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Abstract

Objectives: Many sleep-wake behaviors have been associated with cognition. We examined a 

panel of sleep-wake/activity characteristics to determine which are most robustly related to having 

low cognitive performance in midlife. Secondarily, we evaluate the predictive utility of sleep-wake 

measures to screen for low cognitive performance.

Methods: The outcome was low cognitive performance defined as being >1 SD below average 

age/sex/education internally-normalized composite cognitive performance levels assessed in the 

Hispanic Community Health Study/Study of Latinos. Analyses included 1,006 individuals who 

had sufficient sleep-wake measurements about two years later (mean age=54.9, standard deviation 

(SD)=5.1; 68.82% female). We evaluated associations of 31 sleep-wake variables with low 

cognitive performance using separate logistic regressions.

Results: In individual models, the strongest sleep-wake correlates of low cognitive performance 

were measures of weaker and unstable 24-hour rhythms; greater 24-hour fragmentation; longer 

time-in-bed; and lower rhythm amplitude. One standard deviation worse on these sleep-wake 

factors was associated with ~20–30% greater odds of having low cognitive performance. In 

an internally cross-validated prediction model, the independent correlates of low cognitive 

performance were: lower Sleep Regularity Index scores; lower pseudo-F statistics (modellability 

of 24-hour rhythms); lower activity rhythm amplitude; and greater time in bed. Area under the 

curve was low/moderate (64%) indicating poor predictive utility.

Conclusion: The strongest sleep-wake behavioral correlates of low cognitive performance were 

measures of longer time-in-bed and irregular/weak rhythms. These sleep-wake assessments were 

not useful to identify previous low cognitive performance. Given their potential modifiability, 

experimental trials could test if targeting midlife time-in-bed and/or irregular rhythms influences 

cognition.
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Sleep-wake behaviors may be viable targets for experimental dementia prevention trials, 

given that sleep-wake behavior is modifiable1–4, and because there are plausible mechanisms 

by which sleep and circadian dysfunction affect brain health5–7. A range of 24-hour sleep-

wake behavioral domains/factors have been prospectively associated with worse cognitive 

outcomes in aging (as reviewed8; also see more recent prospective studies such as 9–11). 

To prioritize candidates for future trials (that target sleep-wake factors to test effects on 

dementia biomarkers/cognition), observational evidence is needed regarding which sleep-

wake factors most robustly/independently correlate with low cognitive function.

Current evidence does not allow direct within-study/sample comparisons, across a broad 

panel of domains and measures, regarding which sleep-wake/activity factors are most 

robustly/independently correlated with cognitive dysfunction. Several past studies have 

examined night-time (sleep duration)12,13 and daytime (e.g., low activity)14 predictors of 

dementia separately. Other studies have shown that measures of 24-hour sleep-wake/rest-

activity disruption are associated with the incidence of cognitive impairment independent 

of sleep and activity10,11,15–17. In these studies, various measures have been used across 

publications to examine similar domains/concepts. For example, both extended-cosine 

based16 and non-parametric approaches17 have been used to predict future cognitive 

impairment; both non-parametric interdaily stability18 and the Sleep Regularity Index19 have 

been proposed to assess 24-hour sleep-wake rhythmicity; and both detrended fluctuation 

analysis10 and intraday variability11 variables have been used to link 24-hour fragmentation 

with dementia risk.

There is a particular need for evidence regarding which, of the sleep-wake domains/factors 

that have been linked with cognition in older adults9–17, are related to low cognitive 

performance in midlife. Identifying modifiable factors associated with low cognitive 

performance in midlife is important, given that poor performance on neuropsychological 

test batteries in midlife/early late-late life is associated with higher dementia risk20,21. 

For example, being in the lowest quartile on a composite cognitive performance variable, 

assessed in midlife when the sample age was around 55 years old on average, was associated 

with an estimated 3.8 (95% confidence interval: 2.5–6.0) times the odds of developing 

dementia over 20 years later 20. Midlife is an important period from which to initiate 

selective prevention approaches22. Since dementia can have a decades long incubation 

period, it is plausible that relationships between signs of sleep-wake behavioral disruption 

and cognitive pathology already exist by midlife.

