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Abstract

Objectives: Many sleep-wake behaviors have been associated with cognition. We examined a
panel of sleep-wake/activity characteristics to determine which are most robustly related to having
low cognitive performance in midlife. Secondarily, we evaluate the predictive utility of sleep-wake
measures to screen for low cognitive performance.

Methods: The outcome was low cognitive performance defined as being >1 SD below average
age/sex/education internally-normalized composite cognitive performance levels assessed in the
Hispanic Community Health Study/Study of Latinos. Analyses included 1,006 individuals who
had sufficient sleep-wake measurements about two years later (mean age=54.9, standard deviation
(SD)=5.1; 68.82% female). We evaluated associations of 31 sleep-wake variables with low
cognitive performance using separate logistic regressions.

Results: In individual models, the strongest sleep-wake correlates of low cognitive performance
were measures of weaker and unstable 24-hour rhythms; greater 24-hour fragmentation; longer
time-in-bed; and lower rhythm amplitude. One standard deviation worse on these sleep-wake
factors was associated with ~20-30% greater odds of having low cognitive performance. In

an internally cross-validated prediction model, the independent correlates of low cognitive
performance were: lower Sleep Regularity Index scores; lower pseudo-F statistics (modellability
of 24-hour rhythms); lower activity rhythm amplitude; and greater time in bed. Area under the
curve was low/moderate (64%) indicating poor predictive utility.

Conclusion: The strongest sleep-wake behavioral correlates of low cognitive performance were
measures of longer time-in-bed and irregular/weak rhythms. These sleep-wake assessments were
not useful to identify previous low cognitive performance. Given their potential modifiability,
experimental trials could test if targeting midlife time-in-bed and/or irregular rhythms influences
cognition.
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Sleep-wake behaviors may be viable targets for experimental dementia prevention trials,
given that sleep-wake behavior is modifiablel~, and because there are plausible mechanisms
by which sleep and circadian dysfunction affect brain health®’. A range of 24-hour sleep-
wake behavioral domains/factors have been prospectively associated with worse cognitive
outcomes in aging (as reviewed?; also see more recent prospective studies such as 911).,

To prioritize candidates for future trials (that target sleep-wake factors to test effects on
dementia biomarkers/cognition), observational evidence is needed regarding which sleep-
wake factors most robustly/independently correlate with low cognitive function.

Current evidence does not allow direct within-study/sample comparisons, across a broad
panel of domains and measures, regarding which sleep-wake/activity factors are most
robustly/independently correlated with cognitive dysfunction. Several past studies have
examined night-time (sleep duration)12-13 and daytime (e.g., low activity)* predictors of
dementia separately. Other studies have shown that measures of 24-hour sleep-wake/rest-
activity disruption are associated with the incidence of cognitive impairment independent
of sleep and activity1%-11.15-17 |n these studies, various measures have been used across
publications to examine similar domains/concepts. For example, both extended-cosine
based1® and non-parametric approaches!’ have been used to predict future cognitive
impairment; both non-parametric interdaily stabilityl8 and the Sleep Regularity Index!® have
been proposed to assess 24-hour sleep-wake rhythmicity; and both detrended fluctuation
analysis1® and intraday variability!! variables have been used to link 24-hour fragmentation
with dementia risk.

There is a particular need for evidence regarding which, of the sleep-wake domains/factors
that have been linked with cognition in older adults®-17, are related to low cognitive
performance in midlife. Identifying modifiable factors associated with low cognitive
performance in midlife is important, given that poor performance on neuropsychological
test batteries in midlife/early late-late life is associated with higher dementia risk29-21,

For example, being in the lowest quartile on a composite cognitive performance variable,
assessed in midlife when the sample age was around 55 years old on average, was associated
with an estimated 3.8 (95% confidence interval: 2.5-6.0) times the odds of developing
dementia over 20 years later 20, Midlife is an important period from which to initiate
selective prevention approaches?2. Since dementia can have a decades long incubation
period, it is plausible that relationships between signs of sleep-wake behavioral disruption
and cognitive pathology already exist by midlife.

