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Abstract

Dexterous myoelectric prostheses of the hand and wrist typically use machine learning to
translate muscle activations into motor commands. Their performance relies on the qual-
ity of the training data, posing challenges to the effectiveness of the calibration process.
The lack of immediate quality assessment during standard data acquisition renders the
need for additional data only apparent after the acquisition is complete. Additionally,
accurate labeling of the training data for supervised learning relies on the user’s ability
to deliver precise muscle contractions, which necessitates professional supervision during
preprosthetic signal assessment and training.

These challenges may be addressed through novel calibration protocols that leverage
continuous interaction between the user and the myocontrol system. The research ini-
tially focused on the inefficiency of existing multi-arm-position data acquisition protocols,
which do not allow an instantaneous evaluation of model quality in different arm con-
figurations. An interactive protocol was elaborated that combined real-time incremental
model building with a feedback mechanism to direct users to acquire data in underper-
forming arm configurations. In subsequent work, the need for labeled training data was
circumvented altogether by devising a novel unsupervised calibration paradigm, driven
by an interaction protocol where the user and system synergistically identify muscle con-
tractions suitable as myocontrol inputs. This was achieved by having the user practice an
abstract motor mapping between adaptively extracted muscle synergies and arbitrarily
associated prosthetic functions. An initial version of this method focused on the simulta-
neous learning of multiple functions, whereas a successive version enabled users to learn
the prosthetic functions progressively.

The studies highlighted that interactive procedures for myoelectric data acquisition
and labeling increase the efficacy of supervised model calibration, holding practical rel-
evance for prosthetic control and warranting further investigation in a broader range of
myocontrol applications. Additionally, the potential of unsupervised calibration methods
for myocontrol was demonstrated, especially in enabling users with varied residual motor
abilities to engage quickly and autonomously with myocontrol systems, and to concur-
rently explore or even expand their muscle capabilities. Ultimately, this work presented
a shift in perspective toward greater user involvement in myocontrol model calibration,
contributing to more personalized and accessible myoelectric control.



Zusammenfassung

Multifunktionale myoelektrische Hand- und Handgelenksprothesen verwenden in der Regel
maschinelles Lernen, um Muskelaktivierungen in motorische Befehle umzusetzen. Ihre
Richtigkeit hängt von der Qualität der Trainingsdaten ab, was auch die Effektivität des
Kalibrierungsprozesses beeinflussen kann. Da mit der Standardmethode zur Datener-
fassung keine unmittelbare Qualitätsbewertung möglich ist, wird der Bedarf an zusät-
zlichen Daten erst nach beendeter Erfassung deutlich. Darüber hinaus hängt die genaue
Kennzeichnung der Trainingsdaten für das überwachte Lernen von der Fähigkeit des
Anwenders ab, akkurate Muskelkontraktionen durchzuführen. Dies erfordert eine profes-
sionelle Überwachung der Signalbewertung und des Trainings zur Vorbereitung auf die
Prothesennutzung.

Diese Herausforderungen können mit neuartigen Kalibrierungsprotokollen adressiert
werden, die eine kontinuierliche Interaktion zwischen dem Benutzer und dem Myokon-
trollsystem ermöglichen. Dafür evaluierte diese Arbeit zunächst die Ineffizienz bestehen-
der Protokolle bei der Datenerfassung in verschiedenen Armkonfigurationen, die keine
unmittelbare Bewertung der Modellqualität in diesen Armkonfigurationen ermöglichen.
Es wurde ein interaktives Protokoll entwickelt, das die inkrementelle Modellerstellung in
Echtzeit mit einem Feedback-Mechanismus kombinierte, um den Benutzer direkt aufzu-
fordern mehr Daten in eingeschränkt funktionierenden Armkonfigurationen aufzunehmen.
In weiteren Arbeiten wurde ein neuartiges unbeaufsichtigtes Kalibrierungsparadigma en-
twickelt, das durch ein Interaktionsprotokoll ermöglicht, dass der Benutzer und das Sys-
tem synergetisch Muskelkontraktionen identifizieren, die als Input für die Myokontrolle
geeignet sind. Dadurch wird der Bedarf an klassifizierten Trainingsdaten umgangen.
Stattdessen übt der Benutzer ein abstraktes motorisches Mapping zwischen adaptiv ex-
trahierten Muskelsynergien und willkürlich zugeordneten Prothesenfunktionen. Eine er-
ste Version dieser Methode zielte auf das gleichzeitige Erlernen verschiedener Prothesen-
funktionen ab, während eine spätere Version den Benutzern ein schrittweises Erlernen
der Funktionen ermöglichte.

Die Studien haben gezeigt, dass interaktive Methoden zur Erfassung und Kennzeich-
nung myoelektrischer Daten die Effizienz der überwachten Modellkalibrierung erhöhen.
Dies ist für die Prothesensteuerung von praktischer Bedeutung und rechtfertigt weitere
Untersuchungen in einem breiteren Spektrum von Myokontrollanwendungen. Darüber



hinaus wurde das Potenzial unbeaufsichtigter Kalibrierungsmethoden für die Myokon-
trolle aufgezeigt, insbesondere um Nutzern mit unterschiedlichen motorischen Restfähigkeiten
die Möglichkeit zu geben, schnell und autonom mit Myokontrollsystemen zu arbeiten und
dabei ihre Muskelfähigkeiten zu erkunden oder sogar zu erweitern. Damit stellt diese
Arbeit einen Perspektivwechsel hin zu einer stärkeren Einbeziehung der Nutzer in die
Kalibrierung von Myokontrollmodellen dar und trägt so zu einer personalisierten und
leichter zugänglichen myoelektrischen Steuerung bei.
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Chapter 1

Introduction

Dexterous myoelectric prostheses for the hand and wrist can significantly improve the
daily lives of people with limb differences by restoring motor functions and aiding activ-
ities of daily living [3, 4, 5]. These devices not only facilitate essential personal care but
also specialized tasks pertinent to vocational or recreational activities, thereby promoting
personal independence. In addition, prosthetic devices are shown to enhance the user’s
self-esteem and sense of worth by reducing the perceived social stigma surrounding limb
absence and increasing the person’s engagement in social and professional environments.
Importantly, the societal integration supported by prosthetic limb use is anticipated to
provide socio-economic gains that benefit not only the individual but society as a whole.

1.1 Myocontrol of Prosthetic Upper Limbs

To take full advantage of myoelectric hand and wrist prostheses, their control must be
as natural and intuitive as possible [6, 7, 8]. Users should be enabled to control the
prosthesis through muscle activations that are both comfortable to generate and easy to
mentally associate with the intended prosthetic functions. The control system should
modulate the degree of activation of a prosthetic function proportional to the intensity
of the corresponding muscle contraction and to coordinate the activation of multiple
functions simultaneously. Achieving this requires defining myoelectric control models
capable of inferring motor intents embedded within complex muscle coactivation patterns
and associating them with the activation of related prosthetic functions. Supervised
machine learning algorithms are commonly employed to define such myocontrol models
due to their ability to capture complex relationships between muscle activity and motor
intents from training datasets of labeled muscle data [9, 10].

The calibration of machine learning-based myocontrol models involves the
acquisition of user-specific training muscle signals for each desired motor function, the
subsequent learning of the model, and the evaluation of its performance [11]. This process
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can be repeated until satisfactory intent detection is achieved. Although supervised
calibration approaches have become standard practice in both academic and commercial
settings, they still face challenges related to the efficiency of data acquisition and the
reliance on the user’s ability to provide consistent training signals, among other factors.

1.2 Challenges of Myocontrol Model Calibration

A core challenge in calibrating myocontrol models is the acquisition and labeling of train-
ing data from subjects with limb differences. During data acquisition, subjects must
produce specific muscle activations that correspond to the desired myocontrol functions
to establish the ground truth for model training. However, generating accurate train-
ing muscle signals on demand can be difficult for subjects with limb differences,
who may lack visual and proprioceptive feedback from a healthy limb [12, 13, 14]. There-
fore, before calibrating the model, it is often necessary to assess the user’s existing motor
skills and then train the user to generate stable, distinctive, and repeatable muscle signals.
These steps, collectively referred to as preprosthetic user training, require direct guidance
from healthcare professionals and are performed in specialized clinical settings [13]. Such
requirements may delay or limit the user’s initial engagement with the myocontrol system,
which could complicate the subsequent acceptance of the prosthesis [15, 16]. Figure 1.1
illustrates aspects of the preprosthetic user training process.

(a) (b) (c)

Figure 1.1: Preprosthetic assessment and signal training of users with limb differences
in preparation for myocontrol model calibration and use. These procedures include (a)
palpation to assess muscle activity, (b) mirroring exercises to develop motor skills, and
(c) biofeedback techniques for refined muscle signal control. Each step is actively guided
or supervised by healthcare professionals. Screenshots from an instructional video by
Ottobock [17], timestamps 2:28, 2:48, and 4:37, ©Ottobock 2019.

Another challenge relates to the open-loop design of standard protocols for the acquisi-
tion of labeled training data. Users typically follow preset acquisition routines prompted
by visual cues to generate training muscle contractions [18, 19], but they receive no
simultaneous feedback on the quality of the generated signals. The absence of imme-
diate feedback during training data acquisition delays the evaluation of the model’s
performance until the end of the calibration process, after the model has been trained.
Should this delayed assessment indicate that additional training data is required, the data
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acquisition would need to be repeated, reducing the overall efficiency of the calibration
process [11]. This issue is especially evident in calibration procedures that are designed
to improve the model’s robustness to specific confounding factors by capturing the effect
of such confounding factors in the training data. For example, to counter prediction
inaccuracies induced by variation of the arm position, users may be required to execute
training gestures at various arm configurations. The absence of immediate feedback dur-
ing this data acquisition phase represents a missed opportunity, as it could guide the
user to elicit the confounding factor in a manner that is more conducive to increasing the
model’s robustness. Figure 1.2 depicts data acquisition procedures used in commercial
or state-of-the-art systems, as well as the evaluation of myocontrol model performance
conducted during real-time myocontrol tasks.

(a) (b) (c)

Figure 1.2: Acquisition and labeling of training data for machine learning-based myo-
control models and subsequent evaluation of model quality during prosthetic control. (a)
Training data acquisition using MyoPlus, a commercially available myocontrol system
based on pattern recognition; screenshot from an instructional video by Ottobock [19],
timestamp 14:42, ©2022 Ottobock. (b) Schematic representation of a state-of-the-art
training data acquisition protocol designed to capture the variability of the myoelectric
signal due to confounding factors such as limb position, contraction intensity, and weight
of the grasped object; reprinted from Yang et al. [20], ©2017 Elsevier. (c) Despite
using advanced data acquisition protocols to anticipate and counteract the effects of con-
founding factors, model instabilities may still surface during realistic prosthetic control,
suggesting the need for further calibration. In this example, a failed attempt to grasp a
cup on a high shelf reveals possible model instability related to the limb position effect;
adapted from Meattini et al. [21], ©2019 Meattini et al.

1.3 Contributions

This dissertation explores the role of user-system interaction in addressing the challenges
associated with the calibration of machine learning-based myocontrol models for myo-
electric hands. Foundational to this exploration is recognizing that interaction is a core
component of myoelectric control since the user inherently participates in the control
loop [11, 22, 23]. On one side, the control system interprets the user’s muscle signals and
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activates the corresponding prosthetic functions, which provide implicit visual feedback
on the control quality. Recent myocontrol systems even use interactive machine learning
methods to incrementally refine the model while interacting with the user [11, 22]. On
the other side, the user may operate real-time adjustments of their control inputs based
on the received feedback [23, 24] and even permanently adapt their control strategy to
balance performance and workload [11, 25].

This synergy between the user’s cognitive agency and the system’s adaptive capabil-
ities highlights the potential to leverage interaction not just for real-time control adjust-
ments but also for addressing certain challenges in the calibration of myocontrol models.
Therefore, this thesis posits that a structured user-system interaction can enhance
the calibration process, offering two main contributions to this end.

The first contribution addresses the aforementioned inefficiency of traditional super-
vised calibration approaches that acquire and label training data using open-loop acqui-
sition protocols. Specific focus is given to standard multi-arm-position data acquisition
protocols, designed to enhance the robustness of myocontrol models to variations of the
limb position. The idea is to aid the user in generating more useful training data by
conducting the data acquisition interactively, thereby reducing the need for repeated
calibration cycles.

Two supporting publications jointly contribute toward defining an efficient interactive
multi-arm-position data acquisition procedure. The study in Gigli et al. [p1] provides a
preliminary comparison of static and dynamic variants of open-loop multi-arm-position
acquisition within a realistic prosthetic setup. The purpose of this comparison is to
initially assess which method offers greater practical advantages for prosthetic control
and thus holds the most promise for interactive redesign. Such preliminary investigation
is necessary because a direct comparison between the two variants is not available in the
current literature. Supported by the practical advantages of dynamic data acquisition,
the work in Gigli et al. [p2] proposes and validates an interactive version of dynamic
multi-arm-position acquisition. This approach integrates a novel interaction protocol
in which the model is built in real-time through incremental updates and immediate
feedback on the inference quality is used to guide the user to target underperforming arm
configurations with more training data.

The second contribution of this dissertation focuses on the development of coadap-
tive unsupervised calibration methods. Instead of utilizing labeled training data,
these methods construct the myocontrol model incrementally through a user-driven in-
teraction protocol. Unlike supervised calibration approaches that require the user to
produce predefined muscle contractions for accurate data acquisition and labeling, these
methods are designed to adapt to the user’s existing motor abilities. Consequently, these
approaches aim at eliminating the need for professionally supervised preprosthetic user
training, enabling a more direct and autonomous engagement with the myocontrol sys-
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tem.
The publication Gigli et al. [p3] introduces an unsupervised calibration approach

where the user and the myocontrol system coadaptively identify distinctive control in-
puts based on muscle synergies. Throughout this process, an abstract motor mapping
is established by arbitrarily associating a predefined set of prosthetic functions with the
activation of an equivalent number of distinctive and adaptively extracted muscle syner-
gies. Concurrently, the user is challenged to learn to control all the prosthetic functions
by identifying and refining the muscle synergies detected by the system. This coadaptive
process eliminates the need for preliminary signal training, as the user and system syner-
gistically learn to generate or recognize distinctive control signals. However, this method
still requires a prior assessment of the user’s motor skills to determine the number of
controllable prosthetic functions. This limitation is addressed in Gigli et al. [p4], where
a refined version of the unsupervised calibration method allows the user to start learning
a single function and gradually unlock additional functions when desired. By adopting a
progressive approach to learning prosthetic functions instead of learning them all at once,
this method implicitly aligns the complexity of the control model to the user’s existing
motor skills and supports the potential development of those skills during practice.

1.4 Structure of the Work

The structure of this dissertation is organized as follows. Chapter 2 provides an overview
of methodologies for myoelectric control of upper limb prostheses, with a focus on su-
pervised and unsupervised calibration approaches. Chapter 3 summarizes the aim,
methodology, and results of the studies in the supporting publications, which can be
found in full format in the Appendix. The outcomes, significance, and limitations of
these studies are discussed in Chapter 4. Finally, a brief recapitulation of the key
findings of this work is offered in Chapter 5.
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Chapter 2

Background and State of the Art

2.1 Upper-Limb Prosthetics

2.1.1 Social Aspects of Limb Difference

People coping with limb differences, whether congenital or acquired, encounter extensive
challenges that affect their societal participation and psychological health [26]. These
differences hinder the performance of daily activities, impacting their autonomy and
potentially limiting opportunities in work and leisure [5]. Additionally, they often adopt
compensatory behaviors using unaffected limbs or other body parts, which can result in
further physical strain and health issues [27].

Individuals with limb differences often experience challenges to their self-esteem and
emotional well-being [28]. Those with acquired limb loss may struggle with accepting
changes in body image, with effects on their emotional life [28]. Psychiatric disorders may
also arise, including anxiety and depression [28, 29]. In severe cases, these psychological
effects can lead to permanent changes in personality and lifestyle[4].

The socio-economic impact of limb difference is also significant. While global statistics
on limb differences are not readily available, estimates for the United States of America
indicate that the number of people with upper limb loss is expected to double by 2050,
primarily due to an aging population and the rising prevalence of diabetes and vascular
diseases [5, 30]. Correspondingly, the estimated costs associated with upper-limb dif-
ferences are extensive, considering the required medical procedures, postoperative care,
psychological support, and social security measures needed to compensate for partial
societal exclusion [31].

2.1.2 Prosthetic Upper Limbs

Prosthetic upper limbs play a crucial role in improving the lives of people with limb
differences, offering both cosmetic and functional benefits [4, 32]. Simple cosmetic pros-
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theses are found to boost self-confidence, aiding in social reintegration after limb loss [4].
Meanwhile, functional and active prostheses allow individuals to regain independence in
daily and work-related activities [3, 33]. These prostheses vary depending on the limb
difference they address, movable parts, restored features, and control mechanisms.

Upper limb differences are classified based on location, ranging from the shoulder
level to the hand [3]. This classification includes transradial limb differences, the primary
focus of this thesis. These differences can be congenital, involving joint structure or limb
length anomalies, or acquired through amputation. Prostheses for these differences are
divided into passive, which are either cosmetic or functional, and active, which are further
classified as body-powered or electric.

Passive Prostheses

Passive prosthetic limbs are defined by their lack of actively movable components [8].
These include static prostheses with no movable parts and adjustable prostheses whose
parts can be locked in different configurations for specific tasks. These prostheses serve
either aesthetic purposes, restoring limb appearance to mitigate societal stigma Krist-
jansdottir et al. [4], or functional purposes, such as protecting the residual limb, aiding
balance, or facilitating specific tasks like using cutlery or playing instruments [8, 34, 35].
Their benefits include being cost-effective, lightweight, and requiring low maintenance [8].

Body and Electrically-Powered Active Prostheses

Active prostheses are designed with components that can be intentionally moved by the
user [3]. In body-powered prostheses, these movable parts are mechanically linked to
sound body parts and are operated through the user’s physical movements. Conversely,
electrically powered prostheses employ motors to control specific prosthetic joints.

Body-powered prostheses consist of a harness, movable parts mounted on rigid limb
segments, and a cable connecting them [3]. Standard designs include an active hook or
elbow controlled by shoulder movements [36], offering indirect proprioceptive feedback
of the gripping force [37]. They are advantageous for their light weight, durability, and
affordability [3]. These prostheses are light, durable, and cost-effective but may impose
physical strain, have a limited operational range, and require regular maintenance due to
cable wear and tear [3].

Electrically powered prostheses function by interpreting the user’s motor intent from
the muscle activity in the residual limb and using electric motors to actuate the movable
mechanical parts. These devices commonly use surface electromyography (sEMG) to
non-invasively measure neuroelectric signals amplified by muscle contractions. For this
reason, these devices are interchangeably referred to as electric or myoelectric prostheses.
section 2.2 and subsection 2.3.1 will provide further details on sEMG signal etiology and
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measurement, as well as on alternative input methods for myoelectric prostheses under
academic research.

Myoelectric prosthesis designs cater to restoring varied motor functions, featuring dif-
ferent levels of anthropomorphism, a varied number of active degrees of freedom (DoFs),
and sometimes hybrid designs with passive DoFs. The range of active hand prosthe-
ses extends from simple motorized hooks to complex polyarticulated anthropomorphic
hands [3, 8]. An active DoF indicates a set of moving parts designed to move together
for a specific motor function [26]. For example, a prosthetic finger typically includes
multiple joints controlled by a single motor, accounting for one active DoF. Similarly, if a
group of fingers of a prosthetic hand are mechanically coupled to move together, they also
account for one active DoF. Commercially available prosthetic hands currently include
both fully-actuated solutions, which have dedicated motors for every finger, and under-
actuated ones, where groups of fingers are constrained to move together [8]. The overview
by Marinelli et al. [8] provides an overview of commercially available hand prostheses and
research prototypes. Commercially available myoelectric prosthetic wrists offer 1-DoF
control over flexion-extension or prono-supination movements [3, 38], while a range of
active prosthetic elbows and one 2-DoFs active shoulder are available for users with more
proximal limb differences [8]. Besides the sensory and actuation elements, the design of
the socket and shaft is also relevant [3, 39] to ensure a secure and comfortable fit, to
house the necessary components, and to balance the weight of the contralateral limb [3].

Control strategies for myoelectric prostheses differ based on the device’s complexity.
For example, simple mechanical grippers may be directly operated through the activity of
antagonistic muscle pairs, while polyarticulated hands necessitate advanced myocontrol
models for intent detection from multichannel sEMG measurements. For individuals
with proximal limb differences, advanced control techniques may also be complemented
by invasive surgical procedures like targeted muscle reinnervation [40] and regenerative
peripheral nerve interfaces [41], aiming to improve the resolution of the measured muscle
signal. Section 2.5 provides a detailed overview of the control schemes used for myoelectric
prostheses.

Myoelectric prostheses provide higher grip forces and a more extensive functional
range than body-powered devices. By restoring multiple motor functions, they may
support the user in a greater variety of activities of daily living (ADLs). However, these
prostheses have higher initial and maintenance costs, require extensive user training, and
their reliability can be compromised by disturbances in muscle signal measurements [3,
13, 42, 43].
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2.1.3 User Needs

Despite significant technological advancements in the past few decades, the acceptance
of upper-limb prostheses remains problematic [8], primarily due to discomfort and lack of
functionality [44, 45]. A recent survey by Salminger et al. [44] reported average rejection
rates of approximately 45% for active upper limb prostheses, with myoelectric devices
accounting for approximately 90% of the rejections.

The acceptance of prosthetic limbs depends on satisfying diverse user needs, span-
ning device design, functionality, and ancillary care services [8]. Design enhancements
regard increased comfort of the socket, decreased weight, as well as improved cost-
effectiveness and durability of the components. From a functional perspective, users
seek more biomimetic designs and grasping behaviors, more precise control over strength
generation, and intuitive control of an increased number of functions [6, 8]. Concurrently,
increased control reliability of multi-functional myoelectric hands is a critical focus, de-
manding machine learning methods that effectively handle the variability of the myo-
electric signals for robust motor intent detection [5, 8]. Additionally, tactile restoration
solutions are sought to reduce visual reliance and favor the prosthesis’ embodiment.

Comprehensive user care, including early rehabilitation and training programs, is
essential for the acceptance of prosthetic devices [13, 27, 46]. This is underscored by
the desire for better preprosthetic user training and support reported by around 40% of
prosthesis abandoners [47]. Interactive and engaging training methods, such as serious
games, are increasingly deployed to encourage intuitive and autonomous engagement with
myoelectric technologies. These methods enhance initial user confidence and competence
with the myoelectric system and support the role of healthcare professionals, who must
guide users in understanding the prosthesis’ benefits and integrating them into daily
activities [8].

2.2 Anatomy and Physiology of Muscle Signals

The human muscular system, essential for maintaining posture and enabling body and
organ movements, is divided into involuntary and voluntary muscles [48]. Involuntary
muscles, such as cardiac and smooth muscles, autonomously control vital functions like
blood circulation and peristalsis. Voluntary, or skeletal, muscles can instead be con-
sciously contracted to facilitate body movements and are of interest for myoelectric con-
trol applications.

2.2.1 Anatomy of Skeletal Muscles and Motor Units

Skeletal muscles are composed of bundles of muscle cells, or fibers. These fibers contain
bundles of elongated protein filaments divided into repeating units called sarcomeres,
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responsible for muscle contraction [48, 49]. Muscle fibers have specialized cell membranes,
called sarcolemmas, that can generate and conduct electrical impulses in a similar way to
the membrane of a neuron. Each muscle fiber is innervated by a motor neuron originating
in the spinal cord at a specialized site called neuromuscular junction [48]. Each motor
neuron controls a group of muscle fibers, forming a motor unit [49, 50]. The size of a
motor unit reflects the number of muscle fibers controlled and influences the amount of
force it can generate [51]. Motor units are characterized by properties of the innervated
muscle fibers, such as size, location, and fatigability, as well as properties of the motor
neuron, like its firing frequency [48].

