

Efficient water splitting via a flexible solar-powered Hybrid thermochemical-Sulphur dioxide depolarized Electrolysis Cycle

Energy demand analysis of a practical solar hybrid sulfur cycle: the HySelect project

Yasuki Kadohiro (DLR, Institute of Future Fuels) 19.06.2024 – Rhodes International Conference 2024, Session III

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

Co-funded by

the European Union

Contents

- Background
- Objective
- Method
- Results and discussions
- Summary

2

• Future study

Hybrid sulfur cycle

Background

3

HySelect

19.06.2024

Objective

- Energy demand analysis of a Solar Hybrid Sulfur Cycle from practical point of view for the implementation of a demonstration plant.
- Example of the practical point: Operating pressure of sulfuric acid decomposition section and SO₂-depolarized electrolyzer section is slightly under ambient pressure.

Centrifugal particle receiver

Image source: Ebert et al. (2019)

• Molar flow rate of SO₂ after the SO₃ decomposer is fixed to 0.12 mol/s

8

• Conversion rate of the SO₃ decomposer is set to 63% (consider catalytic degradation)

Energy efficiency for hydrogen production

Results and discussions

* SO_2 conversion rate in SDE is fixed at 50%

Parameter	Our study	Niehoff et al. [2]	Gorensek et al. [3]
Target H ₂ production rate	0.06 mol/s	0.13 kmol/s	1 kmol/s
Applied thermal energy to H_2SO_4 decomposition process	43 kW _{th}	86 MW _{th}	353 MW _{th}
Operating pressure in H ₂ SO ₄ decomposition process	1 bar(a)	1 bar(a)	14.1 bar(a)
Maximum temperature in H ₂ SO ₄ decomposition process	850 °C	1300 °C	850 °C
Consumed electric power in SDE	8 kW _{el}	15 MW _{el}	116 MW _{el}
Operating pressure in SDE	1 bar(a)	12 bar(a)	22.7 bar(a)
Operating temperature in SDE	70 °C	74 °C	123 °C
Energy efficiency for hydrogen production	25%	33%	41%

Energy efficiency calculation

$$\eta_{en} = \frac{\dot{m}_{H2,out} \cdot LHV_{H2}}{\dot{W}_{elec} + \dot{Q}_{heat}}$$

 $\dot{m}_{H2,out}$: Outlet mass flow rate of hydrogen [kg/s] LHV_{H2} : Hydrogen lower heating value [J/kg] W_{elec} : Total electrical energy input [W_{el}] \dot{Q}_{heat} : Total thermal energy input [W_{th}]

Summary

13

25% of energy efficiency (provisional results)

Future study

- Complete the investigation of chemical electrochemical plant (Block (4), (5), and (6)).
- Complete the energy demand analysis with the final plant concept.
- Integrate the solar particle receiver concept into the Aspen model.
- Complete the techno-economic study of the concept.

References

- [1] Gorensek MB, Summers W (2009) Hybrid sulfur flowsheets using PEM electrolysis and a bayonet decomposition reactor. Int J Hydrogen Energ 34:4097– 4114.
- [2] Guerra Niehoff A, Bayer Botero N, Acharya A et al. (2015) Process modelling and heat management of the solar hybrid sulfur cycle. Int J Hydrogen Energ 40:4461–4473. <u>https://doi.org/10.1016/j.ijhydene.2015.01.168</u>
- [3] Gorensek MB, Corgnale C, Summers WA (2017) Development of the hybrid sulfur cycle for use with concentrated solar heat. I. Conceptual design. Int J Hydrogen Energ 42:20939–20954. <u>https://doi.org/10.1016/j.ijhydene.2017.06.241</u>

Co-funded by the European Union

Efficient water splitting via a flexible solar-powered Hybrid thermochemical-Sulphur dioxide depolarized Electrolysis Cycle

M.Eng. Yasuki Kadohiro, Research Engineer, Institute of Future Fuels, Evaluation of solar production processes, Telephone +49 2203 601 1104, Yasuki.Kadohiro@dlr.de

www.hyselect.eu

The project is supported by the Clean Hydrogen Partnership and its members Hydrogen Europe and Hydrogen Europe Research under the Grant Agreement Nr. 101101498.

Aspen plus model – (5) SDE system

Method

SDE: SO₂-Depolarized Electrolyzer

- Liquid-fed catholyte and anolyte compartments are considered.
- 5-15 wt% of H₂SO₄ is considered in anolyte and catholyte to obtain reasonable high reactant solubility.
- Nafion 117 is considered as a SDE's membrane. It was reported to have the least SO₂ transfer capability from anolyte to catholyte.
- Water crossover phenomena are considered in our model. Only the water crossover due to electroosmotic drag is considered since it has the greatest impact of all other causes.
- SO₂ crossover is not considered in our model so far.
- Current density value of 5000 A/m² is used.
- Total cell potential value of 0.7 V is used in our study.
- SO₂ conversion rate of 20-50% is considered.
- Cell temperature is adjusted between 20-95 °C

Aspen plus model – (2) Gas separation system A with heat recovery

Method

HySelect

•

975 g/s

Aspen plus model – (2) Gas separation system A with heat recovery, WSA

Method

23

Image source: HALDOR TOPSUE

Rhodes International Conference 2024 19.06.2024

HySelect