Evidence regarding which sleep-wake factors are associated with cognition in midlife,
especially in high-risk and minority groups, is currently limited. The above-cited studies
on sleep-wake patterns and cognitive outcomes utilized samples that were older and
predominately non-Hispanic white. Less research in this area has focused on Hispanic/
Latinos. The number and proportion of people with dementia of Hispanic/Latino ancestry
in the United States is expected to grow dramatically in the next three decades?324. Recent
research has identified associations of both sleep duration and actigraphy-estimated sleep
onset latency with cognition in Hispanic/Latinos2®26, But we are unaware of prior studies
that have characterized the relationships between an in-depth panel of multidimensional
sleep-wake behaviors in relation to low cognitive function in midlife Hispanic/Latinos.
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In addition, while the prior studies reviewed above have shown statistical associations
between sleep-wake variables and cognitive outcomes, it is not known whether simple
sleep-wake measures have any utility for detecting cases of lower cognitive function. The
presence of a statistical association between two factors (e.g., levels of sleep factor X are
higher in people with disease Y) does not mean that one factor can be used to provide

valid discrimination/prediction of the other (e.g., high levels of sleep factor X accurately
determine who has disease Y)27:28, If sleep-wake measures were useful to screen for low
cognitive performance in midlife, they may be helpful to narrow the pool of individuals who
should undergo traditional in-depth neuropsychological screening in midlife.

To address these gaps in the literature, our first aim was to explore the associations between
a multidimensional panel of sleep-wake behavioral factors with low cognitive performance
among Hispanic/Latinos in midlife. Analyses ranked the effect sizes and assessed the
statistical independence of a panel of 24-hour sleep-wake measures in relation to the
outcome of low midlife cognitive performance. Second, we evaluated the predictive utility of
sleep-wake measures for detecting low cognitive performance using LASSO regression.

This study was a secondary data analysis including a subset of participants from the
Hispanic Community Health Study/Study of Latinos (HCHS/SOL). From 2008-2011, the
HCHS/SOL enrolled 16,415 participants age 1874 years at screening, from four sites in
the United States (Bronx, NY; Chicago, IL; Miami, FL; and San Diego, CA). As described
previously2?, the HCHS/SOL was designed to be representative of Hispanic/Latino adults
in the target communities and employed a two-stage probability sampling approach with
deliberate oversampling of specific groups and sampling weights for analyses. However, this
paper focuses on measures that were available in a relatively small subset of the overall
sample (n=1,006; see below). Therefore, we do not use sampling weights as we do not
intend for or imply that this sample necessarily represents the entire HCHS/SOL or target
Hispanic/Latino population.

Based on our aims, our analytic sample was first restricted to participants age 45+ years

of age who had sufficient data to determine education-normalized performance on all four
neuropsychological assessments (n=8,703). Of these HCHS/SOL parent study participants, a
total of 1,260 had enrolled in the Suefio Ancillary Study (conducted from 2010-2013; only
included people up to age 65), which provided data for the sleep-wake measures analyzed
here. The Suefio study included people who were willing to undergo sleep assessments for
the study, and excluded those who reported severe sleep disorders at baseline defined as
apnea hypopnea index < 50 events/hr on home sleep testing, no clinical treatment for sleep
apnea, and no clinical diagnosis of narcolepsy. We further excluded 151 participants who
did not meet the quality control standard for their sleep-wake behavioral data (as described
below). Of these 1,109 individuals, 1,006 also had complete self-report sleep data and were
included in the analysis. All study procedures were approved by the Institutional Review
Boards of the participating institutions. Participants provided written informed consent.
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Objective sleep-wake behavioral measures:

In the Suefio study, participants were asked to wear an Actiwatch Spectrum device (Philips
Respironics) on the non-dominant wrist for seven days (mean recording length = 7.83 days,
standard deviation = 0.96). During the actigraphy recording period, participants completed
a sleep diary, which was used as described previously to identify the rest/sleep period30.
Participants also completed questionnaires regarding their sleep. Participants were excluded
from the analysis if they had less than 3 continuous good days of actigraphy data, with
good days defined as missing no more than 4 hours per day and missing no data in the
main rest/sleep interval. These quality control criteria were ascertained independently then
adjudicated by the second author and a research assistant trained in the protocol.