2.2.2 Muscle Contractions

Muscle contractions are initiated by electrical signals representing movement intentions
in the brain’s motor cortex [49]. These signals are transmitted to the spinal cord via cor-
ticospinal neurons, then relayed to appropriate motor neurons through interneurons [52],
and finally directed to the muscle fibers of the corresponding motor units [49]. The ac-
tion potential at the neuromuscular junction triggers neurotransmitter release, causing
the depolarization of the muscle fiber’s membrane. The generated action potential travels
along the surface of the muscle fiber and causes the sarcomeres within the muscle fiber to
contract, resulting in the exertion of forces on the connected tendons and bones. Isotonic
contractions lead to joint movements by shortening muscles, while isometric contractions
stabilize joints without changing muscle length. The muscle fiber relaxes again when the
action potential terminates.

The strength, precision, and endurance of muscle movements are governed by the
process of motor unit recruitment [49, 50, 53]. The nervous system selectively activates
motor units based on the intended force and speed of contraction. For low-force move-
ments, the nervous system recruits motor units that are slower, smaller, less susceptible
to fatigue, and typically found in the outer layers of a muscle [49, 50, 54]. As the required
force or speed increases, motor units that are larger, faster, more prone to fatigue, and
located in the innermost muscle layers are progressively activated. When the number of
available motor units is insufficient to further increase the contraction intensity, the rates
of the already recruited motor units may be further increased, a phenomenon known as
rate coding [49, 50]. Motor units tend to deactivate in the reverse order once the move-
ment is complete [50]. This recruitment strategy enables precise control of muscle force,
optimizing energy efficiency and fatigue resistance.

2.2.3 Physiology of Muscle Synergies

Executing complex tasks, such as grasping an object, involves the coordinated activa-
tion of multiple muscles. Nevertheless, humans execute these tasks without consciously
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controlling the activity of each individual muscle. This capacity hints at the existence
of mechanisms within the motor system that simplify movement control, referred to as
muscle synergies [55, 56]. A muscle synergy represents a group of motor units, inner-
vating different muscles, that are activated together to achieve a specific movement or
task [55]. In this sense, muscle synergies can be thought of as modules of motor con-
trol [57]. This coordination mechanism reduces complex control of individual motor units
to the modulation of fewer coordinated muscle activation patterns.

The physiological implementation of muscle synergies occurs within the spinal cord,
where networks of premotor interneurons coordinate the activation of motor neurons in
response to high-level cortical motor commands [52, 56]. Muscle synergies may evolve over
time in response to physical development, training, practicing new skills, or recovering
from injury [56, 58, 59]. This adaptability is due to the inherent plasticity of synergy-
encoding interneuron networks in the spinal cord and may also involve modulation of
synaptic inputs by neurons within the supraspinal system [52, 58]. The origin of muscle
synergies is a topic of ongoing research. Some theories suggest a neural origin, where the
nervous system organizes motor units into synergies for control efficiency [55, 60], while
others propose that they emerge from biomechanical or task-related constraints [55, 61].

2.3 Measuring the Muscle Signals

2.3.1 Surface Electromyography (sEMG)

Electric prostheses are primarily controlled by the activity of skeletal muscles in the resid-
ual limb, which reflects the user’s motor intent and the desired force of the movement [8].
Electromyography (EMG) is a method to measure the electrical activity of the muscles
during contraction and is broadly employed in prosthetic applications [8, 49]. The rele-
vance of this method lies in the direct measurement of the electrical activity that drives
muscle contractions, and not in the detection of indirect effects, such as changes in the
muscle shape or vibrations from muscle bulking [8, 53, 62]. Under normative conditions,
moreover, the amplitude of the myoelectric signal corresponds proportionally to the in-
tensity of muscle contractions because stronger contractions are obtained by recruiting
more motor units and increasing the firing rate of already active ones [50, 62, 63]. There-
fore, the EMG can be used to control prosthetic actuators proportionally to the muscle
contraction intensity [8].

EMG generation and measurement

The myoelectric signal originating from a contracting muscle corresponds to the aggre-
gated action potentials generated by its fibers [49, 64, 65]. As a muscle is commanded
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to contract, multiple motor units are recruited, each inducing almost simultaneous ac-
tion potentials in its innervated muscle fibers. The cumulative action potential generated
by a motor unit, referred to as motor unit action potential, is an amplified version of
the stimulus provided by the motor neuron and manifests as an electric field that can
be detected by nearby electrodes [65, 66]. After further electronic amplification, such
estimation constitutes the raw EMG signal [65].

Invasive or non-invasive measurements of myoelectric activity can be performed using
intramuscular EMG or sEMG, respectively. While intramuscular EMG offers reduced
noise and better muscle selectivity, sEMG is most commonly used in prosthetics due to
its greater comfort.

The measurement of SEMG presents challenges related to noise and electrical interfer-
ence, especially crosstalk from adjacent muscles. To reduce signal interference in sEMG,
various electrode configurations like monopolar, single-differential, and double-differential
are used [66]. The monopolar configuration, with one active electrode on the muscle and
a reference electrode on an electrically neutral site, amplifies voltage differences but can
be prone to crosstalk. The single-differential or bipolar configuration uses two active
electrodes along the muscle plus a reference electrode at an electrically neutral site. This
arrangement amplifies the signal differences between the two active electrodes, reducing
crosstalk from adjacent muscles. The double-differential configuration aligns three active
electrodes along the muscle and one reference electrode at a neutral site, further local-
izing muscle activity by comparing signal differences. Finally, high-dimensional surface
electromyography (HD-sEMG) systems use a dense grid of active electrodes and a refer-
ence electrode located at a neutral site. This allows myoelectric measurements with high
spatial resolution, enabling detailed analysis of muscle activity and even the identification
of individual motor unit action potentials. The works of Campanini et al. [66] and Rubin
[67] provide detailed information on both non-invasive and invasive EMG setups.

In addition to electrode configuration and placement, other critical parameters for
sEMG measurement systems include their number of electrodes, sampling rate, and res-
olution [65]. The number of electrodes affects the specificity of muscle activity detection.
The sampling rate is crucial to capture the range of muscle activity frequencies, with
most systems designed between 1 kHz and 2 kHz. Lastly, the resolution of the analog-
to-digital converter embedded in the measurement system is also relevant, with clinical
devices usually featuring resolutions above 12 bits to limit the quantization error.

In all supporting publications of this research, myoelectric measurements were per-
formed using a Myo Armband by Thalmic Labs [68]. This device features eight sEMG
sensors operating at 200Hz with an 8-bit resolution. Despite its inferior features com-
pared to other sEMG systems for clinical use, this device was chosen for its wireless design
and cost-effectiveness, which render it particularly suitable for academic prototyping.
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SEMG preprocessing

Several preprocessing steps are typically necessary to effectively analyze raw sEMG sig-
nals [8, 65]. International guidelines set by SENIAM [69] and CEDE [70] aim at ensuring
procedural consistency of these steps. Bandpass filtering, typically within the 20-500Hz
range, is performed to eliminate possible low-frequency mechanical artifacts caused by
electrode movements or high-frequency environmental interferences [65]. Notch filters at
50Hz or 60Hz may be employed to eliminate power line interference. DC offset correction
is applied to the signal for battery-powered systems to eliminate any constant bias.

In order to infer motion intents from a continuous stream of sEMG data, the filtered
signal is segmented into discrete windows capturing quasi-stationary muscle activity [65,
71]. Window size and relative overlap vary with the application requirements, but a win-
dow length of approximately 200ms and time increments around 25ms usually provide a
reasonable balance between capturing sufficient information in each window and ensuring
low processing times [72].

2.3.2 Alternative Muscle Activity Measurements

While EMG is currently the sole input modality used in commercial myoelectric pros-
theses, various alternative modalities are explored in research [8]. These are often com-
bined with sEMG to enhance user intent recognition and prosthetic control. Alternative
non-invasive modalities like force myography and mechanomyography measure physical
properties derived from muscle contractions. The first assesses volumetric changes in the
muscle structure using force sensors wrapped around the arm, while the second detects
skin surface vibrations caused by muscle fiber contractions. Both modalities, however,
are sensitive to external forces and motion artifacts, challenging their integration into
prosthetic sockets. Sonomyography and electrical impedance tomography monitor mus-
cle cross-sectional distribution changes in the residual limb non-invasively. The former
estimates the muscle structure using ultrasound, and the latter applies weak electrical
currents through skin electrodes to map internal structures based on impedance varia-
tions. Although these approaches provide a detailed estimate of muscle activity, they
have limitations in terms of limited time resolution and sensitivity to sensor displace-
ments. Peripheral neural interfaces, consisting of electrodes implanted in muscles or
nerves, provide high-precision measurements but are less used for prosthetic control due
to their invasiveness. Finally, inertial sensors, cameras, and physical buttons can be used
to detect contextual information that is not directly related to the muscle activity, such
as the user’s posture, environmental characteristics, and user intents.
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2.4 Feature Extraction from sEMG Signals

Interpreting motor intents from sEMG recordings presents intrinsic challenges due to
the stochastic generation and nonstationary properties of the myoelectric signal [63, 73].
Addressing these complexities necessitates extracting dedicated features from the my-
oelectric signal to condense relevant information and mitigate confounding factors for
effective data analysis and inference [10, 59]. This section outlines the confounding fac-
tors affecting the analysis of sEMG signals and explores commonly used engineered or
projection-based features, as well as feature learning methods. The reader is referred to
the works of Oskoei et al. [10], Ison et al. [59], McManus et al. [65], and Phinyomark
et al. [74] for a comprehensive description of existing features for myocontrol.

2.4.1 Confounding Factors in sEMG Analysis

The sEMG is regarded as a nonstationary signal as its statistical characteristics may
change over time due to measurement artifacts or physiological processes underlying
muscle control [42, 43].

Measurement artifacts in the sEMG can result from sensor shifts, changes in the
skin conductivity, and electromagnetic interference [65, 66]. Sensor shifts often result
from donning and doffing a prosthesis, changing the established statistical relationships
between the sEMG measurements from different channels and compromising the control
of the prosthesis [42]. Crosstalk from neighboring muscles and electrical interference from
external sources similarly affect the sEMG signal and complicate the detection of motor
intention [66].

Among the physiological processes underlying muscle control, limb movements notably
influence the myoelectric signal [42, 43]. Reaching and holding different arm configura-
tions inherently require varying levels of baseline muscle activity for moving the arm and
stabilizing it against gravity. This baseline activity overlaps with the muscle activity
directly related to executing specific hand or wrist movements, which complicates the
identification of the user’s intended hand gestures from the myoelectric signals. Addi-
tionally, limb movements alter muscle shapes and lengths, impacting the relationship
between myoelectric activity and generated force. This phenomenon, known as “limb
position effect”, represents a significant practical challenge in prosthetic control.

Modulation of the contraction intensity also affects the sEMG characteristics, as mus-
cle recruitment and code rating mechanisms alter the relationship between the signal’s
amplitude and the force generated at different contraction intensity regimes. During pro-
longed motor tasks, muscle fatigue may reduce the action potential propagation speed
along muscle fibers, resulting in shifts in the signal spectrum and average amplitude [42].
Furthermore, the user’s adaptation to a myocontrol system through practice plays a com-
plex role in this context. While individuals develop more refined motor skills through
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practice, enhancing myocontrol system performance, this adaptation also causes shifts in
the statistical distribution of the measured signals [42]. Additionally, anatomical differ-
ences and diverse muscle recruitment strategies among individuals present considerable
challenges in transferring myocontrol models between users [42].

2.4.2 Engineered Features

Engineered features for myoelectric signals capture specific characteristics in the time,
frequency, or time-frequency domains [59, 65]. Time-domain features reflect the intensity
and duration of muscle contractions and are extracted directly from windowed sEMG
measurements [59, 65]. Two standard time-domain features are the root mean square
(RMS) and the mean absolute value, which, despite theoretical differences, are used
interchangeably to estimate the intensity of muscle contraction during defined time win-
dows [10, 65, 75]. The envelope of the myoelectric signal, representing its amplitude evo-
lution, can be computed by applying these features over a sliding window and adjusting
the window size for a balance between smoothness and time resolution [65]. An alterna-
tive, non-windowed envelope computation involves concatenating full-wave rectification
and low-pass filtering. Variations of the sEMG amplitude are most often characterized
by the feature set proposed by Hudgins et al. [76], which is sometimes integrated with
autoregressive coefficients to capture the signal’s nonstationary characteristics [59, 77].

Frequency-domain features provide insights into the power distribution changes in
the myoelectric signal, reflecting potential physiological changes in muscle control mech-
anisms [10, 65]. These are commonly applied to detect the onset of muscle fatigue,
corresponding to shifts in the mean and median frequencies of the power spectrum.

Time-frequency features, obtained through techniques such as the wavelet transform,
characterize the evolution of the myoelectric signal’s frequency over time [10, 59]. While
more computationally demanding than time or frequency-domain features, these descrip-
tors help model dynamic modulations of the muscle contraction intensity.

The feature choice depends on the application and the specifics of the sEMG measure-
ment setup, like its sampling rate [74]. For the analysis of myoelectric signals or offline
evaluations of machine learning-based myocontrol approaches, complementary features
are often combined, even from different domains [74]. On the other hand, applications
involving motor learning or real-time myocontrol typically use simpler amplitude fea-
tures like RMS for a more intuitive correlation between muscle activation intensity and
controlled prosthetic function [59].
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2.4.3 Projection-Based Features and Identification of Muscle Syn-

ergies

Projection-based features integrate information from multichannel sEMG data to high-
light physiological or task-driven muscle coactivations [59]. By leveraging information
redundancy across multiple channels, this combined representation counters the effects
of confounding factors inherent in single-channel sEMG. Projection-based features are
commonly derived through dimensionality reduction techniques that transform high-
dimensional data into a lower-dimensional “latent” space while aiming to preserve es-
sential information [59, 77, 78]. Latent dimensions, or “components”, are computed to
capture relevant relationships between the original dimensions that are conveyed by the
input data. The projected coordinates of the data samples in the latent space, also re-
ferred to as “coefficients”, describe the sample in terms of these relationships and thus
serve as their feature representation.

Different dimensionality reduction algorithms highlight specific relationships in data
and can be used for applications including noise reduction and muscle synergy estimation.
Nonnegative matrix factorization (NMF) expresses data as a combination of nonnegative
components, modeling additive processes seen in muscle activities [59]. This property
makes NMF a prominent choice for estimating physiological muscle synergies from sEMG
data [55, 79]. The characteristics and practical uses of NMF in this domain are elaborated
further in section 2.4.3. Principal component analysis (PCA) identifies primary variance
directions in the data, aiding in noise and collinearity reduction, but its components do
not provide a physiological interpretation of underlying muscle synergies [59, 78, 79]. Fac-
tor analysis reveals latent variables based on correlations between the input dimensions,
often giving a more accurate muscle synergy interpretation than PCA [79]. Independent
component analysis decomposes data into statistically independent components relating
to distinct motor commands, reducing sEMG crosstalk and aiding in the identification of
subject-independent muscle coactivation patterns [59]. Autoencoders capture nonlinear
relationships between sEMG channels, making them particularly useful for modeling the
activity of antagonistic muscle pairs [59], but their latent dimensions hardly reflect phys-
iological muscle synergies [59, 79]. The comparative performance of these algorithms in
estimating physiological muscle synergies has been evaluated by multiple studies [79, 80,
81, 82]. While the specific outcomes are influenced by sEMG setup or noise levels, NMF
consistently emerges as a preferred choice.

Nonnegative matrix factorization in SEMG analysis

NMF is a dimensionality reduction technique used in myoelectric signal analysis to extract
features from multichannel EMG data that reflect the underlying patterns of physiological
muscle synergies [55, 59, 79, 82]. This method expresses nonnegative multidimensional
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data as a linear nonnegative combination of nonnegative components [83]. When ap-
plied to multichannel sEMG recordings, the method identifies components that represent
characteristic activation patterns of the sEMG channels and computes the relative con-
tribution of those components to each data sample as a set of dedicated coefficients. This
factorization principle imitates the structure and function of physiological muscle syn-
ergies, wherein complex movements are realized by modulating available time-invariant
muscle coordination patterns [55, 84]. Consequently, NMF is employed in sEMG anal-
ysis to estimate the muscle synergies underlying multichannel recordings [55, 59]. The
coefficients derived for each sample, corresponding to its projection in the latent synergy
space, serve as a compact feature representation. Additionally, since these coefficients
quantify the contribution of each estimated muscle synergy to the overall measured mus-
cle activity, they may align with physiological high-level motor commands. Utilizing
these coefficients as control inputs in myoelectric systems can potentially enhance motor
learning by leveraging already established motor coordination schemes [85].

In practice, NMF approximates a nonnegative data matrix with the product of a
components matrix and a coefficients matrix, both of which are also nonnegative [55, 56,
83]. The rank of these matrices corresponds to the number of components desired for the
factorization and is usually lower than the original data dimension, making NMF suitable
for dimensionality reduction purposes. For sEMG analysis based on NMF, the rows of the
data matrix typically contain the envelopes of each channel’s measurement, the columns
of the components matrix define bases in a transformed latent space, and the columns in
the coefficients matrix hold each sample’s latent representation. [85, 86, 87]. Essentially,
the components and coefficients matrices’ columns correspond to the estimated muscle
synergies and their activation levels, used to reconstruct observed muscle activity.

The NMF factorization problem does not admit a closed-form solution, necessitating
the use of iterative optimization methods [83, 86, 88]. One commonly used method is
multiplicative updates, a form of alternating gradient descent that preserves the nonneg-
ativity of the optimized matrices throughout the optimization. Among the complications
of this method are the potential convergence to suboptimal solutions depending on the
parameter initialization and the “zero-locking” phenomenon, whereby parameters may
become unresponsive to the update process if they reach a zero value [89]. Although sev-
eral heuristics exist to mitigate this zero-locking issue, their effectiveness varies with the
NMF formulation. Additionally, identifying the optimal factorization solution is com-
plicated because NMF allows multiple valid matrix combinations to approximate the
original data [83, 88].

NMF variants used in sEMG analysis aim to resemble physiological muscle synergies
and meet application-specific requirements [88]. Regularized NMF formulations are used
to capture the inherent sparsity in the temporal coordination of muscle synergies [90, 91,
92]. Lin et al. [91] employed L1-regularized NMF to minimize myocontrol synergies’
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temporal overlap. However, this sparsity enforcement artificially inflated component
norms, reducing physiological plausibility. This problem remained unaddressed until one
of the supporting publications of this thesis integrated an L1 regularization for coefficients’
sparsity with an L2 regularization to control the components’ norm [p3].

Incremental NMF methods are designed for situations where periodic updates of the
factorization model are required, but full model retraining is unfeasible due to computa-
tional or memory constraints [p3, 87, 93]. These methods encode historical information
into fixed-sized matrices, which are then used in combination with new data to inform
model updates. This is relevant for myocontrol, where the myoelectric activity charac-
teristics may vary due to changes in control strategy, fatigue, or measurement noise, and
where memory constraints prevent explicit storage of historical data required for model
retraining [42]. The integration of incremental NMF variants in myoelectric control ap-
plications has only been recently observed, namely in a study by Yeung et al. [85] and in
one of the supporting publications of this thesis [p3].

Sequential NMF solutions are used to progressively increase the number of identified
components while retaining the existing ones [94]. This could be useful in the context of
prosthetic control, as the user’s motor development during prolonged myocontrol sessions
has been shown to lead to the progressive emergence of novel muscle synergies [55, 58,
95]. Typical sequential NMF solutions retrain the model on all the historical data with
an increased count of components, using the previously trained model for initialization.
However, storing historical data in real myoelectric control scenarios is often impractical.
This issue has been first addressed in the supporting publication Gigli et al. [p4] by
integrating the progressive addition of components within an incremental framework.

While the operating principles of NMF align with aspects of physiological muscle co-
ordination, the physiological plausibility of the estimated synergies must be evaluated
carefully [82]. The factorization’s results could conflate natural physiological phenomena
underlying the analyzed myographic recording and mathematical artifacts. Factors influ-
encing the results include the number, placement, and quality of the sEMG electrodes,
measurement noise, choice of NMF variant, and hyperparameters [79, 96]. In particular, a
misalignment between the chosen number of NMF components and the actual number of
elicited muscle synergies could lead to estimating synergies that are either combinations
or fractions of real ones [55, 79]. Synergy validation methods include using synthetic
sEMG data or assessing consistency among various factorization algorithms on the same
real dataset [82].

2.4.4 Feature Learning

Feature learning has gained interest as an alternative to traditional feature engineering
in several fields, including myoelectric control [97]. This method leverages deep learn-
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ing algorithms to automatically extract feature sets tailored to solving specific learning
tasks. Different neural network architectures are used to capture various types of relation-
ships in the data. Multilayer perceptrons capture instantaneous nonlinear relationships
in multichannel sEMG, convolutional neural networks handle spatial hierarchies found in
HD-sEMG, and recurrent neural networks model time relationships within myographic
recordings. While studies comparing engineered and learned features in myoelectric con-
trol show varied outcomes, both techniques demonstrate similar effectiveness in realistic
settings [97, 98]. Challenges in implementing deep learning for prosthetic control in-
clude limited computational resources in prosthetic devices and the need for extensive
human-elicited datasets [97].

2.5 Myoelectric Control Schemes

Myoelectric control involves mapping myoelectric activity to specific kinematic or kinetic
outputs, such as the position or speed of a virtual cursor or the motor functions of a
prosthesis [8, 18]. In this work, the term “prosthetic functions” is broadly used to refer
to the actions that a prosthesis can perform, such as executing hand gestures or moving
individual joints. The motor mapping implemented by a myocontrol model can be either
biomimetic, aligning muscle activity with natural limb movements, or abstract, mapping
muscle activity to physiologically unrelated movements [59, 99].

2.5.1 Criteria for Characterizing Myocontrol Schemes

Myoelectric control strategies differ in the number and type of functions they imple-
ment [18].

Early myoelectric prostheses were restricted to single functions, such as hand opening
or closing [8, 18], whereas more advanced models allow controlling multiple functions.
Multiple functions can be controlled either through sequential switching or through si-
multaneous modulation based on muscle coactivation patterns.

The function activation in myoelectric control schemes is categorized as either on-
off or proportional [18]. The on-off method activates the function when the myoelectric
signal amplitude crosses a predetermined threshold. In contrast, proportional control
allows the degree of function activation to vary with the intensity of muscle contractions.
Prosthetic limbs are controlled proportionally by regulating joint positions or velocities
based on the myoelectric signal’s amplitude [18, 100]. Recent studies have indicated that
the intuitiveness and effectiveness of position or velocity control in myoelectric prostheses
depend on the specific biomechanical joint being controlled, as the neural representations
of the human hand and arm are different in terms of position and velocity [101]. For
prosthetic hands, position control is usually considered more intuitive, as the controlled
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joints return to a neutral position in the absence of muscle contractions, but it is also
considered more physically demanding, as it requires sustaining muscle contractions for
the entire duration of a task [102, 103].

2.5.2 Direct Myocontrol

Dual-site direct control is the most widely adopted control methodology in clinical set-
tings for myoelectric upper limbs [8, 104]. In this setup, myoelectric data is measured from
a pair of antagonistic muscles using two electrodes and is used to control the movement
of a single function in opposing directions, typically in a proportional way. Commer-
cial prosthetic systems often combine direct control with sequential function-switching
mechanisms based on muscle co-contractions.