Evidence regarding which sleep-wake factors are associated with cognition in midlife, 

especially in high-risk and minority groups, is currently limited. The above-cited studies 

on sleep-wake patterns and cognitive outcomes utilized samples that were older and 

predominately non-Hispanic white. Less research in this area has focused on Hispanic/

Latinos. The number and proportion of people with dementia of Hispanic/Latino ancestry 

in the United States is expected to grow dramatically in the next three decades23,24. Recent 

research has identified associations of both sleep duration and actigraphy-estimated sleep 

onset latency with cognition in Hispanic/Latinos25,26. But we are unaware of prior studies 

that have characterized the relationships between an in-depth panel of multidimensional 

sleep-wake behaviors in relation to low cognitive function in midlife Hispanic/Latinos.
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In addition, while the prior studies reviewed above have shown statistical associations 

between sleep-wake variables and cognitive outcomes, it is not known whether simple 

sleep-wake measures have any utility for detecting cases of lower cognitive function. The 

presence of a statistical association between two factors (e.g., levels of sleep factor X are 

higher in people with disease Y) does not mean that one factor can be used to provide 

valid discrimination/prediction of the other (e.g., high levels of sleep factor X accurately 

determine who has disease Y)27,28. If sleep-wake measures were useful to screen for low 

cognitive performance in midlife, they may be helpful to narrow the pool of individuals who 

should undergo traditional in-depth neuropsychological screening in midlife.

To address these gaps in the literature, our first aim was to explore the associations between 

a multidimensional panel of sleep-wake behavioral factors with low cognitive performance 

among Hispanic/Latinos in midlife. Analyses ranked the effect sizes and assessed the 

statistical independence of a panel of 24-hour sleep-wake measures in relation to the 

outcome of low midlife cognitive performance. Second, we evaluated the predictive utility of 

sleep-wake measures for detecting low cognitive performance using LASSO regression.

Methods

Participants:

This study was a secondary data analysis including a subset of participants from the 

Hispanic Community Health Study/Study of Latinos (HCHS/SOL). From 2008–2011, the 

HCHS/SOL enrolled 16,415 participants age 18–74 years at screening, from four sites in 

the United States (Bronx, NY; Chicago, IL; Miami, FL; and San Diego, CA). As described 

previously29, the HCHS/SOL was designed to be representative of Hispanic/Latino adults 

in the target communities and employed a two-stage probability sampling approach with 

deliberate oversampling of specific groups and sampling weights for analyses. However, this 

paper focuses on measures that were available in a relatively small subset of the overall 

sample (n=1,006; see below). Therefore, we do not use sampling weights as we do not 

intend for or imply that this sample necessarily represents the entire HCHS/SOL or target 

Hispanic/Latino population.

Based on our aims, our analytic sample was first restricted to participants age 45+ years 

of age who had sufficient data to determine education-normalized performance on all four 

neuropsychological assessments (n=8,703). Of these HCHS/SOL parent study participants, a 

total of 1,260 had enrolled in the Sueño Ancillary Study (conducted from 2010–2013; only 

included people up to age 65), which provided data for the sleep-wake measures analyzed 

here. The Sueño study included people who were willing to undergo sleep assessments for 

the study, and excluded those who reported severe sleep disorders at baseline defined as 

apnea hypopnea index < 50 events/hr on home sleep testing, no clinical treatment for sleep 

apnea, and no clinical diagnosis of narcolepsy. We further excluded 151 participants who 

did not meet the quality control standard for their sleep-wake behavioral data (as described 

below). Of these 1,109 individuals, 1,006 also had complete self-report sleep data and were 

included in the analysis. All study procedures were approved by the Institutional Review 

Boards of the participating institutions. Participants provided written informed consent.
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Objective sleep-wake behavioral measures:

In the Sueño study, participants were asked to wear an Actiwatch Spectrum device (Philips 

Respironics) on the non-dominant wrist for seven days (mean recording length = 7.83 days, 

standard deviation = 0.96). During the actigraphy recording period, participants completed 

a sleep diary, which was used as described previously to identify the rest/sleep period30. 