Consistent with sleep-wake health as a multidimensional construct (e.g., R[U] SATED
which is meant to stand for “Regularity,” “Satisfaction,” “Alertness,” “Timing,”
“Efficiency,” and “Duration”)3!, we considered sleep-wake/activity factors within eight
broadly defined conceptual domains (information in Table 1). Main sleep periods and naps
were manually identified from the actigraphy data using an approach that has been validated
against polysonmography32. These data were used to calculate both daytime and night-time
sleep variables. We also used circadian rest-activity rhythm variables from commonly
applied extended-cosine3? (R package ‘RAR’) and non-parametric approaches343°, We
used custom R code to calculate the hourly intradaily variability metric using all the data

as described previously3® and using the entire (not subsampled) time series variance in

the denominator as described previously36. As additional regularity measures, we used
recently developed metrics including: the Sleep Regularity Index1® (higher indicates greater
sleep regularity), Composite Phase Deviation (index based on daily mid-sleep and average
midsleep timing; higher reflects less regularity)3’, and Residual Circadian Spectrum?38
(which decomposes error from the extended cosine model into low, medium, and high
frequency deviations). As another measure related to ultradian variability/fragmentation,
we used the scaling exponent from detrended fluctuation analysisO (higher reflects less
ultradian variation) calculated with the R package ‘nonlinearTseries’ function ‘dfa.’

Other health factor predictor variables:

We also included several self-reported measures collected at the Suefio visit that were
relevant based on their potential associations with midlife cognition. These were: medical
histories of chronic medical conditions (hypertension, coronary heart disease, stroke, and
diabetes); anxiety symptom severity (10-item Spielberger State-trait anxiety index 39);
depression symptom severity (measured with the 10-item Center for Epidemiological
Studies Depression Scale??). We also examined daytime sleepiness (total scores on the
Epworth Sleepiness Scale*!) and insomnia severity (Insomnia Severity Index*2 total scores).

Neuropsychological outcome measure:

Low cognitive performance was defined as being > 1 standard deviation below the mean on
a composite cognitive performance variable. This composite cognitive performance variable
was calculated as in similar work#3, such that lower than expected performance was defined
after removing effects of age, sex, and education. To do so, we averaged, then z-scored,
internally standardized age/sex/education normalized scores on four cognitive assessments.
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The four “pen and paper”/*“face-to-face” cognitive assessments, administered by study staff
in Spanish or English, were: (1) total scores from the Digit Symbol Substitution Test44
(assessing sustained attention/processing speed); (2) three learning trial total scores from
the Spanish-English Verbal Learning Test#® (assessing learning); (3) delayed recall on

the Spanish-English Verbal Learning Test (assessing delayed memory); and (4) the total
number of words named on a word fluency test*6 (assessing verbal fluency). Note that these
cognitive tests were administered at baseline, which averaged 2.1 years (SD=0.4) before the
Suefio visit.

All test scores were first internally standardized based on age/sex/education norms. We
computed means and standard deviations for each test within age/sex/education strata using
data from the 8,703 HCHS/SOL participants who had age, education, and cognitive test
data. For normalizing purposes, age was treated as a four-level categorical variable (45-49
years, 50-54 years, 55-59 years, and 60-64 years), whereas sex and education were defined
as shown in Table 2. For each test, we computed Z-scores (in standard deviation units) based
on these age/sex/education strata norms.

We considered several non-modifiable factors as covariates in all models, as they represent
potential confounding variables. These were age (expressed continuously), sex, self-reported
heritage (groups defined as in Table 2), cognitive test administration language, study site,
and time between baseline cognitive testing and the sleep assessments.

