploitation of higher-order
correlations in spatial structures that is practically inaccessible when relying
on estimates of correlation functions. Furthermore, they contain informa-
tion not visible to other common morphological tools, such as wavelets4 or
the mean intercept length5.

MT have been used in a broad range of fields, such as analysis of
trabecular bone structure6, classifying the shapes of galaxies7, fluid
demixing8, analyzing cellular, granular, and porous structures9, source
detection in gamma-ray astronomy10,11, analyzing nuclear pasta matter12 or
applications in crystallography (e.g., Böbel et al.13 and references therein).
However, most applications have so far focused on the Euclidean space.

A prominent exception is cosmology, specifically the analysis of
simulated14,15 and reconstructed maps16 of the Cosmic Microwave Back-
ground (CMB). The scalarMFhave already been intensively used to analyze

the CMB, either using single MF17,18 or in systematic studies of all MF19–21.
They have been used to search for non-Gaussianity in temperature and
polarization, both by the Planck collaboration22 and other groups23–26. Rank
2 MT on the CMB have first been used by Chingangbam et al.27, finding
consistency with Gaussianity via their approach. Following them, Joby
et al.28 found consistency with statistical isotropy and Appleby et al.29 show
the usage of rank 2MT on redshift-space distorted Gaussian random fields
in general.

In cosmology, MF and MT offer several advantages over other meth-
ods, such as two- or three-point correlation functions. Their definition in
real space offers a more comprehensive, “human-readable” way to analyze
all-sky data as compared to harmonic decomposition. Since they can be
calculated locally for either single shapes or selected regions, MF/MT are
excellent tools to search for anisotropy andprovidenaturalways to dealwith
incomplete (e.g., masked) data. Additionally, they contain higher-order
information that would not be included in a 2- or 3-point correlation
analysis.

Here, we introduce a pixel-based approach of calculating MF/MT of
arbitrary rank on the sphere and implement it in the publicly available code
litchi30. Unlike the aforementioned references where the MF/MT were
calculated globally, we devise a localized analysis, dubbedMinkowski Maps
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(MM). We start by defining the classical Cartesian MF/MT on the sphere
and showhow to use scalars to represent their information about the degree
of anisotropy for rank 2 and 4. Next, we define, to the best of our knowledge
for the first time, irreducible MT on the sphere, providing access to scalar
shape information at arbitrary rank. The MM visualize local information.
We provide methods to calculate these maps on the sphere and apply them
to examples that compareCartesian and irreducibleMT (which can serve as
a reference for users). Note that in contrast toMMinEuclidean space aMM
on the sphere requires the concept of parallel transport on the sphere, as
explainedbelow. Finally,we applyourmethods toPlanckCMBtemperature
data and simulations. Importantly, our methods provide additional infor-
mation compared to themore common tools as they donot strongly react to
absolute values of a random field but rather to its shape and symmetries.
Thus, we find two noteworthy spots, one in the southern Galactic hemi-
sphere close (but not statistically related) to the Cold Spot31, and the other
above the Galactic plane.

Results
Themain result of thiswork consists in bringing theMT to the surface of the
sphere. To this end, we first state the current methods for Euclidean space
and then adapt them to the sphere.

Theory of MT: Euclidean plane vs sphere
In the Euclidean plane, the threeMF are given by area, perimeter, and Euler
characteristic. In general the MF of a compact body K with a smooth
contour ∂K are defined as

W0ðKÞ ¼
Z
K
dr;WνðKÞ ¼

Z
∂K
Gν dr ð1Þ

where ν ∈ {1, 2}, G1 = 1 and G2 = κ, the sectional curvature. The definition
can be straightforwardly extended to more general domains, e.g., poly-
convex sets2,32. Ensemble expectation values for theMFofGaussian random
fields are well known via the Gaussian kinematic formula33 and more
recently, advancements have been made for non-Gaussian fields34–36.

The MF are additive (Wν(A)+Wν(B) =Wν(A ∪ B)−Wν(A ∩ B)). In
fact, in Euclidean space, Hadwiger’s theorem states that any additive
functional of convex shapes that is continuous and motion invariant (i.e.,
scalar) can be expressed as a linear combination of MF37. In that sense, MF
capture all additive shape information.

On the sphere, an analogous theorem holds as proven by Klain and
Rota[ref. 38, Theorem 11.3.1]. In particular, shapes in pixel images can be
expressed as unions of single (convex) pixels, making them a good target for
MF/MT analysis. Grayscale imageswith varying brightness can be analyzed
by applying a threshold, interpreting everything above the threshold as part
of the body, and optionally adding up the MF/MT obtained at several
thresholds.