Participants also completed questionnaires regarding their sleep. Participants were excluded 

from the analysis if they had less than 3 continuous good days of actigraphy data, with 

good days defined as missing no more than 4 hours per day and missing no data in the 

main rest/sleep interval. These quality control criteria were ascertained independently then 

adjudicated by the second author and a research assistant trained in the protocol.

Consistent with sleep-wake health as a multidimensional construct (e.g., R[U] SATED 

which is meant to stand for “Regularity,” “Satisfaction,” “Alertness,” “Timing,” 

“Efficiency,” and “Duration”)31, we considered sleep-wake/activity factors within eight 

broadly defined conceptual domains (information in Table 1). Main sleep periods and naps 

were manually identified from the actigraphy data using an approach that has been validated 

against polysonmography32. These data were used to calculate both daytime and night-time 

sleep variables. We also used circadian rest-activity rhythm variables from commonly 

applied extended-cosine33 (R package ‘RAR’) and non-parametric approaches34,35. We 

used custom R code to calculate the hourly intradaily variability metric using all the data 

as described previously35 and using the entire (not subsampled) time series variance in 

the denominator as described previously36. As additional regularity measures, we used 

recently developed metrics including: the Sleep Regularity Index19 (higher indicates greater 

sleep regularity), Composite Phase Deviation (index based on daily mid-sleep and average 

midsleep timing; higher reflects less regularity)37, and Residual Circadian Spectrum38 

(which decomposes error from the extended cosine model into low, medium, and high 

frequency deviations). As another measure related to ultradian variability/fragmentation, 

we used the scaling exponent from detrended fluctuation analysis10 (higher reflects less 

ultradian variation) calculated with the R package ‘nonlinearTseries’ function ‘dfa.’

Other health factor predictor variables:

We also included several self-reported measures collected at the Sueño visit that were 

relevant based on their potential associations with midlife cognition. These were: medical 

histories of chronic medical conditions (hypertension, coronary heart disease, stroke, and 

diabetes); anxiety symptom severity (10-item Spielberger State-trait anxiety index 39); 

depression symptom severity (measured with the 10-item Center for Epidemiological 

Studies Depression Scale40). We also examined daytime sleepiness (total scores on the 

Epworth Sleepiness Scale41) and insomnia severity (Insomnia Severity Index42 total scores).

Neuropsychological outcome measure:

Low cognitive performance was defined as being > 1 standard deviation below the mean on 

a composite cognitive performance variable. This composite cognitive performance variable 

was calculated as in similar work43, such that lower than expected performance was defined 

after removing effects of age, sex, and education. To do so, we averaged, then z-scored, 

internally standardized age/sex/education normalized scores on four cognitive assessments. 
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The four “pen and paper”/“face-to-face” cognitive assessments, administered by study staff 

in Spanish or English, were: (1) total scores from the Digit Symbol Substitution Test44 

(assessing sustained attention/processing speed); (2) three learning trial total scores from 

the Spanish‐English Verbal Learning Test45 (assessing learning); (3) delayed recall on 

the Spanish‐English Verbal Learning Test (assessing delayed memory); and (4) the total 

number of words named on a word fluency test46 (assessing verbal fluency). Note that these 

cognitive tests were administered at baseline, which averaged 2.1 years (SD=0.4) before the 

Sueño visit.

All test scores were first internally standardized based on age/sex/education norms. We 

computed means and standard deviations for each test within age/sex/education strata using 

data from the 8,703 HCHS/SOL participants who had age, education, and cognitive test 

data. For normalizing purposes, age was treated as a four-level categorical variable (45–49 

years, 50–54 years, 55–59 years, and 60–64 years), whereas sex and education were defined 

as shown in Table 2. For each test, we computed Z-scores (in standard deviation units) based 

on these age/sex/education strata norms.

Covariates:

We considered several non-modifiable factors as covariates in all models, as they represent 

potential confounding variables. These were age (expressed continuously), sex, self-reported 

heritage (groups defined as in Table 2), cognitive test administration language, study site, 

and time between baseline cognitive testing and the sleep assessments.