Statistical analyses:

Low cognitive performance, defined as being > 1 standard deviation below the mean on

a composite cognitive performance variable, was the outcome. All continuous predictor
variables were standardized (mean=0 and standard deviation=1) prior to analysis to facilitate
effect size comparisons. We used separate logistic regression models for each of the
predictor variables. All models adjusted for the covariates listed above. There were 31 sleep-
wake/activity variables and 6 other health factors. We accounted for these 37 comparisons
of interest by reporting Benjamini-Hochberg False Discovery Rates*’. We illustrate the odds
ratios and confidence intervals on a forest plot that was generated using the R package
“forestploter.’

In the multivariable analysis, we used Least Absolute Shrinkage and Selection Operator
(LASSO) implemented using the R package ‘glmnet’ to fit regression models. In the
LASSO, we forced all the covariates into the model. We only entered predictor variables

if their FDR from logistic regression was less than 10%. We did this prescreening to

ensure that the LASSO model was driven by factors that are also associated with cognition
when considered alone. Three LASSO models were constructed to compare the relative
predictive utility of: (1) sleep-wake variables; (2) aforementioned other health factors; (3)
both sleep-wake variables and other health factors. We report overall predictive utility using
the area under the curve (AUC) calculated with five-fold cross-validation. The five-fold
cross-validation involves dividing the dataset into five subsets, training the LASSO model on
four of the subsets, and evaluating its performance on the remaining subset. This process is

Sleep Health. Author manuscript; available in PMC 2025 August 01.



Smagula et al.

Results

Page 7

repeated multiple times, utilizing each subset for both training and testing, to obtain a more
reliable evaluation of the performance of the model. To provide further evidence of low
predictive performance, we constructed Random Forest and Support Vector Machine using
the R packages ‘randomForest’ and ‘e1071’, respectively. However, both machine learning
techniques produced similarly poor performance and therefore only LASSO model reported
based on its relatively better interpretability.

Sample characteristics:

The sample was 68% female and about 55 years old on average. See Table 2 for additional
sample characteristics.

Individual sleep-wake/activity variables related to low cognitive performance:

None of the actigraphy/score sleep timing, efficiency, or daytime sleep variables were
statistically associated with cognitive performance status in this sample (Table 3, Figure
1). In addition, self-reported insomnia severity was not associated with low cognitive
performance.

There were statistically significant associations between measures of lower 24-hour
regularity, higher ultradian fragmentation, longer time in bed (from diary), and lower activity
levels with higher odds of having low cognitive performance (Table 3). Of these sleep-
wake/activity variables that were statistically associated with low cognitive performance,
confidence intervals for effect size (odds ratio) estimates were all in the small range and
widely overlapping (Figure 1). For example, per standard deviation higher relative amplitude
and Sleep Regularity Index Scores, the odds of having low cognitive performance were
~20% lower (95% confidence interval (Cl) odds ratio: 0.67-0.93). That said, the numerically
largest and most statistically robust correlate of low cognitive performance were measures
which captured rest-activity (sleep-wake) rhythms. For example, per standard deviation
higher log transformed rest-activity rhythm amplitude, the odds of having low cognitive
performance were estimated to be 31% lower (False Discovery Rate < 0.001; 95% CI odds
ratio: 0.58-0.81).

Independence of sleep-wake variables and predictive validity:

Based on evidence for their associations with cognition, we selected the 12 variables
highlighted in Table 3 for entry into the LASSO model (in addition to the covariates listed
above, which we forced into all models). The cross-validated overall prediction accuracy
was low-to-moderate (Table 4; AUC=64%).

