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Abstract—Finding sources or leaks of airborne material in
Chemical, Biological, Radiological, or Nuclear (CBRN) accidents
is crucial for effective disaster response. This paper makes use of
sparse Bayesian learning (SBL) to cooperatively estimate source
locations based on measurements by multiple robots or a sensor
network. The SBL approach facilitates the identification of sparse
source support, indirectly providing information about the num-
ber of sources and their locations. To achieve this, we introduce
a novel method that includes a trained surrogated model for
the gas dispersion process described by a Partial Differential
Equation (PDE). Namely, a Physics-Guided Neural Network
(PGNN) is employed to approximate a parameterized Green’s
function of the PDE. The obtained approximation is integrated
into a gradient-based optimization process. The proposed method
allows estimating super-resolution arbitrary source locations,
eliminating constraints to a specific grid. Further, the newly
proposed PGNN surrogate model comes with the advantage
that the approach can be extended to cases where no analytic
Green’s function is available. Simulation results demonstrate the
effectiveness of the proposed approach, showcasing its potential
for enhanced airborne material detection in CBRN scenarios.

I. INTRODUCTION

Accurate modeling and estimation of airborne released
material are essential for response to chemical, biological and
radiological accidents. Autonomous mobile robotic platforms,
equipped with appropriate sensors, are ideal tools to ex-
plore and gather necessary information in such environments,
“learning” as needed where they should collect data next. To
this end, robots would do well with prior domain knowledge,
such as a gas propagation model, to best gather (relatively
sparse) data in non-visual chemical-based remote sensing.

In general, the physics governing the spatio-temporal evolu-
tion of dispersed materials is effectively captured by PDEs [1].
For example, the non-homogeneous scalar transport equation
can simulate the propagation of material from various emitting
sources into the air. However, for exploring robots to have
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prior domain knowledge, they should determine unknown
model parameters, such as source locations and magnitudes.
These could then be estimated from sensor data.

In this paper we tackle the Gas Source Localization (GSL)
problem [2], the goal being to estimate the number and
locations of multiple gas sources from gas sensor data. We
employ a Poisson equation as a model for steady-state gas
dispersion, offering a simplified illustration of the proposed
methodology that can be extended to more realistic models.

Traditionally, robot movements in GSL strategies relied on
techniques such as chemotaxis and anemotaxis [2]. However,
these approaches often assume a known number of sources
and smooth concentration gradients. Model-based methods
can have more nuance and build upon the mathematical
structure of the process model, treating sources as unknown
parameters. This allows for modeling uncertainties, using
different models [3] and handling unknown environments [4].

Infotaxis-based methods further enhance model-based GSL
by autonomously guiding robots to sources using information-
theoretic criteria (see e.g., [5]). Despite these advancements,
most GSL research assumes a fixed number of sources due to
the computational challenges of integer optimization.

However, recent works introduced a combination of SBL
[6] and a PDE-based dispersion modeling, relaxing the fixed-
source-count assumption [7]. These approaches can thus indi-
rectly estimate both the number and locations of the sources
in simulations [7] and in real experiments [8].

One limitation of this approach is the discretization of the
PDE, which restricts the source locations to mesh elements
and increases the number of unknown parameters to estimate.
To address this deficiency, in [9] we developed an algorithm
relying on the Green’s function method; in [10] the method
was extended to a decentralized setting for solving the corre-
sponding GSL problem over a network of agents.

In this research, we expand upon our previous work and
numerically approximate the system’s Green’s function by a
neural network surrogate. Specifically, the network output is
trained to fit the function values and gradient of the system’s
Green’s function, characterizing a type of network commonly
referred to as a PGNN.



This approach is helpful because it can be applied to various
types of PDEs with different boundary conditions. In addition,
the computationally expensive task of training the Green’s
function surrogate can be done offline – especially useful
when no analytical formulations of Green’s function exist –
leaving only the task of gradient computation with respect
to the network output. Notably, it accommodates Green’s
functions with discontinuities – a crucial feature for algorithms
reliant on derivatives of these functions.