Statistical analyses:

Low cognitive performance, defined as being > 1 standard deviation below the mean on 

a composite cognitive performance variable, was the outcome. All continuous predictor 

variables were standardized (mean=0 and standard deviation=1) prior to analysis to facilitate 

effect size comparisons. We used separate logistic regression models for each of the 

predictor variables. All models adjusted for the covariates listed above. There were 31 sleep-

wake/activity variables and 6 other health factors. We accounted for these 37 comparisons 

of interest by reporting Benjamini-Hochberg False Discovery Rates47. We illustrate the odds 

ratios and confidence intervals on a forest plot that was generated using the R package 

‘forestploter.’

In the multivariable analysis, we used Least Absolute Shrinkage and Selection Operator 

(LASSO) implemented using the R package ‘glmnet’ to fit regression models. In the 

LASSO, we forced all the covariates into the model. We only entered predictor variables 

if their FDR from logistic regression was less than 10%. We did this prescreening to 

ensure that the LASSO model was driven by factors that are also associated with cognition 

when considered alone. Three LASSO models were constructed to compare the relative 

predictive utility of: (1) sleep-wake variables; (2) aforementioned other health factors; (3) 

both sleep-wake variables and other health factors. We report overall predictive utility using 

the area under the curve (AUC) calculated with five-fold cross-validation. The five-fold 

cross-validation involves dividing the dataset into five subsets, training the LASSO model on 

four of the subsets, and evaluating its performance on the remaining subset. This process is 
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repeated multiple times, utilizing each subset for both training and testing, to obtain a more 

reliable evaluation of the performance of the model. To provide further evidence of low 

predictive performance, we constructed Random Forest and Support Vector Machine using 

the R packages ‘randomForest’ and ‘e1071’, respectively. However, both machine learning 

techniques produced similarly poor performance and therefore only LASSO model reported 

based on its relatively better interpretability.

Results

Sample characteristics:

The sample was 68% female and about 55 years old on average. See Table 2 for additional 

sample characteristics.

Individual sleep-wake/activity variables related to low cognitive performance:

None of the actigraphy/score sleep timing, efficiency, or daytime sleep variables were 

statistically associated with cognitive performance status in this sample (Table 3, Figure 

1). In addition, self-reported insomnia severity was not associated with low cognitive 

performance.

There were statistically significant associations between measures of lower 24-hour 

regularity, higher ultradian fragmentation, longer time in bed (from diary), and lower activity 

levels with higher odds of having low cognitive performance (Table 3). Of these sleep-

wake/activity variables that were statistically associated with low cognitive performance, 

confidence intervals for effect size (odds ratio) estimates were all in the small range and 

widely overlapping (Figure 1). For example, per standard deviation higher relative amplitude 

and Sleep Regularity Index Scores, the odds of having low cognitive performance were 

~20% lower (95% confidence interval (CI) odds ratio: 0.67–0.93). That said, the numerically 

largest and most statistically robust correlate of low cognitive performance were measures 

which captured rest-activity (sleep-wake) rhythms. For example, per standard deviation 

higher log transformed rest-activity rhythm amplitude, the odds of having low cognitive 

performance were estimated to be 31% lower (False Discovery Rate < 0.001; 95% CI odds 

ratio: 0.58–0.81).

Independence of sleep-wake variables and predictive validity:

Based on evidence for their associations with cognition, we selected the 12 variables 

highlighted in Table 3 for entry into the LASSO model (in addition to the covariates listed 

above, which we forced into all models). The cross-validated overall prediction accuracy 

was low-to-moderate (Table 4; AUC=64%).

The sleep-wake variables retained by the LASSO model that were independently associated 

with low cognitive performance were: measures of higher 24-hour regularity (the Sleep 

Regularity Index and pseudo-F statistic), longer time in bed, and lower activity rhythm 

amplitude. Alternative modelling approaches, e.g., including using Random Forest Models 

and Support Vector Machines produced similar results indicative of overall low-to-moderate 

AUC.
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Analyses using low performance on the individual subsets as the outcome:

Finally, we sought to determine if associations between the identified sleep-wake factors 

and low overall cognitive performance were driven by particular cognitive tests. Each of 

the sleep-wake factors identified as independent correlates of low cognitive performance 

were examined in a set of separate logistic regression analyses which used low performance 

(>1 standard deviation below normed levels) on each cognitive test for their outcomes. 