The sleep-wake variables retained by the LASSO model that were independently associated
with low cognitive performance were: measures of higher 24-hour regularity (the Sleep
Regularity Index and pseudo-F statistic), longer time in bed, and lower activity rhythm
amplitude. Alternative modelling approaches, e.g., including using Random Forest Models
and Support Vector Machines produced similar results indicative of overall low-to-moderate
AUC.
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Analyses using low performance on the individual subsets as the outcome:

Finally, we sought to determine if associations between the identified sleep-wake factors
and low overall cognitive performance were driven by particular cognitive tests. Each of
the sleep-wake factors identified as independent correlates of low cognitive performance
were examined in a set of separate logistic regression analyses which used low performance
(>1 standard deviation below normed levels) on each cognitive test for their outcomes.
Similar associations were detected between all measures of regularity/activity rhythm
amplitude with each subtest as compared with the overall performance variable (see widely
overlapping confidence intervals). Longer time in bed appeared to be potentially more
robustly associated with the overall cognitive performance variable (Table 3, e.g., OR=1.25
(1.05, 1.50) than the individual subtests (Supplemental Table 1, e.g., OR=1.14 (9% CI: 0.95,
1.37).

Discussion

By leveraging a multi-domain panel of sleep-wake/activity factors and using multivariable
modelling, our study was able to identify sleep-wake measures that were independently
associated with low cognitive performance in midlife. It is also notable that we did not
observe associations between sleep duration, sleep fragmentation, daytime napping, or
insomnia symptoms with low cognitive performance. Our main findings were that less
regular sleep-wake patterns, longer time in bed, and lower activity rhythm amplitude were
all independently associated with having lower than expected cognitive performance among
US Hispanic/Latino adults aged 45-64 years. These observations mirror findings from

prior prospective studies of older adults that have shown associations between measures

of irregular/weak activity rhythms with future cognitive declinel®17: and longer time in

bed with associated with future dementia risk®. Given that low cognitive performance in
midlife is a risk factor for future dementia29-21, the associated sleep-wake behavioral factors
(long time-in-bed and weak/irregular rhythms) may be important candidates for future trials
examining whether targeting these sleep-wake factors in midlife reduce the risk of cognitive
decline and dementia.

It is important to note limitations related to the current study’s observational, correlative,
design. Our findings linked sleep-wake and cognitive data from single timepoints in midlife.
As noted above, data from our study can be interpreted in the context of prior literature
linking the identified sleep-wake factors®16:17 and low midlife cognitive performance20-21
with future dementia risk. But the data presented here do not directly link these sleep-wake
factors with dementia. In addition, findings were based on a single, relatively short-term,
assessment of sleep-wake patterns. Future longitudinal studies are needed to clarify the
temporal relationships between sleep-wake factors, their changes over time, cognition,
potential mediating factors (e.g., psychological, lifestyle, and/or cardiometabolic factors),
and the development of dementia. It is also important to note that all observational studies
are subject to residual confounding and cannot ascertain causality (e.g., we cannot determine
if sleep-wake variables influence cognitive performance; or if underlying/measured factors
influence both sleep-wake behavior and cognition). Therefore, experimental studies are
needed to determine if targeting these aspects of sleep-wake/activity disruption (irregular
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sleep-wake patterns, long time in bed, low activity rhythm amplitude) in midlife causally
alters the course of brain/cognitive aging and forestalls or prevents dementia.

Such future trials are plausible based on: (1) these sleep-wake factors being potentially
modifiable; and (2) there being plausible mechanisms by which modifying these behavioral
factors could improve the trajectory of cognitive function. Regarding modifiability of these
sleep-wake factors, several options are currently available for testing, e.g.: a transdiagnostic
intervention, called the Transdiagnostic Intervention for Sleep and Circadian Dysfunction,
has been recently shown to increase actigraphy measures of regularity®; approaches to
restrict time in bed are already widely used as part of first line treatment for insomnia®®; and
behavioral approaches like prescribed exercise and behavioral activation may be useful to
increase activity rhythm amplitude. With regard to plausible mechanisms: both inactivity4®
and irregular sleep-wake rhythms®9:51 affect cardiometabolic risk factors that can lead to
neurodegeneration®2-53 and cerebrovascular disease®*°; and excessive time in bed may
reduce the amount of time spent physically, socially, or mentally engaged.

