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1 Introduction 1

Chapter 1

Introduction

The prediction of the evolution of dynamical systems [1] is a fundamental challenge in vari-
ous disciplines, including science, engineering, medicine, and economics. The ability to predict
future trends and behaviours from historical data could lead to significant progress in these
fields. The advancements in artificial intelligence (AI) are remarkable, and recent progress in
data-driven AI has resulted in substantial improvements in forecasting complex dynamical sys-
tems. In this context, reservoir computers (RCs) have emerged as a well-suited approach for
predicting the evolution of chaotic dynamical systems [2, 3, 4, 5, 6, 7, 8]. Compared to other
recurrent neural networks (RNNs), RCs require only small training datasets, do not suffer from
the vanishing gradient problem [9], and have relatively low computational needs. The reservoir
computing (RC) approach originated from two independent works: one in the field of machine
learning [10] and the other in computational neuroscience [11]. The core of the RC model is a
neural network with loops, known as the reservoir, which acts as a memory and yields a reservoir
state for a given input. The reservoir is kept constant, and only the weights of a linear output
layer are optimized to map the reservoir state to the correct output using linear regression.
This practice of linearly mapping the reservoir response results in fast and computationally
efficient training. Consequently, this training leads to machine learning models that are orders
of magnitude more efficient than other AI approaches.

Over the last few decades, people have enjoyed and benefited from the exponential growth in
computational power, a phenomenon known as Moore’s Law (first posited in [12]). Despite
this extraordinary development, humanity remains unsatisfied and continually seeks more com-
putational power. With predictions about the gradual end of Moore’s Law [13], various fields
have emerged, aiming to develop novel computational frameworks that surpass conventional
computers and go beyond the capabilities of classical von Neumann computing concepts. One
such field, which originated in the 1980s [14] but has gained significant momentum in the last
decade, is quantum computing. Recent experimental progress in controlling complex quantum
systems is remarkable, but a full-fledged universal quantum computer seems out of reach in the
near-term future. The quantum hardware currently available and expected in the near future is
known as NISQ (Noisy Intermediate-Scale Quantum) [15, 16, 17] hardware. While it has its lim-
itations, there is hope that specific algorithms for this hardware can be developed to outperform
classical computing methods. Another innovative computational method is novel neuromorphic
computing systems, exemplified by physical reservoir computing. In this approach, the software
implementation of the reservoir (static RNN, echo state network) is replaced by a complex phys-
ical system, which is used to project low-dimensional input into a high-dimensional dynamical
state. If the dynamics of the physical reservoir exhibit memory and non-linearity, only a linear
layer needs to be trained. Proposed physical systems include for example biological systems
[18], optoelectronic systems [19, 20, 21, 22, 23, 24, 25], and neuromorphic chips [26]. Quantum
Reservoir Computing (QRC) [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39] is located at
the intersection of the two computational frameworks discussed above. In QRC, a quantum
system is employed as the physical reservoir, leveraging its exponentially large Hilbert space for
time series forecasting. Due to the efficient and simple training used in reservoir computing,
this framework is a promising candidate for a quantum computing method that can outperform
classical computing on NISQ devices. The aim is to create an effective tool for forecasting the
dynamics of various systems originating from different disciplines, based on their past evolution.
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In this thesis, a modified version of the originally proposed QRC model [27, 28] is introduced.
The focus of this modification is to stabilize predictions and optimize the framework for very
small quantum systems. The prediction quality of the modified model is evaluated by forecasting
various prototypical, synthetic chaotic systems by numerical simulations of the novel framework.
The remainder of this thesis is organized as follows: In Chapter 2, the ”classical” RC algorithm
is outlined first. This is followed by the introduction of the QRC framework based on this
foundation and the mathematical description of N -qubit systems. Chapter 3 provides details on
the numerical simulations and the physical properties of the quantum systems that are employed
as quantum reservoirs in the models analyzed in this thesis. In Chapter 4, the basics of chaotic
dynamical systems (testing data) necessary for this thesis are discussed, and the measures used
to evaluate prediction accuracy are defined. Chapter 5 presents the results of the numerical
experiments. The influences of all introduced changes to the algorithm are investigated, and
their necessity for achieving accurate forecasting is highlighted. Furthermore, the strength of
the QRC framework in the realm of dynamical system prediction is evaluated by optimizing
the hyperparameters of the QRC model for eight different chaotic systems. NISQ-era devices
are significantly constrained in terms of their size (qubit count). The predictions presented in
Chapter 5 are obtained by numerically simulating quantum systems that are of the smallest
theoretically allowed size to showcase the predictive power of these models, even when only
severely size-restricted quantum systems are accessible. In the last chapter (Chapter 6), the
results of this thesis are summarized, and an outlook on future possible research is presented.
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Chapter 2

Quantum Reservoir Computing

The QRC framework originated from the idea of combining quantum computing and physical
reservoir computing to utilize quantum dynamics for machine learning tasks [27] and is therefore
part of the relatively new class of quantum machine learning models. In physical RC setups
the software implementation (called echo state network) of a reservoir state and its dynamics
as described in Sec. 2.1 are replaced by a real physical system, and the dynamics of this
system are utilized for temporal information processing. In QRC, the physical reservoir is a
controllable quantum system. What makes this idea so powerful compared to other quantum
machine learning models is that no fine-tuning of the parameters of the quantum system and
its dynamics is required. The potential benefits of an exponentially large Hilbert space are,
nevertheless, retained. This is due to the fact that the only optimization that is required
takes place on a classical computer, leaving the parameters of the quantum system unchanged.
This makes the algorithm well-suited for NISQ devices. Which type of quantum system is the
most suitable remains an open question. The proposed quantum reservoirs include spin-based
[27, 28, 30, 32, 29, 33], continuous variable bosonic [35, 40, 41, 42], and fermionic [43] systems.
The subsequent introduction of the QRC model and the numerical investigations presented
in the remainder of the thesis are conducted with spin-based systems. The QRC-algorithm
presented in this thesis tries to leverage the complex dynamics of a quantum system for real-
time machine learning tasks. There are proposals to apply quantum reservoir models to other
machine learning problems such as classification and regression, necessitating modifications
to the framework. These models are called quantum extreme learning machines (QELMs)
[44, 28, 39] and are not investigated in this thesis. The QRC framework utilized in this thesis
is outlined in this chapter. The chapter is thematically divided into an introduction to the
”classical” RC algorithm (Sec. 2.1), an overview of the mathematical description of the used
quantum systems (Sec. 2.2) and a detailed description of the QRC framework (Sec. 2.3).

2.1 Reservoir Computing

In the following, the RC framework is introduced. The goal is not to introduce RC in every
last detail but to give a comprehensive overview that is needed to follow the presentation of the
QRC framework in Sec. 2.3. For more details about RC, consult the following papers [45, 46, 47].

The RC and QRC framework are designed for modeling the relationship between an input time
series x(t) and an output time series y(t). More precisely defined, the task is to approximate
for a given discretized input time series x(t) = {x(t0),x(t0 + ∆t), . . .} = {xj}lj=1 and target

time series y(t) = {y(t0),y(t0 + ∆t), . . .} = {yj}lj=1 a non-linear function f that fulfills

yk = f({xj}kj=1), (2.1)

and generalizes for unseen data. A framework capable of handling these tasks must have the
ability to process sequential data and memorize past inputs. A class of machine learning meth-
ods that allows such data processing is the Recurrent Neural Network (RNN) [48]. Reservoir
Computing is based on an artifical and crucially static RNN - the reservoir. Static in this
context means that after generating a random network, the network does not change in the
training and prediction phases. Only a linear readout layer is optimized in the training phase
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of the model. This readout layer is kept constant in the prediction phase. This makes RC com-
putationally efficient and prevents the vanishing gradient problem, one of the main drawbacks
of standard RNNs [9]. In the following the echo state network and its defining equations are
presented. Afterwards, it is detailed how this network is used in RC for temporal tasks.

The echo state network consists of Dr nodes, also called the reservoir state, denoted by a
Dr-dimensional vector

r =

 r1
...

rDr

 . (2.2)

The reservoir is adequately chosen by electing the reservoir dimension significantly higher-
dimensional than the input time series (Dr ≫ Dx). The input sequence is recurrently coupled
to the high-dimensional reservoir state in a way that the reservoir state becomes a non-linear
function F depending on the input up to the current step in the sequence:

r(k) = F (xk,xk−1,xk−2, . . .). (2.3)

An additional feature this function F is required to exhibit is the echo state property [49].
Meaning that the influence of the past input fades away over time. Therefore, the reservoir
state encodes information about the recent input history in a high-dimensional space. The
conventional method to process the input series in such a way means applying

r(k + 1) = σ(Winxk+1 + Ar(k)) (2.4)

to evolve the reservoir state. The input series is fed into the reservoir state recursively by the
input matrix Win (input layer) with dimension Dr × Dx. The information from past inputs
is retained by the connection between subsequent layers established by the Dr ×Dr adjacency
matrix A (the reservoir network). The non-linearity of the function F originates from the ele-
mentwise applied activation function σ (e.g., tanh, sigmoid, etc.).

OutputInput

Reservoir A

Win Wout

Fig. 1: Schematical illustration of RC (inspired by [27]).
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The discrete output time series o(t) = {o(t0),o(t0 + ∆t), . . .} = {oj}lj=1 of the reservoir model
is determined by a linear readout, given by the Dy ×Dr readout matrix Wout:

ok = Woutr(k). (2.5)

The output matrix is the non-static part after initialization that is optimized in the training
process such that the output time series approximates the target time series. The structure
of this is schematically represented in Fig. 1. The nodes of the reservoir state are symbolized
by the small circles inside the big turquoise circle, the reservoir network A is illustrated by
the connections between the nodes and the input matrix is represented by the solid arrows
connecting the input to the reservoir. The solid lines of the input matrix and the reservoir
network indicate that these are static, not optimized parts of the RC model. The non-static
readout matrix is represented by dotted lines in Fig. 1. The task to find a function f that
satisfies Eq. 2.1 is reduced to finding the right coefficients of the readout matrix Wout such
that

yk ≈ ok = Woutr(k). (2.6)

To accomplish this, the RC model is divided into three phases: initialization, training, and
prediction.

Initialization: Win and A are chosen in a way which fulfills the echo state property. Here it is
important to note again that these matrices are kept unchanged in the training and prediction
phase. The final initialization step is to set each reservoir node to an arbitrary value. More
details about reservoir initialization can be found in [50, 51, 52, 53].

Training: For a given training data set {{xj}lj=1, {yj}lj=1}. The first step of training is the
washout phase (synchronization phase). The first Nsync inputs are used to synchronize the
reservoir state r(k) with the dynamics of the input data by evolving the reservoir state Nsync

times (applying Eq. 2.4). Training the reservoir is achieved by using the remaining Ntrain steps
of the training data set to evolve and collect the reservoir states after each application of Eq.
2.4 in a Dr × Ntrain matrix R = [r(Nsync + 1), . . . , r(Nsync + Ntrain)]. The desired outputs
are collected in a matrix Y = [yNsync+1, . . . ,yNsync+Ntrain ]. To solve the task defined in Eq.
2.1 the objective is to find a readout matrix Wout such that the reservoir output time series
approximates the target time series as well as possible by solving the equation

Y = WoutR. (2.7)

There are different types of regression that can be employed, but the most common one is ridge
regression [54]. Wout is obtained by calculating:

Wout = YRT(RRT − β1)−1. (2.8)

β is called the regression parameter and is one of the essential hyperparameters of RC. The
benefit of ridge regression is that large coefficients of the readout matrix are penalized. This
adds regularization, prevents overfitting, and therefore makes predictions more stable [47]. This
is achieved by minimizing the error function∑

Nsync<k<Ntrain

∥Woutq(k) − uk∥2 + β · Tr(WT
outWout). (2.9)

Prediction: The prediction phase strongly depends on the specific details of the temporal
machine learning task. In this thesis the tasks are time series prediction tasks where the
input and the output time series are given by the true discrete time (training) series u(t)
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= {u(t0),u(t0 + ∆t), . . .} = {uj}Lj=1. Meaning that the model is designed to forecast (continue)
a d-dimensional time series from past data. This is achieved by training the RC network to
predict the next step in the time series from the current reservoir state holding information
about the present and recent past of the time series. The function f , meant to generalize for
unseen data, which the model aims to approximate, therefore is

uk+1 = f({uj}kj=1). (2.10)

There are L time steps of the time series u(t) that are used to train the model. This training
entails synchronizing the reservoir states and training the readout weights with the following
data split:

Synchronization input : xi = ui

Training input : xj = uj

Training output : yj = uj+1

(2.11)

with i ∈ {1, 2, . . . , Nsync}, j ∈ {Nsync + 1, Nsync + 2, . . . , Ntrain} and Nsync + Ntrain + 1 =
L. The training is executed as described in the last paragraph and consequently, Wout is
determined such that the matrix maps r(k) to uk+1 and is fixed after the training phase. In the
prediction phase the external input is replaced by the prediction of the RC model, generating
an autonomously evolving closed loop (see Fig. 2) continuing the time series. The equations
defining the prediction phase are:

ok = Woutr(k) (2.12)

and
r(k + 1) = σ(Winok + Ar(k)). (2.13)

By applying this closed loop, the discrete time series can be continued for an arbitrary amount
of steps.