The analysis with MF can be naturally generalized for anisotropic
structures tomotion covariant tensors, the so-calledMT, which are defined
in Euclidean space as follows. Using the symmetric tensor product with

nb :¼ n� . . .� n|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
b times

ð2Þ

and components

ðnbÞi1...ib ¼ ni1 . . . nib : ð3Þ

The translation invariant Cartesian MT of rank b are then given by

W0;b
ν ðKÞ :¼

Z
∂K
nbGν dr ð4Þ

where different communitiesmay use different (constant) prefactors. There
are also translation covariant MT, which we omit here since there is no

generic generalization to the sphere. Note thatW0;1
ν ðKÞ ¼ 0 for closed K

in flat space. Alesker proved a theorem analogous to Hadwiger for
MT39. However, such a theorem is unknown on the sphere. Further
properties of the MT (useful for applications) can, e.g., be found in other
works9,32,40.

On the sphere, n is interpreted as the tangent space vector perpendi-
cular to the contour. It is normalized according to themetric of the spherical
surface, g00 ¼ 1; g11 ¼ sin2ðθÞ; g01 ¼ g10 ¼ 0. We will subsequently use
thenotationnμ for its componentswithμ∈ {0, 1},n0 =nθ; n1 =nϕ in theusual
coordinates on the sphere; see Fig. 1.Tensor integrationon the sphere canbe
done according to Fabian (1957)41, who presents an expansion method
analogous to Taylor expansions.

Scalar representation based on Cartesian representation
To visualize and analyze the degree of anisotropy with MT, they need to be
brought into a scalar form that is invariant under rotation. Several possible
representations are available in the Euclidean plane that can be generalized
to the sphere. Each option captures different information. The trace
operator is a straightforward choice. ForW0;2

1 , we obtain

tr W0;2
1 ðKÞ� � ¼

Z
∂K
ðn� nÞμνgνμ dr ¼

Z
∂K
ðn0Þ2 þ sin2ðθÞ ðn1Þ2 dr

¼
Z

∂K
dr ¼ W0;0

1 ðKÞ;

ð5Þ
where we inserted the metric tensor.

More morphological information is contained in the ratio of eigen-
values, i.e., the eigenvalue quotient (EVQ). The eigenvector equation for
eigenvalue λ for a vector v μ is given by

Wμνgναv
α ¼ λvμ ð6Þ

W00 W01sin2ðθÞ
W10 W11sin2ðθÞ

� �
v0

v1

� �
¼ λ

v0

v1

� �
ð7Þ

whereWμν ¼ ðW0;2
1 Þμν are the components ofW0;2

1 .
Since W0;2

1 is symmetric, the eigenvectors are orthogonal. For an
elongated shapewith 2-fold symmetry, one eigenvaluewill be larger than the
other so that the ratio is a useful measure for elongation. In this paper, we
divide the larger eigenvalue by the smaller one. The eigenvectors themselves
can be used to find the preferred orientation of the body.

An approach to rank 1 tensors was shown by Joby et al.42, who inte-
grated over the gradient of the field. In our framework, this tensor corre-
sponds toW0;1

1 , where the contour is givenby contours of the field at several
thresholds. This tensor vanishes for closed contours in Euclidean space.
When looking at a non-closed shape in a small enough region to keep
spherical effects negligible, its length measures the directionality of the
contours (how much the remaining gradient prefers one direction). Alter-
natively one can use the direction of that vector to show the total normal of
the remaining contours.

Rank 4 tensors can be tackled by taking their symmetries into account.
Wewill do this along the lines of amethod shown byMehrabadi et al.43, where
the authors considered three-dimensional rank 4 tensors as six-dimensional
rank 2 tensors (that is, 6 × 6 matrices) using their symmetries. In this repre-
sentation, eigenvalues can be easily calculated, and the corresponding eigen-
vectors can then be reinterpreted as eigentensors in the original space.