2.5.3 Simultaneous and Proportional (SP) Myocontrol

Advanced myocontrol systems use multichannel sEMG measurements to enable simul-
taneous and proportional (SP) control across multiple functions [8, 18]. These systems
translate muscle coactivation patterns into distinct functions, enabling users to control
several functions simultaneously by adjusting their muscle activity. One approach is to
learn a biomimetic relationship between specific functions and the muscle activations a
user naturally associates with them [8, 76, 97, 105]. This is achieved using supervised
machine learning algorithms like classification or regression, which are applied to sEMG
data labeled with desired outcomes. Alternatively, some systems implement abstract
motor mappings by identifying unique muscle patterns or synergies that are available to
the user and utilizing them to control arbitrary prosthetic functions [99, 106, 107]. An
overview of the supervised and unsupervised methods used in myoelectric control is given
in section 2.6 and section 2.7.

2.6 Supervised Machine Learning for SP Myocontrol

The machine learning algorithm utilized to learn a myocontrol model depends on the
nature of the output variable. Classification algorithms are used for gesture recognition
tasks with discrete outcomes, while regression approaches are utilized for graded control
over the movement of the prosthesis DoFs [8, 9, 18]. Both types of problems can be
approached using statistical or deep learning algorithms [108].

Various classification algorithms like linear discriminant analysis, support vector ma-
chines, or k-nearest neighbors, have been employed for gesture classification tasks [8, 43,
109]. The linear discriminant analysis classifier combined with the Hudgins feature set is
a common choice in clinical and commercial settings, balancing accuracy, efficiency, and
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adaptability [8, 109]. Deep learning classifiers based on convolutional neural networks ef-
fectively capture spatial relationships between HD-sEMG channels, while recurrent neural
networks can identify multiresolution temporal patterns [110]. In order to achieve robust
SP control based on classification, several postprocessing steps are typically undertaken,
including smoothing predictions through majority vote and scaling gesture activation
based on sEMG signal magnitude [8, 111]. Additionally, simultaneous control of multi-
ple prosthetic functions is feasible by modulating the activation of the predicted classes
according to the corresponding prediction confidence level [112].

Regression algorithms in prosthetics estimate the activation of the device’s active
DoFs proportionally to the muscle input [109, 113]. Simultaneous control of multiple
DoFs can be realized through regression methods supporting multiple output variables or
by combining multiple single-output regressors in parallel [114]. Besides natively enabling
SP control, these approaches also can interpolate or extrapolate beyond the training data,
thereby allowing prostheses users to control combinations of trained DoFs without ex-
plicitly training on those combinations [105]. Finally, the continuous motor mappings
offered by regression models have been found to foster a more robust understanding of
the model and a better compensation of the prediction instabilities during real-time myo-
control [24]. Unlike classification methods, which can yield abrupt switches in predicted
gestures due to noise and nonstationarities in the muscle signal, regression approaches
deliver smoother and more predictable responses [25].

The most commonly adopted regression approaches for myocontrol are least squares
and its regularized variants, such as ridge regression (RR), in combination with features
engineered to capture nonlinearities that fit specific use cases [9, 102, 115]. These fea-
tures range from RMS envelopes [113], to nonlinearly-transformed envelopes simplifying
the relationship between contraction intensity and controlled variables [105], to spectral
descriptors capturing invariant characteristics of the input signal across different con-
traction intensity regimes [116]. Both least squares and RR enable incremental model
updates that do not require explicitly storing historical data. In incremental RR, histor-
ical data is encoded in fixed-size matrices, specifically an inverse covariance matrix and
a vector representing the cumulative product between input features and corresponding
outputs, which are used to inform model updates [117, 118]. This approach maintains
consistent space complexity, as matrix size depends on data dimensionality rather than
the number of samples. It also enhances computational efficiency, requiring only simple
rank-1 updates to the inverse covariance matrix instead of complex matrix inversions for
complete retraining. A detailed description of RR, its incremental formulation, and their
properties can be found in the works of González et al. [118] and Gijsberts et al. [117].

In addition to using nonlinear features, nonlinear regression models can be desir-
able in specific myocontrol setups and applications, for example, when only a limited
number of sensors are available [105, 109, 115]. Kernel-based methods like kernel ridge
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regression (KRR) address this by modeling nonlinear input-output relationships without
explicit feature extraction [119]. These methods base their inference on the similarity be-
tween new samples and the training data, determined through kernel functions. Kernel
functions calculate a similarity value between sample pairs corresponding to the inner
product between their projections into a high-dimensional feature space. This opera-
tion allows modeling nonlinear relationships between the original dimensions without the
computational overhead of operating the data transformation and is commonly referred
to as “kernel trick”. While KRR can model complex nonlinear data relationships, its
formulation does not allow for incremental updates [120], and its complexity increases
with the number of training samples.

An approximation of KRR that reduces computational complexity and enables incre-
mentality can be achieved using random Fourier features (RFF) [121]. The RFF-based
approach maps data to an approximated version of the kernel-induced feature space
and then solves linear regression in this space. The kernel mapping is approximated
as the concatenation of a finite number of sinusoids whose frequencies and phases are
randomly sampled from specific probability distributions [120, 121]. This version of RR
with RFF enables nonlinear regression while retaining the benefits of incrementality and
the constant time and space complexity of RR [117]. Several studies have verified the
effectiveness of RR with RFF for a variety of myocontrol applications, including offline
finger force estimation, prosthetic control, and robotic teleoperation [p1, p2, p3, 117].
Additionally, this method is used as a supervised myocontrol approach in three of the
supporting papers of this dissertation [p1], Gigli et al. [p2] and Gigli et al. [p3].

Recent investigations into deep learning-based regression methods for myocontrol re-
veal mixed results. While some studies show superior offline performance [122], real-
time application comparisons with traditional techniques have found no significant dif-
ferences [115, 123].

The choice of regression algorithm in myocontrol varies by application. In offline tests,
Gijsberts et al. [117] found KRR and its RFF-based incremental variant more accurate
than linear RR for mapping muscle contractions to fingertip forces. Similarly, Hahne
et al. [105] showed nonlinear KRR outperforming linear models, including RR, in wrist
flexion modeling. However, the same study also noted that linearizing features could align
RR’s performance with those of nonlinear methods. Nevertheless, there is a consensus in
the myocontrol community that offline test results may not accurately predict real-time
myocontrol effectiveness. This is primarily because such tests fail to account for the user’s
ability to adapt to and compensate for real-time inaccuracies in myocontrol models [23].
In fact, studies such as the one by Jiang et al. [23] show that potential differences in
offline performance between linear and nonlinear myocontrol models tend to decrease or
disappear in online settings.
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2.6.1 Challenges of Accurate Training Data Labeling

The calibration of myocontrol model based on machine learning relies on correctly labeled
training data [78]. Inaccurate labeling affects the model’s performance as it impairs the
understanding of the statistical relationships within the training dataset. The acquisi-
tion and labeling of training data for myocontrol applications pose challenges as they
depend on the user’s ability to consistently deliver appropriate control signals [13, 124].
This involves the user generating stable, distinguishable, and repeatable muscle contrac-
tions corresponding to target motor intents. The ability to generate these contractions
is influenced by the characteristics of the limb difference, individual experience, and the
myocontrol task. Persons with limb differences might struggle to produce muscle contrac-
tions coherent with desired movements due to impaired visual or proprioceptive feedback
and reduced motor control of the affected limb.

People with limb differences, particularly those unfamiliar with myoelectric control,
often undergo specific preparatory procedures before they can effectively participate in
the data acquisition for myoelectric control model calibration [13, 15]. These procedures
focus on identifying which muscles in the residual limb can be engaged and enhancing the
quality of the corresponding muscle signals. These processes are sometimes referred to as
preprosthetic signal assessment and training [13], and this terminology will be adopted
throughout the dissertation for clarity. These activities form part of a larger prepros-
thetic user training process [13, 15, 124], which includes rehabilitation, preparation for
myocontrol, and familiarization with the prosthesis.

In preprosthetic signal assessment, residual muscle contractions are assessed by man-
ual palpation, and control sites are then determined using Myotester devices [13, 14, 17].
Subsequent signal training includes exercises to enhance the stability, distinctiveness, and
reliability of the elicited myoelectric activity [13, 15]. These exercises typically involve
evoking phantom limb movements, either mirroring external visual stimuli or coordinat-
ing with movements of the unaffected limb. They may also involve isolating the activity
of targeted muscles, aided by visual biofeedback of the corresponding myoelectric signal.
Recent developments in serious gaming aim to increase user engagement during the pre-
prosthetic phase by incorporating signal training into computer games, although their
effectiveness compared to traditional methods is still showing inconsistent results [124,
125]. Preprosthetic user training typically necessitates direct supervision and coaching
from healthcare professionals, which poses logistical challenges related to the availabil-
ity of medical professionals and the accessibility of specialized rehabilitation facilities.
These challenges can delay the initial engagement with the myocontrol system, which
is believed to be fundamental for improving the functional use of prosthetic limbs and
enhancing their long-term acceptance [15].

After ensuring that users can elicit the necessary muscle activity, myoelectric training
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data can be acquired and labeled using purposely designed acquisition protocols. Con-
tralateral data acquisition involves measuring the muscle activity from the affected limb
while capturing the intended gesture from the unaffected limb [126]. Alternatively, the
user may execute phantom limb movements with the affected limb following a visual ref-
erence that is simultaneously used to label the measured muscle data [118, 126]. Training
data for classification problems is usually collected by performing the desired gestures at
a stable contraction intensity level. For regression problems, capturing dynamic modula-
tion of the muscle contraction intensity in the training data can be beneficial, but labeling
can be challenging due to synchronization issues between myoelectric signal and reference
stimulus [105, 126]. An alternative approach for regression models involves training with
steady-state contractions at different contraction intensities and leveraging the model’s
ability to interpolate and extrapolate from discrete data points [126].

2.6.2 Challenges Related to the Data Distribution Shift

The sequential nature of sEMG signals poses a challenge to myoelectric control, as it con-
travenes the assumption that data samples are independent and identically distributed,
which is critical for many machine learning methods [42, 43, 127, 128]. Multichannel
sEMG recordings exhibit temporal and spatial correlations due to neural drive and mus-
cle coordination, countering the assumption of data sample independence and potentially
leading to modeling inaccuracies. Strategies to address this involve extracting features
from contiguous time windows and recognizing relationships across sEMG channels [129].
As detailed in subsection 2.3.1, various factors like measurement artifacts and physiolog-
ical or functional characteristics of the musculoskeletal system may cause changes in the
statistical properties of sEMG signals over time [42, 43]. Such changes can be detrimental
in machine learning applications as they cause the characteristics of new inputs to diverge
from those of the training data, increasing the inaccuracy, variability, and uncertainty
of model inference. This issue is referred to as “domain shift” or “concept drift” [42].
Several approaches are used to counteract the domain shift in myocontrol depending on
the specific confounding factors. One approach consists of developing robust features and
models [42], another involves capturing as much of the data variability as possible in the
training dataset [42], and a different one employs periodic model recalibration or updates
to maintain performance levels in changing conditions [130].

Robust learning algorithms for myoelectric control involve specific data transforma-
tions, feature design, and algorithmic strategies [42, 108]. Data transformations may
address muscle fatigue by normalizing myoelectric signal amplitude and median fre-
quency [42, 131]. Certain frequency-domain features show greater invariance to limb
position and contraction intensity variations while still being responsive to force modu-
lation in proportional control [132, 133]. Sparsity-inducing algorithms can help identify
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feature subspaces resilient to limb position changes [43, 134]. The limb and contrac-
tion intensity effects are sometimes also tackled using cascaded combinations of learning
models specialized on distinct levels of the confounding factor [42, 108].

Approaches based on data abundance have gained prominence in pattern recognition-
based myoelectric control because they can be easily adapted and used to multiple use
cases [42]. These methods integrate the effects of confounding factors directly into the
training data by eliciting those factors in a structured manner during the acquisition rou-
tine. Consequently, the learning algorithm can account for broader data variability, and
the resulting model is more likely to generalize inference effectively when confronted with
unfamiliar inputs. For example, the limb position effect in myoelectric hand control is
most commonly mitigated by capturing muscle data for the desired hand or wrist gestures
in different arm configurations [42, 43]. While static multi-arm-position acquisition meth-
ods involve repeating data acquisition with the arm held in specific configurations [135,
136, 137, 138, 139, 140], dynamic methodologies capture data as the arm moves through
the peripersonal space [20, 141, 142, 143]. In the broader context of this work, it is
important to note that although dynamic acquisition is theoretically more efficient than
static acquisition, previous assessments of their comparative performance have yielded
inconsistent results. This aspect has been further investigated in the first supporting
publication of our work [p1].

Robust algorithms and data abundance strategies may not always sufficiently address
the challenges of domain shifts in myoelectric control. The complexity and unpredictabil-
ity of certain confounding factors may necessitate periodic recalibration or updating of
the control model [22, 117, 130, 144, 145, 146]. Such recalibration or updates of the
myocontrol model are intended to complement robust models or data abundance ap-
proaches, and are currently integrated into commercial myocontrol systems [147, 148].
User-initiated full recalibrations effectively compensate for performance degradation of
the myocontrol model [145, 149] but can be time-consuming and disruptive to prosthetic
operation [6, 150]. Incremental machine learning algorithms present a more efficient alter-
native by updating the model with a limited amount of newly available data, enhancing
computational efficiency and scalability without the need for full retraining [117, 144,
151]. Supervised incremental updates employ newly labeled data for specific prosthetic
functions showing diminished performance. The data is acquired either through a reduced
version of the data acquisition protocol or by deriving labels for the historical data implic-
itly from the myocontrol task [22, 117, 143, 152]. Conversely, unsupervised adaptation
methods use pseudo-labeling based on the model’s historical predictions in combination
with heuristics like majority voting or confidence-based sample selection [42, 130, 153,
154, 155, 156, 157]. Although unsupervised methods offer the advantage of continu-
ous and user-independent model adaptation, they tend to be less robust in maintaining
consistent performance compared to supervised updating methods [130].
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As discussed, data abundance and supervised incremental updates are fundamental
in addressing domain shifts in myoelectric control. Since both strategies relate to the
acquisition and labeling of training data, the effectiveness and efficiency of the data ac-
quisition process appear to have practical relevance for realistic prosthetic control. A
limitation of standard data acquisition protocols is their open-loop nature, where users
perform predefined routines without real-time feedback on the quality of the generated
training data for the model [11, 22]. This often leads to a protracted calibration process,
as the model’s performance and the need for additional training data only become appar-
ent post-training. Multiple iterations of data acquisition, model update, and performance
evaluations may thus be required. The work of Hahne et al. [22] initially proposed a shift
toward more closed-loop data acquisition protocols. By updating the myocontrol model
in real-time during online tasks using automatically labeled data, this approach enables
the system to quickly compensate for domain shift and the user to immediately respond to
model changes. Despite its advances, this method has been observed to restrict the user’s
involvement to the sole operation of the myoelectric interface, without enabling them to
consciously identify and produce training muscle contractions that would be most benefi-
cial for the model performance [156]. A closed-loop data acquisition approach promoting
active user involvement was introduced in one of this thesis’ supporting publications [p2].

2.7 Toward Unsupervised SP Myocontrol

Unsupervised methods for SP myocontrol focus on calibrating or updating the control
system without using labeled training data. These methods shape the control model to the
user’s existing motor skills, aiming to eliminate the need for structured data acquisition
protocols and prior signal assessment and training. Furthermore, if reliable updates
of the unsupervised model are achieved, the amount of training data available can be
significantly increased without burdening the user.

2.7.1 Abstract Decoding

Abstract decoding, or postural control, is an unsupervised myoelectric control method
that establishes arbitrary connections between sEMG channels and prosthetic functions [99,
107, 158]. The myocontrol model is defined by an expert to utilize the user’s pre-existing
motor skills as control inputs and leverage the user’s ability to learn the resulting ab-
stract motor mapping through practice. Rather than utilizing machine learning methods
to learn biomimetic motor mappings from labeled training data, this approach emphasizes
the user’s motor learning. This method extends the principles of direct myocontrol to
multichannel sEMG inputs. Each channel’s activity proportionally controls a designated
function, allowing users to command multiple functions simultaneously by activating var-
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ious channels [99, 159].
Research on motor learning indicates that, with sufficient practice, humans can mas-

ter arbitrarily complex abstract motor mappings, retain them over periods of nonuse,
and generalize the involved motor skill to different tasks [59, 160, 161, 162, 163, 164].
This holds for both individuals with and without limb differences [165]. Notably, a recent
study demonstrated that both biomimetic and abstract motor mappings result in equiv-
alent myocontrol performance provided the users are allowed sufficient familiarization
time [166]. A downside of abstract decoding is its sensitivity to electrode displacement
and other measurement issues due to the one-to-one mapping between sEMG sensors and
controlled functions [167]. To counter this, some researchers proposed using muscle syn-
ergies as control inputs for abstract mappings as they are less prone to electrode-specific
disturbances [59, 168]. This approach was validated for both the control of virtual myo-
electric interfaces and prosthetic hands [159, 160].

Despite reducing training and data labeling needs, abstract decoding still necessitates
expert supervision for motor skills evaluation and precise sEMG sensor placement [165,
169]. The necessity to tailor this approach to an individual’s physiology raises questions
about its scalability across diverse users and its impact on the broader accessibility of
myocontrol.

2.7.2 Unsupervised Machine Learning for SP Myocontrol

Recent efforts to calibrate biomimetic motor models without explicitly labeled training
data involve using muscle synergies as control inputs alongside tailored data acquisition
protocols. These protocols variably constrain the range of training muscle contractions,
aligning them with the intended prosthetic functions. By biasing the training data in
this manner, unsupervised muscle synergy estimation algorithms are influenced to reflect
functionally relevant muscle coactivation patterns, thereby facilitating a later manual
definition of biomimetic motor mapping. Due to the combination of supervised elements,
such as task-specific acquisition designs and manual establishment of the motor map-
ping, and unsupervised elements, like the derivation of control signals from unlabeled
myoelectric data, these calibration methods are often referred to as “semi-unsupervised”.

This paradigm was first introduced by Jiang et al. [84] for training SP models to
predict wrist forces. They devised a DoF-wise calibration procedure in which independent
factorization models are obtained from the unlabeled myoelectric activity of distinct
wrist DoFs. These models are then combined to enable the factorization of myoelectric
activity into a linear combination of non-overlapping, DoF-specific muscle synergies. The
process is semi-unsupervised as it does not require explicit data labeling but does rely
on users performing designated movements on demand. Later evaluation showed the
comparative effectiveness of this method for real-time myoelectric control compared to
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existing supervised calibration [170].
Kim et al. [171] and Yang et al. [172] utilized an NMF variant aimed at extracting task-

related muscle synergies without the necessity to train multiple movement-specific NMF
models. This was achieved by directly linking myoelectric samples to corresponding wrist
movements within the NMF formulation. Despite this advancement, their approach still
relied on the established DoF-wise data acquisition process. Lin et al. [91] later proposed
a regularized NMF variant that concurrently simplified both the model training and the
acquisition of unsupervised training data. This enforces the extraction of synergies with
minimal temporal overlap, allowing for a more flexible data acquisition where users can
activate and even coactivate target DoFs in any sequence. However, this process still
includes an element of supervision, as users are asked not to move undesired DoFs. This
approach demonstrated superior performance to supervised methods in Fitts’ law-style
tests with non-disabled subjects.

Yeung et al. [85] recently developed an adaptive version of the regularized NMF vari-
ant used in [91]. This was designed to update the factorization model during operation
while discounting historical information, ensuring compensation of changes in muscle syn-
ergies due to both sEMG nonstationarities and the user’s adaptation to the control task.
Their system incorporated an automated trigger for model updates, which activates when
increased coactivation of antagonistic muscle synergies is detected, signaling performance
degradation. Although this approach supported unsupervised model updates during use,
the semi-unsupervised calibration procedure of [91] was necessary to initially set up the
factorization model and establish a biomimetic motor mapping.

Although the presented calibration methods reduce the need for meticulous data la-
beling, they maintain limitations tied to constraints in the data acquisition protocol, such
as limiting calibration movements to specific DoFs [85]. This protocol assumes that users
have sufficient motor control to distinguish between gestures, which may not initially be
the case for people with limited motor skills due to limb differences. Therefore, these
methods may necessitate a preliminary evaluation and training of the user’s motor skills,
typically overseen by a medical professional. In addition, limiting the exploration of the
user’s muscle space during calibration may preclude the detection of muscle activations
that are more suitable for myocontrol by being more prominent or easier to elicit. These
issues have been first addressed in two of the supporting publications, which proposed
fully unsupervised calibration paradigms leveraging user-prosthesis interaction and ab-
stract motor mappings based on adaptive muscle synergies [p3, p4].

2.8 Interaction in Myoelectric Control

Interaction is a process in which two entities influence or react to each other by exchanging
interpretable information, possibly to achieve a common goal [173, 174]. An interaction
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is mediated by an interface, which provides a protocol that regulates the type of infor-
mation exchanged and its effects on the agents. Interaction protocols can be designed to
leverage entities’ agency and cognition, resulting in interactions of varying complexity.
For example, entities may react to feedback, influence each other, or even mutually adapt
their behavior to achieve a shared goal.

The control of myoelectric prostheses involves a continuous interaction between the
user and the myocontrol system [11, 175]. The user generates and adjusts muscle signals
in real-time to compensate for system inaccuracies and also adapts their motor control
strategy to optimize task execution, efficiency, and comfort. In response, the control sys-
tem interprets myoelectric inputs to actuate the prosthesis or to update the myocontrol
model while also providing implicit visual feedback or explicit feedback through different
modalities. The myoelectric interface includes an interaction protocol regulating the in-
formation exchange and defining the user and system’s behavior, biosensors for capturing
the user’s motor intention, and potentially a dedicated feedback system [8].

The research community increasingly acknowledges the potential of enhancing myo-
electric control through user-prosthesis interaction [8, 11, 175]. Central to this is under-
standing the interaction dynamics and the adaptive behaviors of both the user and the
control system [102, 176], which includes aspects of user adaptation, interactive machine
learning (IML), and coadaptation [8, 102].

2.8.1 User Learning

Humans improve their performance in motor tasks by adapting to external feedback [11,
42, 177]. When practicing myocontrol, users make cognitive, perceptual, and motor
adaptations necessary to master the required motor mapping [59]. By forming an internal
model of the myocontrol system, they learn to adjust their muscle inputs to compensate
for potential prediction inaccuracies in real-time [24]. Concurrently, they may develop
and refine motor skills for more effective and efficient muscle coordination [58, 164].
This usually yields increased separability, consistency, and repeatability of myoelectric
signals, as well as the potential formation of new muscle synergies through merging and
fractionation of existing ones [42, 58, 177].