With regard to our secondary aim, we found that even including health conditions and sleep-
wake measures, models could not accurately predict who had low cognitive performance in
this sample. This observation suggests that, while there may be associations (suggesting
possibly etiological relationships) between sleep-wake disruption and cognition, these
measures of sleep-wake disruption were not a useful surrogate for neuropsychological-
based testing. It is important to note one major limitation of our prediction aim is

that low cognitive performance was determined an average of about two years before

sleep was measured. As a result, this could have diluted the strength of association and
reduced predictive validity as compared with identifying truly concurrent low cognitive
performance. Prediction results may vary when using these or other sleep predictors (e.g.,
sleep electrophysiology) for predicting different outcomes and in different timeframes (e.g.,
hippocampal volume or future dementia diagnosis). Overall, our sample and these findings
are not necessarily be generalizable to other populations. Future studies employing similar
methodological approaches will be needed to replicate and potentially confirm: (a) whether
these are indeed key sleep-wake factors related to midlife cognition across ethnic/geographic
groups; and (b) that in general, although there are associations between these factors,
sleep-wake measures are not clinically useful for identifying people with low cognitive
performance.

In conclusion, we have identified aspects of sleep-wake disruption that are related to low
cognitive performance in midlife independent of each other and other dementia risk factors
(including self-reported stroke, hypertension, diabetes, and anxiety). These findings mirror
associations of sleep-wake rhythm disruption and cognitive decline in older adults. Thus, we
have provided evidence that relationships between sleep-wake disruption and low cognitive
function exist in the decade before older adulthood. Future studies are needed to determine if
targeting these sleep-wake factors, i.e., promoting regular/strong sleep-wake activity patterns
and reducing time in bed, can help protect brain health and reduce dementia risk.
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Measure
Stroke
Hypertension
Deabetes
Anxiety symptoms (STAI)
Coronary Heart Disease
In bed duration {continuous)
Intradadly variability
Medium frequency deviations from a circadian mean
High frequency deviations from a circadian mean
Low frequency deviations from a circadian mean
Composite Phase Deviation
Mid-sleep time
Activity level in the leave active 5 hours
SD of midsieep
Rest period length
Sleep duration
Minutes awake after sleep onsel (WASO)
Degpression symptoms (CESD)
Insomnia Severity Index
Momingness-eveningness questionnaire
Percent of days with naps
Average nap duration
Activity onset time (up-mesor)
Time of the most active 10 hours
Wake time
Detrended fluctuation analysis
Acrophase
Activity offset time (down-mesor)
In bed time
Time of the least active 5 hours
Daytime sleepiness (Epworth Sleepiness Scale)
Inter-daily stabibty
Relative ampiitude
Sleep Regularity Index
Activity level in the most active 10 hours
Pseudo-F Statistic

Log transformed ampitude

Figure 1.

Associations of each individual sleep-wake measures with low cognitive performance

ranked by effect sizes.

Lower Odds Higher Odds

OR (95% CI)

3.72 (1.07,11.77)
e 182 (1.26 ,2.65)
e 1,76 (1.15, 2.64)

128 (1.07, 1.52)
126 (0.54 ,2.69)
1.25 (1.05, 1.50)
125 (1.04, 1.51)
1.24 (1.03, 1.48)
1.18 (0.99 , 1.41)
1.17 (0.98, 1.39)
1.16 (0.97 , 1.38)
1.15 (0.96, 1.38)
1.13 (0.96, 1.33)
1.12 (0.93,1.33)
1.11 (0.84,1.32)
1.11 (0.93, 1.33)
1.10 (0.982,1.32)
1.10 (0.92,1.32)
1.08 (0.91, 1.30)
1.08 (0.91,1.31)
1.06 (0.75, 1.52)
1.06 (0.89, 1.26)
1.06 (0.80, 1.25)
105 (0.88, 1.25)
1.05 (0.89 , 1.26)
1.03 (0.86, 1.23)
1.02 (0.86, 1.20)
0.97 (0.82,1.16)
0.96 (0.80, 1.14)
0.95 (0.80. 1.12)
093 (0.78, 1.11)
0.84 (069, 1.00)
0.83 (0.71, 0.98)
0.79 (0.67,0.93)
0.75 (0.63,0.89)
0.74 (0.63,0.88)