In our case, a symmetric two-dimensional rank 4 tensor can be
represented by a 3 × 3matrix whose eigenvectors are reinterpreted as rank 2
tensors. Multiplication of the rank 4 tensor with a rank 2 tensor σ μν is given
in components by

σ 0μν ¼ Wμναβgαγgβδ σ
γδ ð8Þ
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σ 000 ¼ W0000g00g00σ
00 þ 2W0001g00g11σ

01 þW0011g11g11σ
11 ð9Þ

σ 001 ¼ σ 010 ¼ W0100g00g00σ
00 þ 2W0101g00g11σ

01 þW0111g11g11σ
11

ð10Þ

σ 011 ¼ W1100g00g00σ
00 þ 2W1101g00g11σ

01 þW1111g11g11σ
11 ð11Þ

where the factor 2 comes from the symmetry of all involved tensors. Note
that W has only 5 distinct components (no change under permutation of
indices). Inserting the components of g andwriting inmatrix form gives the
equation for eigentensor σ with eigenvalue λ as

W0000 2W0001sin2ðθÞ W0011sin4ðθÞ
W0100 2W0101sin2ðθÞ W0111sin4ðθÞ
W1100 2W1101sin2ðθÞ W1111sin4ðθÞ

0
B@

1
CA

σ00

σ01

σ11

0
B@

1
CA ¼ λ

σ00

σ01

σ11

0
B@

1
CA ð12Þ

The eigenvalues of this 3 × 3 matrix can be used for further analysis.

Irreducible Minkowski tensors
The redundancy of the Cartesian representation can be entirely avoided by
the so-called irreducible Minkowski tensors (IMT). This representation
expands the MT in spherical harmonics so that a tensor of rank s only
captures s-fold anisotropy. In other words, the MT are decomposed
according to their symmetry.

In Euclidean space, they are obtained by calculating a normal vector
density for a shape. This density describes what fraction of the body’s normal
vectors point in which direction. In the plane, these directions are distributed
on [0, 2π). The Fourier coefficients of the density of normal vectors are called
IMT and have been used in two dimensions (2D)5,44,45, and in 3D46–48. A full
set of IMT for a convex shape will completely describe the shape. The IMT
are complex scalars. They provide a natural way to characterize both the
degree of anisotropy and directional information for any rank via their phase
and absolute value. Such a scalar representation is essential for higher orders,
where Cartesian tensors become unwieldy. A tangible demonstration of their
meaning can, e.g., be found in Figs. 1 and 2 of Collischon et al.44.

Here, we define IMT for the first time to our knowledge on the sphere.
Note that a simple embedding in 3D fails to distinguish isotropic from
anisotropic bodies on the sphere. For example, a spherical cap is an isotropic
body on the sphere, but IMT of an embedding in 3D would, undesirably,
assign to it a high degree of anisotropy. The solution is to parallel transport
the normal vectors to a single point, where they can then be treated as in the
Euclidean plane (i.e., calculating their angular density). This suitable
representation provides a powerful characterization of spherical anisotropy,

as demonstrated below. Hence, this definition is an important step towards
an effective shape analysis on the sphere for anisotropies and symmetries of
arbitrary rank.

Let ρK be the normal density of a body K, where the functional value
ρK(φ) is proportional to theportionof thebody’s contour that points into the
directionφ. The total integral equals the contour length of the boundary ∂K.
For a spherical polygon (such as any shape defined by pixelated images on a
sphere), the normal density can be written as

ρK ðφÞ ¼
X
k

Lk δðφ� φkÞ ð13Þ

where the edges are indexed by k, have lengths Lk, and orientations φk. On
the sphere,φ is determined fromthedirectionof thenormal vectornparallel
transported to a common point. We choose 0 to represent south, and
π/2 east.

The IMT are then obtained by Fourier transforming ρK:

ψbðKÞ ¼
Z 2π

0
eibφρK ðφÞ dφ ¼polygonX

k

Lke
ibφk ð14Þ

The absolute values ∣ψb(K)∣ of the IMTare then usefulmeasures for the
degree of anisotropy with respect to b-fold symmetries. Furthermore, the
corresponding preferred directions are given by φn ¼ ð2πnþ argðψbÞÞ=b
where n ∈ {0,…, b−1}.

Calculating Minkowski maps
Localized MT for grayscale images are calculated in the form of Minkowski
maps (MM) using local observation windows. In Euclidean space, code is
available in the papaya249 and the related banana44 libraries, the latter refining
the former for astronomical image analysis. We adapt those techniques for
squares in the Euclidean plane on the sphere using the HEALPix scheme
(Hierarchical Equal Area isoLatitude Pixelation, https://healpix.sourceforge.
io)50, see Fig. 2a). This scheme is commonly used for CMB data and further
described in Methods section. The body to be described by the tensors is
obtained by choosing a brightness threshold, treating everything above as
part of the body. Our implementation, litchi, is publicly available30.