As described in subsection 2.6.2, such specialization of muscle activity can lead to
shifts in the statistical characteristics of the myoelectric inputs, requiring regular model
updates to retain the model’s inference quality [11, 42]. While worsened inference in
response to user adaptation is observed in offline evaluations [25, 42, 178], this appears
to be offset by the improved user abilities in online settings [23]. Indeed, studies usually
report exponential improvements in online performance during the initial stages of using
a myoelectric interface [160, 177].
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2.8.2 Interactive Machine Learning

The human-in-the-loop characteristic of myoelectric control offers a considerable advan-
tage for calibrating and maintaining the control model [174]. Since the user may be
engaged to provide additional data and evaluate the model during operations, IML tech-
niques are often used to continuously refine the control model interactively and incre-
mentally [144, 179]. These methods enable both the user and the system to initiate
model updates interactively during prosthetic operation, aiming to counteract perfor-
mance degradation or expand the functional range of the prosthesis [180]. These updates
involve the acquisition and integration of novel training data in the model and are de-
signed to minimize the disruption of regular prosthetic use by focusing only on the pros-
thetic functions of interest. Incremental learning algorithms are utilized to conduct the
updating process effectively without necessitating full model retraining on accumulated
historical data [8, 181]. This capability allows for scaling the computational and memory
requirements with growing amounts of training data. Addressing data distribution shifts
through incremental updates is currently a standard approach in the field, as discussed
in subsection 2.6.2. Since human input can be unpredictable and varied, the design of
IML-based myocontrol methods must account for such variability, provide clear feedback
guidance, and promote user engagement.

The IML framework does not differentiate between supervised and unsupervised al-
gorithms, yet most interactive myoelectric control methods engage users in providing
labeled training data for model updates [22, 117, 146, 182, 183, 184]. The extent to
which existing methods for unsupervised domain adaptation in myocontrol qualify as in-
teractive is debatable, as they derive training samples from the data stream without the
conscious involvement of the user [130, 153, 154, 155, 185].

Although IML methods are commonly utilized in myocontrol applications to enable
on-demand model updates, only a few studies have investigated the integration of in-
teractivity within the corresponding data acquisition routines. Hahne et al. [22] and
Woodward et al. [143] designed myocontrol systems where model updates are conducted
incrementally and in real-time while the user operates the system, labeling the incoming
stream of myoelectric data through protocol-specific heuristics. As noted by Szymaniak
et al. [156], these procedures for data acquisition and model update do qualify as in-
teractive because they offer simultaneous implicit feedback on the model evolution, but
they lack dedicated interaction protocols that encourage users to actively support the
updating process with useful training data.

2.8.3 Coadaptation

Coadaptation denotes an interaction dynamic where entities adapt their behaviors and
reciprocally influence their learning processes to fulfill a shared objective [8, 11, 22, 175].
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This is evident in some real-time myocontrol applications, designed for the user and
system to synergistically define and refine the control model [8, 11, 22, 175]. Marinelli et
al. [8] describe this process as the user and system “agreeing” on the optimal input signals
to generate and how to best interpret those signals. Successful coadaptation depends on
the design of interfaces with clear bidirectional feedback, which directly affects the user’s
adaptation speed [173]. Additionally, aligning the system’s adaptation rate with the
user’s abilities is also fundamental for stable coadaptation [176, 186, 187].

An early example of a coadaptive system for myoelectric control was introduced
by Hahne et al. [22]. This system aimed to speed up the calibration of myocontrol
models by combining real-time data acquisition with model training. It enabled perform-
ing target-reaching tasks using a virtual cursor while concurrently updating the model
based on the user’s performance. When a user had difficulty reaching a target within a
set time, the system automatically updated the model using the recorded muscle signals
labeled with the current target value. The authors discussed the coadaptive quality of
this method, noting that said model updates not only accounted for confounding fac-
tors in the myoelectric signal but also promptly integrated changes resulting from user
adaptation into the system. However, Szymaniak et al. [156] observed that, while this
updating mechanism was indeed coadaptive, it lacked active user involvement besides
operating the myoelectric interface, as the model adaptation occurred without the user’s
conscious input during the system’s use.

Recently, Yeung et al. [85] explored coadaptation in an unsupervised context. Their
myocontrol system autonomously adjusted to shifts in data distributions, with the user
concurrently adapting their control signals in response to model changes, aiming for
precise myocontrol. A distinguishing feature of their method is its applicability to realistic
prosthetic control applications, as it eliminates the need for training labels, which other
approaches could only elicit from their specific experimental contexts. However, the
argument of Szymaniak et al. [156] regarding the user’s limited involvement in shaping
a joint control strategy still applies to this method. This highlights an area for potential
enhancement in future coadaptive systems, emphasizing the value of more active user
engagement and participation.

To the author’s knowledge, myocontrol strategies in which the user not only adapts
to model changes but also intentionally influences model adaptation have not yet been
presented in the literature. The first investigations into such strategies are found in two
of the supporting publications, where a coadaptive interaction protocol is employed to
calibrate myoelectric control models in an unsupervised manner [p3, p4].
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2.9 Performance Evaluation and Metrics

This section outlines methodologies used to assess the performance of different myocontrol
applications [188, 189].

Novel machine learning models for motor intent detection are usually tested offline [9],
using public datasets of labeled muscle recordings [97, 190, 191]. Gesture recognition
models are evaluated based on prediction accuracy and similar metrics [6, 9]. The effec-
tiveness of regression models is determined by goodness-of-fit measures such as normalized
prediction errors or the R2 coefficient [9, 192]. The performance of unsupervised factor-
ization models is measured by the accuracy of their data reconstruction, assessed using
normalized errors or variance explained [56].

While offline evaluations are informative for initial tests, they do not always correlate
with online system performance due to real-time user adjustments [23, 24, 151, 193, 194,
195]. Thus, online performance assessments have become standard practice [7]. Early
assessments of new myocontrol systems often involve controlling virtual actuators [196].
Tests like target achievement control (TAC), involving virtual hand movements [197], and
Fitt’s law-style tasks with virtual cursor movements [198], are common. Performance is
measured by the number of successfully attained targets and the corresponding move-
ment quality, which depends on how quickly and precisely the target is reached [198].
Descriptors such as “gross” and “fine” are sometimes used to distinguish between initial
movements towards the target and subsequent adjustments [199].

Standardized functional assessment protocols are typically used for real prosthetic
systems, simulating daily activities and various operational challenges [189, 196]. Some
protocols, like the Box-and-blocks [200] and the Clothespin relocation [201] tests, feature
simplified tasks that capture fundamental functional requirements of many daily activi-
ties. Others, such as the Southampton Hand Assessment Procedure (SHAP) [202] and the
Assessment of Capacity for Myoelectric Control (ACMC) [203], include a wider variety of
realistic tasks to be evaluated by trained raters. Though primarily aimed at individuals
with limb differences, these protocols can also be administered to non-disabled subjects
as a preliminary testing stage. In such cases, the prosthetic device is mounted on an
unaffected limb using orthotic splints for the hand and wrist [1, 183, 204]. Using such
splints restricts hand movements and promotes isometric muscle contractions, which is
found to resemble the muscle activity observed in individuals with limb absence [205].

Long-term prosthesis use in home settings is evaluated through routine assessments,
prosthesis usage, perceived control quality, usability, engagement, and sense of embod-
iment [8, 206, 207, 208]. Feedback on prosthetic care costs and the effectiveness of
rehabilitation services also informs system validation [188].
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Chapter 3

Summary of the Publications

This section briefly summarizes the aim, motivation, methodology, and principal out-
comes of the supporting publications [p1, p2, p3, p4], which are included in full text in
the Appendix.

3.1 Publication 1: Merits of Dynamic Data Acquisition

Title: The Merits of Dynamic Data Acquisition for Realistic Myocontrol [p1]
Authors: Andrea Gigli, Arjan Gijsberts, and Claudio Castellini
Published in: Frontiers in Bioengineering and Biotechnology 8 (April 2020), pp. 1–20.
Contribution of the thesis’ author: The author of this dissertation conceived the
original idea for the study. He then led the design and execution of the experiment, the
data analysis, and the manuscript drafting in collaboration with the coauthors.

Aim and Motivation

The objective of this study was to compare two multi-arm-position data acquisition pro-
cedures, namely a static and a dynamic variant, depicted in Figure 3.1. These approaches
are often used to increase the robustness of hand gesture recognition models to changes in
the arm position. Such changes pose a challenge for the myocontrol of prosthetic hands
because they introduce variability in the muscle signal that does not pertain to hand con-
trol. In order to enable the myocontrol model to capture this variability, training data
for desired prosthetic functions is collected either by holding the arm statically in various
configurations or by moving the arm across the reachable space. Although both these
static and dynamic variants have proven promising in enhancing myocontrol, a direct
comparison to ascertain their effectiveness was absent in the literature. In the broader
scope of this dissertation, conducting this comparison served as a preliminary step to
determine which approach held greater potential for myoelectric control and deserved
consideration for further interactive redesign.
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(a) (b)

Figure 3.1: Multi-arm-position data acquisition methods to offset limb position effects
in myoelectric hand control. (a) In static variants, myoelectric training data for the
desired functions of the prosthetic hand is acquired in multiple hand configurations. (b)
In dynamic variants, training data is recorded while moving the arm in the peripersonal
space. Reprinted from Gigli et al. [p1], ©2020 Gigli et al.

Methods

The two data acquisition protocols were compared in a user study in which the result-
ing myocontrol models were used for realistic prosthetic control. Fourteen non-disabled
subjects engaged in controlling a bimanual prosthetic system that included two commer-
cially available armbands for multichannel surface electromyography (sEMG) measure-
ments worn around the forearm and two prosthetic hands mounted on orthotic splints of
the hand and wrist. The static acquisition protocol involved multiple arm configurations
obtained by combining different arm positions and two different forearm orientations,
while the dynamic acquisition was performed by moving the arm along a trajectory that
interpolated these configurations. The collected data was employed to train myocontrol
models for simultaneous and proportional control of three prosthetic functions, namely, a
power grasp, a pointing gesture with the index finger, and a resting hand gesture. These
models were learned using a nonlinear regression algorithm, specifically a variant of ridge
regression (RR) that incorporates random Fourier features (RFF) for nonlinearity. The
testing protocol entailed realistic and bimanual activities of daily living (ADLs). The per-
formance evaluation included subjective aspects, such as the perceived workload during
data acquisition and the controllability of the model, as well as objective criteria, such
as the time required to complete each myocontrol task. Finally, an offline analysis was
performed using partitions of the previously collected training data to examine whether
there was a discrepancy between the offline and online grasp prediction performance of
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the two acquisition protocols.

Results

Static and dynamic data acquisition protocols yielded comparable myocontrol perfor-
mances during bimanual ADLs, with similar perceived controllability of the prosthetic
hands and task completion times. However, the reported physical effort during data ac-
quisition was significantly lower in the dynamic case, which was also confirmed by the
considerably shorter break intervals taken by the users. These results indicated that
dynamic data acquisition is practically advantageous for calibrating myocontrol systems
robust to the limb position effect, as it provides equivalent performance, lower physical
effort, and faster completion compared to static multi-arm-position protocols. Despite
these online performance similarities, offline analysis showed a notable difference. Models
trained with dynamic data predicted the intended hand configurations significantly more
accurately when tested with static data than in the reverse scenario, indicating stronger
generalization capabilities in offline settings. The discrepancy between online and offline
outcomes, likely due to users compensating for the myocontrol model’s inaccuracies in
real-time, further confirmed the importance of evaluating myoelectric prosthetic systems
under realistic conditions.

3.2 Publication 2: Feedback-Aided Dynamic Data Ac-

quisition

Title: Feedback-Aided Data Acquisition Improves Myoelectric Control of a Prosthetic
Hand [p2]
Authors: Andrea Gigli, Donato Brusamento, Roberto Meattini, Claudio Melchiorri, and
Claudio Castellini
Published in: Journal of Neural Engineering, 17.5 (2020), p. 056047.
Contribution of the thesis’ author: The author of this dissertation conceived the
original idea for the study in collaboration with CC, led the design and execution of the
experiment, handled the data analysis, and oversaw the drafting of the manuscript. DB
and RM contributed to the study design, with DB further aiding in the execution of the
experiment. All authors contributed to the redaction of the manuscript.

Aim and Motivation

The publication aimed to improve the efficiency of protocols for the supervised calibration
of myocontrol models for prosthetic hands by introducing an interactive data acquisition
process. This approach was designed to encourage the user to generate muscle signals
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most useful for training the model, potentially decreasing the requirement for numerous
calibration cycles. The investigation originated from recognizing that while certain open-
loop strategies attempt to account for the muscle signal variability determined by external
confounding factors, anticipating and capturing the effects of these factors is challeng-
ing. This challenge is evident in dynamic multi-arm-position data acquisition routines
where it is difficult to determine a priori which arm positions might cause significant
variability in the muscle signals. In response, the study investigated a feedback-aided ac-
quisition protocol in which the system identifies difficult arm configurations in real-time
and immediately signals the user to acquire more training data for those configurations.

Methods

The study explored the efficacy of conducting dynamic multi-arm-position data acqui-
sition interactively, specifically by integrating an instantaneous feedback mechanism to
guide users in generating more useful training data. Two feedback-aided acquisition vari-
ants were developed, extending the open-loop dynamic multi-arm-position strategy from
previous work Gigli et al. [p1], and were subsequently compared to this conventional
method. In both feedback-aided versions, the myocontrol model is built incrementally
and in real-time during the data acquisition, utilizing the continuous stream of muscle
data labeled with corresponding target hand gestures. This is achieved through a variant
of the RR algorithm enhanced with RFF, which enables both nonlinear modeling and
efficient learning. Simultaneously, the model’s capacity to interpret motor intent from
incoming training data is assessed and used to produce acoustic feedback proportional to
the prediction error. Following an established interaction protocol, this feedback directs
the user to focus on acquiring more training data in the arm configurations where the
model prediction is less precise. Figure 3.2 compares standard dynamic data acquisition
to an interactive, feedback-aided variant. One of the feedback-aided variants additionally
incorporates a sample selection mechanism designed to reduce the number of incremen-
tal model updates required to calibrate the model. The experimental setup included
eighteen non-disabled participants, fitted with a realistic prosthetic system comprising
an armband for multichannel sEMG measurement worn around the forearm and a pros-
thetic hand mounted on an orthotic splint of the hand and wrist. All participants engaged
in random order with the feedback-aided acquisition strategies and the non-interactive
baseline, testing the resulting myocontrol models in realistic ADLs. The performance
evaluation centered on the task completion speed and the user-reported controllability of
the system.
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(a) (b)

Figure 3.2: Two variants of dynamic multi-arm-position data acquisition. (a) Non-
interactive variant where myoelectric training data for target hand functions is acquired
while moving the arm along a set trajectory. (b) Interactive variant where the same
movement routine is complemented by instantaneous acoustic feedback of the model
performance to prompt the acquisition of additional training data in critical arm config-
urations. Adapted from Gigli et al. [p2], ©2020 IOP Publishing.

Results

The study confirmed the potential of closed-loop data acquisition to enhance the calibra-
tion of myocontrol models for prosthetic hands. The use of feedback-aided acquisition
improved the experienced controllability of the myocontrol system and significantly ac-
celerated the execution of task sequences compared to the standard acquisition method.
Since the assigned tasks involved controlling the prosthesis in various limb configurations,
the results suggested that the interactive dynamic data acquisition effectively increased
the model’s robustness to the limb position effect. On the other hand, the feedback-
aided acquisition with sample selection demonstrated varied outcomes, aligning with the
feedback-aided version for certain participants and with standard data acquisition for
others, suggesting the necessity to further fine-tune the sample selection criterion.

3.3 Publication 3: Coadaptive Unsupervised Myocontrol

Title: Unsupervised Myocontrol of a Virtual Hand Based on a Coadaptive Abstract
Motor Mapping [p3]
Authors: Andrea Gigli, Arjan Gijsberts, and Claudio Castellini
Published in: 2022 International Conference on Rehabilitation Robotics (ICORR),
Rotterdam, 2022, pp. 1–6.
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Contribution of the thesis’ author: The author of this dissertation conceptualized the
original idea with ArG, designed and developed the unsupervised calibration approach,
designed and conducted the experiment, analyzed the results, and drafted the manuscript.
ArG further contributed to the experiment design and manuscript writing. CC was
involved in the experiment design and manuscript writing.

Aim and Motivation

This research aimed to eliminate the need for labeled muscle data for calibrating myo-
control models based on machine learning, transitioning towards an unsupervised cali-
bration protocol. This protocol was aimed at enabling users with different motor skills
to calibrate the control model through an autonomous interactive process that bypassed
data labeling. The motivation came from the challenges faced by individuals with limb
differences, who may encounter difficulties with traditional data acquisition and labeling
methods, in which precise and repeatable training muscle signals must be elicited. This
can be complex if the limb difference affects the motor control of the affected limb. For
this reason, conventional supervised calibration approaches preliminarily assess the num-
ber of distinct muscle activations a user can generate to delineate the set of controllable
prosthetic functions for the myocontrol model. Then, a signal training phase is under-
taken to refine the user’s muscle contractions to enable appropriate data acquisition and
labeling. Both these steps require supervision and guidance by medical professionals,
thus conditioning the initial engagement with the myocontrol system on the availability
of these professionals and the accessibility of clinical facilities.

Methods

This study introduced and tested a novel unsupervised myocontrol paradigm for pros-
thetic hands where the model is calibrated through an interactive and coadaptive proce-
dure between the user and the system. During this procedure, the user is tasked with
learning to control a predefined set of prosthetic functions by interacting with the system,
under the premise that there is not a biomimetic association between those functions and
the muscle contractions used to control them. The calibration sequence initiates as the
user interacts with a randomly initialized myocontrol model, employing visual feedback
to discern which muscle activations correspond to specific prosthetic functions. Con-
currently, the control system factorizes the muscle input into a set of muscle synergies
with minimal time overlap, equal in number to the controlled functions. This is achieved
through a novel adaptive variant sparse nonnegative matrix factorization (NMF). These
synergies are arbitrarily and univocally mapped to the prosthetic functions, and their
activations are employed to control those functions simultaneously and proportionally.
This interactive process defines a coadaptive dynamic in which the user learns to gen-
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erate increasingly distinctive myocontrol inputs and the system simultaneously improves
its ability to discriminate these inputs. In addition, the calibration process also helps
the user to familiarize themselves with the abstract motor mapping and the myocontrol
action defined by the system. A schematic representation of this calibration approach is
provided in Figure 3.3. Overall, the proposed approach eliminates the need for prelimi-
nary signal training and allows the user to autonomously identify and refine appropriate
control signals while calibrating the model.

Figure 3.3: Overview of the proposed unsupervised myocontrol method. The model
calibration involves an interactive process where the myocontrol system extracts salient
muscle synergies from unlabeled myoelectric data and uses their activations to control
arbitrarily associated functions of the prosthetic hand, while the user concurrently learns
the resulting abstract motor mapping. Reprinted from Gigli et al. [p3], ©2022 IEEE.

The experiment involved eight non-disabled participants who controlled a virtual hand
on a display with their forearm muscle activity, captured by a commercial armband for
multichannel sEMG measurement. The myocontrol system was set to control four myo-
control functions corresponding to hand and wrist gestures. The effectiveness of the
unsupervised calibration was compared with that of a state-of-the-art supervised calibra-
tion baseline. The baseline calibration approach utilized a nonlinear regression algorithm,
specifically a RR with RFF, to learn a biomimetic motor mapping described in a dataset
of labeled muscle data. A series of target achievement control (TAC) tests evaluated
how quickly and accurately participants could control the four prosthetic functions si-
multaneously and proportionally. Participants self-assessed the workload associated with
each calibration approach and the controllability of the resultant myocontrol model via
a questionnaire. Real-time myocontrol performance was also evaluated through metrics
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typical of Fitts’ law assessments, including task success rate, completion time, and path
efficiency.

Results

The online myocontrol performance observed for both the unsupervised and supervised
paradigms was largely similar in terms of success rate and completion time while con-
trolling each prosthetic function individually. However, for more complex tasks requiring
simultaneous control of multiple functions, the unsupervised paradigm’s linearity offered
some advantage over the supervised approach, although both paradigms saw a drop in
success rates compared to the simpler tasks. The execution quality of successful tasks,
measured in terms of path efficiency and mean error in target, seemed marginally superior
in the unsupervised paradigm, although this result lacked statistical significance. Mean-
while, controlling the unsupervised model was considered more mentally demanding,
likely due to non-disabled participants having limited experience with non-biomimetic
motor mappings. Participants also perceived the unsupervised calibration process itself
as more mentally challenging compared to performing a standard labeled data acquisi-
tion routine. This outcome could be attributed to participants utilizing their already-
established motor skills to easily complete the labeled data acquisition instead of having
to learn an unfamiliar abstract motor mapping.

3.4 Publication 4: Progressive and Coadaptive Unsu-

pervised Myocontrol

Title: Progressive Unsupervised Control of Myoelectric Upper Limbs [p4]
Authors: Andrea Gigli, Arjan Gijsberts, Markus Nowak, Ivan Vujaklija, and Claudio
Castellini
Published in: Journal of Neural Engineering, 20.6 (2023), p. 066016.
Contribution of the thesis’ author: The author of this dissertation conceived the
original idea, designed the progressive unsupervised calibration approach, conducted the
experiment, analyzed the results, and drafted the manuscript. ArG additionally con-
tributed to refining the design of the incremental factorization algorithm. All coauthors
participated in the experiment design and manuscript revision.

Aim and Motivation

The primary goal of this study was to refine the unsupervised calibration method from
previous work [p3] to create a myocontrol approach that dynamically adjusted the num-
ber of controlled prosthetic functions to users with different and evolving motor control
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abilities. The existing unsupervised calibration approach required predetermining the
number of controllable functions because the underlying muscle synergy factorization
model could only estimate a fixed number of synergies. This could represent a practical
limitation for myoelectric control, as it imposed a preliminary supervised assessment of
the user’s motor abilities and disregarded the potential emergence of new motor skills
over time. Inspired by the natural development of motor skills during motor learning
tasks, the idea was to develop a calibration method that allowed a gradual increase in
the number of controlled functions depending on the user’s current motor performance
level.

Methods

The study proposed a progressive version of the previous unsupervised calibration paradigm
[p3], in which the user could increase the number of controlled prosthetic functions over
time instead of learning multiple functions simultaneously. The same model-building
mechanism was used, where the user and the system cooperatively refine an abstract mo-
tor mapping that is based on adaptively extracted muscle synergies. In this case, however,
the user begins by learning a single function and, upon mastering it, can request an addi-
tional function to be unlocked. Accordingly, the system increases the number of estimated
muscle synergies at runtime without disrupting the existing ones through a purposely de-
signed variant of sparse NMF that is both incremental and sequential. The formulation
of the factorization algorithm was also enhanced to further promote the sparsity and
stability of the estimated synergies. Figure 3.4 summarizes this calibration paradigm.

A multi-session user study was conducted to evaluate the effectiveness and usability
of the proposed progressive coadaptive unsupervised calibration paradigm and compare
it to the previous non-progressive calibration method [p3]. Ten non-disabled (ND) par-
ticipants and two individuals with limb differences (LD) participated in the study. Half
of the ND participants and the subjects with LD tested the novel calibration approach,
while the rest tested the non-progressive baseline. The experimental setup included a
commercial armband for multichannel sEMG measurements worn around the forearm,
and an orthotic splint for the hand and wrist to enforce isometric contractions in ND
participants. The participants completed five test sessions over a period of 2 weeks, with
a minimum interval of 24 hours between two consecutive sessions and an interval of around
1 week between the last two sessions. Each experimental session included an unsupervised
calibration phase, which began with a randomly initialized model in the first session and
the latest trained model in the subsequent sessions. After calibration, participants could
customize the learned abstract motor mapping to their liking. This phase was followed
by two versions of TAC tests, one with visual feedback from the controlled hand and the
other without it. The standard TAC test was used to measure the user’s ability to pro-
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Figure 3.4: Schematic overview of the progressive unsupervised calibration method. The
model calibration is based on an interactive process in which the myocontrol system
implements an abstract motor mapping based on adaptively extracted muscle synergies
while the user is tasked with learning this mapping. This approach allows the user
to gradually increase the number of controlled prosthetic functions as they master the
existing ones without having to retrain the synergy factorization model. Reprinted from
Gigli et al. [p4], ©2023 Gigli et al.

portionally and simultaneously control the learned prosthetic functions, while the variant
without visual feedback was used to assess the internalization of the learned motor control
skills. The retention of myocontrol skills was assessed in both the short and long term
by initiating the third and fifth experimental sessions with real-time myocontrol testing
before performing the coadaptation phase. The performance evaluation involved a com-
parison of workload differences between the progressive and non-progressive calibration
approaches, as well as analyzing online myocontrol performance based on task success
rate, completion time, and metrics reflecting the quality of movement within each task.