Win

reservoir state

activation fct

Wout

network

prediction

Fig. 2: Schematical illustration of prediction phase of the RC model.

2.2 N-qubit system and unitary evolution

This section provides a brief overview of the mathematical representation of a system of N
qubits and their dynamics. The main goal is to motivate the choice of a quantum reservoir
by showing the resemblance of an echo state network (see Sec. 2.1) and the mathematical
description of a system of qubits evolving under a unitary evolution.
A qubit is mathematically described as

|Φ⟩ = α |0⟩ + β |1⟩ with |α|2 + |β|2 = 1. (2.14)
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It is the smallest, two-dimensional (C2) quantum object. A system of N qubits is defined by a

tensor product space (C2)
⊗N

and a state of this system is described as

|Ψ⟩ =
∑

x1,...,xN∈{0,1}
αx1,...,xN |x1, . . . , xN ⟩ . (2.15)

|x1, . . . , xN ⟩ are called the basis states and the tensor product space is described by a 2N vector

space C2N . Which means that the dimension of the Hilbertspace increases exponentially with
the number of qubits. A more general form, also being able to describe a classical ensemble of
quantum states, is to describe the state of the quantum system of N qubits in operator form
by a 2N × 2N density matrix

ρ =
∑
k

pk |Ψk⟩ ⟨Ψk| , (2.16)

where |Ψk⟩ are the quantum states comprising the ensemble, and pk are their respective prob-
abilities. The density matrix is hermitean, positive semidefinite and the trace (Tr(.)) of the
density matrix is equal to one. Under unitary evolution (e.g., time evolution) does an N -qubit
system described by a density matrix ρ evolve as

ρ′ = UρU†. (2.17)

A unitary evolution acting on an N -qubit system is described by a 2N × 2N unitary matrix
U. The density matrices fulfill the axioms of a linear space. A consequence of this is that the
operator formalism can be rewritten into a vector representation by defining an inner product
for two operators A and B. The Hilbert-Schmidt inner product is defined as

Tr(A†B). (2.18)

The density matrix of an N -qubit system can be spanned by tensor products of the Pauli
operators {1, σx, σy, σz}⊗N with

1 = σ0,0 =

(
1 0
0 1

)
, σx = σ1,0 =

(
0 1
1 0

)
, σy = σ1,1 =

(
0 −i
i 0

)
and σz = σ0,1 =

(
1 0
0 −1

)
. (2.19)

The tensor products

P(i) =
N⊗
k=1

σi2k−1,i2k , (2.20)

so called N -qubit Pauli operators, form an orthogonal basis {P(i)} of the operator space with
4N elements. i is a 2N -dimensional vector with binary entries and ik is the k-th coefficent of
this vector. Meaning that any density matrix ρ can be decomposed as a linear combination of
the N -qubit Pauli operators:

ρ =
∑
i

riP(i) with ri = Tr(P(i)ρ)/2N . (2.21)

Here,
∑

i denotes the sum over all possible binary vectors of size 2N . Therefore, any state of
an N -qubit system can be represented by a 4N -dimensional real vector

r =

r0,0,...,0
...

r1,1,...,1

 . (2.22)

In this representation the unitary evolution ρ′ = κ(ρ) = UρU† is rewritten as a matrix K acting
on the vector r (describing the quantum state):

ρ′ = κ(ρ) ⇔ r′ = Kr. (2.23)
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RC N -qubit system

reservoir state: r =

 r1
...

rDr

 quantum state: r =

r0,0,...,0
...

r1,1,...,1


layer connection: r′ = Ar unitary evolution: r′ = Kr

input matrix: Win ?

activation function: σ ?

Table 1: Comparison of the RC implementation and an N -qubit quantum system evolving
under unitary evolution.

The elements of matrix K are given by

Kij = Tr(P(i)κ(P(j)))/2N . (2.24)

This vector representation shows the similarity between the reservoir state of the RC model
(Eq. 2.2) and a quantum state of an N -qubit system. Furthermore there is a similarity between
the part of Eq. 2.4 connecting two consecutive reservoir states described by the adjacency
matrix A and the evolution K of the quantum state. Table 1 displays the resemblance between
the state and dynamics of RC and the state and dynamics of a quantum system in the right
formalism. This motivates the replacement of the reservoir state with an N -qubit system. There
are multiple potential advantages to this replacement. One of the main advantages is due to the
exponentially growing and therefore high-dimensionality of the quantum state (dim(r)= 4N )
which is already for 6 qubits significantly higher than the typical ”classical” reservoir state
size of a few hundred nodes. This means that the encoding of the input is also significantly
higher-dimensional. The requirement of relatively few qubits is another advantage of the QRC
model compared to other quantum computing algorithms. This makes an application on near-
term available quantum hardware more likely. Table 1 also shows that there are open questions
about the replacement. Especially how the time series is encoded (input matrix) and how the
essential non-linearity (activation function in RC) enters the model. The next section (Sec. 2.3)
explains the full QRC framework in all details. Sec. 3.5 highlights how the required non-linearity
emerges.

2.3 Quantum reservoir computing framework

The similarity between the software implementation of the RC algorithm and the state of an
N -qubit system and its dynamics under a unitary evolution is striking. But going from the RC
to a QRC algorithm is not completely straight forward (as previously mentioned) and requires
some adjustments to the algorithm. The QRC algorithm investigated in this thesis is a modified
version of the original QRC algorithm described in [27, 28, 30]. The type of tasks that the QRC
model is designed to solve is the same as defined for the RC model (described in Sec. 2.1 and
defined in Eq. 2.1). The objective is to replace the software implementation of a reservoir with
a quantum system of N interacting qubits. The interactions with the classical reservoir are
threefold: input injection, dynamics, and output extraction. The same three interactions have
to be defined for a quantum reservoir. At first these important components of the algorithm
are described. Afterwards the entire algorithm is explained in detail. The reservoir in QRC is
an N -qubit system described by a density matrix ρ. The quantum state is supposed to encode
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sequentially the information of the input sequence x(t) = {x(t0),x(t0 + ∆t), . . .} = {xj}lj=1.
For this, a recursive operation must be defined that encodes the current input into the quantum
state, preserves the information of previous inputs, and spreads the information throughout the
state. This operation defines how to get from the quantum state ρ(k) of step k to the quantum
state ρ(k + 1) of step k+1. This operation is defined by

ρ(k + 1) = U(ρx1
k
⊗ ....⊗ ρ

xDx
k

⊗ Tr1,...,Dx(ρ(k)))U† (2.25)

with

ρxi
k

=
∣∣xik〉〈xik∣∣ and

∣∣xik〉 =
√

1 − xik |0⟩ +
√

xik |1⟩ . (2.26)

Here and in the following, the i-th coefficient of the k-th step of the discrete time series x(t)
is denoted as xik and Tr1,...,Dx(.) is the partial trace over the first Dx qubits. The recurrent
map can be split into two parts. The first part is the encoding of the current step of the time
series. For each dimension of the input time series, the current state of one qubit is replaced by
a state that encodes the information in its amplitude. This has two immediate consequences.
The first consequence is that to retain information about past inputs the number of qubits has
to be greater than the dimension of the input data, i.e., N > Dx. The second consequence is
that the input data has to lie in the interval [0,1], which means that the input time series has
to be scaled into that interval. In other words, the time series has to be normalized. This adds
two hyperparameters to the model. The time series is scaled into the interval [a,b] with the
hyperparameters 0≤ a < b ≤ 1. More comments about this can be found in Sec. 3.3. After
the injection of the input, the system evolves under the unitary evolution U. Details about the
numerical implementation can be found in Chapter 3. This recurrent map can be rewritten in
the vector representation of the density matrices:

r(k + 1) = KX(k)r(k). (2.27)

Here, X(k) is the matrix representation of the completely positive trace-preserving (CPTP)
map injecting the quantum reservoir with the input time series. The matrix elements of X(k)
are defined by

X(k)ij = Tr(P(i) ρx1
k
⊗ ....⊗ ρ

xDx
k

⊗ Tr1,...,Dx(P(j)))/2N . (2.28)

K (defined in Eq. 2.24) is the matrix representation of the unitary evolution acting on the
vector representation of the density matrices.

The missing part of the information processing with a quantum system is how to extract inform-
ation out of the quantum system and use the high-dimensional encoding of the time series for
temporal machine learning tasks. In the RC algorithm the information extraction is achieved
by Eq. 2.5 which means all the nodes are used when training the model. This is not possible
in the QRC framework because obtaining all the entries of the quantum state vector repres-
entation of the density matrix through measurements is not a realistic assumption. What is
experimentally feasible, is to measure observables such as spin projections and spin correla-
tions. The output layer of the quantum reservoir (reservoir response) is constructed out of a
number of expectation values of these observables. The coefficients of the state vector that
are used for training are collected in a vector n(k) and are called the true nodes. This means
that only parts of the vector r(k), which describes the quantum system at step k, are used
directly in the presented framework. The rest of the coefficients are called the hidden nodes.
They contribute to the dynamics, the memory, and the encoding, but not directly to the train-
ing. This is illustrated by Fig. 3 that schematically represents the QRC model. The nodes
in the turquoise circle embody the true nodes and the ones in the red circle the hidden nodes.
Comparing this graphic with the graphic of the RC model (Fig. 1) illustrates one of the key
differences between the two models. The RC model has fewer nodes but all of them are used
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Input Output

Wout

Fig. 3: QRC schematical illustration (inspired by [27]).

for training. The QRC model has more nodes but only a fraction can be directly used as output.

The small number of true nodes limits the performance of QRC, especially when considering
the relatively small number of qubits (small quantum systems) due to simulation restrictions,
while also keeping in mind the near-term experimental availability. To improve performance by
increasing the number of nodes used for training, without increasing the size of the quantum
system, several methods are employed.

Rather than employing the unitary evolution and the measurement one time before encoding
the next step of the time series, the evolution and measurement process is carried out V times.
The output vectors for each of these single measurement phases are merged together into one
output vector

v(k) =

n1(k)
...

nV (k)

 (2.29)

of step k. For n true nodes the number of nodes used for training is expanded to n× V nodes.
This method is called temporal multiplexing. This procedure is sketched in Fig. 4.

Another method is spatial multiplexing (first introduced by [29]). The concept involves increas-
ing the number of employed quantum systems rather than the size of a single quantum system.
Instead of using one quantum system, r quantum systems are used. At each step k the output
of one reservoir is the n × V -dimensional vector v(k). These are collected from all of the r
reservoirs and combined to one output vector

p(k) =


v1(k)
v2(k)

...
vr(k)

 . (2.30)

This process produces an r×n×V -dimensional output vector. For this process to be useful, the
unitary evolution of the systems has to be different for each system. This technique is depicted
for V =1 (for clearity) in Fig. 5. But as described above spatial muliplexing can be leveraged
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Fig. 4: Schematical illustration of temporal multiplexing.

together with temporal multiplexing. In the figure, the same position of the nodes, but changed
connections between the nodes, symbolize the different unitary evolutions of the reservoirs.

The final technique to increase the dimension of the output vector is to apply a function Fres

to the output. The output vector q(k) at step k is defined as:

q(k) = Fres(p(k)). (2.31)

In this work powers of the reservoir readout up to the fourth exponent are considered as readout
function. The studied choices are thus only using the readout vector p(k) and a bias term

q(k) = Fres(p(k)) =
(

1
p(k)

)
, (2.32)

the readout of the r reservoirs, its square and a bias term [55]

q(k) = Fres(p(k)) =
(

1
p(k)

p2(k)

)
, (2.33)

the readout vector p(k), its second and third power and a bias term

q(k) = Fres(p(k)) =

(
1

p(k)

p2(k)

p3(k)

)
, (2.34)

and the readout vector p(k), its powers up to four and a bias term

q(k) = Fres(p(k)) =

 1
p(k)

p2(k)

p3(k)

p4(k)

 . (2.35)

This selection of readout functions adds the hyperparameter G indicating the powers (for each
coefficient) of the readout being included to the model. This method is inspired by recently
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Fig. 5: Schematical illustration of spatial multiplexing.

developed methods in ”classical” RC [56]. The final output vector q(k) is an G× r×n×V + 1-
dimensional vector.

This final output vector q(k) (equivalent to the reservoir state in RC) is mapped by the readout
matrix Wout to the reservoir output

ok = Woutq(k). (2.36)

To train the model, the same training as in the RC framework is implemented. The output
matrix Wout is optimized in such a way that the discrete output time series o(t) = {o(t0),o(t0+
∆t), . . .} = {oj}lj=1 approximates the target time series y(t) = {y(t0),y(t0 + ∆t), . . .}={yj}lj=1

yk ≈ ok = Woutq(k). (2.37)

The one classical part of the algorithm is optimized whereas the parameters of the quantum
system stay unchanged. Because the QRC model follows the same structure as the RC model,
it is split into the same 3 phases: initilization, training and prediction phase.

Initilization: The hyperparameters have to be chosen to initialize the model. The unitary
operator has to be defined (for each reservoir). More details about the choice of the unitary
operator for this thesis are presented in Sec. 3.1. Furthermore it is required to select the number
of employed quantum reservoirs r, the number of evolution and measurement processes V , the
normalization interval [a, b], the type of readout function (in this thesis controlled by G), the
regression parameter β, and the observables used as true nodes. The final step is the initilization
of the quantum states. The starting state is given by ρ(0) = (|0⟩ ⟨0|)⊗N , unless otherwise stated.