069 (0.58,081)
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Adjusted p

0.0814
0.0156
0.0402
0.0344
0.6880
0.0609
0.0683
0.0683
0.1756
0.2099
0.2390
0.2662
0.2662
0.4003
0.4086
04495
04704
04957
0.5695
0.5695
0.7764
0.6571
0.6571
0.6934
06934
0.8018
0.8480
0.7764
0.6934
0.6880
0.5946
0.1582
0.0683
0.0344
0.0154
0.0152
0.0006

All odds ratios are from separate models that are adjusted for age, sex, test administration
language, time between cognitive and sleep visits, study site, and heritage. False Discovery

Rate adjusted p-values are reported.
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Table 1.

List of domains, measures, and data sources for each predictor used

Domains Measures Data Source
Medium frequency deviations from a circadian mean | Actigraphy
Low frequency deviations from a circadian mean Actigraphy
Composite Phase Deviation Scored actigraphy data
SD of midsleep Scored actigraphy data
24-hour regularity
Inter-daily stability Actigraphy
Relative amplitude Actigraphy
Sleep Regularity Index Scored actigraphy data
Pseudo-F Statistic Actigraphy
Intradaily variability Actigraphy
Ultradian fragmentation | High frequency deviations from a circadian mean Actigraphy
Detrended fluctuation analysis Actigraphy
Mid-sleep time Scored actigraphy data
Activity onset time (up-mesor) Actigraphy
Morningness-eveningness questionnaire Self-report
Time of the most active 10 hours Actigraphy
Timing Wake time Scored actigraphy data
Acrophase Actigraphy
Activity offset time (down-mesor) Actigraphy
Time of the least active 5 hours Actigraphy
In bed time Diary
In bed duration (continuous) Diary
Duration Rest period length Actigraphy
Sleep duration Scored actigraphy data
Activity level in the leave active 5 hours Actigraphy
Efficiency
Wake after sleep onset (WASO) Scored actigraphy data
Any napping Scored actigraphy data
Daytime sleep Average nap duration Scored actigraphy data
Daytime sleepiness (Epworth Sleepiness Scale) Self-report
Activity level in the most active 10 hours Actigraphy
Activity level
Log transformed rhythm amplitude Actigraphy
Satisfaction Insomnia Severity Index Self-report
Stroke Self-report
Hypertension Self-report
Diabetes Self-report
Health factors
Anxiety symptoms (STAI) Self-report
Coronary Heart Disease Self-report
Depression symptoms (CESD) Self-report
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Table 2.

Analytic sample demographic and descriptive information (n=1006)

Age in years, mean (standard deviation)
Sex
Female
Male
Heritage
Central American
Cuban
Dominican
Mexican
Puerto Rican
South American
Test administration language
Spanish
English
Education
No high school diploma or GED
At most a High school diploma or GED
Greater than high school (or GED) education
Years between baseline and the sleep visit, mean (standard deviation)
Cognitive Test Scores (before standardization)
Digit Symbol Substitution Test total score
Three learning trial total sore (SEVLT)
Delayed recall (SEVLT)

Total number of words (Word Fluency Test)

55 (5)

67.5 (679)
32.5(327)

13.1 (132)
19.4 (195)
13.2 (133)
24.4 (245)
20.9 (210)
9.0 (91)

15.7 (158)
84.3 (848)

32.6 (277)
23.1 (196)
44.4(377)
2.1(4.0)

36.4 (12.7)
23.9 (5.4)
8.7 (2.9)
19.0 (7.2)

Percent (n) shown unless otherwise noted. Acronym: SEVLT, Spanish-English Verbal Learning Test
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Table 3.