Similar associations were detected between all measures of regularity/activity rhythm 

amplitude with each subtest as compared with the overall performance variable (see widely 

overlapping confidence intervals). Longer time in bed appeared to be potentially more 

robustly associated with the overall cognitive performance variable (Table 3, e.g., OR=1.25 

(1.05, 1.50) than the individual subtests (Supplemental Table 1, e.g., OR=1.14 (9% CI: 0.95, 

1.37).

Discussion

By leveraging a multi-domain panel of sleep-wake/activity factors and using multivariable 

modelling, our study was able to identify sleep-wake measures that were independently 

associated with low cognitive performance in midlife. It is also notable that we did not 

observe associations between sleep duration, sleep fragmentation, daytime napping, or 

insomnia symptoms with low cognitive performance. Our main findings were that less 

regular sleep-wake patterns, longer time in bed, and lower activity rhythm amplitude were 

all independently associated with having lower than expected cognitive performance among 

US Hispanic/Latino adults aged 45–64 years. These observations mirror findings from 

prior prospective studies of older adults that have shown associations between measures 

of irregular/weak activity rhythms with future cognitive decline16,17; and longer time in 

bed with associated with future dementia risk9. Given that low cognitive performance in 

midlife is a risk factor for future dementia20,21, the associated sleep-wake behavioral factors 

(long time-in-bed and weak/irregular rhythms) may be important candidates for future trials 

examining whether targeting these sleep-wake factors in midlife reduce the risk of cognitive 

decline and dementia.

It is important to note limitations related to the current study’s observational, correlative, 

design. Our findings linked sleep-wake and cognitive data from single timepoints in midlife. 

As noted above, data from our study can be interpreted in the context of prior literature 

linking the identified sleep-wake factors9,16,17 and low midlife cognitive performance20,21 

with future dementia risk. But the data presented here do not directly link these sleep-wake 

factors with dementia. In addition, findings were based on a single, relatively short-term, 

assessment of sleep-wake patterns. Future longitudinal studies are needed to clarify the 

temporal relationships between sleep-wake factors, their changes over time, cognition, 

potential mediating factors (e.g., psychological, lifestyle, and/or cardiometabolic factors), 

and the development of dementia. It is also important to note that all observational studies 

are subject to residual confounding and cannot ascertain causality (e.g., we cannot determine 

if sleep-wake variables influence cognitive performance; or if underlying/measured factors 

influence both sleep-wake behavior and cognition). Therefore, experimental studies are 

needed to determine if targeting these aspects of sleep-wake/activity disruption (irregular 
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sleep-wake patterns, long time in bed, low activity rhythm amplitude) in midlife causally 

alters the course of brain/cognitive aging and forestalls or prevents dementia.

Such future trials are plausible based on: (1) these sleep-wake factors being potentially 

modifiable; and (2) there being plausible mechanisms by which modifying these behavioral 

factors could improve the trajectory of cognitive function. Regarding modifiability of these 

sleep-wake factors, several options are currently available for testing, e.g.: a transdiagnostic 

intervention, called the Transdiagnostic Intervention for Sleep and Circadian Dysfunction, 

has been recently shown to increase actigraphy measures of regularity4; approaches to 

restrict time in bed are already widely used as part of first line treatment for insomnia48; and 

behavioral approaches like prescribed exercise and behavioral activation may be useful to 

increase activity rhythm amplitude. With regard to plausible mechanisms: both inactivity49 

and irregular sleep-wake rhythms50,51 affect cardiometabolic risk factors that can lead to 

neurodegeneration52,53 and cerebrovascular disease54,55; and excessive time in bed may 

reduce the amount of time spent physically, socially, or mentally engaged.

With regard to our secondary aim, we found that even including health conditions and sleep-

wake measures, models could not accurately predict who had low cognitive performance in 

this sample. This observation suggests that, while there may be associations (suggesting 

possibly etiological relationships) between sleep-wake disruption and cognition, these 

measures of sleep-wake disruption were not a useful surrogate for neuropsychological-

based testing. It is important to note one major limitation of our prediction aim is 

that low cognitive performance was determined an average of about two years before 

sleep was measured. As a result, this could have diluted the strength of association and 

reduced predictive validity as compared with identifying truly concurrent low cognitive 

performance. Prediction results may vary when using these or other sleep predictors (e.g., 

sleep electrophysiology) for predicting different outcomes and in different timeframes (e.g., 

hippocampal volume or future dementia diagnosis). Overall, our sample and these findings 

are not necessarily be generalizable to other populations. Future studies employing similar 

methodological approaches will be needed to replicate and potentially confirm: (a) whether 

these are indeed key sleep-wake factors related to midlife cognition across ethnic/geographic 

groups; and (b) that in general, although there are associations between these factors, 

sleep-wake measures are not clinically useful for identifying people with low cognitive 

performance.