Training: The training follows the same structure as the training of the RC model. For a
given training data set {{xj}lj=1, {yj}lj=1}, the first Nsync inputs are used to synchronize the
quantum states with the dynamics of the input data, and thereby eliminating any transient
dynamics that are a product of the initialization of the quantum states. The synchronization
is accomplished by injecting the input into the quantum reservoirs and evolving the quantum
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systems as defined in Eq. 2.25. The leftover Ntrain steps of the training data set are used to
obtain a readout matrix Wout such that the output time series of the reservoirs approximates
the target time series. The systems are sequentially injected with the input time series and
evolved Ntrain times. The full output q(k) is measured and collected in a dim(q(k)) × Ntrain

matrix Q = [q(Nsync + 1), . . . ,q(Nsync + Ntrain)] and the desired outputs are collected in a
matrix Y = [yNsync+1, . . . ,yNsync+Ntrain]. The training is achieved by solving the equation

Y = WoutQ. (2.38)

As in ”classical” RC (Sec. 2.1) ridge regression is employed:

Wout = YQT(QQT − β1)−1. (2.39)

In the original papers on QRC [27, 28] the equation is solved by the Moore-Penrose pseudo-
inverse which is equivalent to ridge regression with β = 0.

Prediction: The temporal machine learning tasks that QRC models are employed to solve in
this thesis are the same time series prediction tasks defined for the RC framework. The input
and the output time series are given by the d-dimensional discret (training) time series u(t)
= {u(t0),u(t0 + ∆t), . . .} = {uj}Lj=1. The QRC model is trained to predict the next step in the
time series based on the current (quantum) reservoir state, which contains information about
the present and recent past of the true time series.

There are L time steps of the time series u(t) that are used to train the reservoir. The same
data split as for the RC model is applied:

Syncronization input : xi = ui

Training input : xj = uj

Training output : yj = uj+1

(2.40)

with i ∈ {1, 2, . . . , Nsync}, j ∈ {Nsync + 1, Nsync + 2, . . . , Ntrain} and Nsync + Ntrain + 1 = L.

The output matrix Wout is trained to map from the output vector q(k) to uk+1. This means that
the prediction of the model ok approximates the next step of the time series uk+1 (uk+1 ≈ ok).
Once the matrix Wout is obtained, it remains unchanged and the time series can be continued
for an arbitrary amount of steps. To continue the time series an autonomously evolving closed-
loop is created (as in RC). In the prediction phase, the external input is replaced by the last
prediction of the QRC model (illustrated by Fig. 6):

xk+1 = ok for k > L. (2.41)

1 V

step k+1

step k+1

U UU

Fres

ρr

q(k)

Wout
ρr ρr

1 V

step k+1

U UU ρ1ρ1 ρ1

ok

Fig. 6: Schematical illustration of prediction phase of the QRC model.
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Chapter 3

Quantum Reservoirs: Unitary Evolution and Model Properties

In Chapter 2, it is described how quantum systems can be exploited for time series forecasting by
transitioning from an echo state network to a quantum reservoir. The QRC algorithm is a hybrid
quantum algorithm. Some parts of the algorithm utilize quantum hardware, while others are
executed on a classical computer. For this thesis all results are obtained by numerical simulation
of the quantum systems. In this chapter the details of the simulated quantum systems are
defined (Sec. 3.1). Furthermore properties of the quantum system and features of the resulting
QRC model are discussed in Secs. 3.2 - 3.5.

3.1 Quantum reservoir simulation

The choice of unitary operator defines the quantum reservoir in the presented model, determin-
ing the underlying ”network connections”. In future real-world applications, the optimal unitary
operators will be heavily dependent on the limitations of the available quantum devices. For
this work, the unitary time evolution of a quantum system is employed as the unitary evolution
of the quantum reservoir.

The simulated models try to capitalize on the real-time dynamics of quantum systems for time
series processing. To achieve this, a specific Hamiltonian must be elected. For this thesis,
the chosen Hamiltonian is the transverse field Ising model plus onsite disorder, consistent with
previous work in the field of QRC [30]. The Hamiltonian of the transverse field Ising model
plus onsite disorder is defined as:

H =

N∑
i>j=1

Jijσ
i
xσ

j
x +

1

2

N∑
i=1

(h + Di)σ
i
z. (3.1)

Where h is the magnetic field , Di is the onsite disorder uniformly drawn from an interval
[−W,W ], and Jij is the coupling strength drawn randomly from the interval [−J

2 ,
J
2 ]. All

these parameters defining the Hamiltonians are expressed in units of J . To utilize the time
evolution of the quantum system, a unit time step size τ (in units 1

J ) is chosen as time between
two consecutive inputs. In the following, J = 1 is elected for convenience. The observable
measurements are carried out V times after letting the reservoirs evolve each time for a time
τ/V . The unitary operator (ℏ=1) that maps between states is

U = e
−iHτ

V . (3.2)

Fig. 7 sketches the QRC model prediction phase resulting from this choice. This selection of
unitary operators may not be the most suitable option for near-term real-world applications.
The goal of this thesis is to introduce a framework that provides a good starting point for further
research into the use of small quantum systems for time series forecasting with NISQ devices.
In the outlook (Chapter 6), the next steps towards real-world applications are discussed. This
discussion includes future research on appropriate unitary operators.

3.1.1 Phase diagram

This Hamiltonian was chosen, in this work and in [30], because it exhibits ergodic and localized
phases for certain parameter choices. In the mentioned study, the influence of the phases and
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Fig. 7: Schematical illustration of the QRC prediction phase with unitary operator defined by
a Hamiltonian and a unit time step between inputs.

the resulting properties of the physical systems on prediction quality is analyzed. It follows an
investigation of the phase diagram, which closely aligns with the approach described in [30].
Different phases can be discerned through the analysis of the eigenspectrum using the ratio of
adjacent gaps [57]

gn =
min[δn+1, δn]

max[δn+1, δn]
. (3.3)

Here, the gaps δn are defined by δn = En − En−1 and {En} is the sorted (in ascending order)
list of the eigenvalues of the Hamiltonian (one parameter draw). The level spacing distribution
is expected to be different in the ergodic and localized phases according to random matrix the-
ory. The Wigner-Dyson distribution, indicative of level repulsion, characterizes the thermalizing
(ergodic) phase. This phase exhibits an average gap ratio (⟨g⟩) of approximately 0.53 [58]. In
the many-body localized (non-ergodic) phase, the system has an extensive number of integrals
of motion. This allows the eigenvalues from different sectors to be regarded as independent
variables, resulting in a Poisson distribution. As a consequence, the average gap ratio in the
localized phase is approximately ⟨g⟩ ≈0.386 [58]. The system (Eq. 3.1) has two parameters (the
magnetic field h and the disorder range W ) that determine the phase of the system. To study
the phase diagram of the quantum system, the average ratio of adjacent gaps is determined and
subsequently averaged over numerous Hamiltonian realizations for each parameter combination.
The quantum system specified in Eq. 3.1 has a Z2 symmetry, implying that diagonalization is
required only within a single symmetry sector. In Fig. 8 the phase diagram is shown in de-
pendence of the magnetic field and the disorder range. This phase diagram (gridsize=100×100)
is obtained with N=10 (10 qubits) and by averaging over 500 realizations for each parameter
combination. It shows 2 ergodic (yellow) regions and 2 localized (black) regions. The transitions
between the phases strictly occur only in the thermodynamic limit. Nevertheless, signatures of
them can be found in finite-size systems. For an in-depth analysis of role of ergodicity within
the QRC model and the network’s response across various phases, readers are referred to [30].
The subsequent paragraph presents a brief summary of their arguments and conclusions, sup-
plemented with plots specifically generated for this thesis.

During each input step, the qubit corresponding to each dimension of the time series is modi-
fied to encode the current state of the time series within the state of that qubit. This encoding
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Fig. 8: Heatmap of ⟨g⟩ depending on the magnetic field h and the disorder strength W obtained
by averaging over 500 realizations of the transverse-field Ising Hamiltonian plus onsite disorder.

process immediately alters the expectation values depending on the modified qubits (e.g., ⟨H⟩).
Since the unitary dynamics do not change the conserved quantities of the system (by defini-
tion), do these quantities, which are dependent on the modified qubits, become functions of
the initial state of the system and the encoded sequence. The total energy ⟨H⟩ and the par-
ity ⟨P⟩ = ⟨∏N

i=1 σ
i
z⟩ are the only conserved quantities in the ergodic regions, each involving

all qubits globally. The Eigenstate Thermalization Hypothesis states that local observables
primarily depend on these conserved quantities, with deviations constrained to finite-scale fluc-
tuations [59]. This means that local observables (including the ones that are used for training)
become functions of the input history. Each input step involves a partial trace and consequently
information erasure due to the large amount of entanglement in the system in the ergodic phase.
As a result, repetitive inputs induce uniform dynamics of ⟨H⟩ and ⟨P⟩ for different initial states
(example shown in Fig. 9). This property is directly related to the emerging echo state prop-
erty in the ergodic phase presented in Sec. 3.2. The information erasure garanties that the
expectation values ⟨H⟩ and ⟨P⟩, along with all local observables, are determined by the in-
put history up to a specific earlier time step, indicating a fading memory effect. This fading
memory property is a requirement for a suitable reservoir. In the ergodic phase, the behaviour
of the local expectation value depends on the input sequence, as illustrated in Fig. 10. This
behaviour is obviously desirable for a quantum system employed in the QRC algorithm. The
physical situation is quite different in the localized regime. The flow of information through the
system is hindered by local conserved quantities supported by only parts of the reservoir (local
integrals of motion). Local observables are strongly impacted by these conserved quantities,
whereas the influence from the partial trace is minimal. The reservoir preserves its initial state
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due to reduced information erasure. This means that the convergence (as shown in Sec. 3.2)
needed for forecasting is not given by the reservoir. Hence, the conserved quantities do not
exhibit uniform dynamics, exemplified in Fig. 11. Although information is introduced into
the system, its propagation to other qubits is severely limited. Local observables, which are
insensitive to the qubit employed for encoding, exhibit no discernible dependency on the input
sequence. This scenario is exemplified in Fig. 12. Of course, such behaviour is undesirable for
quantum systems used in QRC.
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Fig. 9: ⟨H⟩ and ⟨P⟩ in time for 10-qubit systems for different initial states (single realization)
for a Hamiltonian chosen in the ergodic phase of the transverse-field Ising Hamiltonian plus
onsite disorder (h = 2, W = 0.05) injected with the same randomly chosen sequence according
to Eq. 2.25 with unit time step τ = 10. The different initial conditions are: all qubits in the
zero state (blue), all qubits in the zero state (orange), the first half of the qubits in the zero
state and first half of the qubits in the one state (green), the first half of the qubits in the zero
state and first half of the qubits in the one state in the x-basis (red).
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Fig. 10: Dynamics of observables ⟨σi
z⟩ (with i ∈ {1, 2, . . . , 10}) with a binary input for a 10-

qubit system (single realization) in the ergodic phase of the transverse-field Ising Hamiltonian
plus onsite disorder (h = 2, W = 0.05) with unit time step τ = 10.
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Fig. 11: ⟨H⟩ and ⟨P⟩ in time for 10-qubit systems for different initial states (single realization)
for a Hamiltonian chosen in the localized phase of the transverse-field Ising Hamiltonian plus
onsite disorder (h = 50, W = 100) injected with the same randomly chosen sequence according
to Eq. 2.25 with unit time step τ = 10. The different initial conditions are: all qubits in the
zero state (blue), all qubits in the zero state (orange), the first half of the qubits in the zero
state and first half of the qubits in the one state (green), the first half of the qubits in the zero
state and first half of the qubits in the one state in the x-basis (red).
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Fig. 12: Dynamics of observables ⟨σi
z⟩ (with i ∈ {1, 2, . . . , 10}) with a binary input for a 10-qubit

system (single realization) in the localized phase of the transverse-field Ising Hamiltonian plus
onsite disorder (h = 0.05, W = 0.05) with unit time step τ = 10.

3.2 Echo state property

To be suitable for RC, a network must exhibit the echo state property, also known as the
convergence property (which is closely related to the fading-memory) [60]. The reservoir must
forget its initial state after repeated injections and subsequent evolutions. A consequence of this
is that the output layer only depends on the recently injected input. This echo state property is
also important for QRC [30]. The convergence in case of two quantum systems represented by
the states ρA and ρB (density matrix representation) can be checked by observing the distance
∥ρA − ρB∥ (defined by the Frobenius norm) after numerous applications of the previous defined
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injection and evolution procedure (Eq. 2.25). If the distance goes to zero, or, simply put, if
the states converge to each other, the system exhibits the convergence property. The Frobenius
norm of a matrix M is defined by the equation

∥M∥ =
√

Tr(M†M). (3.4)

Whether the system exhibits this property depends on the unit time step size τ between input
injections and the phase of the system. The echo state property is evaluated by measuring the
trace distance between two different initial states after each is injected according to Eq. 2.25
(using the unitary operator defined in Eq. 3.2). For this purpose, a sequence of uniformly
randomly drawn numbers from the interval [0,1] is used. This is done multiple times for each
investigated hyperparameter combination (τ , h, and W ) to get statistically relevant results.
Different random starting states (each with an average distance of 0.03) are used for each of
these observed distances. In [30] the connection between the phase of the system and the echo
state property for 10-qubit systems is examined.