Our scheme is based on a marching square algorithm. First, a window
of (usually) 2 × 2 pixels is selected by choosing all pixels that meet in one
corner, using the pixel centers as the corners of the window. At eight
positions inHEALPix, only three pixelsmeet in a triangular shape, which is
treated conceptionally identically and is only a special case in the imple-
mentationwherever the explicit numberof pixelsmatters.Twoexamples for
this can be seen in Fig. 2a). All such neighborhoods together form a
marching square grid, as explained in more detail in the methods section.
Each pixel value is then either above or below the given threshold, yielding
16 possible cases of black-and-white neighborhoods, shown in Fig. 2b).

These configurations define how the contour segment passes through
the window, where we assume these segments to be geodesics. Their end-
points at the edge of the window are interpolated between the neighboring
pixel centers depending on the threshold and pixel values using a known
technique51, also shown in Fig. 2c). The diagonal cases are chosen to be
connected or disconnected based on the total average52.

Let α be the angular distance between both pixel centers, denoted byA
and B. Let t be the chosen brightness threshold, and pA and pB be the pixel
values at A and B respectively. Then the angular distance d from A to the
contour in the direction of B is given by

d ¼ α
t � pA
pB � pA

: ð15Þ

The normal vector pointing away from the body in tangential space is
then calculated for the window. Since these segments are short, a zeroth-
order approximation for the integral is used,where the lengthof the segment
is simply multiplied by the tensorial integrand41.

Fig. 1 | Definition of n on the sphere. It is perpendicular to the contour of the body
to be analyzed (black shape) and is decomposed into its components on the spherical
surface (orange bars). No embedding into the three-dimensional space takes place.
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Note that the EVQ of W0;2
1 of such a short straight line will diverge

as one of the eigenvalues goes to zero. To avoid this divergence and, more
importantly, to access structural information over an extended area, we
used larger windows on top of the 2 × 2 marching squares. The locally
calculated segment-tensors are parallel transported to the center of this
enlarged window and then summed up. Each large window should
contain enough contour segments at various angles to allow for a sensible
analysis. Finally, one can use an output map at lower resolution to depict
the results, where pixel centers correspond to the centers of the larger
windows.

This procedure uses a single threshold, which may be an insufficient
representation of the structure. For a more comprehensive analysis, we can
add up tensors that are calculated for contours at several thresholds before
smoothing to portray the data as accurately as necessary. Compared to a
previous method implemented by Goyal et al.53, where localized structural
information was only calculated at specific pixelation-dependent scales and
positions, MM provide a more versatile approach. Further implementation
details can be found in the methods section.

Test cases
For demonstration purposes, we generated MM for several exemplary
shapes. All shapes occupy only a few degrees around the equator to keep
spherical effects small and the results intuitive.

Rank 2. We begin with the EVQ of W0;2
1 and ∣ψ2∣ of a square and two

rectangles with aspect ratios 2:1 and 3:1 respectively. The corresponding
MM are shown together with the input shape and the moving window
size in Fig. 3a, b; see the panels at the top, left and right, and the bottom left
panels. Near the origin, all shapes are entirely contained within the
window, and the anisotropy depends on the aspect ratio; the EVQ is an
explicit function of the aspect ratio.When thewindow ismoved sideways,
the respective opposite side of the rectangle moves out of the window;
hence, the anisotropy increases. Even further away from the center, the
anisotropy decreases as the remaining sides at the top and bottom get
shorter and cancel out with the nearest edge. Finally, only one side (and
increasingly shorter sections thereof) is left in the window, leading to a
diverging EVQ while ∣ψ2∣ remains low. If only a corner is left in the
window, the EVQ is close to one, and ∣ψ2∣ is close to zero as two per-
pendicular contours have no two-fold anisotropy. The same testwas done
for a cross; see Fig. 3a, b, bottom right panels. Now, the anisotropy is low
as long asmost of the shape is within the window, except if only one bar is
within the window. From that point on, the map exhibits the same pat-
terns as for the rectangles.

As expected, very high values in the Cartesian maps signify that only
a part of the shape is within the window. Larger windows relative to the
shapes smooth out these edge effects because the relative area on theMM
where the window contains the whole shape increases with the window
size, whereas regions where edge effects prevail depend on the size of the
shape. For an extended pattern such as the CMB temperature distribu-
tion, the window size needs to be large enough compared to a char-
acteristic length scale to avoid diverging border effects. Even larger
windows can be used to check the relative alignment of the shapes
making up the pattern. Such a choice corresponds to analyzing the whole
cross as opposed to a single bar.

Care needs to be taken near masked regions where only a few contour
segments may be left in an otherwise sufficiently large window. We,
therefore, only allow a small fraction ( < 1/16) of input pixels in a window to
bemasked, treating thewholewindowasmaskedotherwise.More details on
our masking can be found in the methods section.