In conclusion, we have identified aspects of sleep-wake disruption that are related to low 

cognitive performance in midlife independent of each other and other dementia risk factors 

(including self-reported stroke, hypertension, diabetes, and anxiety). These findings mirror 

associations of sleep-wake rhythm disruption and cognitive decline in older adults. Thus, we 

have provided evidence that relationships between sleep-wake disruption and low cognitive 

function exist in the decade before older adulthood. Future studies are needed to determine if 

targeting these sleep-wake factors, i.e., promoting regular/strong sleep-wake activity patterns 

and reducing time in bed, can help protect brain health and reduce dementia risk.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Associations of each individual sleep-wake measures with low cognitive performance 

ranked by effect sizes.

All odds ratios are from separate models that are adjusted for age, sex, test administration 

language, time between cognitive and sleep visits, study site, and heritage. False Discovery 

Rate adjusted p-values are reported.
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Table 1.

List of domains, measures, and data sources for each predictor used

Domains Measures Data Source

24-hour regularity

Medium frequency deviations from a circadian mean Actigraphy

Low frequency deviations from a circadian mean Actigraphy

Composite Phase Deviation Scored actigraphy data

SD of midsleep Scored actigraphy data

Inter-daily stability Actigraphy

Relative amplitude Actigraphy

Sleep Regularity Index Scored actigraphy data

Pseudo-F Statistic Actigraphy

Ultradian fragmentation

Intradaily variability Actigraphy

High frequency deviations from a circadian mean Actigraphy

Detrended fluctuation analysis Actigraphy

Timing

Mid-sleep time Scored actigraphy data

Activity onset time (up-mesor) Actigraphy

Morningness-eveningness questionnaire Self-report

Time of the most active 10 hours Actigraphy

Wake time Scored actigraphy data

Acrophase Actigraphy

Activity offset time (down-mesor) Actigraphy

Time of the least active 5 hours Actigraphy

In bed time Diary

Duration

In bed duration (continuous) Diary

Rest period length Actigraphy

Sleep duration Scored actigraphy data

Efficiency
Activity level in the leave active 5 hours Actigraphy

Wake after sleep onset (WASO) Scored actigraphy data

Daytime sleep

Any napping Scored actigraphy data

Average nap duration Scored actigraphy data

Daytime sleepiness (Epworth Sleepiness Scale) Self-report

Activity level
Activity level in the most active 10 hours Actigraphy

Log transformed rhythm amplitude Actigraphy

Satisfaction Insomnia Severity Index Self-report

Health factors

Stroke Self-report

Hypertension Self-report

Diabetes Self-report

Anxiety symptoms (STAI) Self-report

Coronary Heart Disease Self-report

Depression symptoms (CESD) Self-report

Sleep Health. Author manuscript; available in PMC 2025 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Smagula et al. Page 16

Table 2.

Analytic sample demographic and descriptive information (n=1006)

Age in years, mean (standard deviation) 55 (5)

Sex

 Female 67.5 (679)

 Male 32.5 (327)

Heritage

 Central American 13.1 (132)

 Cuban 19.4 (195)

 Dominican 13.2 (133)

 Mexican 24.4 (245)

 Puerto Rican 20.9 (210)

 South American 9.0 (91)

Test administration language

 Spanish 15.7 (158)

 English 84.3 (848)

Education

 No high school diploma or GED 32.6 (277)

 At most a High school diploma or GED 23.1 (196)

 Greater than high school (or GED) education 44.4 (377)

Years between baseline and the sleep visit, mean (standard deviation) 2.1 (4.0)

Cognitive Test Scores (before standardization)

 Digit Symbol Substitution Test total score 36.4 (12.7)

 Three learning trial total sore (SEVLT) 23.9 (5.4)

 Delayed recall (SEVLT) 8.7 (2.9)

 Total number of words (Word Fluency Test) 19.0 (7.2)

Percent (n) shown unless otherwise noted. Acronym: SEVLT, Spanish-English Verbal Learning Test
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Table 3.