In the following paragraph, these results are reproduced for 10-qubit systems, followed by the
same investigation conducted for 4-qubit systems. The focus is on 4-qubit systems because these
are used to produce the results on the prediction performance of QRC using small quantum
systems presented in Chapter 5. The results are shown as boxplots to make the statistics more
visable. The boxes represent the 25%-75% percentile range of the data and the line in the middle
of the box shows the median of the data, i.e. 50% of the observed distances are below this value.
The extended lines showcase the largest and smallest observations that fall within a distance of
1.5 times of the IQR (Interquartile range) of the data. Black dotes represent the outliers that
are outside of this range. The investigation of the 10-qubit system is started with the ergodic
phase of the system. In Fig. 13, boxplots of the convergence are shown for 5 different unit
time steps (covering the interval [10−2, 102]) for a 10-qubit system with h = 2.0 and W = 0.05.
Each box represents 100 realizations and the distance is plotted in dependency on the number
of injected inputs. This figure shows that the states do not converge for τ =0.01 and τ =0.1.
The two states do converge to each other for τ =1, τ =10, and τ =100 after a few hundred
inputs. The same investigation is carried out for the localized phase of the system (h = 50 and
W = 100). The resulting boxplots are presented in Fig. 14. They show no convergence for all
unit time steps. These results agree with the results of [30]. To fulfill the echo state property,
the systems should be chosen in the ergodic phase and an appropriate unit time step τ should
be selected. In Figs. 15 and 16, the results of the same numerical experiment with 4 qubits are
presented. One can see that a similar behaviour is observed as for 10 qubits: In the ergodic
phase and with enough time between successive inputs the states converge, i.e., the echo state
property, is fulfilled. Choosing a system in the localized phase or selecting a unit time step
τ that is too small results in the opposite behaviour. A key difference that can especially be
observed for 4 qubits is that outliers can be observed where the states do not converge. This
means that for certain realizations of the Hamiltonian, even in the ergodic phase and with the
right unit time step size, the echo state property is not fulfilled.
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Fig. 13: Boxplots (100 realizations) of the
convergence of two random states for dif-
ferent unit time steps τ dependent on the
length of the input sequence for quantum sys-
tems of 10 qubits and their interaction de-
scribed by the transverse-field Ising Hamilto-
nian (Eq. 3.1) plus onsite disorder with h=2
and W=0.05 (ergodic phase).
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Fig. 14: Boxplots (100 realizations) of the
convergence of two random states for dif-
ferent unit time steps τ dependent on the
length of the input sequence for quantum sys-
tems of 10 qubits and their interaction de-
scribed by the transverse-field Ising Hamilto-
nian (Eq. 3.1) plus onsite disorder with h=50
and W=100 (localized phase).
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Fig. 15: Boxplots (100 realizations) of the
convergence of two random states for dif-
ferent unit time steps τ dependent on the
length of the input sequence for quantum
systems of 4 qubits and their interaction de-
scribed by the transverse-field Ising Hamilto-
nian (Eq. 3.1) plus onsite disorder with h=2
and W=0.05 (ergodic phase).
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Fig. 16: Boxplots (100 realizations) of the
convergence of two random states for dif-
ferent unit time steps τ dependent on the
length of the input sequence for quantum
systems of 4 qubits and their interaction de-
scribed by the transverse-field Ising Hamilto-
nian (Eq. 3.1) plus onsite disorder with h=50
and W=100 (localized phase).
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3.3 Comment: Normalization of the time series

As outlined in the algorithm description (Sec. 2.3), the time series must be scaled into the
interval [a, b] with 0≤ a < b ≤ 1. For each dimension of the forecasted time series, one qubit is
initialized to represent the corresponding dimension of the current time step. Fig. 17 depicts
the encoding space on the Bloch sphere for different parameters a and b. The initialization
in a pure state guarantees that the Bloch vectors have length one and therefore extend from
the origin to the surface of the sphere. If the maximal interval [0,1] is chosen, the encoding
space becomes a line connecting the zero state (top) to the one state (bottom). This line lies
on the surface of the Bloch sphere and is characterized by a rotation from 0◦ (|0⟩) to 180◦ (|1⟩)
about the y-axis passing over the |+⟩ state. Furthermore, the figure indicates that restricting
the interval [a, b] limits the encoding space on the Bloch sphere.
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Fig. 17: Bloch spheres showing the encoding space used in Eq. 2.25 for different normalizations
(i.e., [a, b] chosen differently). From left to right: [0.00,1.00], [0.10,0.90], [0.20,0.80], [0.30,0.70],
and [0.40,0.60]. In the plots, the Bloch vectors of the minimal and the maximal value of the
interval are shown. The lines between the vectors represent the space into which the coefficients
of the time series are encoded.

3.4 Comment: Quantum reservoir output

The enlargement of the output vector, discussed in this thesis, is a key component of the QRC
algorithm. One method to achieve this is through temporal multiplexing. An illustrative ex-
ample follows to demonstrate method. The determination of true nodes is based on expectation
value measurements. In the ensuing example, a quantum system with 5 qubits and 4 evolution
and measurement processes is analyzed (V = 4). The true nodes are limited to the expectation
values ⟨σi

z⟩ where i ∈ {1, 2, 3, 4, 5}. Fig. 18 graphically presents one unit time step τ . The
various coloured curves correspond to the expectation values plotted against time. At the be-
ginning of the interval, the input (in this case 0) is injected into the first qubit (since the input
is one-dimensional). True nodes are determined at times t ∈ {t0 + τ

4 , t0 + 2τ
4 , t0 + 3τ

4 , t0 + τ} and
are assembled into one vector. The coloured circles lying on the curves and within the vector
illustrate this process.

Fig. 19 sketches the most general construction of the reservoir output vector considered in this
thesis. Each coloured circle represents a measured node, with different colours indicating differ-
ent reservoirs, and the colour gradient represents different true nodes. At step k, each quantum
reservoir generates an n×V -dimensional vector. These r vectors are concatenated into a single
r × n× V -dimensional vector p(k). By including all powers up to G of the coefficients of p(k)
and a bias term, the output vector q(k) is produced. This is the final output vector of step k
and it is a 1 + G× r × n× V -dimensional vector. Meaning that the number of nodes increases
from n to 1+G×r×n×V . However, this is not the most general construction of reservoir out-
puts when considering the combination of temporal multiplexing and spatial multiplexing. The
most universal definition would consider the possibility of varying types (and hence amounts)
of true nodes ni as well as varying amounts of evolution and measurement processes Vi for each
reservoir. In such a case, p(k) would be a

∑r
i=1 ni × Vi-dimensional vector. In this thesis, the
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same true nodes and the same number of measurement and evolution processes are assumed
for each reservoir to limit the extensive hyperparameter space of the model, thereby making
hyperparameter optimization (for small quantum systems) computationally feasible. Addition-
ally, other choices of the non-linear readout function Fres could be considered, which would also
change the dimension of the output vector in a different way.

τ

tt0 t0 + τ
2 t0 + τ

multiplexing
temporal

v(k) =
0

+1

−1

Fig. 18: Schematical illustration of the creation of the output vector by temporal multiplexing.

n

V

1

2

V

1

2

1 2

QR 1

n1 2

QR 2

p(k)

v1(k) v2(k) vr(k)

q(k)

Fres

n1 2

QR r

V

1

2

Fig. 19: Schematical illustration of the final output vector creation.
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3.5 Comment: Emerging non-linearity

Quantum mechanics is fundamentally a linear theory. Initially, this might suggest that linear
dynamics are unsuitable for machine learning tasks, which require non-linearity. How non-
linearity enters the model is highlighted using the ensuing example. Suppose a two-dimensional
discrete time series x(t) is encoded into a quantum system of N qubits as outlined by Eq. 2.25,
with unitary evolution U between the encoding steps. Initially, the system is prepared in the
state

ρ(0) = (|0⟩ ⟨0|)⊗N . (3.5)

The first step of encoding involves initializing two qubits (labeled 1 and 2) in the state defined
by Eq. 2.26. This encoding step results in the state

ρ1.step =

(
1 − x1
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√
1 − x1

1

√
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√
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)
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(
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1 − x2
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√
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1 − x2
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√
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1

)
⊗ Tr1,2(ρ(0)). (3.6)

Here, xji denotes the j-th dimension of the i-th step of the discrete time series x(t). Afterwards,
the unitary evolution is applied, which (if elected correctly, see Sec. 3.1) further spreads the
non-linear combinations of the coefficients through the system and leaves the system in state
ρ(1). This quantum system and its subsystems exhibit non-linear dependency on the first step of
the discrete time series. The second step is encoded into the system by initializing the quantum
system in state

ρ2.step =
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)
⊗Tr1,2(ρ(1)). (3.7)

The tensor products create terms (coefficients of the density matrix) that depend non-linearly
on the coefficients from the first two steps of the discrete time series. This due to two reasons.
The first reason is that the subsystem Tr1,2(ρ(1)) depends non-linearly on the coefficients of
first step of the time series. The second reason is that by definition of the tensor product and
the chosen states, the initialized qubits (1 and 2) non-linearly encode the information of the
second step. This means that the tensor product between the states of the first two qubits
and the rest of the system produces a state that depends non-linearly on all encoded steps up
to this point. It is now obvious how repeating this process recurrently generates matrix terms
that depend non-linearly on the coefficients of the time series up to the encoded step. The
expectation values of the operator O, determined by the equation

⟨O⟩ = Tr(Oρ), (3.8)

thereby exhibit non-linear dependencies on the coefficients of the time series up to the encoded
step. This means that the coefficients of the output vector q(k) (the nodes) also have non-linear
dependencies on the coefficients of the time series up to the encoded step.
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Chapter 4

Chaotic Systems and Prediction Quality Measures

4.1 Chaotic Dynamical Systems

The QRC framework is designed to forecast dynamical systems from past data. In other words,
the models are trained using a (training) dataset consisting of L consecutive time steps from a
time series of a dynamical system, with the objective of forecasting the next Npred time steps.
The dynamical systems used to benchmark the introduced QRC algorithm are prototypical,
synthetic, chaotic dynamical systems. Within this section, fundamental concepts of chaotic
dynamical systems relevant to the thesis’s context are introduced.

4.1.1 Definition

The following definition is composed of various chapters of [61] and [62]. A dynamical system is a
system that evolves in time. Dynamical systems can be stochastic or deterministic. A stochastic
system is one that evolves based on a random process (e.g., toss of a coin), and a deterministic
system is one that is uniquely determined by its past and specific governing equations. In this
thesis, only deterministic systems are considered. Systems can also be distinguished based on
whether they evolve discretely or continuously. A dynamical system evolving deterministically
in discrete time steps is represented by a d-dimensional vector uk of step k, and the evolution
of the state is determined by a map M(·) that maps the state of step k to the state of step k+1

uk+1 = M(uk). (4.1)

A system that evolves deterministically and continuously in time is described by a d-dimensional
vector u(t) of time t and its evolution is governed by first-order differential equations. The
differential equations are defined by a flow F (·):

u̇(t) =F (u(t)). (4.2)

A deterministic dynamical system is called non-linear if its governing equations (M(·) or F (·))
are non-linear in the system’s variables. These deterministic, non-linear dynamical systems are
often complex in the nature of its dynamics, and they can display chaotic behaviour in some
cases. There is no universal definition of chaos. J.C. Sprott [61] states, ”chaos is the aperiodic,
long-term behavior of a bounded, deterministic system that exhibits sensitive dependence on
initial conditions.” These complex properties make such dynamical systems the ideal benchmark
for the forecasting of dynamical systems and demonstrate the potential of QRC in this area.

4.1.2 Dataset generation: Numerical simulation using RK4

In the case of discrete, deterministic dynamical systems, the evolution of the system (time series)
can be generated directly by iterative applications of its defining map (Eq. 4.1) once an initial
state u0 is specified. In the continuous case, the situation is more difficult. Most interesting
dynamical systems are defined by first order differential equations that are not analytically
solvable. Nevertheless, approximate solutions can be obtained by numerical methods. For this
thesis, the fourth-order Runge-Kutta method (RK4) [63, 64, 61] is used to numerically simulate
continuous-time dynamical systems. The continuous time is discretized into time steps of size
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∆t and the flow 4.2 effectively approximated Eq. 4.2 by a map Mrk4(·) (RK4 iterator) mapping
the system state from time step k to time step k + 1:

uk+1 = Mrk4(uk). (4.3)

The RK4 iterator is defined as:

Mrk4(uk) = uk +
1

6
(k1 + 2k2 + 2k3 + k4), (4.4)

with k1 = F (uk)∆t, k2 = F (uk + k1/2)∆t, k3 = F (uk + k2/2)∆t and k4 = F (uk + k3)∆t.
Here, the discrete time index k = 0, 1, . . . corresponds to the real time t0 + k∆t. By iteratively
applying the RK4 map, the time series can be generated once an initial state is specified.