Results

The experimental results allowed the evaluation of the progressive unsupervised myo-
control paradigm, focusing on individuals with LD and using the ND participants as a
baseline. LD participants learned to control three out of four possible functions during the
experiment, with one participant remarkably discovering one new muscle synergy during
the progressive calibration process. In contrast, the ND participants already mastered
all four functions at the beginning of the experiment. The workload related to perform-
ing the progressive unsupervised calibration remained consistently high for subjects with
limb differences, indicating an ongoing adaptation process throughout the experiment,
while it decreased significantly for the non-disabled participants over the experimental
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sessions. In TAC tests with visual feedback, the two groups achieved comparable com-
pletion times by the end of the experiment, although LD participants exhibited lower
movement quality. On the other hand, in tests without visual feedback, LD participants
performed consistently worse over the entire experiment. While LD subjects exhibited
varied retention trends, the ND group consistently showed a performance drop after a pro-
longed period of non-practice that was quickly recovered by updating the model through
a brief system calibration. Finally, ND participants reported an equivalent workload for
both the progressive and non-progressive calibration protocols, and they also achieved
comparable myocontrol performance with both methods.
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Chapter 4

Discussion of the Contributions

The studies in this thesis have investigated interaction-based approaches to enhance the
calibration process of myoelectric control models. Their results contribute to overcoming
two practical challenges in the field. The supporting publications Gigli et al. [p1] and
Gigli et al. [p2] collectively improve the efficiency of specific methods for the acquisition
and labeling of myoelectric training data by promoting a more active involvement of the
user. The research in Gigli et al. [p3] and Gigli et al. [p4], instead, circumvents the
reliance of traditional calibration approaches on labeled training data by proposing novel
unsupervised myocontrol paradigms based on a coadaptive interaction between user and
myocontrol system. This chapter details the individual and collective achievements of the
included publications, places them in the context of the existing literature, and explores
their implications for myoelectric control. In addition, common limitations and possible
directions for future research are discussed.

4.1 Interaction for Effective Training Data Acquisition

The performance of supervised model calibration protocols depends on the quality of
the labeled training data employed. In myocontrol applications, training data is usually
acquired through open-loop procedures where the user follows predetermined routines
without real-time feedback on data quality. These approaches can result in the acquisi-
tion of redundant or lacking training sets, requiring multiple calibration cycles to obtain
a satisfactory model [42, 117]. This issue is evident in multi-arm-position acquisition
methods used to increase the robustness of myocontrol models for hand gesture prediction
against limb position variations. Because anticipating underperforming arm configura-
tions is challenging due to inherent physiological variations among individuals, multiple
iterations of this data acquisition process are often necessary [134, 143].

It is hypothesized that the efficiency of multi-arm-position data acquisition could be
enhanced by integrating a real-time feedback mechanism on the quality of the training
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data. Gigli et al. [p1] presented a preliminary comparison of a static and a dynamic version
of multi-arm-position acquisition in realistic prosthetic control settings. This step was
necessary because, although dynamic methods are expected to be more efficient [43, 141],
a direct comparison with static methods could not be found in the existing literature.
After establishing the merits of dynamic data acquisition, Gigli et al. [p2] extended this
method with an interaction protocol that utilizes real-time feedback to assist the user
in acquiring further training data in the arm configurations that are found to be most
challenging for the model.

4.1.1 Merits of Dynamic Data Acquisition

The publication [p1] provided the first direct comparison between dynamic and static
multi-arm-position data acquisition protocols for countering the limb position effect in
realistic myocontrol. This investigation served as a preliminary step to determine which
acquisition strategy was more effective before extending it with a dedicated interaction
protocol. Our review of previous studies revealed mixed results in the comparisons among
single-position, static multi-arm-position, and dynamic multi-arm-position data acquisi-
tion protocols. These performance discrepancies appear to relate to the experimental
design used. For example, in offline movement recognition tasks, multi-arm-position ac-
quisition consistently outperformed single-arm-position acquisition, regardless of whether
the former was conducted statically [135, 140] or dynamically [20, 141, 209]. For online
myocontrol tasks, the reported performances were instead contradictory, with multi-arm-
position acquisition significantly improving target achievement control (TAC) perfor-
mance compared to single-arm-position data acquisition in some studies [143] but not
in others [140]. Interestingly, the study by Hwang et al. [140] found that static multi-
arm-position outperformed single-arm-position acquisition in offline evaluations but not
in online ones, even with the same experimental setup. Finally, although dynamic acqui-
sition is often recommended for its supposed efficiency and efficacy, a direct comparison
between static and dynamic multi-arm-position acquisition could not be found for online
myocontrol applications.

In our work, the two methods were compared based on their respective workloads
and the performance of the resulting myocontrol models. Myocontrol performance was
assessed by functional tests based on bimanual activities of daily living (ADLs) performed
with a bimanual prosthesis. Although only non-disabled (ND) participants could be
recruited, efforts were made to reflect the conditions of people with limb differences (LD)
by restricting the participants’ muscle activity with orthotic splints and mounting the
prostheses onto these splints [205].

Our study revealed no significant differences in online myocontrol performance be-
tween models trained with dynamic or static multi-arm-position data acquisition meth-
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ods. This result deviates from the general expectation that dynamic acquisition should
yield better myocontrol performance in ADLs by capturing functional arm movements in
the training data. A different outcome, however, was obtained for offline motor intent
recognition tests conducted on subsets of the training data. Models trained on dynamic
data showed better offline performance on static muscle data than vice versa. This appar-
ent contradiction, where dynamic data acquisition enhances offline performance but not
online performance, mirrors the previously discussed inconsistency reported by Hwang et
al. [140], highlighting how the user’s active participation in the control loop compensates
for the reduced variety of training data collected through static acquisition methods [24].
Such discrepancy further emphasizes the need for testing protocols that represent the
challenges of realistic prosthetic control.

While both data acquisition methods had similar online performance, the dynamic
approach showed distinct benefits. Not only was it designed to be more time-efficient,
but it also proved less exhausting for the participants. These benefits were reflected in
the users’ reports of reduced physical effort and in the significantly shorter rest breaks
taken during dynamic acquisition compared to the static method. Such benefits position
dynamic data acquisition as a preferable choice in realistic prosthetic control applications
to calibrate myocontrol models that are robust to limb position effects.

4.1.2 Feedback-Aided Dynamic Data Acquisition

Although dynamic data acquisition allows for effective calibration of prosthetic hands
across multiple arm configurations, it still operates within the limits of open-loop acqui-
sition methods. This process aims to cover different arm configurations in an approxi-
mately uniform way, even though some configurations may affect muscle activity more
than others, requiring additional training data. Since the model’s evaluation only oc-
curs after training, potential deficiencies in the training data may not become apparent
until after data acquisition has ended, often leading to multiple iterations of the data
acquisition process.

In order to address this limitation, two closed-loop versions of dynamic multi-arm-
position data acquisition were proposed in Gigli et al. [p2]. These included an interaction
protocol where the user is assisted by an acoustic signal to evaluate model performance
in real-time and actively target underperforming arm configurations with more training
data. This process was complemented by a simultaneous creation of the myocontrol model
through a series of incremental model updates. One of the proposed data acquisition
variants also included a sample selection protocol to focus the updates only on the most
significant training samples. Both feedback-aided variants were compared to a standard
open-loop dynamic data acquisition procedure by engaging ND individuals in ADLs using
a prosthetic hand.
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Our study showed that using feedback during data acquisition enables the definition of
myocontrol models with greater robustness to the limb position effect. This improvement
was reflected in significantly faster task completion and higher user-reported controlla-
bility compared to traditional data acquisition. These results confirmed the effectiveness
of closed-loop data acquisition, which was also emphasized in previous research.

The potential of closed-loop model calibration in myoelectric control was first inves-
tigated in the study of Hahne et al. [22]. Their approach allowed the myocontrol model
to be updated in real-time during target achievement control tasks. If a task was not
completed within a specified time interval, the system triggered instantaneous and incre-
mental model updates using the current target as a pseudo-label for the incoming muscle
signals. This improved the online myocontrol performance compared to unadapted mod-
els. The authors discussed that enabling instantaneous model updates during system
operation resulted in a coadaptive interaction, as the user was implicitly induced to ad-
just their control strategy in response to the model’s evolution. As noted by Szymaniak
et al. [156], however, it is arguable that the user’s active involvement in the model cali-
bration was limited to just operating the interface. There was no prescriptive interaction
protocol to guide users in intentionally adjusting their behavior to support the calibration
process. In contrast, the acquisition protocol proposed in our study not only informs the
user of prediction errors but also actively supports them in discerning and producing data
samples that are most useful for improving the model’s robustness.

The closed-loop calibration approach proposed by Hahne et al. [22] has also been
adopted in other works. Woodward et al. [143] integrated it into a virtual reality environ-
ment to evaluate how well the real-time model updating mechanism could accommodate
previously untrained arm postures during online TAC tests. Yeung et al. [184] extended
the adaptive model updating mechanism by introducing a directional forgetting strategy
that minimized unintended model distortions in regions of the input space not directly
targeted by each specific update. It should be noted, however, that both these works
exhibited the same limitations in user involvement discussed previously.

While the proposed feedback-aided strategy proved advantageous in our experiments,
its variant with sample selection showed mixed results. Performance was similar to the
feedback-aided strategy for half of the participants and comparable to the open-loop
baseline for the remaining half. This implies that the sample selection criterion may
have been too stringent for the low-performing participants. Although reducing the
number of training samples is beneficial for prosthetic systems with limited computational
capabilities [130], determining an optimal sample selection criterion across various setups
is challenging and necessitates further investigation.

Reflecting on how this research could translate to practical applications, it seems ev-
ident that implementing a feedback-aided dynamic data acquisition routine into existing
prosthetic systems is simple. This integration only requires basic hardware enhance-
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ments, such as adding a speaker or vibratory actuators. Moreover, the existing feedback
mechanism could be further developed into more sophisticated tools for data acquisition.
By combining the collected information on prediction inaccuracy with inertial arm track-
ing, a visualization of arm configurations with suboptimal prediction accuracy could be
created and integrated into software applications used to coordinate the data acquisition
process. In general, the proposed feedback-aided dynamic acquisition appears beneficial
for all myocontrol applications where robustness to limb position effects is desired, in-
cluding the operation of computer interfaces, virtual reality rehabilitation systems, and
hand exoskeletons [43, 210, 211].

Our feedback-aided acquisition paradigm may also be used to compensate for other
confounding factors, such as variations in myoelectric signal properties across different
contraction intensity regimes [43]. However, it is important to note that the proposed
feedback mechanism was developed assuming that only a single confounding factor would
be present during data acquisition. In our study, limb position variations were considered
the primary confounding factor, and the acoustic feedback was directly related to model
imprecisions pertaining to this parameter. The feedback interpretation would be more
difficult if several factors were present simultaneously. This difficulty could be further
aggravated if the muscle signals were also affected by noise or unanticipated confounding
factors during data acquisition.

The feedback interpretation also depends on the user’s residual level of motor control.
This is because our calibration approach assumes that the user can generate muscle
contractions consistent with the target hand gestures and that model instabilities are
thus only due to confounding factors. If the generated muscle signals are unstable, this
may contribute to prediction errors caused by the primary confounding factor and affect
the feedback clarity. While ND individuals can effortlessly generate and maintain the
muscle contractions corresponding to specific hand motor intents while moving the arm,
this is more challenging for people with LD. Therefore, similarly to other supervised
myocontrol model calibration approaches, the proposed data acquisition method requires
users with LD to undergo preliminary signal assessment and training under professional
supervision.

4.1.3 Overview of the First Contribution

The supporting publications Gigli et al. [p1] and Gigli et al. [p2] demonstrated that
the calibration of myocontrol models based on supervised machine learning could be
rendered more efficient and effective through more active user participation. Potential
for improvement was identified in open-loop multi-arm-position training data acquisition
routines, commonly employed to mitigate the limb position effect. It was hypothesized
that real-time guidance on the relevance of training data derived from different arm
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configurations could increase the robustness of the model and thus reduce the need for
recurrent recalibrations. A preliminary experimental study demonstrated the practical
benefits of collecting data while actively moving the arm. Then, an interactive version of
dynamic data acquisition was developed where the user is guided and assisted in finding
arm configurations that require additional training data. The effectiveness of this strategy
was confirmed in realistic prosthetic control tests.

By improving the calibration efficacy, the discussed interactive data acquisition aims
to reduce the frequency of further model recalibrations. However, it is important to
clarify that periodic recalibrations remain essential for practical myocontrol. This is
because factors like muscle fatigue and user adaptation lead to gradual domain shifts
that are difficult to anticipate and elicit during the initial data acquisition. Therefore,
the approach is intended to complement periodic model updates rather than replace them.

A shared limitation of both supporting studies is that only ND participants could be
recruited. Despite this limitation, certain speculations are possible on how the obtained
results could extend to the population of individuals with LD. The advantages resulting
from the inherently shorter duration of the dynamic acquisition procedure are expected
to remain the same for the different user groups. Although the physical workload of the
data acquisition may vary depending on the weight of the residual limb and the person’s
functional abilities, the dynamic approach is likely less demanding. This is primarily
because the residual limb does not need to be held steady in potentially uncomfortable
positions for extended time intervals.

Like other supervised myocontrol approaches, the methodologies presented here de-
pend on the user’s ability to generate reliable muscle signals, often requiring individuals
with LD to undergo preliminary signal training exercises. This requirement becomes even
more critical with feedback-aided data acquisition, as inconsistent muscle inputs may not
only compromise the quality of the training dataset but also bias the feedback interpre-
tation. While it can be speculated that people with LD could learn to use feedback-aided
data acquisition as proficiently as their ND counterparts after appropriate training, direct
verification of this speculation remains necessary.

4.2 Interaction for Unsupervised Model Calibration

The second contribution of this thesis was to explore the potential of user-system interac-
tion for unsupervised myocontrol model calibration. This paradigm circumvents intrinsic
challenges of supervised calibration deriving from its reliance on accurately labeled train-
ing data. For successful data labeling, the user must execute muscle contractions that
precisely correspond to the intended target gestures. This can be challenging for indi-
viduals with limited motor control due to limb differences, imposing the necessity for
preliminary assessment and training of their residual muscle activity under the guidance
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of medical professionals. This requirement restricts users’ initial autonomy in operating
the myoelectric system and poses logistical challenges for those residing far from special-
ized clinics.

The supporting publication Gigli et al. [p3] presented a calibration method that cir-
cumvents the need for labeled training data. This is based on a synergistic interaction
between the user and system where the former is induced to generate distinctive muscle
patterns and the latter to factorize unlabeled myoelectric data into suitable myocontrol
inputs. While this method eliminates the need to perform signal training before the ini-
tial calibration of the model, it still requires a preliminary supervised assessment of the
user’s motor skills to set the number of prosthetic functions of the system accordingly.
Therefore, Gigli et al. [p4] further refined the method to enable the user to autonomously
vary the number of controlled prosthetic functions during operations. This rendered the
initial assessment of user capabilities no longer necessary, resulting in a fully autonomous
and user-centered calibration of the myocontrol system.

4.2.1 Coadaptive Unsupervised Myocontrol

Gigli et al. [p3] introduced an unsupervised model calibration paradigm based on con-
tinuous and autonomous interaction between the user and the myocontrol system. The
interaction protocol was designed to induce a coadaptive dynamic where both entities
synergistically identify and refine muscle inputs suitable for myocontrol. The user is en-
couraged to adjust their muscle contractions to align with an evolving abstract motor
mapping while the system adaptively identifies salient muscle synergies and uses them to
control arbitrarily associated prosthetic functions.

Our approach was compared to a traditional calibration procedure that uses super-
vised machine learning to learn a biomimetic motor mapping. This unsupervised ap-
proach performed equivalently to the supervised baseline when ND participants were
engaged in a series of TAC tests. This indicates that the proposed interaction protocol
effectively induced the user and system to coadapt, resulting in a synergistic identifi-
cation of muscle contractions suitable for myocontrol. The participants’ proficiency also
suggested that such myocontrol inputs corresponded to physiologically viable muscle coac-
tivation patterns, although a formal analysis of the physiological plausibility of the muscle
synergies with our newly proposed adaptive factorization algorithm was not provided.

While performing similarly to the supervised baseline, it is arguable that our unsu-
pervised calibration procedure provides several advantages related to using salient muscle
synergies instead of predefined muscle inputs and adopting abstract motor mappings. The
user is encouraged to freely explore their muscle capacities during the data acquisition,
potentially discovering and using muscle contractions that are more distinguishable and
easy to generate than biomimetic ones. Moreover, since myoelectric inputs are extracted
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adaptively, the user may gradually refine their muscle contractions during the calibration,
thereby bypassing the need for preliminary signal training under the supervision of an
expert.

Despite the observed performance equivalence between our unsupervised approach
and the supervised baseline, participants reported higher mental workload during the
calibration and control phases of the former. This was motivated by the ND participants
having to familiarize themselves with an abstract motor mapping in the unsupervised
case while being already accustomed to the biomimetic mapping implemented by the su-
pervised method. It is arguable, however, that the gap in mental workload could decrease
or even disappear for individuals with LD, especially those with limited residual motor
control. Regardless of the subject demographics, this evaluation highlighted the impor-
tance of reducing the complexity of the motor mapping when possible. This observation
informed the design of the following investigation, where users were allowed to customize
abstract motor mappings as desired after the model calibration.

To the author’s knowledge, the work discussed here was the first to achieve a fully
unsupervised myocontrol system calibration. It is important to note that the term “unsu-
pervised” refers here to carrying out the model calibration without labeled training data
and without obtaining task-related information about the training data through dedi-
cated heuristics. This term, however, finds a broader interpretation in the myocontrol
literature. Several calibration routines have been proposed to learn biomimetic motor
mappings with only minimal supervision and have been referred to as “unsupervised” or
“semi-unsupervised” [84, 85, 91, 170, 171]. These approaches derive control signals by
extracting task-specific muscle synergies from unlabeled data using unsupervised factor-
ization algorithms. To condition the factorization process to estimate task-specific muscle
synergies, they restrain the range of phantom movements allowed during the acquisition
process to the targeted prosthetic functions. A biomimetic mapping is then obtained
by manually matching each extracted synergy with the prosthetic function that is most
likely related to it. This constrained calibration assumes that the user can selectively
elicit specific phantom movements, which often requires preliminary signal training. The
interested reader is referred to subsection 2.7.2 for a more detailed presentation of these
works.

Approaches for unsupervised domain adaptation are also sometimes referred to as
“unsupervised myocontrol” in the literature [155]. These techniques learn the myocontrol
model in a supervised way, then use the model’s runtime predictions to automatically
assign pseudo-labels to historical muscle data, and update the model with such newly
labeled data using supervised algorithms [130, 154, 155]. More details on these strategies
can be found in subsection 2.6.2. In contrast, our methodology updates the control model
during the calibration process using unlabeled data, aiming to identify muscle synergies
with minimal temporal overlap for optimal use as myocontrol control inputs.
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The research of Yeung et al. [85] combined the semi-unsupervised calibration method
described previously with a mechanism for continuous unsupervised domain adaptation
during real-time myocontrol. After a non-interactive and semi-unsupervised initial cal-
ibration of the control model, their system enabled closed-loop unsupervised model up-
dates during online myocontrol tasks. These updates dynamically adjusted the control
inputs, based on salient muscle synergies, to compensate for shifts in muscle character-
istics due to confounding factors or the user’s adaptation. Their adaptive nonnegative
matrix factorization (NMF) formulation appeared remarkably similar to the formula-
tion presented in our work [p3] despite being developed independently and concurrently.
This parallel remarks the growing interest within the research community in advancing
adaptive myocontrol methods that minimize the necessity for supervision. The formal
differences between the two factorization methods lay in emphasizing the estimated syner-
gies’ temporal independence or stability. The most distinguishing aspect of our approach,
however, was employing the adaptive factorization algorithm throughout the calibration
phase, enabling a coadaptive definition of the control model.

The term “coadaptation” also finds broad interpretation in the literature. While sev-
eral myocontrol techniques that leverage interactive machine learning can lead to coadap-
tation between the user and the system, this coadaptation often emerges as a byproduct
rather than a deliberately deployed mechanism. For example, works such as Hahne et
al. [22] recognized user-system coadaptation during the operation of adaptive myocontrol
systems but did not systematically leverage it to improve the control quality. Specifically,
they recognized a coadaptive dynamic in the user adapting to the system’s incremental
changes during myocontrol operations, but they did not engage the user in consciously
adjusting their control strategy to optimize the model updating process [156]. A similar
coadaptive dynamic could be observed in the previously discussed system of Yeung et al.
[85], where real-time model updates were performed without the user’s active involvement
but implicitly caused the user to adapt to changes in the system’s behavior. In contrast
to prior works, our methodology emphasizes the user’s active role in coadaptation. The
user drives the coadaptive dynamic by intentionally exploring their control signals, using
the myoelectric interface as a means for this exploration rather than just a platform to
complete myocontrol tasks.

While the presented methodology eliminates the necessity for preliminary supervised
signal training, it still requires a preliminary assessment of the user’s motor skills before
they can engage with the myocontrol system. Such an assessment focuses on determining
the number of independent muscle signals the user can generate with their residual limb.
The obtained information is used to calibrate the factorization model so that the number
of extracted muscle synergies is consistent with the user’s identifiable motor skills. An-
other limitation pertaining to the muscle synergy estimation process is that the utilized
adaptive NMF variant does not allow changing the number of extracted muscle synergies
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during operation. This does not accommodate the possible development of new motor
skills that the user may exhibit while practicing with the myocontrol system.

4.2.2 Progressive and Coadaptive Unsupervised Myocontrol

The presented coadaptive unsupervised calibration paradigm [p3] has been extended in
Gigli et al. [p4] to allow for a gradual increase in the number of controlled functions
during operation. This extension, referred to as progressive unsupervised myocontrol
(PUM), enables the user to start the calibration process with only one function and
to introduce more functions upon mastering the previous ones. By implicitly adapting
to the number of muscle control signals available to the user, this approach aimed to
eliminate both preliminary skill assessment and signal training requirements. In addition
to this dedicated interaction protocol, the paradigm also introduced a sequential variant of
adaptive sparse NMF, which allows increasing the number of factorized components over
time while promoting the continuity of preexisting components without explicitly storing
the historical data. A multisession user study validated the PUM paradigm in terms
of achieved myocontrol performance, motor skill learning and retention, and workload
compared to a non-progressive unsupervised calibration counterpart, adapted from Gigli
et al. [p3]. Individuals with and without LD controlled a virtual hand on a screen to
conduct the unsupervised calibration and to complete TAC tests with or without visual
feedback.