Associations between each sleep-wake/activity variable and low cognitive performance

Domains Measures OR (95% CI) Adjusted p-value
Medium frequency deviations from a circadian mean | 1.24 (1.03, 1.48) 0.068
Low frequency deviations from a circadian mean 1.17 (0.98, 1.39) 0.210
Composite Phase Deviation 1.16 (0.97, 1.38) 0.239
SD of midsleep 1.12 (0.93,1.33) 0.409
24-hour regularity
Inter-daily stability 0.84 (0.69, 1.00) 0.158
Relative amplitude 0.83(0.71, 0.98) 0.068
Sleep Regularity Index 0.79 (0.67, 0.93) 0.034
Pseudo-F Statistic 0.74 (0.63, 0.88) 0.015
Intradaily variability 1.25(1.04, 1.51) 0.068
Ultradian fragmentation | High frequency deviations from a circadian mean 1.18(0.99, 1.41) 0.176
Detrended fluctuation analysis 1.03(0.86, 1.23) 0.802
Mid-sleep time 1.15 (0.96, 1.38) 0.266
Activity onset time (up-mesor) 1.06 (0.90, 1.25) 0.657
Morningness-eveningness questionnaire 1.08 (0.91, 1.31) 0.570
Time of the most active 10 hours 1.05(0.88, 1.25) 0.693
Timing Wake time 1.05 (0.89, 1.26) 0.693
Acrophase 1.02 (0.86, 1.20) 0.848
Activity offset time (down-mesor) 0.97 (0.82, 1.16) 0.776
Time of the least active 5 hours 0.95 (0.80, 1.12) 0.688
In bed time 0.96 (0.80, 1.14) 0.693
In bed duration (continuous) 1.25(1.05, 1.50) 0.061
Duration Rest period length 1.11 (0.94,1.32) 0.409
Sleep duration 1.11(0.93, 1.33) 0.450
Activity level in the leave active 5 hours 1.13(0.96, 1.33) 0.266
Efficiency

Wake after sleep onset (WASO) 1.10(0.92, 1.32) 0.470
Any napping 1.06 (0.75, 1.52) 0.776
Daytime sleep Average nap duration 1.06 (0.89, 1.26) 0.657
Daytime sleepiness (Epworth Sleepiness Scale) 0.93(0.78, 1.11) 0.595
Activity level in the most active 10 hours 0.75 (0.63, 0.89) 0.015

Activity level
Log transformed rhythm amplitude 0.69 (0.58, 0.81) 0.001
Satisfaction Insomnia Severity Index 1.08 (0.91, 1.30) 0.570
Stroke 3.72(1.07,11.8) 0.081
Hypertension 1.82(1.26, 2.65) 0.016
Diabetes 1.76 (1.15, 2.64) 0.040

Health factors
Anxiety symptoms (STAI) 1.28(1.07, 1.52) 0.034
Coronary Heart Disease 1.26 (0.54, 2.69) 0.688
Depression symptoms (CESD) 1.10(0.92, 1.32) 0.496
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Notes: (1) All OR (odds ratios) are from separate models that are adjusted for age, sex, heritage, test administration language, time between
cognitive and sleep visits, and study site; (2) p-values adjusted for multiple comparisons using the Benjamini-Hochberg method; and (3) shading
indicates variable was selected into the multivariable modeling
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Variables retained by the final LASSO model

Domains Measures B
Sleep Regularity Index -0.06
24-hour regularity
Pseudo-F Statistic -0.04
Duration In bed duration 0.13
Activity level Log transformed rhythm amplitude | -0.22
Stroke 0.87
Hypertension 0.34
Health factors
Diabetes 0.22
Anxiety symptoms (STAI) 0.13
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The model also included covariates (forced into model: age, sex, heritage, test administration language, time between cognitive and sleep visits, and

study site)
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