The datasets used for benchmarking are obtained by specifying an initial state u0 and applying
the map iteratively 1000 + Ntraj · Nl times. From the resulting discrete time series, the first
1000 steps are discarded, and the remaining time series is split into Ntraj time series, each of
length Nl. For this study, the prediction performance of the QRC model is investigated by
forecasting eight three-dimensional chaotic systems that are defined in the appendix (Appendix
A). The chosen starting points and system parameters are also specified in the appendix. The
parameters Ntraj = 1000 and Nl = 25000 are chosen to obtain the trajectories. This means that
for all eight chaotic systems, 1000 trajectories, each consisting of 25000 steps, are generated.
The second half of these 1000 trajectories is used to calculate the real climate of the systems (to
generate values for relative comparison). The results of these calculations are shown in Table 2.
The first 500 trajectories are used as benchmark datasets for the studies presented in Chapter
5.

4.1.3 Example of a chaotic system: Lorenz-63

In the following the Lorenz-63 system is presented as a prominent example of a three-dimensional
continuous-time system that displays chaotic dynamics for certain parameter ranges. The
Lorenz system was introduced to model atmospheric convection in the 1960s by Edward Lorenz
[65]. The three-dimensional state u(t) = [x(t), y(t), z(t)]T evolves according to the differential
equations

ẋ(t) = σ(y − x),

ẏ(t) = x(ρ− z) − y (4.5)

and

ż(t) = xy − βz.

For the (typical) parameters ρ = 28, σ = 10, and β = 8/3 the system exhibits chaotic behaviour.
The Lorenz-63 system is simulated (RK4 method) in this thesis with ∆t=0.02 and the initial
state chosen is u0 = [0, 0.01, 9]T. The sensitivity to the initial conditions (for this parameter
choice) is illustrated in Fig. 20, which shows the evolution of the Lorenz-63 system for two
initially close states. After approximately 10 Lyapunov times (defined in Sec. 4.2.1) have past
the difference between the two systems becomes visually noticable and afterwards the systems
become completely desynchronized.

The Lorenz-63 system has been presented here in more detail to demonstrate some of the key
concepts of chaotic systems and introduce the types of systems that are forecasted in this thesis.
The remaining chaotic systems used to evaluate the performance of QRC are defined, and the
parameter choices are listed in the appendix (Appendix A).
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Fig. 20: Evolution of the Lorenz system for two initially close states (perturbed by a vector
δ = [10−4, 0, 0]). a) 3D trajectories of the evolution of the perturbed and unperturbed system
for 1100 time steps. b) The individual dimensions of the perturbed and unperturbed system
plotted against time for 1100 time steps.

4.2 Prediction performance measures

To evaluate the quality of the predictions different measures are used. These measures are chosen
to sufficiently analyze the quality of the exact short-term prediction and the reproduction of the
long-term statistical properties (climate) of the systems. Past research in the area of QRC often
fell short in evaluating the climate of the predicted system. The measures used for the evaluation
follow previous studies [66, 67, 68, 69] investigating ”classical” RC and related approaches.

4.2.1 Forecast horizon

The forecast horizon (also called valid time) is calculated to evaluate the short-term prediction
capabilities of the model. It measures the time for which the continued time series matches
the true continuation of trajectory very closely. The forecast horizon is the elapsed time while
the normalized, time-dependent error e(t) [70] between the continued time series ypred(t) =

{ok}L+Npred

k=L+1 and the true continuation y(t) = {uk}L+Npred

k=L+1 is smaller than a threshold value
emax. The normalized time-dependent error is defined as

e(t) =
∥y(t) − ypred(t)∥

⟨∥y(t)∥2⟩1/2 . (4.6)

Here, ⟨.⟩ denotes the average over all Npred steps and ∥.∥ is the L2-norm. It is determined for
how many consecutive steps sv (starting with the first forecasted state) the relation e(t) < emax

holds. In this thesis the threshold is chosen to be emax=0.4. The forecast horizon tv, in units
of the Lyapunov times 1/λmax of the dynamical system, is obtained by calculating

tv = ∆t · sv · λmax. (4.7)

Here, ∆t is the time between two successive steps of the discretized time series, and λmax is
the largest Lyapunov exponent (defined in Sec. 4.2.3) of the system. The forecast horizon
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is measured in Lyapunov times to obtain a measure that is more comparable across different
dynamical systems.

4.2.2 Correlation dimension

One aspect of the long-term behaviour of a dynamical system is its structural complexity.
The correlation dimension is a measure that quantifies structural complexity by measuring the
dimensionality of the space populated by the trajectory [71]. This measure is based on the
discrete version of the correlation integral

C(R) = lim
M→∞

1

M2

M∑
i,j=1

Θ(R− ∥xi − xj∥). (4.8)

Here, Θ represents the Heavyside function. C(R) calculates the mean probability that two
states in phase space are closer than a threshold distance R for different time steps. For a self-
similar strange attractor the correlation integral in certain range of the threshold R is defined
by a power-law relationship:

C(R) ∝ Rυ. (4.9)

The scaling exponent υ defines the correlation dimension of the attractor. The correlation di-
mension belongs to the measures of fractal dimensionality introduced by Mandelbrot in 1967
[72]. The advantage of this fractal measure is that it can be determined (without the know-
ledge of the underlying equations) with a relatively small amount of datapoints available. The
Grassberger Procasccia algorithm [73] is used to calculate the correlation dimension from data.
The correlation dimension is determined for all eight chaotic systems for 500 different parts
(20000 steps) of the attractor. In Table 2 the mean values and the standard deviation of the
calculation together with the real literature values are presented. The main point of interest
is to make relative comparisons between actual trajectories and the predictions. Therefore,
obtaining correlation dimensions that closely match the values found in the literature is not the
main priority.

4.2.3 Largest Lyapunov exponent

Another characteristic of the long-term climate of a dynamical system is its temporal complexity.
The most appropriate way to quantify the temporal complexity of a dynamical systems is
to analyze its Lyapunov exponents, characterizing the system’s development in time. A d-
dimensional dynamical system has d Lyapunov exponents that determine the average rate of
divergence of nearby points in phase space. By measuring the average rate of exponential growth
of a small perturbation in each direction in phase space, the Lyapunov spectrum does measure
how sensitive the system is to its initial conditions. A dynamical system exhibits chaos if one
of its Lyapunov exponents is positive, and the magnitude of the exponent determines the time
scale at which the system becomes unpredictable [74, 75]. The largest Lyapunov exponent λmax

is linked to the direction in which the divergence occurs most rapidly,

d(t) = c · eλmaxt. (4.10)

In this thesis, measuring the largest Lyapunov exponent suffices, because of its dominant influ-
ence over the dynamics. This constraint also has a computational advantage, because λmax can
be easily calculated from data using the Rosenstein algorithm [76]. Again, the main interest is
not high accuracy (regarding the reproduction of literature values) but in creating a measure for
relative comparisons of actual and predicted trajectories of the investigated systems. The largest
Lyapunov exponent is calculated for 500 true trajectories (each 20000 steps) for all eight chaotic
systems (defined in Appendix A). In Table 2 the mean values and the standard deviations of
this calculations are presented together with the true values (taken from literature).
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system λmax (literature) λmax (calculated) υ (literature) υ (calculated)

Lorenz-63 0.9056 0.91 ± 0.02 2.068±0.086 2.052 ± 0.009
Chen 2.0272 2.02± 0.05 2.147±0.117 2.145± 0.008
Chua 0.3271 0.341± 0.007 2.125 ± 0.098 1.75± 0.01
Halvorsen 0.7899 0.78 ± 0.02 2.110 ± 0.095 2.106 ± 0.006
Rössler 0.0714 0.072 ± 0.004 1.991 ± 0.065 1.82 ± 0.02
Rucklidge 0.193 0.194±0.006 2.108 ± 0.095 1.93± 0.02
Thomas 0.0349 0.033 ± 0.001 1.843 ± 0.075 1.76 ± 0.04
WINDMI 0.0755 0.074± 0.004 2.108 ± 0.095 1.88± 0.02

Table 2: Mean values calculated over 500 realizations with standard deviation and the literature
values of the maximal Lyapunov exponent and correlation dimension for all eight chaotic systems
investigated in this thesis (defined in Appendix A). The literature value of the largest Lyapunov
exponent of the Rucklidge system is taken from [77]. All other literature values are taken from
[61].



30 5 Forecasting 3D Chaotic Systems with Minimal QRC

Chapter 5

Forecasting 3D Chaotic Systems with Minimal QRC

One of the variable parameters in the model is the size (number of qubits N) of the quantum
system used in the model. This chapter of the thesis explores the predictive power if the smallest
theoretically allowed (”minimal”) quantum systems are used as reservoirs. These small quantum
reservoirs are particularly interesting due to the significant size restrictions of current and near-
future quantum devices. This chapter begins by defining the objectives of the investigation and
describing the setup of the numerical experiments (Sec. 5.1). It then presents the results of
these experiments (Sec. 5.2) and ends with the conclusions about QRC models that employ
small quantum systems, derived from these numerical experiments and their results (Sec. 5.3).

5.1 Objective and methodology

As outlined in Sec. 2.3, a theoretical minimum number of qubits is required to run the model.
The dimension (d) of the forecasted time series limits the quantum system size, making it ne-
cessary for the number of qubits N to be at least d+1. This thesis explores the predictive power
of QRC for systems at this minimal size. In the appendix (Appendix C.1), example predictions
obtained with bigger quantum systems are shown. The thesis has two primary objectives. The
first objective is to demonstrate the impact of introduced changes to the framework (hyperpara-
meters r, G, V , β, and [a, b]) on the forecasting performance of the machine learning models
when using small quantum systems. The second objective is to test and to optimize the machine
learning framework for various synthetic chaotic systems, evaluating its ability to forecast these
systems with minimally-sized quantum reservoirs. The study emphasizes ensuring statistical
relevance and examines both short- and long-term prediction accuracy, aspects that have often
been overlooked in prior QRC studies. The following paragraph outlines the structure of the
numerical experiments.

For each of the eight three-dimensional chaotic systems used for benchmarking in these studies
(defined in Appendix A), 500 trajectories, each consisting of 25000 discrete, consecutive time
steps, are generated (Sec. 4.1.2). These trajectories serve as benchmark datasets for the eval-
uation of the prediction performance. The time series are standardized before being used as
benchmarks. This requires that the predicted continuations be scaled inversely for analysis and
comparison with the actual continuations. The results of the following studies are obtained
by evaluating the model Nstat times for each hyperparameter configuration. During each of
these Nstat evaluations, different segments of the chaotic attractors (from the generated 500
trajectories) and different Hamiltonian parameter draws are used for training and forecasting
to ensure a statistically significant performance evaluation. Each evaluation involves training
the model with Nsync + Ntrain +1 = L consecutive trajectory steps and subsequently continuing
the time series for Npred steps. For each of the forecasted trajectories, the forecast horizon, the
largest Lyapunov exponent, and the correlation dimension are calculated as described in Sec.
4.2. These measures are utilized to compare predictions for various hyperparameter configur-
ations for each chaotic system and to assess the model’s performance, focusing on short-term
accuracy and climate reproduction. For each numerical experiment, the short-term prediction
quality is illustrated using boxplots. The y-axis of these plots represents the forecast horizon of
the predictions. Each box in the boxplot corresponds to one of the investigated hyperparameter
configurations in the presented study. The boxes indicate the 25%-75% percentile range of the
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Nstat calculated forecast horizons, with the line in the middle representing the median, i.e.,
50% of the forecast horizons fall below this value. The extended lines (whiskers) display the
largest and smallest observations within a distance of 1.5 times the interquartile range (IQR)
from the edges of the box. Black dots denote outliers outside this range. The distribution of the
predicted climate is assessed using scatter plots for each analyzed combination of hyperpara-
meters. For each of the Nstat trajectories, the determined maximal Lyapunov exponent and the
correlation dimension are plotted as points in the scatter plots. The black ellipses in the plots
indicate the three standard deviation errors of the correlation dimension and the largest Lya-
punov exponent, derived from simulations of the actual systems (Table 2). Each plot contains
a zoomed-in window (shown in the edge of the plot) centered around the mean values of the
correlation dimension and largest Lyapunov exponent (x=υ,y=λmax) that are determined from
simulations. The windows extends ±15%λmax in the y-direction and ±5%υ in the x-direction.

5.2 Results

In this research, three-dimensional chaotic systems are forecasted, necessitating a minimal
quantum system of 4 qubits. Consequently, all quantum systems used to generate the presented
results consist of 4 qubits. Due to numerical limitations, analyzing the relationship between
hyperparameters and performance is challenging, and a grid search over a large portion of
the hyperparameter space is not feasible. Even for these small quantum systems, statistically
valid and complete evaluations of the hyperparameter space are computationally too expensive.
Therefore, some hyperparameters are kept fixed throughout the investigation. Each trained
model is synchronized with 100 steps, followed by training on the next 2000 steps of the time
series, and then the time series is continued for 20000 steps (Nsync = 100, Ntrain = 1999, and
Npred = 20000). Additionally, the determined expectation values are not treated as adjustable
hyperparameters. In this study, ⟨σi

z⟩ and ⟨σi
zσ

l
z⟩ with i, l ∈ {1, 2, ...., N} and i < l are determined

at each measurement step (n=10). Following the findings in [30] and the analysis of the system
response and the echo state property in Sec. 3.1 and Sec. 3.2, the quantum system parameters
W=2.0 and h=0.05, and the unit time step size τ = 20 are selected. The echo state property of
exactly this quantum reservoir (three-dimensional input) is analyzed in the appendix (Appendix
B.1). The investigation presented in this thesis emphasizes on optimizing how the outputs of
these quantum systems are utilized, rather than optimizing the quantum systems themselves.
The section begins with an investigation of the effect of the normalization interval [a, b] on
the forecasting quality, followed by an analysis of the introduction of ridge regression into the
machine learning model. Afterwards, the influences of the output vector enlargement methods
are analyzed. These examinations of the effects of the introduced hyperparameters of the QRC
model are conducted by forecasting the Lorenz-63 system. The final investigation is an analysis
of the prediction quality of the model for all eight chaotic systems (defined in Appendix A)
using hyperparameter configurations obtained through hyperparameter optimization.