Rank 4. While rank 2 MT encode information about elongation (2-fold
symmetry), rank 4MT contain information about 4-fold symmetry (“square-
ness”).We have tested various options to depictW0;4

1 using the eigenvalues of
the matrix in Eq. (12); for more details, see the methods section. The most
useful choice for our shape analysis turned out to be the tensor’s mid
eigenvalue (i.e., its second largest eigenvalue). Maps using this measure and
∣ψ4∣ of the same example shapes as above are shown in Fig. 3c, d.

Threshold dependent graphs. Additional information about the struc-
ture in a grayscale image with more than just black-and-white pixels can be
gained by varying the brightness threshold, which changes the shape of the
contours. The chosen shape measure can then be plotted as a function of
the brightness threshold. This procedure is an established way to apply the
MF/MT to data that has been used in many previous works9,10,22,28,45.

MT analysis applied to Planck data
Next, we use our methods developed above to analyze real CMB data,
specifically Planck temperature data. More details and explanations
regarding the basics of Planck data products and analysis are given in the
methods section.

In our analysis, we calculateMMof the EVQ ofW0;2
1 for 13 thresholds

between −3 and 3 standard deviations. Contours for all thresholds are
combined in eachMM.We use Planck PR3CMB SMICA temperature data
and999FFP10 simulations atNside= 512, smoothedwithFWHM¼ 200, and
a MM window radius of 6°. We, moreover, use the Common Mask (also
at Nside= 512 and smoothed with FWHM¼ 200, setting all pixels above

Fig. 2 | The computation of a marching square on
HEALPix. a Position of a marching square window
within the HEALPix grid (HEALPix background
image vectorized fromMartinez-Castellanos et al.81,
Fig. 1c, CC BY 4.0). b Possible configurations of a
2 × 2 pixel-window. The small circles represent pixel
centers that are either below (open) or above (filled)
a certain threshold. The union of gray areas
approximates the unpixelated shape within the
observation window. In the diagonal cases, the
corners are assumed to be disjoint if the total average
lies below the threshold, and connected otherwise52.
c Interpolation of a contour segment (solid line)
between pixel centers, where Amarks the center of a
pixel above the threshold, and the other circles mark
pixel centers below the threshold. The point where
the interpolated contour lies between two pixel
centers is calculated according to Eq. (15). Here, α is
the angular distance from A to B and d the angular
distance from A to the interpolated contour in that
direction.
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0.95 to unmasked), and Nside of the output MM is 16. Since the MM
window radius is larger than the output pixel size, each output pixel
describes its local surroundings, avoiding divergences due to a lack of
contours in the window. As above, we took the (pointwise) mean and
standard deviation of the simulation MM and used these to estimate the
local deviation from the data; see Fig. 4a and b. We also tested smoothing
the MM again, after calculating the scalar map, to check for larger-scale
deviations in anisotropy at this scale; see Fig. 4a, c, e for unsmoothed and
b, d, f for smoothed data.

Our analysis identifies two spots of interest: one close to
(l1, b1) = (225,−69) and one near (l2, b2) = (80, 27), which are highlighted by
red marks in the temperature map of Fig. 5. The first spot is close to the so-
called Cold Spot at around (l, b) = (210,−57), an anomaly first detected in
data by theWMAPmission31,54,55 and later also in Planck data56,57. However,
the distance of (l1, b1) to the Cold Spot is slightly larger than the window
diameter, which suggests that these spots are statistically independent. For
both (l1, b1) and (l2, b2), the data map shows a deviation in anisotropy
compared to the simulations by more than 4σ. A third spot near
(l3, b3) = (337, 62) reaches similar values as (l1, b1) in the unsmoothedmaps,
but lower values when using smoothedmaps. Here, just a single pixel in the
region reaches high values, as opposed to themore extended regions around
the other two spots.Wewill thus regard it as less notable than the other two
and focus on (l1, b1) and (l2, b2).

The MM pixel values do not follow a Gaussian distribution, so units
of standard deviation are not an ideal measure of deviation. Better
measures are the local and global percentile of the data and the simu-
lations, that is, the fraction of simulation MM pixels that take a lower
value than the given data MM pixel. These percentiles can be evaluated
either pointwise (comparing pixels at the same positions) or globally
(comparing each data pixel to all simulation pixels). The results are
shown in Fig. 4c, d, e, and f. The local method has the advantage that it
takes pixel distortion into account, whereas the global method provides
better statistics. Using only the local method has the risk of comparing an
outstanding point in the data to an average point in the simulations,
ignoring similar points. Both the local and global analyses find the same
two spots at percentile values >99%.