II. SIGNAL MODEL

Consider GSL over some d-dimensional exploration area Ω.
We assume that the spatial gas concentration at equilibrium
over Ω can be described by a time-invariant linear diffusion
PDE (also known as Poisson’s equation) in the following form:

−κ∆f(x) =
L∑

l=1

wlδθl
(Ω), x ∈ Ω ⊂ Rd (1)

s.t. f(x) = 0, x ∈ ∂Ω, (2)

where κ is a diffusion coefficient, f(x) is a spatial gas
concentration intensity, and ∆ is a Laplace operator. The right-
hand side (RHS) of (1) is a superposition of L gas sources
– Dirac measures over Ω with the point source location at
θl ∈ Ω, and having release rates wl, l ∈ L ≜ {1, . . . , L}.
Equation (1) is augmented with a Dirichlet boundary condition
(2) at the boundary ∂Ω.

We assume only a few gas sources are present, such that wl,
l ∈ L are sparse; i.e., not all possible gas sources are active,
and most wl = 0. Furthermore, we will select L to exceed
the true number of sources, which is sometimes referred to
as max-search approach [11], and effectively makes L a very
high bound on the number of sources. The model (1) and (2)
thus represents a spatial distribution of the gas released from
several (constant) sources in the absence of wind.

Assume for a moment that both wl and θl, l ∈ L are known.
f(x) can then be obtained by solving (1) subject to (2). We
use here a method of Green’s functions [1], in which f(x) is

f(x) =

∫
Ω

G(x,θ)

L∑
l=1

wlδθl
(Ω)dθ =

L∑
l=1

wlG(x,θl), (3)

where G(x,θ) is a Green’s function defined as a solution to

−κ∆G(x,θ) = δθ(Ω), x,θ ∈ Ω, (4)

subject to the constraint G(x,θ) = 0, x ∈ ∂Ω; i.e., G(x,θ)
is a ‘response’ of the PDE to a single source at θ.

Now, consider a discretization of (1) where Ω is partitioned
into N not necessarily regular grid cells.

For each cell with center coordinates xi, i ∈ N ≜
{1, . . . , N}, we sample the solution at these grid centers, dis-
cretizing our linear system. The corresponding concentrations
are then aggregated into a vector f with ith element given by
[f ]i = f(xi). Similarly, we define an N × L matrix G(Θ)
with i, j element [G(Θ)]i,j = G(xi,θj), i ∈ N , j ∈ L,

where Θ ≜ [θ1, . . . ,θL]. This allows us to rewrite (3) in a
matrix-vector form as

f = G(Θ)w (5)

with w ≜ [w1, . . . , wL]
T. Let us point out that while we

discretized Ω, the location of the sources in the model (5)
are not restricted to this grid and can take arbitrary values.

Consider now a network of K robotic agents. We will model
the network with a connected, weighted graph. Assume now
that each agent collects Mk, k ∈ K ≜ {1, . . . ,K}, noisy
samples of the concentration f(x) at locations xm,k, m =
1, . . . ,Mk. Furthermore, w.l.o.g. we assume that N ≫ Mk

and that ∀m, k, xm,k, are a subset of discretization cells. The
measurements of the agent k are collected in a vector zk ∈
RMk such that

zk = Φkf + ξk, k ∈ K, (6)

where Φk ∈ RMk×N is a 0-1 selection matrix that indicates
measured elements of f . The perturbation ξk is assumed to
be homoscedastic zero-mean Gaussian with precision matrix
λξI for λξ > 0.

Our goal now is to use z ≜ [zT1 , . . . ,z
T
K ]T to cooperatively

estimate a sparse vector w, locations Θ, and recover f from
(5). To this end, we pursue a Bayesian approach.

Specifically, we consider the following posterior probability
density function (pdf) of the variables of interest:

p(f ,w,Θ|z) ∝ p(z|f)p(f |w,Θ)p(w)p(Θ), (7)

where source locations θ and their rates w are assumed
to be independent. Based on (6) we see that p(z|f) =∏

k∈K N(zk|Φkf , λ
−1
ξ I) is a Gaussian likelihood function.

The pdf p(f |w,Θ) encodes the deterministic relationship
between sources and concentration f following (5), and is
modeled with a Dirac distribution p(f |w,Θ) = δG(Θ)w(RN )
over N -dimensional space RN .

Concerning the prior p(Θ) we will assume it to be uniform
over Ω, i.e., p(Θ) ∝ const. In case of p(w) we instead employ
a modeling approach used in SBL [6].