The experiment results validated the effectiveness of PUM in enabling users to learn
myocontrol functions in a progressive manner. By the last session of the experiment, par-
ticipants with LD matched the success rates of ND participants using the progressively
calibrated model, even though they mastered one function less. In this comparison, the
performance of ND participants served as a best-case scenario because their preexisting
motor skills and limb proprioception were expected to give them an inherent advantage
in myoelectric control. All subjects achieved satisfactory success rates in basic actions,
consistently with other methods of simultaneous and proportional (SP) control, both
unsupervised [p3, 85] and supervised [143, 212, 213]. Conversely, success rates for com-
bined actions were worse than those of other existing methods [212, 213], possibly due
to different experimental designs. Yet, the experiment in Gigli et al. [p3], which used
the same experimental design, showed similarly low performance on combined actions for
both a non-progressive version of unsupervised calibration and a state-of-the-art super-
vised calibration method. In addition, both PUM and its non-progressive counterpart
yielded comparable myocontrol performance. Both algorithms showed similar perfor-
mance retention after a one-week break, suggesting that the calibration approach did
not significantly affect recall and recovery of learned motor skills. However, it should be
noted that this comparison was based only on ND participants, as both participants with
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LD were assigned the non-progressive algorithm.
Evidence from the experiment suggests that the proposed PUM method not only

aligned the myocontrol model with the user’s developing motor skills but also promoted
such development. One subject with congenital limb difference expanded their motor skill
repertoire by gaining control over a previously unexplored muscle synergy while practicing
with the system. This was particularly remarkable considering that the subject had lived
their entire life without this motor skill due to their congenital condition. This outcome
was arguably related to the progressive nature of the PUM approach. By introducing
a single function at a time, the method allows for a focused and gradual exploration of
the user’s muscle abilities, challenging them to identify new muscle signals without over-
whelming them with the task difficulty. In line with the principles of the Challenge Point
Framework [214], this strategy arguably enhances the efficiency of motor skill learning.
In comparison, calibration methods where users are confronted with learning multiple
functions at once may complicate the motor learning process.

The idea, implemented by the progressive calibration method, of building the myo-
control model by progressively introducing and learning new myocontrol functions finds
a foundation in the principles of motor learning. It is observed that during human de-
velopment or when practicing new motor skills, the motor control system may alter the
structure of existing muscle synergies [215], fraction or merge them [58], and even form
new ones [216, 217]. Specifically, the development of new muscle synergies in the upper
limbs is also observed during the operation of myoelectric interfaces [216]. Additionally,
the idea of gradually increasing the number of myocontrol functions during prosthetic
control has also been illustrated in recent work by Nowak et al. [218]. There, a super-
vised myocontrol model was progressively recalibrated with more prosthetic functions as
the user gained proficiency with the available ones.

While the PUM paradigm showed considerable potential, it was observed that par-
ticipants with LD needed more time to perform progressive model calibration, that is,
to identify and learn the required motor skills. Specifically, they were unable to master
the final myocontrol function within the five experimental sessions, in contrast to most
ND participants who had learned all functions already during the initial session. In the
TAC tests, the success rates of people with LD only reached those of ND participants
by the final session. Furthermore, people with LD exhibited prolonged task completion
times and diminished movement quality. Their pronounced reliance on visual feedback
during myocontrol, shown by their lower performance in target-reaching tests without
visual feedback, indicated lower skill internalization. Finally, unlike ND subjects, their
self-reported workload did not decrease across all sessions, signaling a sustained learning
effort. These observations hinted at further potential skill enhancements with extended
system practice. Notably, existing studies corroborate this lengthy learning process for
individuals with LD. For instance, a study by Nowak et al. [218] demonstrated that even
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under professional supervision, a subject with a limb difference took seven sessions to
learn a third myocontrol function and as many as eighteen sessions to master a fourth.

The study faced a limitation due to recruitment constraints, which resulted in a small
cohort of only two participants with LD. This limited sample size prevented drawing
statistically significant conclusions regarding the efficacy of the progressive unsupervised
myocontrol method. Furthermore, the absence of a direct comparison between PUM and
its non-progressive counterpart in subjects with LD left uncertainties about the potential
of PUM to distribute the learning workload more efficiently. It was anticipated that PUM
would reduce the initial mental workload compared to learning multiple functions simul-
taneously. However, the reported workload was similar for both calibration strategies.
This unexpected result could be attributed to the ND participants leveraging their exist-
ing muscle synergies to easily master all myocontrol functions. Therefore, further research
is warranted on larger samples of individuals with LD. This could strengthen the validity
of performance outcomes achieved with PUM and provide more precise insights into its
capacity to manage and distribute the learning workload compared to non-progressive
calibration variants.

In addition to its primary role in the unsupervised calibration of myocontrol models,
the proposed visualization of the synergistic activity of residual muscles can be useful
whenever an autonomous exploration of one’s own muscle space is desired. Although
our visualization strategy was initially developed for unsupervised myocontrol to by-
pass conventional preprosthetic signal assessment and training, it may surprisingly also
prove effective in allowing the user to perform these steps autonomously in preparation
for supervised model calibration. Conventional signal training methods use biofeedback
from surface electromyography (sEMG) sensors targeting specific muscles, which require
healthcare professionals to precisely locate control sites through direct muscle palpation
and myotesting [13, 14, 17]. In contrast, our synergy-based biofeedback provides an in-
tuitively interpretable visualization of the higher-level motor commands encoded within
coordinated measurements of non-specifically placed sEMG sensors. Such a biofeedback
method could enable prospective prosthesis users to undergo preprosthetic training rou-
tines autonomously in their home environment before fitting a prosthesis. Encouraging
a prolonged and self-directed exploration of one’s muscle abilities could facilitate the
subsequent supervised calibration process and thus improve initial engagement with the
prosthesis.

The discussed biofeedback mechanism may also hold the potential for assisting indi-
viduals with severe motor impairments to control assistive platforms using myoelectric
interfaces. In some cases of traumatic injury, neuromuscular disease, or neurodegenera-
tive conditions, the ability to elicit observable muscle contractions may be significantly
reduced, yet some residual myoelectric activity often remains measurable [219]. Tradi-
tional preprosthetic user training methodologies may not be effective in these situations
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because they usually rely on visible muscle contractions to identify control sites [13, 14,
17]. One approach to identifying control sites could involve having the user interact with
a myoelectric interface, providing biofeedback from a dense array of sensors uniformly
placed over areas with potential residual myoelectric activity. This approach, however,
can be complex if the muscle activity is weak or unreliable, leading to low signal-to-noise
ratios in individual channels. In such cases of weak muscle activity, our biofeedback
method may offer more reliable detection of motor intents as it focuses on the coor-
dinated activation of multiple channels, which is collectively more noise-resistant than
individual channel measurements. Importantly, our method is designed for real-time use,
enabling the user not only to identify but also to reinforce emerging motor commands
while interacting with the myocontrol interface.

The visualization of the muscles’ synergistic activity also presents a significant prospect
for aiding the rehabilitation of motor functions in individuals with specific neurological
motor impairments, such as stroke survivors. By interacting with the myocontrol system,
individuals can practice and reinforce existing muscle synergies, as well as support the
recovery of impacted functions. Notably, the ability of this system to track the number
of recovered muscle synergies may serve as a physiological indicator for the rehabilitation
progress [220, 221].

The biofeedback system could also be integrated into consumer-oriented myoelectric
interfaces within wearable devices such as smartwatches. Some of these devices already
incorporate gesture recognition sensors to enhance user interaction with computer sys-
tems [222], while others are planning to incorporate similar technologies [223]. Given
the technological constraints on these devices’ dimensions and power consumption, the
complexity of the sEMG setup may be limited, allowing only a small number of sensors
and a limited sampling frequency. The discussed biofeedback could be utilized to simplify
gesture detection tasks from such constrained measurement setups by determining the
most distinguishable muscle activation prior to calibrating the intent detection model.

However, further refinements to the system are warranted for a broader deployment
of the autonomous muscle space exploration mechanism in home or commercial settings.
Simplifying the user interface is necessary to ensure users can easily set up and manage
the system settings without supervision. Moreover, it is crucial to develop automated
heuristics to address potential instabilities of the adaptive factorization algorithm, such
as zero-locking phenomena.

4.2.3 Overview of the Second Contribution

The supporting publications Gigli et al. [p3] and Gigli et al. [p4] introduced and vali-
dated a novel calibration paradigm for myocontrol models that eliminate the need for
labeled training data. The model is built through a user-driven interaction in which
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the user and system mutually adapt toward a synergistic control strategy. This process
accommodates users with different motor skills and prior experience in prosthetic con-
trol. Unlike in conventional supervised calibration, the user is not expected to produce
precise and consistent muscle control signals from the beginning, and instead, they are
enabled to define and refine their motor control strategy gradually. Consequently, this
approach eliminates the conventional requirements of preliminary skill assessment and
extensive signal training, which typically require assistance from healthcare profession-
als. This, in turn, alleviates the problems associated with the availability of experts and
the accessibility of rehabilitation clinics.

The unsupervised calibration paradigm was first introduced in Gigli et al. [p3]. This
calibration approach involved the development of a new incremental variant of NMF, an
abstract motor mapping based on muscle synergies, and a dedicated interaction protocol.
The interactive process involves simultaneous learning of multiple prosthetic functions,
whose number is determined to reflect the user’s existing motor skills as determined by
prior professional assessment. The approach does not require preliminary signal training,
as it relies on the user’s ability to improve their control strategy autonomously during
the calibration process. This methodology was further advanced in Gigli et al. [p4] by
allowing users to learn the myocontrol functions progressively, unlocking new functions
upon mastering the existing ones. This design implicitly aligns the number of controlled
functions with the user’s existing motor skills, thus eliminating the need for prior assess-
ment of those skills. This structured approach also encourages the development of new
motor skills by challenging the user to explore their muscle space while controlling the
complexity of the task.

Our research validated the efficacy of using muscle synergies as control signals for
achieving simultaneous and proportional myoelectric control, already observed by pre-
vious works [84, 160, 170, 224]. Particularly when muscle synergies are estimated with
NMF, the linear relationship between the intensity of muscle contraction and the corre-
sponding synergy activation levels facilitates proportional control. In addition, the linear
and additive nature of NMF inherently eases simultaneous control, allowing the user to
intuitively combine different functions. While non-linear methods might better capture
complex muscle coactivation patterns [225], their potential for intuitive and proportional
control compared to linear factorization methods is yet to be fully established.

The proposed calibration approach has, to some extent, overcome the traditional sep-
aration between the calibration and the use of myocontrol models by integrating the
operation of the myocontrol interface into the calibration process. However, achieving
the reverse is currently not possible with our system. The model calibration cannot be
transparently integrated into real prosthetic operations as it relies on active and conscious
participation from the user. During this process, the user must focus on generating dis-
tinctive muscle synergies that control the available prosthetic functions individually and
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cannot concurrently operate the prosthesis for other purposes. For example, if the user
repeatedly controlled prosthetic functions in combination, the system could merge the
corresponding control synergies, resulting in the inability to selectively control some of
the original functions. Unlike our method, the unsupervised adaptation proposed by Ye-
ung et al. [85] enabled continuous model updates during myocontrol use. Their method
automatically adjusts the model to compensate for erroneous coactivation of antagonistic
muscle synergies. However, the identification of antagonistic synergies was only possi-
ble in their study because they focused on biomimetic control of specific antagonistic
functions obtained through a semi-unsupervised initial system calibration. Moreover, to
the author’s understanding, their method is similarly susceptible to the aforementioned
potential synergy shifts due to combined activations.

While our unsupervised calibration approach is expected to mitigate confounding fac-
tors such as muscle fatigue, changes in skin impedance, or electrode shifts through regular
model updates, the limb position effect may pose more significant challenges. Without
knowledge of the current arm position, the unsupervised algorithm may have difficulty
distinguishing intentional changes in muscle activation from unintended distributional
shifts caused by arm movements. This means that a specific motor intent may have a
clear synergy representation in one arm configuration but not in another, compromising
stable myocontrol across different arm positions. Attempting to identify a more consis-
tent synergy set by moving the arm during the calibration process may not be sufficiently
effective. This could either yield an inadequate synergy representation or cause the fac-
torization model to continuously change to adjust to specific arm positions. One possible
approach to mitigate this problem could be to estimate muscle synergies using features of
the sEMG that have some degree of invariance to the limb position effect, such as certain
power spectral descriptors [42, 43, 139]. However, efforts would be required to ensure
that such features meet the nonnegativity requirements of NMF.

4.3 Further Remarks

The experimental evaluation of our proposed calibration methods was designed to yield
insights pertinent to the application of these methods in real-world prosthetic control
scenarios. Ideally, such assessments should involve online evaluations using prosthetic
devices, where individuals with LD engage in ADLs, measuring both objective perfor-
mance and subjective user feedback. Given the logistical constraints and the charac-
teristics of the tested methods, adaptations to these testing conditions were necessary.
The proposed feedback-aided data acquisition protocol was examined in an experiment
that closely mirrored everyday prosthetic control, engaging participants in ADLs using
prosthetic hands. However, due to logistical limitations in the recruitment process, only
ND people could participate in the evaluation. Despite this, thorough discussions were
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included regarding the relevance and applicability of these outcomes for actual prosthetic
hand users. The evaluation of the progressive unsupervised calibration paradigm, instead,
involved both individuals with and without LD. In this case, the methodological novelty
of the approach demanded a more structured experimental setup involving the control of
a virtual hand on a screen. More direct and comprehensive assessments of these methods
and their developments are encouraged for future research. These should ideally involve
larger groups of individuals with LD engaging in realistic prosthetic control.

The research presented in this dissertation focused on rendering the calibration of
myocontrol models more user-centered, with specific advantages in terms of efficiency,
adaptability, and reduced reliance on professional supervision. Importantly, this shift
towards increased user autonomy during the model calibration process was intended to
complement, not replace, the role of healthcare professionals in prosthetic control. Their
contribution remains indispensable in other aspects of myocontrol, such as in devising
customized rehabilitation and prosthetic training plans. Moreover, direct interaction
with a human supervisor is paramount in promoting effective prosthetic use, establishing
a positive perception of the device, and supporting its long-term acceptance [8, 226]. This
synergy between user autonomy and professional guidance is fundamental in developing
a comprehensive and effective approach to prosthetic control.
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Chapter 5

Conclusion

The research outlined in this dissertation has demonstrated the benefits of leveraging
user-system interaction for the calibration of myocontrol models for prosthetic
hands. By devising interaction protocols that promote mutual understanding and active
collaboration between the user and the system, more efficient and convenient creation of
the myocontrol model could be achieved. The motivation for this research stemmed from
observing that specific challenges in myocontrol model calibration could be addressed
by leveraging the ability of the user and system to react, influence, and adapt to one
another. The role of these abilities is recognized for the successful operation of prosthetic
devices, where the user actively participates in the control loop by modulating the control
signals to compensate for possible model inaccuracies. Despite this intrinsically interac-
tive dynamic in myoelectric control, it was noted that existing calibration methods only
marginally exploited this potential.

The first contribution of this work focused on improving the efficacy of super-
vised calibration of myocontrol models by investigating an interactive approach to data
acquisition and labeling. This approach aimed at promoting an active role of the user
during the data acquisition, particularly in identifying and generating more useful train-
ing data. This was in contrast with traditional data acquisition methods where the user
generates muscle training signals following predefined routines and the model quality is
evaluated only after data acquisition, often resulting in multiple iterations of the data
acquisition process to obtain a model with satisfactory performance. This research specif-
ically concentrated on acquisition protocols that improve the robustness of myocontrol
models to limb position variations by acquiring training data for the desired prosthetic
hand gestures in multiple arm configurations. The hypothesis was that by adapting these
multi-arm-position data acquisition methods into an interactive design, users could be
directed to identify the arm configurations where more data was necessary, aiming to
enhance the efficiency of the data acquisition process.

A preliminary analysis was conducted in Gigli et al. [p1] to compare two main ap-
proaches for multi-arm-position data acquisition, one in which the arm is held in different
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arm configurations and the other in which the arm is moved across the reachable space.
This study aimed to determine the most beneficial method for realistic prosthetic myo-
control before redesigning the methodology for interactive use. The results highlighted
the advantages of the dynamic version, especially in terms of lower physical effort and
faster execution, while providing equivalent robustness to the limb position effect. This
finding informed the myocontrol field about the practical merits of dynamic multi-
arm-position data acquisition for managing the limb position effect and motivated the
subsequent investigation of an interactive redesign of the dynamic acquisition method.

An interactive version of dynamic multi-arm-position data acquisition was
designed and assessed for realistic prosthetic control in Gigli et al. [p2]. The data acqui-
sition featured an algorithm for real-time incremental model building and an interaction
protocol where auditory feedback on prediction errors directed users to acquire more
training data in challenging arm configurations. This approach enhanced the efficacy
of the data acquisition process, improving the model’s robustness to the limb position
effect in prosthetic control tasks. Although further validation with individuals with limb
differences remains necessary, this study highlighted the practical potential of conduct-
ing supervised myocontrol model calibration interactively. This potential might extend
to myocontrol applications beyond prosthetic control, in any scenario that requires the
recognition of hand gestures during unrestrained limb movements. Examples include tele-
operation of robotic and assistive platforms, interaction with virtual reality, or interfacing
with computer systems [227, 228, 229, 230].

Beyond investigating certain inefficiencies of supervised calibration methods, this re-
search recognized challenges that individuals with limb differences inherently face with
these methods. To accurately label training myoelectric signals, existing data acquisition
methods rely on the user to elicit stable, distinctive, and repeatable muscle contractions
upon request. However, this task may be difficult for individuals with limb differences due
to the potential lack of visual and proprioceptive feedback from a healthy limb. These
challenges have practical implications for the preparatory steps of supervised myocontrol
model calibration. The user must undergo a preliminary assessment of the number of
distinct muscle contractions they can generate, followed by extensive and targeted signal
training to learn to generate muscle signals of appropriate quality. Both these preliminary
processes require direct guidance from healthcare professionals, which can complicate the
initial engagement with the myocontrol system by conditioning its use on the availabil-
ity of an expert and the accessibility of clinical facilities. Therefore, this work’s second
contribution was exploring unsupervised calibration methods based on a structured
interaction between the user and the myocontrol system. Instead of relying on labeled
training data, these approaches enabled the user and the system to cooperatively define
the myocontrol model while interacting with each other.

Gigli et al. [p3] presented a novel paradigm for unsupervised calibration of myocontrol
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models based on an interactive process. The myocontrol system established an abstract
motor mapping between adaptively extracted salient muscle synergies and a predefined
set of prosthetic functions. Unlike supervised calibration methods, the user was engaged
in learning to control these functions upon a random initialization of the model. This
direct interaction between the user and system, along with the adaptive characteristic of
the synergy factorization algorithm, induced a coadaptive construction of the myo-
control model. While the system updated the model to better differentiate distinctive
control signals within the muscle activity, the user concurrently attempted to generate
such distinctive signals.

The proposed unsupervised paradigm was validated against a state-of-the-art super-
vised approach, demonstrating the capacity to produce models with equivalent perfor-
mance in myoelectric control of virtual prosthetic hands. To the author’s knowledge, this
study was the first to demonstrate the feasibility of fully unsupervised myocontrol model
calibration, which is of practical relevance to the field of myoelectric control. Besides
not requiring labeled training data, this approach does not constrain the user’s muscle
activity during the calibration process, as it is done in other existing semi-unsupervised
calibration methods to implement biomimetic motor mappings. This aspect emphasizes
a practical advantage of utilizing abstract motor mappings in myoelectric control. Since
the muscle control inputs are not limited to those physiologically related to the controlled
prosthetic functions, the user can explore their muscle space in an unsupervised and un-
constrained manner, identifying control inputs that are both distinctive and convenient to
use in practice. While highlighting the benefits of abstract motor mappings, our work also
reveals that enabling customization of those mappings is desirable to lessen the mental
workload of the motor learning task.

Compared to standard supervised calibration, the unsupervised approach showed
promise in improving the user’s autonomy during the initial myocontrol system cali-
bration. It effectively replaced the need for preliminary signal training under professional
guidance, enabling users to autonomously explore their muscle space through direct in-
teraction with the system. It should be noted, however, that while this approach reduced
the need for professional supervision, it still required a preliminary supervised assessment
of the user’s existing motor skills in order to define the number of controllable prosthetic
functions.

This coadaptive unsupervised calibration approach was further refined in Gigli et al.
[p4] to enable the user to learn myocontrol functions progressively rather than
simultaneously. The refined calibration was based on an entirely user-driven interac-
tion protocol and on a novel adaptive synergy factorization algorithm that allowed to
dynamically change the number of estimated muscle synergies without disrupting the
already extracted ones. The user began the interaction by practicing with one prosthetic
function and gradually requested unlocking more functions upon mastering the available
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ones. The results of a multi-session user study showed that the novel calibration approach
enabled participants with limb differences to calibrate and use a myocontrol model with-
out preliminary supervised assessment or training of their motor skills, and to achieve
performance comparable to non-disabled individuals. Notably, the method also enabled
one participant with a congenital limb difference to expand their motor skill set by
discovering a previously unrecognized muscle synergy in a completely autonomous way.

Overall, the progressive coadaptive unsupervised calibration method emerges as a vi-
able alternative to standard acquisition and labeling of myoelectric data. Because the
method automatically detects the most appropriate myocontrol signals within the user’s
muscle activity, its success does not depend on the user’s ability to generate precise
and potentially challenging muscle contractions. In turn, this eliminates the need for
supervised signal training, which is often a preparatory step for supervised calibration.
This aspect reduces the financial and logistical burden associated with professional su-
pervision for control model calibration and promotes an earlier and more autonomous
engagement with the myocontrol system. Moreover, since an adaptive refinement of
control signals is possible during the model calibration, and not only during preparatory
exercises, this method may also benefit users with initially limited motor skills, allow-
ing them to refine their control signals through autonomous direct interaction with the
myoelectric system. At the same time, by enabling users to progressively increase the
number of controlled prosthetic functions, the calibration process automatically aligns
with the user’s preexisting motor skills, eliminating the necessity for preliminary super-
vised assessment to estimate the number of controllable functions. This adaptability
also accommodates the users’ potential evolution of motor skills over time, which makes
the calibration method especially useful for individuals with initially limited control of
residual limbs, who may develop control over more muscle groups over time.

It was observed that the visualization of salient muscle synergies embedded in our
unsupervised calibration methods may also serve as an advanced biofeedback tool.
Unlike traditional biofeedback methods that focus on the individual activity of each sur-
face electromyography (sEMG) channel, this visualization synthesizes information from
multiple channels and does not require the placement of sensors on specific target mus-
cles. By utilizing this visualization during the operation of a myocontrol system, the user
can track the emergence of new muscle synergies and learn to activate them intentionally,
thus progressively expanding their repertoire of motor skills. The developed biofeedback
mechanism was discussed to find potential applications beyond unsupervised calibration
of prosthetic control systems, into the broader field of human-computer interaction. It
can facilitate the supervised calibration of myocontrol interfaces for prosthetic devices,
assistive robotic platforms, and consumer wearable electronics. It can also be beneficial
in rehabilitation settings for individuals recovering from neurological disorders. Impor-
tantly, these applications cater to a broad range of end users, including individuals with
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severe motor impairments, those with limb differences, as well as non-disabled ones.
The contributions outlined in this thesis describe a perspective shift toward a

more active user involvement in the myocontrol model calibration. Recogniz-
ing the user not only as a source of data, but as a resource with advanced cognitive skills,
reveals the potential for more effective calibration. Such potential is leveraged through
innovative interactive calibration protocols that encourage mutual understanding and
synergistic adaptation between the user and the system. This enhanced the model cali-
bration process by enabling more effective data acquisition or broadening the accessibility
of myocontrol to individuals with varied motor capacities. Importantly, it provides an
avenue for users to not only refine but potentially expand their control capacities whilst
establishing a model tailored to their needs.