5.2.1 Normalization

As described in Sec. 2.3 and Sec. 3.3, the time series is scaled to the interval [a, b] where
0 ≤ a < b ≤ 1. This implies that the forecasted time series must be inversely scaled and
then undergo inverse standardization before being compared to the actual continuation. Sub-
sequently, the effect of normalization on the forecasting ability of the model is analyzed. The
hyperparameters β = 10−10, r=1 and G=1 are kept constant and each combination of the
hyperparameters V ∈ {1, 2, 3, 4, 5} and [a, b]∈ {[0.1, 0.9], [0.2, 0.8], [0.3, 0.7], [0.4, 0.6]} is used to
forecast the Lorenz-63 system. For each analyzed hyperparameter combination, Nstat = 100
is chosen, and the numerical experiments are carried out as described in Sec. 5.1. The 100
forecasted trajectories for each hyperparameter combination are analyzed by determining the
measures defined in Sec. 4.2. In Fig. 21, a boxplot with forecast horizons for all investigated
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hyperparameter combinations is shown. The statistical distribution (100 realizations of the
model) of the forecasted climate is presented for each hyperparameter combination in Fig. 22.
It can be observed that increasing V , which leads to a greater dimension of q(k), increases the
forecast horizon. The increase of V also leads to better climate predictions. Meaning that The
Lyapunov exponent and the correlation dimension are frequently predicted with high accuracy,
within a reasonable margin of deviation. Further investigations into the question how increasing
the dimension of q(k) correlates with the prediction performance can be found in Sec. 5.2.3.
The figures show that the normalization interval [a, b] has a significant influence on both long-
and short-term prediction quality. The optimal choice of [a, b] is influenced by the remaining
hyperparameter configuration. For this forecasting task (Lorenz-63), the short- and long-term
prediction quality seem to benefit from a smaller encoding space on the Bloch sphere when the
dimension of the output vector is small. The opposite is true for short-term prediction: as the
dimension of the output vector increases, a larger encoding space results in longer forecast ho-
rizons. The accuracy of the climate prediction saturates for higher-dimensional output vectors,
and no difference is visible for the different intervals [a, b].

These results show that incorporating the hyperparameters a and b into the hyperparameter
optimization process is a sensible strategy when aiming to find the optimal hyperparameter
configuration for a specific forecasting task. Identifying the underlying reasons for these effects
and conducting a more comprehensive evaluation of the continuous space 0 ≤ a < b ≤ 1 is not
within the scope of this thesis.

1 2 3 4 5
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t v

[a, b] = [0.10, 0.90]

[a, b] = [0.20, 0.80]

[a, b] = [0.30, 0.70]

[a, b] = [0.40, 0.60]

Fig. 21: Boxplot of the forecast horizon in Lyapunov times of 100 forecasted trajectories of the
Lorenz-63 system for multiple combinations of the number of evolution and measurements (V∈
{1, 2, 3, 4, 5}) and the normalization interval ([a, b]∈ {[0.1, 0.9], [0.2, 0.8], [0.3, 0.7], [0.4, 0.6]}).
The remaining hyperparameters are kept constant at β = 10−10 , r=1, and G=1.
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Fig. 22: Scatter plots of the predicted forecast horizons showing the predicted λmax scattered
against the predicted υ for each of the 100 realizations for various combinations of normalization
intervals ([a, b]∈ {[0.10, 0.90], [0.20, 0.80], [0.30, 0.70], [0.40, 0.60]}) and number of measurement
and evolution processes (V ∈ {1, 2, 3, 4, 5}). The remaining hyperparameters are kept fixed at
β = 10−10, r=1, and G=1.
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5.2.2 Ridge Regression

In the current literature [27, 28, 30], the Moore-Penrose pseudoinverse is commonly applied
as the regression method to obtain the readout matrix Wout in QRC. In this approach, the
mean-squared error between the training data and the QRC output ok = Woutq(k) for k ∈
[Nsync + 1, Nsync + 2, ..., Nsync + Ntrain] is minimized. In ”classical” RC, the usage of ridge re-
gression is common and makes a huge difference in the forecasting ability of the models. The
regression parameter β is a highly influential hyperparameter of these models. In this part of the
thesis, the influence of the regression parameter on prediction quality in QRC is investigated,
and the relevance of the introduced regression method is examined. To analyze the influence of
the regression parameter on the forecasting of the Lorenz-63 system using the QRC framework,
the regression parameter β is varied for six different configurations of the hyperparameters V ,
G, r, and [a, b] (presented in Table 3). This variation of the regression parameter β is per-
formed over the set {10−25, 10−24, 10−23, . . . , 10−2, 10−1}. The model is trained for all of the
hyperparameter combinations, and the training time series continued for 100 different parts of
the attractor (Nstat=100). In Fig. 23, the resulting forecast horizons of the sweeps over the
regression parameter for all hyperparameter configurations are depicted as boxplots. The pre-
dicted climates are evaluated for specific β ∈ {10−1, 10−3, 10−10, 10−20} for all six configurations
in scatter plots. For all configurations, these scatter plots can be found in Fig. 24. Several
observations emerge from the analysis of these figures. The short-term as well as the long-term
prediction qualities for configurations with fewer than 100 nodes (configuration 1 and configura-
tion 3) tend to saturate and remain relatively independent of the regression parameter when the
regression parameter β is small (β ∈ [10−25, ..., 10−9]). With an increase in β beyond this range,
the forecasting ability deteriorates. For configuration 4 (dim(q(k))=101), it is evident that
there exists an optimal range (β ∈ [10−13, 10−9]) where the forecasting quality peaks. Choosing
a smaller β often results in effective predictions, but occasionally outliers appear. These outliers
fail to accurately capture the system’s short- and long-term evolution. Selecting a larger β leads
to a decline in prediction quality similar to the decline for large β observed in configuration 1
and configuration 3. Regarding the remaining configurations (configuration 2, configuration 5
and configuration 6), it is clear that the prediction quality is maximized with a specific choice
of the regression parameter (β ∈ [10−13, 10−10]). Additionally, there is a noticeable decrease in
prediction quality when β is set too small. In this case, the model fails to predict the dynamics
of the system in many instances. Similarly, larger β values lead to diminished prediction quality,
consistent with previous observations across all configurations. All these three configurations
have more than 150 nodes (dim(q(k)) >150). An analysis of the presented results indicates that
the significance of the regression parameter (not saturating for sufficiently small β) increases
with the dimension of the output vector q(k). This intuitively makes sense: a larger output
vector implies more nodes for training, which increases the model’s susceptibility to overfitting
and consequently reduces forecasting accuracy. This investigation highlights the necessity of
integrating ridge regression into the model and including the regression parameter in the op-
timization process to obtain models with stable forecasting ability.

configuration label V r G [a, b] dim(q(k))

configuration 1 3 1 1 [0.10, 0.90] 31
configuration 2 4 2 3 [0.20, 0.80] 241
configuration 3 5 1 1 [0.20, 0.80] 51
configuration 4 5 1 2 [0.15, 0.85] 101
configuration 5 10 1 3 [0.10, 0.90] 301
configuration 6 4 1 4 [0.25, 0.75] 161

Table 3: Table of all configurations V , G, r, and [a, b] and their labels used in the analysis of
the influence of the regression parameter on the forecasting ability.
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Fig. 23: Boxplots of the forecast horizon in Lyapunov times of 100 forecasted trajectories of
the Lorenz-63 system against the regression parameter (β ∈ {10−1, 10−3, 10−10, 10−20}) for six
different hyperparameter configurations of V , G, r, and [a, b] (see Table 3).
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Fig. 24: Scatter plots of the predicted forecast horizons showing the predicted λmax scattered
against the predicted υ for each of the 100 realizations for β ∈ {10−1, 10−3, 10−10, 10−20} and
six different configurations of V , G, r, and [a, b] (see Table 3).
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5.2.3 Reservoir output dimension enlargement

Temporal multiplexing, spatial multiplexing, and the incorporation of higher powers of the reser-
voir response (hyperparameters V , r, and G) are methods that increase the dimension of the
output vector q(k) of the quantum reservoirs at step k. This paragraph describes two numerical
experiments focusing on the effect of increasing the dimension of the output vector. In the first
experiment, V and r are varied while all other hyperparameters are fixed ([a, b]=[0.20,0.80],
β = 10−10, G=1). In the second experiment, V and G are varied and all other parameters are
fixed ([a, b]=[0.20,0.80], β = 10−10, r=1). Both experiments involve training models to predict
the Lorenz-63 system for each hyperparameter combination for Nstat = 100 realizations. For all
forecasted trajectories, the short- and long-term measures are calculated.

Fig. 25 and Fig. 26 display the short-term prediction quality measures from the first experi-
ment where the number of quantum reservoirs r, and the number of evolution and measurement
processes V , are varied. Fig. 25 is a boxplot illustrating the statistics of the forecast horizon for
all hyperparameter combinations. Fig. 26 presents a three-dimensional barplot illustrating the
relationship between r, V , and the dimension of the reservoir output vector q(k). The colour of
the bars represents the mean forecast horizon. These figures clearly demonstrate that increas-
ing the dimension leads to improved short-term prediction results. The long-term forecasting
quality of the investigated models is analyzed in Fig. 27. Increasing the dimension of q(k),
which means increasing the number of nodes, enhances the accuracy of the climate predictions.
Comparing the scatter plots of predicted λmax and υ for r=1 and V =5 (dim(q(k))=51) and for
r=2 and V =2 (dim(q(k))=41) reveals differences in long-term prediction quality depending on
how the dimension is increased. The Lyapunov exponent is more accurately forecasted in the
second hyperparameter combination, indicating that the prediction quality also depends on the
type of added node.

The short-term prediction quality for the second experiment, where the dimension of the output
vector is enlarged by temporal multiplexing and up to which power the reaservoir response is
used, is depicted in Fig. 28 and Fig. 29. Fig. 28 is a boxplot showing the statistics of the fore-
cast horizon for all analyzed combinations of G and V . Fig. 29 is a three-dimensional barplot
showing the relationship between G, V , and the dimension of the output vector q(k). The colour
of the bars indicates the mean forecast horizon. These plots demonstrate that increasing the
dimension of the output vector results in models that provide accurate forecasting over longer
time spans (increased forecast horizon). For each set of analyzed hyperparameters, scatter plots
showing the predicted climate are depicted in Fig. 30. A larger output vector dimension leads
to more precise climate predictions. The type of added node influences the accuracy, with the
Lyapunov exponent being more accurately forecasted for G=4 and V =1 (dim(q(k))=41) than
for G=1 and V =5 (dim(q(k))=51).