Formally this implies a hierarchical factorable prior
p(w|γ)p(γ) =

∏L
l=1 p(wl|γl)p(γl), where p(wl|γl) =

N(wl|0, γl), l ∈ L [6]. For each l ∈ L the hyperparameter
γl ≥ 0, also called sparsity parameter, regulates the “width”
of p(wl|γl). When γl → 0, the prior p(wl|γl) collapses to
a Dirac measure centered at the origin, driving the posterior
estimate of wl towards 0.

The hyperpriors p(γl), l ∈ L, are selected as uniform, i.e.
p(γ) ∝ 1 [12], which leads to so-called evidence maximiza-
tion procedures for estimation of hyperparameters [6]. Now,
the resulting posterior pdf becomes

p(f ,w,γ,Θ|z) ∝ p(z|f)p(f |w,Θ)p(w,γ), (8)

recalling that p(Θ) was uniform as well. In what follows
we propose a distributed optimization algorithm to iteratively
maximize (8).



III. DISTRIBUTED SUPERRESOLUTION GSL WITH NEURAL
NETWORK SURROGATE

The following we briefly summarize the distributed super-
resolution GSL algorithms, referring the reader to [10] for
more details. We then focus on the neural network surrogate
learning to be used in the proposed algorithm.

A. Distributed Superresolution GSL

We begin with the estimation of γ by treating Θ fixed at
Θ̂ and marginalize (8) over f , which leads to

p(w,γ, Θ̂|z) =
∫
p(f ,w,γ, Θ̂|z)df ∝ p(z|w, Θ̂)p(w,γ)

By keeping Θ constant, we linearize the problem, aligning
the resulting posterior with the one used in a conventional
SBL framework [6]. This enables us to utilize established
algorithms for maximizing this posterior. Specifically, we’ll
use a distributed implementation of the Fast Marginal Like-
lihood Maximization (FMLM) algorithm from [13] for the
maximization process. Our changes to the algorithm are
outlined below (see also [10] for more details) We define

Φ ≜ λξ
∑
k∈K

ΦT
kΦk, z ≜ λξ

∑
k∈K

ΦT
kzk, (9)

D ≜ G(Θ̂)TΦG(Θ̂), and d ≜ G(Θ̂)Tzk, (10)

where Φ and z are computed distributively using an aver-
aged consensus algorithm [14]. Using the latter, and given
an estimate of γ̂, the weight posterior p(w|γ̂, Θ̂, z) ∝
p(z|w, Θ̂)p(w|γ̂) can be shown to be Gaussian with the
covariance matrix and the mean given by

Σ̂w =
(
D + Γ̂

−1
)−1

and ŵ = Σ̂wd (11)

respectively, where Γ̂ ≜ diag(γ̂). The estimate of γ̂ is then
found as a minimizer of

C(γ) ≜− log p(z|γ, Θ̂) = − log

∫
p(z|w, Θ̂)p(w|γ)dw

=
1

2
log |Σγ(Θ̂)|+ 1

2
zTΣγ(Θ̂)−1z (12)

where Σγ(Θ̂) ≜ λ−1
ξ I + ΦG(Θ̂)ΓG(Θ̂)TΦT, Φ ≜

[ΦT
1 , . . . ,Φ

T
K ]T, and Γ ≜ diag(γ).

The estimation of location parameters Θ with fixed sup-
port estimate γ̂ is achieved by maximizing the posterior
p(f , ŵ, γ̂,Θ|z) with respect to Θ. This is equivalent to the
following optimization:

min
Θ

{
J(Θ) ≜ − log p(z|f) = λξ

2
∥z −Φf∥2

}
(13)

s.t. g(f ,Θ) ≜ f −G(Θ)w = 0

where both f and w are implicit functions of Θ. In [10] we
showed that this nonlinear optimization can be solved with

a combine-then-adapt (CTA) diffusion strategy [15] with the
following update iterations for each agent k in the network:

Ψk =
∑

l∈N (k)

αlkΘ̂
[j]

l , (combination) (14)

Θ̂
[j+1]

k = Ψk − µ∇ΘJ(Θ) |Θ=Ψk
(adaptation). (15)

where αlk, k, l ∈ K, are graph edge weights, ∇ΘJ(Θ) =

(z − ΦG(Θ)w)T ∂g(f ,Θ)
∂Θ is a gradient of (13) evaluated at

Ψk and corresponding w given by (11),

∂g(f ,Θ)

∂θl
= −

[
wl
∂G(x0,θl)

∂θl
, . . . , wl

∂G(xN−1,θl)

∂θl

]T
,

and µ is an appropriately chosen step size [9], [10].
Evaluating the gradient necessitates a derivative of the

Green’s function G(x,θ) with respect to θ. While the Green’s
function can sometimes be analytically computed, as in the
case of the Poisson equation discussed here, this is not always
feasible. Additionally, Green’s functions can be non-smooth
and/or discontinuous, potentially causing the second derivative
of (13) to be unbounded in certain parameter space locations,
potentially leading to divergence of gradient updates (15).