Transitioning toward more user-centric calibration approaches reflects other recent
efforts in prosthetic control to develop customized training programs, enhance system
usability in daily living settings, and focus more on user satisfaction assessment. This shift
also aligns with a trend in the broader fields of rehabilitative and assistive technologies
toward customizing interventions, aimed at fostering a deeper connection and acceptance
between the user and the system they utilize. Overall, the interaction-driven calibration
approaches delineated in this work not only tackle specific technical challenges inherent to
myoelectric control but also pave the way for more personalized and accessible prosthetic
solutions.
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Natural myocontrol is the intuitive control of a prosthetic limb via the user’s voluntary

muscular activations. This type of control is usually implemented by means of pattern

recognition, which uses a set of training data to create a model that can decipher

these muscular activations. A consequence of this approach is that the reliability of a

myocontrol system depends on how representative this training data is for all types

of signal variability that may be encountered when the amputee puts the prosthesis

into real use. Myoelectric signals are indeed known to vary according to the position

and orientation of the limb, among other factors, which is why it has become common

practice to take this variability into account by acquiring training data in multiple body

postures. To shed further light on this problem, we compare two ways of collecting data:

while the subjects hold their limb statically in several positions one at a time, which is

the traditional way, or while they dynamically move their limb at a constant pace through

those same positions. Since our interest is to investigate any differences when controlling

an actual prosthetic device, we defined an evaluation protocol that consisted of a series of

complex, bimanual daily-living tasks. Fourteen intact participants performed these tasks

while wearing prosthetic hands mounted on splints, which were controlled via either a

statically or dynamically built myocontrol model. In both cases all subjects managed

to complete all tasks and participants without previous experience in myoelectric

control manifested a significant learning effect; moreover, there was no significant

difference in the task completion times achieved with either model. When evaluated in

a simulated scenario with traditional offline performance evaluation, on the other hand,

the dynamically-trained system showed significantly better accuracy. Regardless of the

setting, the dynamic data acquisition was faster, less tiresome, and better accepted by

the users. We conclude that dynamic data acquisition is advantageous and confirm the

limited relevance of offline analyses for online myocontrol performance.

Keywords: myoelectric control, prosthetic hand, dynamic data acquisition, limb position effect, performance

assessment

1. INTRODUCTION

Upper-limb prosthetics, as a branch of assistive robotics, poses a number of challenges both to
robotics and control experts (Vujaklija et al., 2016). A prosthesis is the paradigmatic wearable
device since it must be worn during most of the user’s daily life. A symbiotic use of such a
device, and eventually its embodiment, requires unobtrusive and seamless control (Beckerle et al.,
2018a,b; Castellini, 2020). Despite decades of research, such control has not yet been achieved
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and a widely clinically accepted upper-limb prosthesis has yet to
come (Castellini et al., 2014). De facto, the problem consists of
several sub-problems—the socket, the sensors, the mechatronics,
the appearance, etc.—each one of which must be solved at the
same time. Academic solutions, not tested on end-users or at
least in realistic conditions, will have little or no impact on
the life of disabled users. Upper-limb prosthetics is a deeply
holistic problem.

We hereby focus on the myocontrol problem, which is the
smooth, multi-DoF control of an upper-limb prosthesis by a
user through her voluntary muscle activity. Seamlessly providing
the right control commands to a dexterous prosthetic device is
an open problem: control based upon biological signals, such
as surface electromyography (sEMG) (Merletti et al., 2011), still
suffers from clumsiness and unreliability. Although seriously
criticized (Schweitzer et al., 2018), the academic solution of
choice nowadays is that of collecting labeled biological data from
a user engaged in a series of exemplary tasks. This data is then
utilized to build a model that maps signals to commands. By
the very nature of the approach, it entails that the initial data
acquisition phase (of necessarily short duration) must cover the
space of all possible muscle configurations that the user will enact
in the future (Castellini, 2016). Among other reasons, this is
complicated by the so-called limb position effect (Fougner et al.,
2011; Scheme et al., 2011; Peng et al., 2013), which refers to the
change in signals depending on the position and orientation of
the limb.

To alleviate this problem, incremental learning and tighter
user/prosthesis interaction are generally being studied to improve
and complete the initial dataset on demand, while users perform
their activities of daily living (ADLs). On the other hand,
whenever incremental learning is not used, the limb position
effect has been countered by extending the initial data acquisition
to include the same action (e.g., a power grasp) carried out in
several different postures (Fougner et al., 2011; Geng et al., 2012;
Peng et al., 2013; Betthauser et al., 2018). Although this strategy
can be effective, it comes at the cost of a considerably longer
and more tiresome data acquisition. There have been efforts
to limit this increase in acquisition time by replacing a static
posture in multiple positions with a single dynamic movement
that passes through these positions. For instance, Scheme et al.
(2011) have shown that a dynamic protocol not only sped up data
acquisition but also improved offline recognition rates during
simulated manipulation tasks (e.g., moving an object). An issue
with this evaluation is that offline performance is only weakly
related to online controllability (Lock et al., 2005; Jiang et al.,
2014; Ortiz-Catalan et al., 2015; Hahne et al., 2017; Krasoulis
et al., 2019). One of the reasons is that it fails to capture the
natural corrections that prosthetic users undertake in response
to myocontrol inaccuracies (Hahne et al., 2017).

Recent studies have shown increasing efforts into testing
the effects of the data acquisition on realtime myocontrol.
Batzianoulis et al. (2018) verified that dynamic training data
collected during the reach-to-grasp phase of the prehension
improved myocontrol stability during an online pick-and-place
task. Similarly, Yang et al. (2017a) and Woodward and Hargrove
(2019) acquired training sEMG data while moving the arm

and tested the resulting myocontrol models by engaging the
participants in online tests derived from, respectively, the target
achievement control and the box-and-blocks tests. Both studies
confirmed that the performance of myocontrol in online settings
improves when the training data is acquired while changing
the arm configuration rather than keeping the arm steady in
one position. However, none of the studies clarified whether
the improved performance was due to recording the dynamic
movement of the arm or merely due to the inclusion of more
arm poses. The latter study, moreover, also included multiple
levels of muscle contractions in the data acquisition, making it
impossible to determine the relative contribution of varying the
arm position and muscular contraction. More importantly, none
of the described performance assessment tests seems to reflect
the complexity of everyday actions, since the target achievement
control does not involve interactions with real objects, while the
box-and-blocks requires performing only one stable grasp in a
very limited portion of the user’s reachable space. Therefore,
it remains unclear if the claimed benefits materialize during
complex and realistic ADLs.

In this work, we characterize the effects of the static and
dynamic acquisition of training data on online myocontrol. In
particular, we focus on the loss of controllability associated
with variations of the limb position in realistic daily-living
settings. We asked 14 able-bodied subjects to follow a static
and a dynamic data acquisition protocol, while being fitted
with two commercially available hand prostheses mounted on
splints. With this equipment, and using a myocontrol model
built with either statically or dynamically acquired data, they
were required to perform a set of bimanual ADLs in a domestic-
like laboratory setting. We intentionally employed a bilateral
prosthetic setup and chose bimanual tasks to avoid the pitfall
of subjects over-relying on their unaffected limb to execute the
activities (Chadwell et al., 2018). Furthermore, this also ensures
that our study applies equally to a teleoperation scenario.

This work extends the preliminary results we presented at
a conference (Gigli et al., 2019) by including the results of a
questionnaire, in which the participants evaluated the two data
acquisition routines in terms of physical effort and achieved
system controllability. Furthermore, we also characterize the
learning effect that took place across the participants during
the familiarization phase and contextualize the findings of our
online experiments with those of previous studies conducted
in offline settings. In the following, we thoroughly describe the
experimental setup and protocol in section 2. The results of our
experiment are presented in section 3. Further discussion and the
conclusions are drawn in section 4.

2. MATERIALS AND METHODS

This study emphasizes the importance of a realistic online
evaluation of myocontrol. For this reason, we have designed
an experiment that involved subjects performing ADLs in a
domestic environment, while using a pair of commercially
available prosthetic hands. To compare our methodology with
that of previous offline studies, we also reused the collected
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training data for a standard offline grasp recognition experiment.
In the remainder of this section, we detail the experimental setup
and protocol, the evaluation measures of the online experiment,
and the design of the offline analysis.

2.1. Participants
Fourteen able-bodied subjects (age 27.9 ± 5.8 years, 10 men and
4 women) were recruited to participate in the experiment. All
of them were in good health and none of them had a previous
history of disorders that might have influenced the experiment.
Four of the participants had prior experience in myocontrol,
gained during previous studies, while the others were completely
naive to myocontrol. Before the experiment, the subjects received
an oral and written description of the experiment and signed an
informed consent form. The study was conducted at the German
Aerospace Center (DLR) according to the WMA Declaration of
Helsinki and approved by DLR’s internal committee for personal
data protection.

2.2. Experimental Setup
Each subject wore a Myo armband1 by Thalmic Labs on
both forearms about 5 cm below the elbow. This bracelet
contains 8 uniformly spaced sensors, each of which records an
sEMG signal at a sampling rate of up to 200Hz. An orthotic
hand/wrist splint was used to hold an i-LIMBTM Revolution
prosthetic hand2 by Touch Bionics at the extremity of either
forearm. Figure 1A depicts the described hardware. The i-
LIMBRevolution comprises sixmotors under direct independent
current control, permitting flexion/extension of each of the
five fingers plus abduction/adduction of the thumb. All devices
communicated via a serial-port-over-Bluetooth with a laptop
that ran the intent detection system. Software on this laptop
also guided subjects during data collection, processed the data,
trained and ran the controller of each prosthesis. In this manner,
an unobtrusive, realistic bimanual prosthetic manipulation setup
was implemented, which could be used by unimpaired subjects.

The experiment was conducted in a domestic-like
environment, which included some common household
objects, two tables, a clothesline, and a system of three shelves.
The shelves were placed at a height of 40 cm, 100 cm, and 150 cm.
The dining table and the clothesline were placed on the two
sides of the shelves. The second table was 2m away from the
clothesline. Certain objects needed some minor modifications to
be grasped by the prosthetic hands. The handles of some cutlery,
a clothes hanger, and the extremities of small clothespins were
padded to grasp them more easily. The study was videotaped for
offline performance assessment. An overview of the setup and
the environment is shown in Figure 1B.

2.3. Data Processing and Training
A custom software suite written in the C# and Python languages
was used to acquire, process, and label the input data. The signal
from each sEMG channel was rectified, computing its absolute
value, and low-pass filtered with a second-order Butterworth

1https://support.getmyo.com/hc/en-us/articles/203398347-Getting-started-with-

your-Myo-armband
2https://www.ossur.com/en-us/prosthetics/arms/i-limb-ultra

filter with a cut-off frequency of 1Hz. These signals and labels
were passed to two instances of non-linear Ridge Regression,
one per arm, which were trained with the data of the respective
limb. The resulting models mapped sEMG signals onto torque
commands for the motors of the prosthetic hands. In its
canonical form, Ridge Regression (RR) predicts outputs via a
linear model

f (x) = wTx, (1)

where w is a vector of scalar weights obtained by minimizing

min
w

N
∑

i=1

(

yi − f (xi)
)2

+ λ ‖w‖2 (2)

over a training set of labeled samples
{

(xi, yi)
}N

1
. The term ‖w‖2

penalizes the complexity of the model and its importance relative
to minimizing the squared residuals is controlled via the non-
negative hyperparameter λ. In the present work, we use a variant
of RR that achieves non-linearity by mapping the feature vectors
into a high-dimensional representation using so-called Random
Fourier Features (RFFs) (Rahimi and Recht, 2008). A detailed
treatment of RFF-RR and its use in myocontrol is given in
Gijsberts et al. (2014). The prediction function of RFF-RR is
written as

f (x) = wTφ(x), (3)

where φ is the finiteD-dimensional RFFmapping, which consists
of cosines weighted through randomly-sampled frequencies.
Without going into details, an appealing property of this
mapping is that it approximates a Gaussian kernel without
incurring the typical computational overhead of actually using
that kernel (Rahimi and Recht, 2008), provided that the
chosen mapping dimensionality D is sufficiently high. The
formulation of RFF-RR allows fast training of the model and
computation of new predictions, can be made incremental, and
is bounded in space (Gijsberts and Metta, 2011), which makes
it suitable for realtime myocontrol. Strazzulla et al. (2017), in
fact, already used an incremental version of RFF-RR for online
bimanual manipulation.

The regularization parameter λ of each regressor was set
to 1, while the bandwidth γ and the dimensionality D of the
RFF mapping to 0.5 and 300, respectively. This regression setup
allowed the simultaneous and proportional control of the degrees
of freedom (DoFs) of each prosthesis.

2.4. Experimental Protocol
The participants donned the prosthetic system, i.e., the sEMG
armbands and the prosthetic hands, at the beginning of the
experiment, and no doffing or adjustment of the sensors was
permitted afterward. This was necessary to isolate the effect of
limb position variations from those of other confounding factors,
such as the electrode shift.

All subjects in the study tested both the static and dynamic
data acquisition protocols. After each data acquisition, the system
was trained and the participants were asked to perform a
sequence of bimanual activities. This sequence was repeated
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FIGURE 1 | Experimental setup. (A) The bimanual prosthetic system consisted of two Myo armbands for sEMG measurement and two Touch Bionics i-Limb Ultra

prosthetic hands mounted on orthotic splints. (B) The experiment took place in a domestic-like laboratory setting. Tableware, clothes, and other common objects

were laid on two tables, three shelves, or on the floor. A clothesline and a vertical support for clothespins were placed next to the shelves.

TABLE 1 | Experiment organization.

Phase# Description

1 Collect training data using the first acquisition procedure

2 Familiarize on bimanual ADLs

Measure performance on bimanual ADLs

3 Collect training data using the other acquisition procedure

4 Familiarize on bimanual ADLs

Measure performance on bimanual ADLs

twice: the first time to let them familiarize themselves with
the prosthetic control, the second time to measure their
performance. These four segments of the experiment are reported
in Table 1. To counterbalance any learning effects, we inverted
the order of the acquisition types for half of the subjects: seven
randomly selected subjects started with the static acquisition
protocol, while the remaining subjects started with the dynamic
acquisition protocol.

2.4.1. Data Acquisition
In each data acquisition routine, the participants performed
some predefined combinations of grasps and arm postures. After
receiving a detailed description of the routines, the participants
tried them under the supervision of the experimenter. Then, the
experimenter guided them throughout the acquisition procedure,
supported by acoustic signals from the acquisition software.
This helped to ensure that all subjects performed the same
arm configurations and movements. We opted for such direct
guidance because the participants did not manage to precisely
follow a videotaped execution of the acquisition protocol in
preliminary trials. The desired grasp types were chosen based
on their relevance in ADLs according to the literature (Wang
et al., 2018) and proved to be sufficient to execute our evaluation
protocol during preliminary tests. We selected a resting posture,

a power grasp, and a pointing posture with the index finger.
Since our myocontrol approach was based on proportional
control and thus regression, the model was not trained to
distinguish these three grasp classes from one another, but rather
to predict the corresponding hand configurations in terms of
the degree of flexion of each finger. While the participants
were performing the grasps during the acquisition phase, the
laptop collected the related sEMG samples and labeled them
based on whether or not a given DoF was activated in those
configurations. In the case of index pointing, the system would
record a 0 for the index finger (i.e., no flexion) and 1 for all
other DoFs (i.e., flexion). The resting posture consisted of all 0
(all fingers extended), whereas the configuration for the power
grasp contained all 1 (all fingers flexed).We intentionally avoided
capturing intermediate activation values to avoid the inevitable
delay introduced by the subjects’ reaction time and to keep the
procedure as straightforward as possible for the subjects, which
is particularly relevant when considering a possible application
with amputees (Sierra González and Castellini, 2013). Moreover,
it has been shown that training on binary activation values yields
usable proportional control (Gijsberts et al., 2014; Meattini et al.,
2019).

We chose a set of limb positions that evenly covered the
subject’s reachable space, that is, the space they could reach with
their hands while standing straight. Since it is uncommon for
both hands to be crossed in bimanual activities, we excluded the
intersection of the reachable spaces of the left and right hands.
To speed up data acquisition, every grasp had to be done with
both hands simultaneously, with the arms always symmetric to
the sagittal plane. Without loss of generality, we describe the data
acquisition routine for one arm only.

2.4.2. Static Protocol
During static data acquisition, each grasp was repeated once for a
finite set of arm configurations. Previous studies indicated that
the robustness of pattern recognition based myocontrol to the
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FIGURE 2 | Static and dynamic acquisition of training data. The positions occupied by the right and left hand during data acquisition are represented, respectively, by

solid and transparent cubes. (A) Static data acquisition was performed repeating and holding the grasp in each position, first with the hand palm facing up, then

facing down, for a total of 18 repetitions for each hand. (B) During dynamic data acquisition, the grasp was maintained while moving the hands in a trajectory that

interpolated the static positions with uniform speed. The trajectory consisted of two halves, from the circle to the square and back; it was followed with the palms

down in the first half, and up in the second half. Both data acquisition routines were performed while wearing the bimanual prosthetic system.

limb position effect relates to how well the training data cover
the user’s workspace in terms of reachable positions (Fougner
et al., 2011; Radmand et al., 2014) and possible forearm rotations
(Khushaba et al., 2016; Yang et al., 2017b). For this work, we
selected 18 arm configurations that seemed to represent a good
trade-off between a homogeneous sampling of the workspace and
the duration of the resulting data acquisition. They corresponded
to reaching nine positions with the hand, first with the palm
facing down and then with the palm facing up (see Figure 2A).
We defined these positions based on three height levels (waist,
chest, head) and three relative distances from the trunk (close
in front, far in front, far lateral). We believe that this definition
favors the repeatability of the arm configuration across different
subjects since it relates to one’s own body rather than to external
references. Each grasp was held in every position for 3 s, which
was the lowest duration found in similar studies (Fougner et al.,
2011; Radmand et al., 2014; Khushaba et al., 2016), and 4 s were
allowed to move the arm from one configuration to the next. The
acquisition of each grasp type took 126 s in total, 54 s to record
data, and 72 s to reach the different arm configurations. In the
case of fatigue, the participants were allowed to pause the routine
and rest.

2.4.3. Dynamic Protocol
In the dynamic data acquisition, the subject performed the
desired grasp type with both hands while moving the arms
in a trajectory that interpolated the nine positions of static
acquisition, as shown in Figure 2B. The movement started from
the waist level with the palm down and proceeded upward,
passing through all nine positions. Then the subject flipped the
hand palm up and continued the movement backward until she
returned to the starting position. This movement was repeated

once for each grasp type, while the corresponding data was
recorded. Its duration was chosen to be 27 s, exactly half the
recording time of the static acquisition, and 4 s were allotted to
prepare the following grasp. Even in this case, the participants
could suspend the procedure to rest.

2.4.4. Activities of Daily Living
After processing the data and training the prosthesis controllers,
we evaluated the system by having the subjects perform the
bimanual ADLs that are described in Table 2. These activities
were inspired by those found in assessment protocols for
prosthetic users, such as ACMC (Hermansson et al., 2005)
and SHAP (Kyberd et al., 2009), and for patients with
motor impairments of the upper limbs, like CAHAI (Schuster
et al., 2010) and the Clothespin relocation test (Hussaini and
Kyberd, 2017). We preferred tasks that involved coordinated
movements of the arms or walking and bending, as these
were more susceptible to the limb position effect. The
experimenter explained the tasks to the participants before the
familiarization phase. Unless otherwise specified, participants
could autonomously choose which grasp to use to carry out a
certain task. For example, they could open the bottle cap by
grabbing it or pushing its edge with the tip of their index finger.
No constraint was imposed on task laterality, that is, which hand
was to be used to perform a particular action. During pick and
place tasks, the subjects could decide to move one or two objects
at the same time depending on the amount of trust they had in
the prostheses. The tasks proceeded without time limits and it
was the subjects’ responsibility to recover from errors, such as
an accidental drop of an object. An exception was made for the
last task where the experimenter replaced the clothespins anytime
they were dropped on the floor.
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TABLE 2 | Detailed description of the bimanual tasks in the performance

evaluation phase.

Task Name Description

Napkin A napkin is placed on the middle shelf,

unfolded. Take it, bring it to the dining table,

and fold it twice.

Table A plate and a glass are laid out next to each

other on the top shelf. Bring them to the

dining table, put the plate on the folded

napkin and the glass next to it. A fork and a

knife are on the middle shelf. Bring them to

the dining table and place them on the two

sides of the plate. Move two objects at the

same time if the prostheses seem reliable.

Water A bottle containing some fine gravel is on the

dinner table. Pick it up with one hand,

unscrew the cap with the other hand, pour

the gravel into the glass, put the bottle back

on the table with the cap next to it.

Food A spoon and two small balls with diameters

of 3 and 6.5 cm are contained in a bowl that

is placed on the dining table. Take the plate

with one hand and the spoon with the other,

then use the spoon to bring the balls from the

bowl to the plate.

Phone A cordless phone is connected to its base

station on the middle shelf. Take it with one

hand, dial 9-1-1 with the index finger of the

other hand, and then put the phone back in

place.

Sweep A hand broom and a dustpan are positioned

on the lower shelf, while some clothespins lie

on the floor next to a trash bin. Take the

broom with one hand and the dustpan with

the other, walk to the clothespins, bend, and

sweep the clothespins off the floor. Then

empty the dustpan into the trash bin and

bring the broom and dustpan back to their

original location.

Shirt A dress shirt and a hanger are placed on the

table. Use both hands to put the shirt on the

hanger, then hang the hanger on the

clothesline.

(Continued)

TABLE 2 | Continued

Task Name Description

T-shirt A t-shirt is positioned on a table and two

clothespins are pinned to a vertical rod in

front of the clothesline. Pick the t-shirt up

with two hands, bring it to the clothesline, put

it on the wire, and pin it with the clothespins.

2.5. Online Performance Evaluation
The effectiveness of the two data acquisition routines was
evaluated quantitatively by measuring the completion time of the
individual tasks during the performance test phase. Since we did
not impose any time limits, the completion rate of the tasks was
by definition 100%. At the end of the experiment, the participants
were requested to fill in a questionnaire with two questions
to qualitatively investigate potential differences between both
acquisition types. The subjects were first asked to report how
easy they found it to control the system on a visual analog
scale ranging from “very difficult” to “very easy.” Secondly, they
had to quantify how comfortable it was to complete either data
acquisition, on a similar visual analog scale from “very tiring”
to “very comfortable.” The effort made during data acquisition
was also quantified indirectly by measuring the amount of time a
subject requested to rest during data acquisition.

We expected to find differences in the task completion times
and the perceived levels of fatigue associated with the two data
acquisition routines. We used a two-tailedWilcoxon signed-rank
test to identify statistically significant differences between the
average task completion times and the perceived fatigue of the
two procedures. The choice of this test was based on the limited
number of participants and the within-subject study design. The
significance threshold was set to α = 0.05.

2.6. Offline Grasp Prediction
To compare our methodology with related literature, we also
conducted an offline analysis that reflects the study by Scheme
et al. (2011). For every combination of subject, arm, and
acquisition method, we partitioned the data of the acquisition
phase in training and test sets. In the static case, we assigned
the data of the odd-numbered of the 18 arm positions to the
training set and the even-numbered ones to the test set. For the
static case, which consisted of a continuous motion rather than a
set of discrete positions, we approximated the same split by first
dividing the entire data sequence into 18 parts of equal length.
This particular split was chosen to minimize leakage from the test
set to the training set due to temporal dependencies, while at the
same time limiting the distribution shift between both sets.