For a better understanding of the global significance of these values, we
performed a simple evaluation of the look-elsewhere-effect.We counted the
amount of simulationmaps that contain at least one higherMMpixel value
than each (unsmoothed) data MM pixel. The value at (l2, b2) is only sur-
passed by 6 simulations, making it quite outstanding. For (l1, b1), 943 out of
999 simulations surpass the data value in at least one pixel, making it seem
not very significant. One caveat of this analysis is that it does not take pixel
distortion and correlations intoaccount.Additionally, (l1,b1) is compared to
the highest spots in the simulation maps, despite not being the highest
region in the data. Simply taking the second or third highest pixels in each

elbicuderrI)bnaisetraC)a
Ra

nk
2

)d)c

Ra
nk

4

Fig. 3 | Minkowski maps of rank 2 and 4 anisotropy measures of a square,
elongated rectangle, longer rectangle, and cross. aUsing the eigenvalue quotient of
W0;2

1 . b Using ∣ψ2∣. c Using the mid eigenvalue of W0;4
1 . d Using ∣ψ4∣. Each white

contour depicts the shape of the (input) body, and the red circles indicate thewindow
size. Coordinates are given in degrees. InputNside was 512 and that of the output 128.
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simulation would not be sufficient as those might be correlated and located
right next to the highest pixel. These numbers must thus be taken with a
grain of salt.

The spots are also identified using PR3 data and 999 simulations by
the Commander pipeline and when using the absolute values of irre-
ducible tensors of rank 2 instead of the EVQ of W0;2

1 . For Commander,
the standard deviation of the simulation MM pixels is larger, which
naturally results in a smaller multiple of standard deviation. However, we
still obtain high percentile values (>97% global smoothed MM, > 99%
global unsmoothed and local MM). Varying the window size by about
10% gives qualitatively the same results. The spot (l2, b2) is located near a
masked region in the MM, which is due to several smaller masked spots
[see Supplementary Fig. 1 in SI and compare to Supplementary Fig. 2
depicting (l1, b1)], but we assume that those masked areas do not sig-
nificantly change the result since they are cut out rigorously. Further-
more, the window contains enough contours to exclude edge effects; see
the methods section for further details on masking.

To see whether the analysis is affected by the aforementioned non-
contour-preserving properties of the HEALPix grid, (l1, b1) and (l2, b2) are
rotated to the center of the coordinate system, and the MM of the data is
recalculated. The deviation there is slightly smaller but still remarkable
(>3.5σ/ >99.4% for (l1,b1); >4.4σ/ >99.9% for (l2,b2); usingunsmoothedMM
and for both percentiles).

Looking into those regionswith threshold-dependent graphs using 600
SMICA simulations, we find that the southern spot at (l1, b1) exceeds 99%of
the simulations (local percentile), whereas the other spot does not. The
excess in the map of all thresholds combined probably occurs due to cor-
relations between maps calculated for several different single thresholds so
that it exceeds in total but not for a single threshold.

Note that, in a similar analysis, Joby et al.28 also analyzed Planck
temperature data by calculating the eigenvalue ratio ofW0;2

1 with a different
method based on covariant derivatives of the field. They took a global
approach, integrating over the whole sphere at once at various (single)
thresholds ranging from−3 to 3 standard deviations of brightness for each
map. Thus, theEVQcanbeplotted as a function of the brightness threshold.
Using the Planck CMB temperature map given by the SMICA component
separation pipeline and 100 FFP8 simulations at a resolution ofNside = 512
(all smoothedwithFWHM=200 andmaskedwith theCommonMask), they
find good agreement between data and simulations.

For a better comparison to Joby et al.28, we created threshold dependent
graphs of the whole sky. For this purpose, we usedMMwith a window size
of 6 and 10 degrees and averaged globally for each threshold. The data is
around the 1st percentile of the simulations, making it more isotropic than
the average simulation. These results are clearly an interesting confirmation
of isotropy and comparable to the results of Joby et al.28, who found a similar
alignment of structures looking at only the 30GHz channel, probably due to
beam effects.

To look into larger structures, we createdMMwith awindow radius of
30 degrees and the same parameters as above. Due to masking, only caps
around the polar regions remain to be analyzed. The data stays below 98.5%
of the simulations both locally and globally.