Associations between each sleep-wake/activity variable and low cognitive performance

Domains Measures OR (95% CI) Adjusted p-value

24-hour regularity

Medium frequency deviations from a circadian mean 1.24 (1.03, 1.48) 0.068

Low frequency deviations from a circadian mean 1.17 (0.98, 1.39) 0.210

Composite Phase Deviation 1.16 (0.97, 1.38) 0.239

SD of midsleep 1.12 (0.93, 1.33) 0.409

Inter-daily stability 0.84 (0.69, 1.00) 0.158

Relative amplitude 0.83 (0.71, 0.98) 0.068

Sleep Regularity Index 0.79 (0.67, 0.93) 0.034

Pseudo-F Statistic 0.74 (0.63, 0.88) 0.015

Ultradian fragmentation

Intradaily variability 1.25 (1.04, 1.51) 0.068

High frequency deviations from a circadian mean 1.18 (0.99, 1.41) 0.176

Detrended fluctuation analysis 1.03 (0.86, 1.23) 0.802

Timing

Mid-sleep time 1.15 (0.96, 1.38) 0.266

Activity onset time (up-mesor) 1.06 (0.90, 1.25) 0.657

Morningness-eveningness questionnaire 1.08 (0.91, 1.31) 0.570

Time of the most active 10 hours 1.05 (0.88, 1.25) 0.693

Wake time 1.05 (0.89, 1.26) 0.693

Acrophase 1.02 (0.86, 1.20) 0.848

Activity offset time (down-mesor) 0.97 (0.82, 1.16) 0.776

Time of the least active 5 hours 0.95 (0.80, 1.12) 0.688

In bed time 0.96 (0.80, 1.14) 0.693

Duration

In bed duration (continuous) 1.25 (1.05, 1.50) 0.061

Rest period length 1.11 (0.94, 1.32) 0.409

Sleep duration 1.11 (0.93, 1.33) 0.450

Efficiency
Activity level in the leave active 5 hours 1.13 (0.96, 1.33) 0.266

Wake after sleep onset (WASO) 1.10 (0.92, 1.32) 0.470

Daytime sleep

Any napping 1.06 (0.75, 1.52) 0.776

Average nap duration 1.06 (0.89, 1.26) 0.657

Daytime sleepiness (Epworth Sleepiness Scale) 0.93 (0.78, 1.11) 0.595

Activity level
Activity level in the most active 10 hours 0.75 (0.63, 0.89) 0.015

Log transformed rhythm amplitude 0.69 (0.58, 0.81) 0.001

Satisfaction Insomnia Severity Index 1.08 (0.91, 1.30) 0.570

Health factors

Stroke 3.72 (1.07, 11.8) 0.081

Hypertension 1.82 (1.26, 2.65) 0.016

Diabetes 1.76 (1.15, 2.64) 0.040

Anxiety symptoms (STAI) 1.28 (1.07, 1.52) 0.034

Coronary Heart Disease 1.26 (0.54, 2.69) 0.688

Depression symptoms (CESD) 1.10 (0.92, 1.32) 0.496
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Notes: (1) All OR (odds ratios) are from separate models that are adjusted for age, sex, heritage, test administration language, time between 
cognitive and sleep visits, and study site; (2) p-values adjusted for multiple comparisons using the Benjamini-Hochberg method; and (3) shading 
indicates variable was selected into the multivariable modeling
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Table 4.

Variables retained by the final LASSO model

Domains Measures β

24-hour regularity
Sleep Regularity Index −0.06

Pseudo-F Statistic −0.04

Duration In bed duration 0.13

Activity level Log transformed rhythm amplitude −0.22

Health factors

Stroke 0.87

Hypertension 0.34

Diabetes 0.22

Anxiety symptoms (STAI) 0.13

The model also included covariates (forced into model: age, sex, heritage, test administration language, time between cognitive and sleep visits, and 
study site)
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