To address this, we approximate the Green’s function of the
PDE with a PGNN, ensuring a smooth representation across
the parameter domain. The specifics of this approach follow.

B. Neural Network Surrogate
Since the model surrogate approximates Green’s function

G(x,θ), we denote our approximation by G̃(x,θ) henceforth.
1) Network Architecture: The surrogate model we chose

was a fully-connected Multilayer Perceptron (MLP). A pop-
ular configuration for a D-layer MLP P(y) : nin → nout is
defined for an input y ∈ Rnin by:

y0 ≜ y,yk ≜ ρ(W kyk−1 + bk), k ∈ [1, ...,M − 1]

P(y) ≜ WDyD−1 + bD,
(16)

where W k ∈ Rnk×nk−1 , bk ∈ Rnk are the k-th layer’s weight
matrix and bias vector, respectively, with n0, ..., nD ∈ Z+ the
number of neurons at each layer (n0 = nin, nD = nout); and
ρ : R → R is the nonlinear activation function, applied com-
ponentwise to each vector element. We follow conventaion
and use no activation function in the last network layer.

Our goal is to approximate Green’s function G(x,θ) pa-
rameterized by θ. The input of the network is therefore the
concatenation of [x,θ] ∈ Ω × Ω, and its output is a real
number. This sets nin = n0 = 2d, nout = nD = 1.

2) Enforcing Boundary Conditions: To ensure the NN
satisfies the Boundary Conditions (BCs), we use a hard-
enforcement approach, suggested in [16, Sec. 5.1.1.]. This
enforces homogeneous Dirichlet BCs exactly, by multiplying
the output of a MLP by a smooth cutoff function ψ : Ω → R,
which is zero on the boundary δΩ:

G̃(x,θ) ≜ P([x,θ])ψ(x) (17)

with square brackets [·, ·] denoting vector concatenation. We
used the R-m-based approximate distance function to the two
endpoints in [16] as ψ.



3) Network Training: To train the network and determine
its weights, we used a physics-guided approach, following
the nomenclature in [17]. This supervised learning method
amounts to sampling the network output at random sampling
points in our problem domain and comparing it to a reference
value. We define the Physics-Guided H1 Loss as follows:

LPG ≜
Nt∑
i=1

[
(G̃(xi,θi)−G(xi,θi))

2

+
∥∥∇xG̃(xi,θi)−∇xG(xi,θi)

∥∥2
2

]
, (18)

where G̃ is our surrogate model, G is the (analytical) reference
Green’s function, ∇x is the gradient of the Green’s function
with respect to its first argument, and xi,θi ∈ Ω represent
Nt uniform-randomly sampled points of evaluation for the
Green’s function model.

The H1-loss differs from other physics-guided approaches
in that it also gives the network information about the (spatial)
gradient of the reference solution. This is done to make the
model’s gradients more accurate for SBL.

IV. SIMULATION METHODS AND RESULTS

We now provide some simulation results to demonstrate the
method’s performance. For simplicity, we consider a Poisson
equation in 1D, setting Ω = [0, 1] and κ = 1. In this case the
Green’s function has analytical solution G(x, θ) = x(1 − θ)
for 0 ≤ x ≤ θ and G(x, θ) = −θ(x− 1) for θ < x ≤ 1.

We generate 3 sources with rates set to 1 and locations
selected as θ1 = 0.2+0.05ϵ1, and θi = θi−1+0.1+0.2ϵi, i =
2, 3, where ϵi, i = 1, . . . , 3 are uniformly and independently
drawn from a unit interval. Such source generation ensures
their separability.

For the distributed GSL algorithm we varied M , the number
of measurements, and equally split them between K = 6
agents. The used connectivity graph is a geometric graph
with 50% connectivity; we select the weights αkl, k, l ∈ K,
according to the Laplacian rule [15].