The results of the experiments confirm that increasing the output vector dimension is an ef-
fective way to enhance the forecasting capability of small quantum systems used in the QRC
model. Therefore, it is crucial to incorporate the hyperparameters r, V , and G in the hyper-
parameter optimization process when optimizing the model for forecasting a dynamical system
based on its evolution in the past. An interesting observation is that to predict the Lyapunov
exponent accurately, multiple methods that increase the dimension of the output vector need
to be employed together (see Fig. 27 and Fig. 30). Furthermore, the forecast horizon does not
increase infinitely by increasing the output vector dimension using only one method. This is
further detailed in the appendix (Appendix B.2). Therefore, it is necessary to explore the en-
tire hyperparameter space and to use multiple methods to enlarge the output vector dimension
dim(q(k)) to identify optimal hyperparameter configurations for achieving superior forecasting
accuracy.
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Fig. 25: Boxplot of the forecast horizon in Lyapunov times of 100 forecasted trajectories of
the Lorenz-63 system for multiple combinations of the number of evolution and measurements
(V ∈ {1, 2, 3, 4, 5}) and number of employed quantum reservoirs (r ∈ {1, 2, 3}). The remaining
hyperparameters are kept constant at β = 10−10 , [a, b]=[0.20,0.80], and G=1.
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Fig. 26: Three-dimensional barplot with the number of evolution and measurement processes, V ,
on the x-axis, the number of reservoirs, r, on the y-axis, and the dimension of the output vector
q(k) on the z-axis. The colour of the bars represents the mean forecast horizon (Nstat = 100)
of the predicted trajectories (Lorenz-63) of the models (with β = 10−10 , [a, b]=[0.20,0.80], and
G=1).
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Fig. 27: Scatter plots showing the predicted λmax and the predicted υ for each of the 100 real-
izations for various combinations of the number of employed quantum reservoirs (r ∈ {1, 2, 3})
and number of measurement and evolution processes (V ∈ {1, 2, 3, 4, 5}). The remaining hyper-
parameters are kept fixed at β = 10−10, [a, b]=[0.20, 0.80], and G=1.
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Fig. 28: Boxplot of the forecast horizon in Lyapunov times of 100 forecasted trajectories of
the Lorenz-63 system for multiple combinations of the number of evolution and measurements
(V ∈ {1, 2, 3, 4, 5}) and the employed readout function (G ∈ {1, 2, 3, 4}). The remaining hyper-
parameters are kept constant at β = 10−10, [a, b]=[0.20,0.80], and r=1.
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Fig. 29: Three-dimensional barplot with the number of evolution and measurement processes,
V , on the x-axis, the type of readout function, G, on the y-axis, and the dimension of the
output vector q(k) on the z-axis. The colour of the bars represents the mean forecast horizon
(Nstat = 100) of the continuations of the time series (Lorenz-63) obtained with the model (with
β = 10−10, [a, b]=[0.20,0.80], and r=1).
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Fig. 30: Scatter plots showing the predicted λmax and the predicted υ for each of the 100 real-
izations for various combinations of the employed readout function (G ∈ {1, 2, 3, 4}) and the
number of measurement and evolution processes (V ∈ {1, 2, 3, 4, 5}). The remaining hyperpara-
meters are kept fixed at β = 10−10 , [a, b]=[0.20,0.80], and r=1.
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5.2.4 Predicting chaos with hyperparameter optimized minimal QRC

The results of the investigation presented thus far have demonstrated that the modifications
made to the QRC algorithm are both useful and necessary to achieve accurate forecasting of dy-
namical systems with QRC when small quantum systems are employed. The conclusion is that
choosing the quantum system so that the echo state property is fulfilled, and then optimizing r,
V , G, β, and [a, b], is a sensible approach to optimize the model for specific forecasting tasks. In
this paragraph, this approach is used to forecast a variety of three-dimensional synthetic chaotic
systems using 4-qubit quantum reservoirs. This is done to further demonstrate the predictive
power of the QRC framework introduced in this thesis when utilizing small quantum systems.
Furthermore, the prediction is evaluated with statistical relevance. As before, the evaluation
focuses on short- and long-term accuracy. The goal is to showcase that the QRC models have sig-
nificant potential (even for small quantum systems) in the field of dynamical systems prediction.

Despite having fixed parameters, the hyperparameter space of the framework is too large (con-
sidering numerical limitations) to perform a fine grid search for finding the optimal combination
of hyperparameters (r, V , G, β, and [a, b]) for each of the eight chaotic systems. Instead, a
Bayesian hyperparameter optimization using the Python package Optuna [78] over the hyper-
parameter space section presented in Table 4 is used to find the best-performing hyperparameter
configuration for each system. For all eight investigated chaotic systems, the optimal configura-
tion of hyperparameters is obtained by maximizing the mean forecast horizon of the forecasted
trajectories received from the trained models (Nstat=100). The best-performing hyperpara-
meter configuration (found through Bayesian hyperparameter optimization) for each system is
listed in Table 5. With these best-performing hyperparameter configurations, 500 models for
each chaotic system are trained (with different parts of the attractor, Nstat=500). For each of
the trained models, the trajectories are continued for Npred=20000 steps to evaluate the short-
and long-term prediction efficiency of the models for all eight chaotic systems. In the following,
the forecasted trajectories for all chaotic systems (examples can be found in Appendix C.2) are
analyzed, and their short- and long-term prediction accuracies are evaluated.

Parameter Parameter range

Number of evolutions V ∈ {1, 2, ..., 15}
Number of reservoirs: r ∈ {1, 2, 3}
Regression parameter: 10−20 < β < 103

Readout function: G ∈ {1, 2, 3, 4}
Normalization interval: [a, b] ∈ {[0.05, 0.95], [0.10, 0.90],

[0.15, 0.85], [0.20, 0.80],
[0.25, 0.75], [0.30, 0.70],
[0.35, 0.65], [0.40, 0.60],
[0.45, 0.55]}

Table 4: Hyperparameter space that is ex-
amined by the Bayesian hyperparameter
search.

System V r β G [a, b]

Lorenz-63 9 3 1.41·10−12 3 [0.15, 0.85]
Chen 8 3 1.09·10−12 3 [0.30, 0.70]
Chuas-Circuit 14 3 0.000269 2 [0.10, 0.90]
Halvorsen 8 3 1.41·10−12 3 [0.20, 0.80]
Rössler 9 3 2.10·10−12 3 [0.20, 0.80]
Rucklidge 7 3 1.25·10−12 4 [0.15, 0.85]
Thomas 15 3 1.89 ·10−10 4 [0.05, 0.95]
WINDMI 10 3 9.13·10−12 4 [0.05, 0.95]

Table 5: Best-performing (maximized fore-
cast horizon) hyperparameter configuration
for each chaotic system.

In many applications, it is important that the machine learning model is able to very accurately
forecast a time series of a dynamical system for as long as possible. The best-performing hyper-
parameter configurations are obtained by maximizing this ability. The mean forecast horizon
of the 500 trained models can be found for each of the chaotic systems in Table 6, and the
distributions are further investigated in a boxplot shown in Fig. 31. A comparison of these
results with those of [69] shows that the mean forecast horizon is, in all cases, at least compar-
able to that of the ”classical” RC approach. In some cases, the QRC models even outperform
some ”classical” RC and Hybrid-RC approaches (models with prior knowledge about the phys-
ics of the underlying equations of the chaotic systems). Fig. 31 shows that the whiskers of
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össler

R
u

ck
lid

ge

T
h

om
as

W
IN

D
M

I

0

5

10

15

20

25

t v

Fig. 31: Boxplot of the forecast horizon in Lyapunov times for all eight forecasted chaotic
systems. The initilized hyperparmeters for each of the chaotic systems are denoted in Table 5.
For each chaotic system, 500 time series are forecasted. The mean and standard deviations of
the distributions can be found in Table 6.
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Fig. 32: Largest Lyapunov exponent scattered against correlation dimension for all eight chaotic
systems for each of the 500 forecasted trajectories for all eight systems. The used hyperpara-
meters for each of the chaotic systems are presented in Table 5.
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system tv predicted λmax true λmax predicted υ true υ

Lorenz-63 11.9 ± 1.7 0.91 ± 0.02 0.91 ± 0.02 2.053 ± 0.008 2.052 ± 0.009
Chen 13.0 ± 2.2 2.02 ± 0.05 2.02± 0.05 2.146 ± 0.008 2.145± 0.008
Chua 3.1 ± 1.4 0.31 ± 0.02 0.341± 0.007 1.77 ± 0.02 1.75± 0.01
Halvorsen 11.9± 2.3 0.78 ± 0.02 0.78 ± 0.02 2.106 ± 0.006 2.106 ± 0.006
Rössler 11.9 ± 2.4 0.071 ± 0.005 0.072 ± 0.004 1.82 ± 0.02 1.82 ± 0.02
Rucklidge 12.1± 2.0 0.194 ± 0.006 0.194±0.006 1.93 ± 0.02 1.93± 0.02
Thomas 3.0 ± 1.5 0.032 ± 0.004 0.033 ± 0.001 1.8 ± 0.2 1.76 ± 0.04
WINDMI 5.9 ± 2.9 0.08± 0.04 0.074± 0.004 1.5 ± 0.8 1.88± 0.02

Table 6: Mean values (500 realizations) with standard deviations for all three forecast evaluation
measures are provided for the chosen hyperparameter configuration across all eight chaotic
systems. For comparison, the results from calculating the climate measures on true trajectories
are also included (from Table 2).

the boxplots span a large range, meaning that the models perform very differently for different
realizations of the Hamiltonians and different parts of the attractor being forecasted. This is
also visible in the standard deviation shown in Table 6. Futher investigation of Table 6 and Fig.
31 shows that three of the eight chaotic systems are predicted accurately on a much shorter time
scale (fewer Lyapunov times) than the others. Interestingly, these systems are also relatively
poorly forecasted using conventional RC methods. It is an important and obvious question to
determine the cause of the systematic differences in performance among the forecasted systems.
However, this research topic is beyond the scope of this work.

In some scenarios, the focus might not be on a very accurate short-term prediction of the
dynamical system’s state but rather on whether a dynamical system’s long-term climate can
be correctly reproduced. For each chaotic system, the forecasted trajectories, each consisting
of 20000 steps, are used to calculate the mean largest Lyapunov exponent and the correlation
dimension. The results are presented in Table 6 together with the values obtained by the same
calculation with true trajectories (see Sec. 4.2.2 and Sec. 4.2.3). In Fig. 32, the distributions
of the predicted climates are shown. The spatial and temporal statistical properties of the five
chaotic systems that are forecasted accurately for long time scales are predicted extremely well.
In the sample, there are no single outliers with large deviations for the Lyapuov exponent or
the correlation dimension. All realizations are within a 5 σ error range of the two measured
quantities. For the remaining three systems, the climate of the systems is reproduced well in
some cases but some forecasted trajectories exhibit long-term behaviour that is far from the
statistical fluctuations of the true data. These findings suggest that the (minimal) QRC setup
does not only learn patterns of the time series by heart, leading to good short-term predictions
but rather correctly learns the dynamics of the underlying chaotic systems, enabling correct
climate reproduction. It is crucial to emphasize that this achievement was attained despite the
use of relatively short training time series.

5.3 Conclusions

The experiments detailed in this chapter yield several significant insights into the QRC model.
Firstly, optimizing the normalization interval [a, b] is crucial as it strongly influences the model’s
ability to forecast dynamical systems. Secondly, short-term prediction accuracy and the climate
reproduction is further enhanced by incorporating ridge regression and selecting an appropriate
regression parameter, β. Thirdly, due to the small size of the quantum systems, increasing the
dimension of the output vector through various methods becomes necessary. This enlargement
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of the output vector dimension introduces hyperparameters (r, V , and G) that also require
optimization. Collectively, these findings indicate that the modifications and optimizations in-
vestigated substantially impact forecasting outcomes, improving the stability and quality of
predictions achievable with very small quantum systems. In some cases, they are essential for
developing functional models.

The fourth and final conclusion is that using an intelligent hyperparameter optimization tech-
nique (e.g., Bayesian optimization) for each specific forecasting task allows for the development
of models that yield strong prediction results. This demonstrates the approach’s potential for
forecasting dynamical systems. The trained QRC models successfully reproduce climatic pat-
terns and accurately predict the short-term evolution of chaotic systems using relatively short
training time series. For the WINDMI, Chua, and Thomas systems, instances where the trained
model fails or performs significantly worse than the bulk of the other models have been observed.
Future research should investigate these failing predictions to identify necessary modifications
to the model, its hyperparameters, and preprocessing steps to enhance prediction accuracy. As
noted at the beginning of this chapter, due to numerical limitations, this thesis does not include
a full optimization of all hyperparameters. The following numerical experiment demonstrates
the potential for further improvements when the quantum systems (the unitary operator) are
optimized for forecasting tasks. This experiment focuses on forecasting the WINDMI system.
The model is trained with the same hyperparameters as previously used (see Table 5) and
is repeatedly trained with different Hamiltonian configurations until a model initialization is
achieved that extends the forecast horizon beyond six Lyapunov times. Subsequently, 500
trajectories of the WINDMI system, each trained with different parts of the attractors, are fore-
casted using the Hamiltonians that achieved tv > 6 Lyapunov times. In Fig. 33 and Fig. 34,
the short- and long-term prediction results are compared to the original results, which utilized
randomly drawn Hamiltonians. The results clearly indicate that selecting appropriate unitary
evolution enhances prediction performance and eliminates completely failing predictions. This
shows the importance of optimizing the evolution of the quantum systems. Future research in
this direction is discussed in the outlook (Chapter 6).

In summary, the numerical experiments indicate that it is feasible to forecast time series from
past evolution using QRC with the theoretically smallest possible quantum systems, provided
the right hyperparameters are chosen. The promising nature of this conclusion suggests that
near-term practical applications using upcoming quantum hardware are becoming more likely.
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Fig. 33: Forecast horizon for randomly
drawn Hamiltonians and fixed (well-
performing) Hamiltonians of the WINDMI
system forecasting (500 trajectories each)
with the hyperparameter configuration de-
noted in Table 5.
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Fig. 34: Predicted climate for each of the 500
forecasted trajectories of the WINDMI sys-
tem as presented in Fig. 32 (random Hamilto-
nians) and the same plot with fixed (well-
performing) Hamiltonians for the same hy-
perparameter configuration (see Table 5).
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Chapter 6

Summary and Outlook

To summarize, this thesis explored a modified version of the Quantum Reservoir Computing
(QRC) algorithm and focused on optimizing the algorithm for small quantum systems. This
modified framework was introduced in Chapter 2. In Chapter 3, the employed quantum sys-
tems were analyzed, with an emphasis on reproducing the results of previous studies [30] that
demonstrate the relationship between the phase of the quantum systems and the algorithm’s
ability to produce quantum states that exhibit the echo state property. The echo state property
is a necessary feature for models that are able to forecast time series. Fundamental concepts of
chaotic systems and the performance measures used throughout the evaluations of the frame-
work were defined in Chapter 4. In Chapter 5, the results of Chapter 3 were utilized to analyze
the introduced QRC algorithm for minimal quantum systems, beginning with a statistical eval-
uation of the introduced algorithmic changes. The Lorenz-63 system was used as a benchmark
for forecasting. These evaluations showed that the modifications introduced in this thesis signi-
ficantly improved forecasting quality. This chapter concluded with the presentation of models
obtained through Bayesian hyperparameter optimization, which were trained to forecast eight
different chaotic systems. A similar statistical evaluation demonstrated that these models could
successfully reproduce the climate of the synthetic chaotic systems in most cases and accurately
forecast their short-term evolution. It is fascinating that, even though such small quantum
systems are employed and only short training time series are used in this modified QRC frame-
work, such accurate predictions can still be achieved. Particularly noteworthy is the accurate
reproduction of the climate, which represents a significant accomplishment.