For a more comprehensive shape analysis of the two anomalous
regions and the Cold Spot, we also performed a multivariate analysis that
combines anisotropy of different ranks. Therefore, we created scatter plots
that show the anisotropyof ranks 2 and4 for theMMpixels,which are based
on the IMT. To highlight outliers, the scatter plots compare the results of
simulations and data. Figure 6 shows one scatter plot for each region.
Importantly, the anisotropy information of the two different ranks appears

Fig. 4 | Deviation between SMICA temperature
data and simulations via the eigenvalue quotient
ofW0;2

1 .Weused awindow size of 6° andmasked the
data with the Common Mask (gray areas). The
deviation was calculated using various methods:
a, c, e no smoothing of the Minkowski maps before
calculating the deviation; b, d, fMinkowski maps
smoothed with FWHM 6°. Deviation is shown as:
a, b multiples of local standard deviation c, d local
percentiles; e, f global percentiles, where percentiles
refer to the amount of simulation pixels with values
below a given data pixel. High values stand for high
2-fold anisotropy of the temperature data.
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to be independent — by virtue of our irreducible representation. For the
Cold Spot, the data lies well within the simulations; for the spot close by, i.e.,
(l1, b1), the rank 2 IMT exceed most simulations, but not the rank 4 IMT.
Only for the spot at (l2, b2) do we find that both rank 2 and 4 IMT are
distinctly larger for the data than for any of the simulations. None of the
spots are noteworthy if we only use ∣ψ4∣. The Cold spot does not appear
noteworthy in theMMbecause we analyze its shape and not absolute value
information. Hence, our analysis provides information that is com-
plementary to that of classical methods.

Discussion
We propose a new framework for shape analysis on the sphere using
Cartesian and irreducible Minkowski tensors. We, specifically, devised an
irreducible representation on the sphere to gain access to higher-rank
tensors. We, moreover, introduced MM to the sphere, implementing
parallel transport. The MM provide a path for a localized analysis at any
given scale of interest. Adaptation to interdisciplinary fields of research is
facilitated by our open-source software litchi. Previous open software
on the sphere only incorporated the global MF25,58; to our knowledge no
tools for calculating any MT on the sphere are available to the public and
no such local analysis has been done by other groups. litchi is not
only the first available open-source tool for calculating MF and MT on
the sphere using MM known to us, it also provides access to arbitrary
rank via the IMT.

We applied these tools to CMBdata, finding noteworthy spots inCMB
temperature data. One of them is near the Cold Spot, the other above the
Galactic plane. Next, amore elaborated analysis is needed to disentangle the

nature and origin of the anomalies detected here. Such an analysis is beyond
the scope of this paper, where we present the general framework of Min-
kowski tensors on the sphere.

Several possible origins for anisotropy have been suggested in the lit-
erature and the following is a non-exhaustive list. Cosmic strings, 1D
topological defects caused by symmetry breaking in the early universe59,
have been considered as a potential source for anomalies in the shape of
temperature discontinuities60. Constraints on their parameters are found in
gravitational wave data61–63. Another possible avenue is (global) cosmic
topology. Nontrivial topologies of spacetime caused by quantum processes
may lead to correlations observable in theCMB that have not been ruled out
yet (see e.g., Akrami et al.64 and references therein). The homogeneous and
anisotropic Bianchi models are another approach to anisotropy, see e.g.,
Ellis65 for a review. There, the isotropic FLRW metric is replaced by ani-
sotropic alternatives.

In summary, we provide a generic toolset for anisotropy on the
sphere that can be applied to any spherical data set with manifold con-
ceivable applications. We mention exemplarily the characterization of
patterns in earth observation data66, for climate research (like tele-
connection patterns induced by El Niño-Southern Oscillation
(ENSO)67,68), heterogeneous pattern on cell surfaces (e.g., patches of
highly adhesive proteins69), or emergence phenomena of active matter on
the sphere70–73, where the role of a non-Euclidean geometry on self-
organization is not yet understood.

In these andmany other cases,MT as shape descriptors that capture n-
point information will likely give new insights into the phenomenologies
and their underlying governing rules.

Fig. 6 | Scatter plots showing irreducible anisotropy at ranks 2 and 4 for singleMinkowskimappixels.Pixels shown are located at (l2, b2) = (80, 27) a, the region next to the
Cold Spot (l1, b1) = (225, −69) b, and at the Cold Spot at (210, −57) c. Small black dots show pixels in the simulations; large red dots show data pixels.

Fig. 5 | SMICA PR3 cosmic microwave back-
ground temperature map. Markings show the
detected anomalous regions (red dots) and the Cold
Spot (red cross). Gray areas are masked with the
Common Mask. Nside = 512.
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Methods
Basics of Planck data analysis
Planck data maps are given in the HEALPix format50, for which software
packages in various languages are provided. A multitude of Planck data
products are available in the Planck Legacy Archive74,75, including
component-separated temperature and polarization maps generated with
different pipelines76 and simulations thereof 77. Additional information can
be found in the Planck Explanatory Supplement.