The neural network Green’s function surrogate used 5 lay-
ers, with 30 neurons in each hidden layer (n1, · · · , n4 = 30).
The network used the softplus activation function. We trained
and implemented the network in Python using the Pytorch1,
Numpy2 and Scipy3 libraries. We used the ADAM Optimizer
[18] with a standard learn rate l = 10−3. To train the network,
we randomly resampled the Nt = 15000 sampling points for
(x, θ) ∈ [0, 1] × [.1, .9] at each iteration, making the loss
stochastic. We trained the network for 15000 iterations.

We briefly compare the trained neural network output with
the reference solution. In Fig. 1 we observe that the network

1A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural Information
Processing Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035.

2C. R. Harris, K. J. Millman, S. J. van der Walt, et al., “Array programming
with NumPy,” Nature, vol. 585, pp. 357–362, 2020.

3P. Virtanen, R. Gommers, T. E. Oliphant, et al., “SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17,
pp. 261–272, 2020.
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Fig. 1: Surrogate Model Performance Representation.
The top and bottom row show the model’s performance of
approximating function values, and derivative with respect
to θ, respectively. For each row, the left plot represents the
reference values and the right plot the difference between the
network and reference values. The color plots have different
scales for positive and negative values.

closely follows the reference over the whole domain. Values
deviate the most when θ is close to 0.1 or 0.9. We see that
when looking at the derivative of the network with respect
to the source location, we observe oscillations, particularly
in areas close to the discontinuity present at the source
location. These oscillations result from the continuous network
approximating the discontinuity in the derivative and could
impact the performance of the SBL approach.

We now compare the proposed distributed GSL (DSR-GSL)
and its version using an NN surrogate (DSR-NN-LL) with
two benchmark strategies, each using the exact derivative of
the Green’s Function: its centralized version (C-GSL), and
a centralized re-weighted LASSO (rLASSO) [12], [19]. For
rLASSO we linearize the model by discretizing Ω into 5N
points; as estimated sources, we keep only the estimated
weights with magnitudes > 10−5, in order to compensate for
the numerics of the solver.

As metrics, we use the estimated number of components L̂,
the MSE between the estimated and true concentration f , and
true and false positive rates of source detections. Detections
were discretized cell-wise, that is, a source was considered
to be detected if the localization algorithm placed a source
in the same (PDE discretization) cell as the ground truth.
The detection cells were thus chosen to be even-width of
dimension 1

N . For example, in the provided sample run (cf.
Fig. 2), since N = 100, the middle source was not detected
and there is a false positive adjacent to it.

The results, averaged over 400 random runs, are shown in
Fig. 3 for SNR=5dB (low) and SNR=30dB (high) regimes
as functions of M . As we see in Fig. 3, the centralized
algorithms seem to introduce “artifacts” – small in amplitude
(as seen from MSE plots), yet detected as false sources (cf.
number of sources plot).
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Fig. 2: Sample GSL run of an agent in DSR-NN., M = 90.
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Fig. 3: GSL Performance Metrics.
Top: Estimated L̂; Middle: Concentration MSE; Bottom: true
positive rate (TPR) and false positive rate (FPR).

This is more pronounced for rLASSO, which seems to over-
fit the data as confirmed by the MSE and higher FPR. DSR-
GSL and C-GSL remain more conservative in this respect,
with DSR-GSL producing fewer artifacts, losing a bit in MSE,
but achieving similar TPR to the other methods, especially in
high SNR regime. The discrepancy in MSE between DSR-
GSL and C-GSL in high SNR regime is likely attributed to
slight variations in location estimates between agents due to
the CTA rule.

Overall we can see that the NN-based distributed GSL
method performs very comparably to the DSR-GSL, despite
not having a true representation of Green’s function. This
gives an indication that the gradient of the PGNN approxi-
mation is suitable for use in optimization.

V. CONCLUSION

The results have shown that it is possible to use SBL to
solve the GSL problem without requiring an analytical Green’s
function. In our case, the network surrogate did not seem to

negatively impact the results. Because the model still performs
well with a network surrogate, we have shown that it is
possible to implement this algorithm without computationally-
expensive PDE solvers on the robots. Future work could
include an extension to more complicated distributed imple-
mentations in two or three dimensions.
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