The results of the investigations into minimal quantum reservoir computing are encouraging. In
numerical simulations, the discussed QRC architecture is capable of forecasting chaotic systems
with very high accuracy using only the smallest quantum systems that are theoretically allowed
by the algorithm. However, many open questions and avenues for exploration remain. The
preprocessing of the time series (training data) can be further optimized. The current invest-
igation into the normalization interval [a, b] was simplistic, and it remains to be seen whether
performance can be enhanced by optimizing the hyperparameters over the continuous space 0
≤ a < b ≤ 1. From classical reservoir computing (RC), it is known that adding artificial noise
to the training data can mitigate overfitting and improve forecasting results. Future research
should explore the inclusion of artificial noise in the optimization of QRC models. Further-
more, it is unclear whether ridge regression is the optimal method for training the readout layer
(readout matrix Wout). Other regression methods, such as Tree regression [79], might yield
better performance and should be investigated. Higher powers (G) of the reservoir response
and other readout functions should also be considered to possibly improve the prediction res-
ults even further. A critical question for future studies is determining what defines an optimal
quantum reservoir. As discussed in Sec. 5.3, different unitary operators achieve varying levels
of forecasting quality. This means that it should be investigated which physical properties the
unitary operator must have to be optimal for the QRC framework or a specific forecasting
task. A promising starting point would be to examine the relationship between the echo state
property and prediction accuracy in more detail. As shown in Sec. 3.2, certain realizations
of the Hamiltonians, even if parameters are drawn from appropriate intervals, do not result
in converging quantum states. This could explain the strong fluctuations in prediction quality
and occasional prediction failures. When constructing optimal unitary operators, it is crucial
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to consider the limitations of near-term quantum hardware (e.g., coherence times, connectivity,
etc.) to advance towards practical applications. Especially interesting is the effect of noise, as
a small amount of noise could even help the training by preventing overfitting. Another avenue
for exploration is modifying the algorithms to lift the restriction N ≥ d + 1. This would be
interesting for tackling more complex problems with QRC using small quantum systems. Such
changes would require adjustments to the encoding of the time series.

In conclusion, the results of this thesis are highly promising, demonstrating the potential power
of the QRC framework in predicting dynamical systems. The use of very small quantum systems
in this study further highlights the promising nature of this approach, even within the NISQ
era of quantum computing. This suggests that QRC has the potential to significantly impact
various disciplines and drive advancements in these fields in the near future.
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Appendix A Chaotic systems

As mentioned in the main text of this thesis, multiple synthetic chaotic systems are employed
to demonstrate the capability of QRC to forecast dynamical systems based on past data. In
this section of the Appendix, all systems used for this demonstration are defined. A dynamical
system that continuously evolves in time must be at least three-dimensional to exhibit chaos,
whereas discretely evolving systems can display chaotic behaviour even in one dimension [61].
In Appendix A.1-A.8, eight three-dimensional chaotic systems that evolve continuously in time
are defined. These definitions include the system’s defining differential equations, the chosen
system parameters, and a figure showing the attractor in three-dimensional space as well as the
individual dimensions against Lyapunov time.

A.1 Lorenz-63 attractor

ẋ = σ(y − x)

ẏ = x(ρ− z) − y (A.1)

ż = xy − βz

system parameter ∆t initial state

ρ = 28, σ = 10, β = 8/3 0.02 [0, 0.01, 9]

Table 7: Lorenz-63 system parameter choice.
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Fig. 35: Left: 3D trajectory of the Lorenz at-

tractor. Right: Individual dimensions of the Lorenz

attractor plotted against Lyapunov time.

A.2 Chen’s system

ẋ = a(y − x)

ẏ = (c− a)x− xz + cy (A.2)

ż = xy − bz

system parameter ∆t initial state

a = 35, b = 3, c = 28 0.02 [10, 0, 37]

Table 8: Chen’s system parameter choice.
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Fig. 36: Left: 3D trajectory of the Chen attractor.

Right: Individual dimensions of the Chen attractor

plotted against Lyapunov time.
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A.3 Chua’s circuit

ẋ = α[y − x+ bx+ 0.5(a− b)(|x+ 1| − |x− 1|)]
ẏ = x− y + z (A.3)

ż = −βy

system parameter ∆t initial state

α = 9, β = 100/7, a = 8/7, b = 5/7 0.1 [0, 0, 0.6]

Table 9: Chua’s system parameter choice.

x

y

z

0 5 10 15 20

tλmax

−2

0

2

x

0 5 10 15 20

tλmax

−0.3

0.0

0.3

y

0 5 10 15 20

tλmax

−2.5

0.0

2.5

z

Fig. 37: Left: 3D trajectory of the Chua attractor.

Right: Individual dimensions of the Chua attractor

plotted against Lyapunov time.

A.4 Halvorsen’s cyclically symmetric attractor

ẋ = −ax− 4y − 4z − y2

ẏ = −ay − 4z − 4x− z2 (A.4)

ż = −az − 4x− 4y − x2

system parameter ∆t initial state

a = 1.27 0.05 [5, 0, 0]

Table 10: Halvorsen’s system parameter

choice.
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Fig. 38: Left: 3D trajectory of the Halvorsen

attractor. Right: Individual dimensions of the

Halvorsen attractor plotted against Lyapunov time.

A.5 Rössler attractor

ẋ = −y − z

ẏ = x + ay (A.5)

ż = b + z(x− c)

system parameter ∆t initial state

a = b = 0.2, c = 5.7 0.1 [9, 0, 0]

Table 11: Rössler system parameter choice.
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Fig. 39: Left: 3D trajectory of the Rössler

attractor. Right: Individual dimensions of the

Rössler attractor plotted against Lyapunov time.
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A.6 Rucklidge attractor

ẋ = −κx + λy − yz

ẏ = x (A.6)

ż = −z + y2

system parameter ∆t initial state

κ = 2.0, λ = 6.7 0.1 [1, 0, 4.5]

Table 12: Rucklidge system parameter choice.
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Fig. 40: Left: 3D trajectory of the Rucklidge at-

tractor. Right: Individual dimensions of the Ruck-

lidge attractor plotted against Lyapunov time.

A.7 Thomas’ cyclically symmetric attractor

ẋ = −bx + sin(y)

ẏ = −by + sin(z) (A.7)

ż = −bz + sin(x)

system parameter ∆t initial state

b = 0.18 0.3 [0.1, 0, 0]

Table 13: Thomas’ system parameter choice.

x

y

z

0 5 10 15 20

tλmax

−3

0

3

x

0 5 10 15 20

tλmax

−3

0

3

y

0 5 10 15 20

tλmax

−3

0

3

z

Fig. 41: Left: 3D trajectory of the Thomas

attractor. Right: Individual dimensions of the

Thomas attractor plotted against Lyapunov time.

A.8 WINDMI attractor

ẋ = y

ẏ = z (A.8)

ż = −az − y + b− exp(x)

system parameter ∆t initial state

a = 0.7, b = 2.5 0.2 [0, 0.8, 0]

Table 14: WINDMI system parameter choice.
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Fig. 42: Left: 3D trajectory of the WINDMI

attractor. Right: Individual dimensions of the

WINDMI attractor plotted against Lyapunov time.
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Appendix B QRC properties

B.1 Echo state property of 4-qubit systems with 3D input

In Sec. 3.2, the echo state property of the employed quantum reservoirs is examined. The
experiment is set up as follows: the trace distance between two different initial states is meas-
ured after evolving them according to Eq. 2.25 with the unitary operator defined in Eq. 3.2.
This evolution is driven by a sequence of uniformly random numbers drawn from the interval
[0,1], effectively creating a one-dimensional time series. This process is repeated for multiple
times for any investigated combination of τ , h, and W . In Chapter 5, 4-qubit systems with
unitary operators defined by h=2, W=0.05, and τ=20 are used to forecast three-dimensional
chaotic systems. To evaluate convergence for these specific quantum system configurations
(h=2, W=0.05, τ=20), sequences of three-dimensional vectors (with each coefficient uniformly
drawn from the interval [0,1]) are used instead of one-dimensional sequences. The outcomes of
these studies are presented in Fig. C.2 as a boxplot based on 500 different evaluations. Com-
paring Fig. 43 and Fig. 15 indicates that using a three-dimensional input, as anticipated, leads
to much faster convergence compared to a one-dimensional input. It is observed that, even with
three-dimensional inputs, there are outliers where convergence either does not occur or happens
significantly slower than for the majority of realizations. The impact of the echo state property,
particularly the speed of convergence (”the speed that the reservoir forgets”), warrants further
investigation.
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Fig. 43: Boxplots (500 realizations) of the convergence of two random states for τ = 20 de-
pendent on the length of the three-dimensional input sequence for quantum systems of 4 qubits
and their interaction described by the transverse-field Ising Hamiltonian (Eq. 3.1) plus onsite
disorder with h=2 and W=0.05 (ergodic phase).

B.2 Saturation of short-term prediction quality

In Fig. 44, the short-term prediction results are presented in Fig. 25 and Fig. 26 extended
for V ∈ {1, 2, 3, ..., 10}. Increasing the number of measurements and evolution processes does
not always extend the forecast horizon. The forecast horizon saturates for this configuration at
approximately V =5. This illustrates the importance of using multiple methods to increase the
output vector dimension as a combination.
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Fig. 44: Fig. 25 and Fig. 26 extended for V∈ {1, 2, 3, ..., 10}.

Appendix C Example trajectories

C.1 Predicting chaos with one 10 qubit system

Examples of predicted trajectories obtained with a QRC model employing 10 qubits are presen-
ted in Fig. 45. The model (r=1, β = 10−12, G=4, V =4, and [a, b]=[0.10,0.90]) is trained with
Nsync=100 and Ntrain=1999 steps, and the time series is continued for Npred=2000 steps. The
selected hyperparameters are not optimized. The resulting trajectory is displayed on the left
in Fig. 45. The used hyperparameters are not optimized. Afterwards, another part of the at-
tractor is selected, and Nsync=400 subsequent steps are used to synchronize the trained model
with this part of the attractor. Then the time series is continued for Npred=2000 steps (same
Wout as before). The results of this are presented on the right in Fig. 45.
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Fig. 45: Predicted trajectories obtained with a QRC model employing 10 qubits. Left: The
forecasted trajectory resulting from training with Nsync=100 and Ntrain=1999, and continuing
for Npred=2000 steps. Right: The forecasted trajectory from another part of the attractor, 400
steps are used to synchronize the trained model with this part of the attractor and the same
readout matrix is used to forecast 2000 steps of the attractor.

C.2 Examples of forecasted trajectories with 4 qubits

In Figs. 46-53, examples of forecasted trajectories and the real continuation of the trajectories
presented each for 40 Lyapunov times after the training has ended. On the left side of the
figures, the predicted attractor and the real attractor (3D trajectory) are shown, while on the
right side, each of the individual dimensions is plotted against the Lyapunov time.
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Fig. 46: Example of predicted and real continuation of the Lorenz-63 system. The predicted
trajectory is forecasted with the best-performing hyperparameter configuration (see Table 5)
obtained by Bayesian hyperparameter optimization.
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Fig. 47: Example of predicted and real continuation of the Chen system. The predicted traject-
ory is forecasted with the best-performing hyperparameter configuration (see Table 5) obtained
by Bayesian hyperparameter optimization.
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Fig. 48: Example of predicted and real continuation of the Chua system. The predicted traject-
ory is forecasted with the best-performing hyperparameter configuration (see Table 5) obtained
by Bayesian hyperparameter optimization.
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Fig. 49: Example of predicted and real continuation of the Halvorsen system. The predicted
trajectory is forecasted with the best-performing hyperparameter configuration (see Table 5)
obtained by Bayesian hyperparameter optimization.
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Fig. 50: Example of predicted and real continuation of the Rössler system. The predicted
trajectory is forecasted with the best-performing hyperparameter configuration (see Table 5)
obtained by Bayesian hyperparameter optimization.
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Fig. 51: Example of predicted and real continuation of the Rucklidge system. The predicted
trajectory is forecasted with the best-performing hyperparameter configuration (see Table 5)
obtained by Bayesian hyperparameter optimization.
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Fig. 52: Example of predicted and real continuation of the Thomas system. The predicted
trajectory is forecasted with the best-performing hyperparameter configuration (see Table 5)
obtained by Bayesian hyperparameter optimization.
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Fig. 53: Example of predicted and real continuation of the WINDMI system. The predicted
trajectory is forecasted with the best-performing hyperparameter configuration (see Table 5)
obtained by Bayesian hyperparameter optimization.
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