Within HEALPix, pixels can be ordered using a ring-wise (RING) or
a nested (NEST) scheme. The execution speed of some functions may
depend on this. For use with litchi, nested ordering is faster. The pixel
size is characterized by the Nside parameter which gives the number of
pixels as N tot ¼ 12N2

side. The maximum resolution available is usually
Nside = 2048 (corresponding to a pixel radius of up to 1.8’). Downgrading
to a lower resolution is usually done by transforming into harmonic
space. Since pixels represent an average of the field where they are
located, pixel window functions need to be taken into account (which are
provided and implemented in healpy’s pixwin function). We set lmax ¼
3Nside;out � 1 and mmax ¼ lmax as spherical harmonics on HEALPix are
linearly independent up to this value78. The harmonic coefficients are
then deconvolved with the previous beam size (50 for Nside = 2048),
convolved with a larger window (200 for Nside = 512), and transformed
back to real space at a lower resolution. These window sizes are typical for
Planck data22.

Marching squares on HEALPix
The marching square procedure gives the tensors in a grid whose pixel
centers are located at the intersections of the original HEALPix grid pixels
and whose corners are at the original pixel centers. The result is not a
HEALPix grid.We implemented thisMM-grid by assigning eachMMpixel
the number of the HEALPix pixel to its east (so each HEALPix-pixel
number refers to the western corner of that pixel). This procedure is
demonstrated for an exemplary pixel in Supplementary Fig. 3.Note that this
technique cannot be applied to the poles. Hence, we assigned special
negative numbers to the poles in the MM-grid.

Contours are distorted on theHEALPix grid. This effect is visiblewhen
looking at the average neighbor distance of each pixel (Supplementary
Fig. 4). The distorted pixel shapes affect the contour length when looking at
small, pixel scale structures, but the effect is less prominent for largerobjects.
Our tests found that rotating areas of interest to the origin did not sig-
nificantly change the deviation between data and simulations. Since data
and simulations are equally affected, we chose to neglect this effect.

Parallel transport in litchi is implemented as a single step in the
Schild’s ladder procedure (introduced by Alfred Schild in lectures at Prin-
cetonUniversity, presented byMisner et al.79). A recursive scheme enabling
several steps was tested andmade no significant difference over the relevant
angular distances.

Masks can be applied to the image in litchi by giving a HEALPix-
file of the sameNside and numbering scheme as the data to be analyzed. The
mask is expected to take values between zero and one, and a threshold is
applied (default: 0.9). Any pixel below this value is assumed to be masked
and set toNAN (not a number) in the data. No contours touching amasked
area are included in the further analysis. If more than 1 in 16 pixels con-
tributing to an outputMMpixel aremasked, the output pixel is set toNAN.

Rank 4 Anisotropy measures
On the path to an anisotropy measure on rank 4, we tried several possibi-
lities. The first ansatz is to use the norm of a vector containing the eigen-
values and is shown in Supplementary Fig. 5. The results look very similar to
simply calculating the area of the shape in the window.

Next, we can look at the three eigenvalues directly. Figure 3c, Sup-
plementary Figs. 6 and 7 show the largest to smallest eigenvalue of the
example shapes, respectively. While the largest eigenvalue again looks
similar to the first ansatz, the other two apparently encode 4-fold symmetry
information, reaching higher values for the cross and square.

To better distinguish between the effects of the smallest and middle
eigenvalue, we generated the same images using a triangle and a parallelo-
gram. While the smallest eigenvalue reaches high values for these new
shapes compared to the former examples (Supplementary Fig. 8, bottom),
the other one does not react to them in a strong way (Supplementary Fig. 8,
top). Note that the diagonal lines are pixelated and not as smooth as shown
in the examples, but this does not introduce a 4-fold symmetry. Based on
these tests, we decide that the middle eigenvalue ofW0;4

1 as represented in
Eq. (12) is a useful measure of 4-fold symmetry.

Data availability
The data and simulations used in this work are publicly available in the
Planck Legacy Archive74. Further data products were generated with
litchi with the parameters stated in the text and are available from C.C.
on reasonable request.

Code availability
The MM generation procedure was implemented in litchi, which is a
lightweight tool written in C++. Python bindings are included to allow for
Python-only analysis scripts and its header-only structure allows for an easy
integration with other C++-based projects. It is available at https://github.
com/ccollischon/litchi30.
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