Distinct RFF-RR models were trained for all four datasets
(static and dynamic, left and right arm) of thirteen subjects,
where we note that one subject was excluded from the offline
analysis because the data had not been stored correctly.
These models were trained in the same manner and with
the same hyperparameters as for the online experiment. Their
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FIGURE 3 | Physical effort required by static and dynamic data acquisition. (A) Self-reported level of fatigue experienced during data acquisition. (B) Proportion of the

data acquisition duration that was spent resting. The dynamic acquisition proved to be less tiring since it required significantly less break time (∗∗∗p < 0.001). The

outcome of the questionnaire seemed to confirm this result, but it was not supported by sufficient statistical evidence. The reduction of break time also allowed to

collect dynamic data much faster than static data. In all the boxplots of this study, the rectangle indicates the range between the first and third quartiles, and the

whiskers extend to the most extreme samples within the first and the third quartile ∓ 1.5 IQR. Samples outside this range are marked as outliers.

performance was then evaluated on the test set of the same type
(e.g., static to static) as well as across acquisition types (e.g.,
static to dynamic). How well a model performed was quantified
by averaging the unadjusted coefficient of determination R2

obtained for the predicted activation levels of each DoF. The
coefficient R2 for one DoF is defined as

R2(y, ŷ) = 1−

∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳ)2

(4)

where ŷ is a vector of N predictions, y is the corresponding
ground truth, and ȳ is the average value of the ground truth.

3. EXPERIMENTAL RESULTS

We compared the two data acquisition procedures based on the
physical effort of the participants, the time needed to complete
the manipulation tasks using the resulting myocontrol models,
and the perceived controllability of the prosthetic system. We
then evaluated the effects of our methodology in offline settings
to compare it with previous works in the field.

Figure 3 quantifies the physical effort needed to complete
the data acquisition. The perceived level of fatigue was derived
from how comfortable static and dynamic acquisition were
evaluated in the questionnaire, by converting the answers into
a percentage from 0% (“very comfortable”) to 100% (“very
tiring”). Additionally, since the subjects could suspend the data
acquisition in case of weariness, a complementary metric of
fatigue was obtained by measuring the proportion of acquisition
time spent while resting. The subjects showed no agreement
on which strategy required the least physical effort. Although
the reported fatigue was lower for dynamic training, this result
was not statistically significant (average level of fatigue of

58.9% vs. 41.1%, p = 0.078, V = 81). It must be noted,
however, that dynamic training required significantly shorter
break times (43.3% vs. 17.6% of the overall data acquisition
duration on average, p < 0.001, V = 105). Taken together,
these results indicate that dynamic training was indeed less
tiring. Furthermore, they suggest that the discomfort during
static acquisition was compensated by taking longer breaks,
which would also justify the mixed opinions found in the
questionnaires. Remarkably, the shorter break times made
dynamic acquisition significantly faster than static acquisition,
especially considering that it was already shorter by design.

The real-time performance of the prosthetic system was
assessed based on the time it took subjects to complete the tasks
in the performance evaluation session that followed the data
acquisition. Figure 4 reports the performance of all the subjects
after static and dynamic training. The duration of the evaluation
session was comparable after either acquisition procedure (mean
task sequence duration of 333.8 s vs. 325.1 s, p = 0.855, V =

49). Particularly, also the completion times of the individual
tasks were comparable (no statistically significant difference),
regardless of their different requirements in terms of dexterity
and movement coordination.

Figure 5A reports the average duration of the familiarization
and the performance evaluation sessions that followed either data
acquisition. The order for the static and dynamic training was
randomized among subjects to counterbalance possible learning
effects between the two strategies. The subjects demonstrated a
strong learning effect, as they completed the evaluation session
significantly faster than the familiarization session, both after
static (average session duration of 438 s vs. 334 s, p = 0.0012,V =

100) and dynamic training (average session duration of 418 s vs.
325 s, p = 0.007, V = 94). The evaluation session also showed
reduced variability in duration across the subjects compared to
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FIGURE 4 | Duration of the tasks during the performance evaluation session. Duration of (A) the task sequence and (B) of the individual tasks during the performance

evaluation session, after static and dynamic training. No significant difference was found between the average duration of the performance evaluation session in the

two conditions.

the familiarization session, both in the static (session duration
range of 503 s vs. 284 s) and in the dynamic case (session duration
range of 501 s vs. 280 s). Nonetheless, the two data collection
procedures showed comparable task completion times during the
respective familiarization and evaluation sessions (no statistically
significant difference). In other terms, the subjects’ performance
improved rapidly over time due to practice, but this improvement
occurred independently of the data acquisition procedure.

The analysis of the learning effect continued by separating
the performance of naive and experienced subjects, and then
by dividing the naive subjects based on who tested the static
acquisition followed by the dynamic acquisition, defined as
naive SD subjects, or vice versa, defined as naive DS subjects.
Three of the four experienced subjects belonged to the SD
group. Of the remaining ten naive subjects, six were SD and
four DS. Naive participants, Figure 5B, confirmed the learning
trend described before, showing comparable performance across
training conditions while improving over time (average duration
of the familiarization and the evaluation session after static
training 505 s vs. 363 s, p = 0.002, V = 45, and after
dynamic training 451 s vs. 337 s, p = 0.0098, V = 52).
Experienced participants, instead, performed equivalently well
regardless of the training condition and did not show a significant
learning effect (average duration of the familiarization and the
evaluation session after static training 269 s vs. 260 s, and after
dynamic training 337 s vs. 296 s). The performance of naive
subjects was characterized by a higher initial variance, but it
seemed to converge rapidly to that of experienced participants

over the course of the experiment. Figures 5D,E display the
evolution over time of the performance of naive SD and naive
DS participants. In both groups, the familiarization of the second
tested condition was faster than that of the first condition
(average familiarization time for naive SD subjects 570 s vs. 394 s,
p = 0.031, V = 21; average familiarization time for naive DS
subjects 537 s vs. 407 s, p = 0.12, V = 10). The lack of statistical
evidence in the second case was probably due to the limited
number of DS subjects. This result showed that learning did not
just happen within the same training condition, but rather that
the subjects transferred some of the skills acquired for the first
training strategy to the second. This transfer effect could explain
part of the variability of the counterbalanced results, especially
during the familiarization phase.

Figure 6A describes how easy the subjects perceived the
two prosthetic control variants during the online tasks. This
information was reported in the questionnaire at the end of
the experiment and converted in a percentage from 0% (“very
difficult”) to 100% (“very easy”). The subjects’ opinions were
mixed, which overall resulted in a comparable perceived system
controllability after either acquisition strategy. Nonetheless, the
perceived controllability of the system was higher after static
training, but this was not supported by the statistical evidence
(average controllability of 70.8% vs. 57.0%, p = 0.059, V = 72.5).
Furthermore, this trend seemed to characterize only a portion
of the subjects. Those who tried the static training after the
dynamic one, Figure 6B, consistently reported improvements in
the usability of the system for the last tested condition (average
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FIGURE 5 | Duration of the tasks sequence during the familiarization and the performance evaluation sessions, after static and dynamic data acquisition. (A)

Performance of all the participants. Although the task completion time decreased significantly after the initial familiarization (∗∗p < 0.01), the performance of static and

dynamic data acquisition remained comparable both during the familiarization and the following evaluation session. This trend characterized the performance of (B)

naive participants but not those of (C) experienced participants, for whom the average session duration did not change significantly across acquisition strategies and

familiarization levels. The performance of the naive participants rapidly converged to those of the experienced ones, despite retaining a higher variance. (D,E)

Chronological evolution of the performance of the naive subjects, divided between those who first tested the static and then the dynamic condition, and vice versa.

The improvement of all the naive subjects was consistent, not only within the same training strategy but also across different strategies (∗p < 0.05). For groups with

fewer than five samples, we show the individual data points rather than a boxplot.

controllability of 75.4% vs. 51.4%, p = 0.063, V = 20).
Instead, the subjects that started with static training, Figure 6C,
found that controlling the system was equally easy under
both conditions (average controllability of 66.1% vs. 62.5%,
p = 0.61, V = 17.5). In any case, none of the observed
effects was statistically significant, perhaps because the opinions
regarding the first tested condition were always characterized by
greater variance.

Figure 7 summarizes the outcomes of the offline grasp
recognition task performed on the training data collected
during the online experiments. The prediction of desired hand
configurations in the dynamic test set was significantly better
after dynamic training as compared to static training (R2 of
0.53 vs. 0.80, p < 0.001, z = −4.46, see Figure 7A). In
addition, the dynamic training provided better performance
also when the training and the test data were acquired with
different protocols, i.e., static training followed by dynamic
testing, or dynamic training followed by static testing. Figure 7B
shows that the estimation of the intended hand posture
obtained by training on dynamic data and testing on static
data was better than the estimation obtained by training on
static and testing on dynamic data (R2 of 0.53 vs. 0.62,
p = 0.004, z = −2.86).

4. DISCUSSION AND CONCLUSIONS

4.1. General Remarks
The limb position effect requires training data to be collected

in several different body postures for each desired action to
be learned; this is because body postures alter the muscle

configuration of the forearm, thereby changing the sEMG

patterns. The traditional solution to this problem, already
appearing multiple times in literature (Fougner et al., 2011;

Peng et al., 2013; Betthauser et al., 2018), consists of simply

asking users to hold their arm statically in multiple postures

and then collecting data one posture at a time. This makes the
data collection procedure longer and potentially more tiring

than usual, especially since this procedure must be repeated

for each grasp type. A method to make it lighter and faster is
highly desirable.

The aim of this work was that of assessing if a dynamic data-
collection procedure would be better than a static one and, if so, in
which respect and why. We wanted to test the models obtained
using either data collection procedure in realistic conditions,
i.e., using prosthetic hardware to perform real-time bimanual
manipulation tasks inspired by daily living. Fourteen able-bodied
subjects were engaged in a set of realistic bimanual activities
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FIGURE 6 | Perceived controllability of the system. (A) Controllability of the system, self-assessed in the questionnaire at the end of the experiment. Subjects reported

mixed opinions about the controllability of the prosthetic system. No statistical evidence supported the modest improvement of the perceived controllability provided

by the static training. (B) The subjects who started the experiment with dynamic training and continued with static training (D-S) reported improved system

controllability for the second condition tested. (C) Those who tried the static training first (S-D) experienced equivalent controllability in both conditions.

FIGURE 7 | Offline prediction of the hand configuration using RFF-RR after static or dynamic training. (A) Dynamic training allowed better grasp prediction from

dynamically acquired data samples (∗∗∗p < 0.001). Besides, (B) the performance observed by training on dynamic and testing on static data were better than those

obtained by training on static and testing on dynamic data (∗∗p < 0.01).

(laying a table, serving food, hanging clothes, etc.), after having
performed both a static and a dynamic data collection procedure
to build appropriate myocontrol models.

The first result to be noted is that all users were able to
complete all tasks, in both training modalities. Given the realism

of the tasks they were requested to perform, this seems to indicate
that the approach of using RR with RFFs is worth pursuing.
Notice that in this specific work we intentionally refrained
from using the incremental characteristics of RFF-RR, making it
impossible to update and correct the models online; the observed
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performance, therefore, only depends on the data collected at the
beginning of the experiment. Secondly, it is worth remarking that
the time needed to acquire the training data is relatively short in
either modality. Taking into account the breaks requested by the
subjects, the average acquisition time is about 9 min for the static
acquisition and just 2 min for the dynamic one. Also allowing
for the adaptation that users naturally put in place while doing
the tasks, this indicates that both approaches rapidly yield data
with a quality sufficient to cover most of the actions required in
the experiment.

4.2. Dynamic and Static Data Collection
Provide Comparable Real-Time
Performance
The experimental results show that, quite surprisingly, there
is no difference in real-time performance (time required to
complete each task) between the static and the dynamic data
collection procedure. No statistically significant difference in
the task execution times could be found, either considering the
overall times, or the duration of the individual tasks (Figure 4).

Notice as well (Figure 5) that subjects without prior
experience in myocontrol manifest a quite strong learning
effect as they perform the tasks over and over again. However,
the uniformity between the static and dynamic conditions
persists, since there is no significant difference in performance
between the familiarization phases, as well as between the
evaluation phases. The results for the experienced participants
suggest that long-term learning of myocontrol leads subjects to
reach a consistent level of performance that is irrespective of
the acquisition protocol. This reduction in variability among
experienced subjects is in line with the findings of previous
studies on the implications of long-term user training on
myocontrol (Hargrove et al., 2017).

The equivalence between the myocontrol performance
provided by static and dynamic training somehow contradicts the
outcome of previous studies (Fougner et al., 2011; Scheme et al.,
2011), which reported improved myocontrol in offline settings
by using dynamic training data. To the best of our knowledge,
however, this is the first time in which the comparison between
the effects of static and dynamic training is carried out online,
performing realistic and complex ADLs. In line with the results
by Scheme et al. (2011), we observe that in the cross-comparison
in Figure 7B the model trained on dynamic data has higher
offline accuracy on static data than vice versa. All in all, this
result suggests once more that non- or quasi-realistic testing of
myocontrol systems is hardly a good indicator for the efficacy
or reliability of the system once put to practice in real life (Jiang
et al., 2014; Ortiz-Catalan et al., 2015). This might be due tomany
contingent reasons, such as wrong measures of performance or
wrong tasks administered to the users, but eventually it probably
has to do most of all with the excellent ability of human users to
compensate for control inaccuracies by adapting their muscular
signals. This is even more so for proportional control since users
receive immediate visual feedback of the control response of the
prosthesis (Hahne et al., 2017; Shehata et al., 2017, 2018).

Considering the capability of users to smoothen control
inaccuracies, one may wonder if this also means that we

can shorten the data acquisition even further, for instance by
reducing the number of positions. A recent study on real-
time myocontrol did not find a reduction in the online grasp
recognition rate in different positions even when training data
was acquired in just one position (Hwang et al., 2017). This
study did not involve realistic tasks and considered only one
wrist orientation and three positions; regardless, in future
work, it would be interesting to continue along these lines
and to investigate what is the minimal amount of position
variability that still yields consistent online controllability during
practical tasks.

4.3. Dynamic Data Collection Is Faster and
Less Tiresome
As is clear from the objective and self-assessed indices of
performance, acquiring data dynamically is faster, uses fewer
sEMG data, and is less tiring. Net of the possible break times
requested by the participants, the dynamic procedure only takes
27 s per grasp type instead of the 126 s needed by the static
one; this is advantageous in terms of the stress and frustration
imposed on the subjects. Moreover, from a computational point
of view, dynamic training employs roughly half the sEMG
samples needed by the static one. This could be important when
miniaturization of the whole system is planned, for instance
on a microcontroller to be embedded in the prosthetic socket.
Interestingly, while providing fewer data samples, dynamic
acquisition still results in equivalent real-time controllability to
the static one. We argue that this depends on the information
captured during the motion that joins one limb posture to the
following one, which is ignored by performing static acquisition
in multiple postures.

The subjective assessment of fatigue during either procedure
represents one of the main results of this study. Although not
statistically significant, the results in Figure 3A hint that the
dynamic acquisition was perceived as less tiring. This observation
is supported by the amount of rest the subjects requested
during either type of acquisition, shown in Figure 3B, which
was significantly less for the dynamic procedure. This indicates
that dynamic training is easier and more acceptable than the
static one. Taken together, the two results indicate that dynamic
training should be preferred over static training.

4.4. Further Remarks
According to the visual inspection of the recordings of the
experiments, and also according to the main experimenter’s
experience, the myocontrol system was not free from instabilities
and failures. For example, the prosthetic hands would sometimes
execute unwanted actions or open unexpectedly during grasps.
Mainly, these problems arose when trying to grasp while in
muscle-stressing body postures, probably akin but not exactly
matching those during data collection. Since we did not allow
subjects the possibility to update the models online, this indicates
that there still is some incompleteness of the dataset collected at
the beginning of the experiments. In other words, it cannot be
assumed that an initial calibration will suffice (Castellini, 2016).

The solution we propose to address this issue is, once again,
the exploitation of the incremental characteristics of RFF-RR
(Strazzulla et al., 2017), leading to interactive learning (Nowak
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et al., 2018). Notice that there is no conflict in mixing up
interactive learning as described in the literature and dynamic
data collection. These two strategies are orthogonal and one can
imagine updating the model online already during the dynamic
data acquisition. This would provide the user with immediate
feedback on the control response of the prosthesis; going even
one step further, the user could then guide the acquisition and
interactively acquire data exactly in those postural and dynamical
conditions where the behavior is unsatisfactory.

A complementary avenue to attenuate the limb position effect
consists of enriching the training set with sensory modalities that
directly relate to the position of the arm. Fougner et al. (2011)
showed that offline myocontrol accuracy can be improved by
integrating sEMG and accelerometry data collected in multiple
arm positions. Radmand et al. (2014) later found that the
use of inertial measurements in combination with static data
acquisition only improves myoelectric control if the training
data is acquired across many arm positions, whilst it is likely to
undermine the grasp recognition performance if a suboptimal
set of training positions is selected. When the training data
is acquired dynamically, instead, inertial measurements prove
beneficial for myocontrol quality even if the user’s workspace is
not thoroughly sampled. Finally, more recent studies confirmed
that the dynamic acquisition of myographic and inertial training
data improves the myocontrol performance also in online
settings (Krasoulis et al., 2017).

This experiment was conducted with able-bodied subjects
only, although we put them in conditions that closely mimic
the everyday life of prosthetic users. How much do our results
apply to subjects with an amputation? Although the answer can
only be found by testing our methodology on amputated users,
it seems reasonable to argue that our main result, that dynamic
acquisition is quicker and more comfortable than a static one,
can directly transfer to amputees—less muscular stress is always
good, as long as it does not hinder performance. The range of
muscle movement after an amputation is generally limited, and
the distribution of the weight of the limb across the muscular
structure can be dramatically different between amputees and
intact users; this is a further hurdle toward the translation of
our results to amputees. Nevertheless, both acquisition strategies
presented in this paper could as well be tailored to each
individual, also for transhumeral or even lower-limb amputees.
In principle, the advantage of dynamic over static training should
hold also when a tailored training protocol is designed. Lastly,
sensor-shift during limbmotion can be problematic for amputees
andmay have beenmitigated in our setup. In fact, while biosignal
sensors are normally integrated into the prosthetic socket and
may be slightly affected by its movement, we used a tight sEMG
armband that is independent of the prosthetic splint. In our
experience, however, sensor-shift can be reduced effectively with
a well-designed, bespoke socket that would still make the two
strategies equivalent.

Last but not least, the approach shown in this work can,
and probably should, be applied in realms other than upper-
limb prosthetics; for instance, to control rehabilitation devices
for patients of musculoskeletal degenerative conditions. Stroke
survivors, for instance, might benefit from a faster data collection

procedure, when engaged in rehabilitation procedures involving
complex robotic devices. Rehabilitation based upon Virtual
Reality is also a target to this procedure (Nissler et al.,
2019). Robotic control based upon muscle activity can be also
transferred to teleoperated scenarios (Porges et al., 2019) and,
probably, in space. In all these scenarios it is worth investigating
the usefulness and feasibility of the procedure described in
this paper.

4.5. Conclusions
To summarize, to try and solve the limb position effect in
myocontrol we have investigated an alternative to the classic
multi-body-posture data collection. Namely, we have compared
it with a dynamic data acquisition procedure, which consists in
collecting data while the user was moving the arm smoothly
through all the postures. To test the true controllability
resulting from either procedure, we have designed a realistic
evaluation protocol that required the subjects to perform a set
of bimanual activities of daily living. Our results show that the
two procedures yield similar performance, but that dynamic
training is faster and less tiresome. This seems to indicate that
the dynamic acquisition procedure should be preferred over the
static one.
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Abstract.
Pattern-recognition-based myocontrol can be unreliable, which may limit

its use in the clinical practice and everyday activities. One cause for this is
the poor generalization of the underlying machine learning models to untrained
conditions. Acquiring the training data and building the model more interactively
can reduce this problem. For example, the user could be encouraged to target the
model’s instabilities during the data acquisition supported by automatic feedback
guidance. Interactivity is an emerging trend in myocontrol of upper-limb electric
prostheses: the user should be actively involved throughout the training and usage
of the device.

In this study, 18 non-disabled participants tested two novel feedback-
aided acquisition protocols against a standard one that did not provide any
guidance. All the protocols acquired data dynamically in multiple arm positions to
counteract the limb position effect. During feedback-aided acquisition, an acoustic
signal urged the participant to hover with the arm in specific regions of her peri-
personal space, de facto acquiring more data where needed. The three protocols
were compared on everyday manipulation tasks performed with a prosthetic
hand. Our results showed that feedback-aided data acquisition outperformed the
acquisition routine without guidance, both objectively and subjectively, indicating
that interaction during the data acquisition is fundamental to improve myocontrol.

Keywords: myoelectric control, training data acquisition, feedback guidance, limb
position effect, online machine learning, prosthetic hand
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1. Introduction

The loss of an upper limb can affect the ability to
carry out essential activities of daily living (ADLs)
[1]. A variety of prosthetic devices are clinically
available to restore the missing limb’s functionalities
and eventually improve the person’s autonomy, health,
and lifestyle [2]. According to recent surveys, however,
between 10 % and 40 % of the people living with a limb-
loss renounce using active prostheses [3, 4]. While these
statistics may be related to the etiology and the level
of amputation, commonly reported causes of prosthesis
rejection include lacking functionalities or unintuitive
and unreliable control.

Myocontrol approaches based on pattern recogni-
tion (PR) have emerged to address typical demands
of prostheses’ users, such as controlling multiple hand
functions, regulating the grip strength, and overcom-
ing the complex mode-switching mechanism of sequen-
tial myocontrol [5]. PR-based approaches allow the
user to produce seamless transitions between multi-
ple grasp patterns, or even to simultaneously and pro-
portionally (s/p) control multiple degrees of freedom
(DoFs) of the prosthesis [6, 7]. A shortcoming of PR
models is that their reliability is compromised when
used in conditions different from the training condi-
tions. This is often the case during myoelectric devices
daily use, due to the variability of the myoelectric sig-
nal and its measurements, e.g., surface electromyog-
raphy (sEMG). Sources of variability include, for ex-
ample, variations of the skin connectivity, electrodes
placement, limb position, as well as fatigue phenom-
ena, and the evolution of the user’s cognitive capabili-
ties [8].

An intuitive way to improve the robustness of
the control model is to capture the variability of
the sEMG signal in the training data and leverage
the learning algorithm’s generalization capabilities.
For example, data acquisition can be designed to
record myoelectric data for different limb orientations
or electrodes positioning. Both batch and adaptive
approaches can be used to collect the training data.
Adaptive learning allows updating the model with new
data upon necessity, reducing the effort to forecast
all the possible sources of sEMG variability at once.
Numerous studies confirm the benefits of improving
myocontrol by progressively refining the training
dataset [8, 9, 10] and a commercially available PR-
based myocontrol system, Control Coach by COAPT†,
allows for incremental model updates.

We believe that the reason for the success of
this approach lies in its interactivity. The user
is expected to evaluate the model performance and
actively address its flaws by collecting appropriate

†https://coaptengineering.com/control-coach

training data. This can be seen as a special case
of the human-in-the-loop paradigm [11, 12], in which
bidirectional user-prosthesis interaction is enforced.
Involving the user in the myocontrol loop both during
the training and testing of the prosthesis enables faster
understanding and embodiment of the device and
favors the production of more effective control signals
[13, 14].

The deployment of data acquisition routines
outside the laboratory could benefit from providing
automatic guidance to the user during the acquisition
routine. In fact, without supervision from an expert,
the user may be unable to identify and address
the model’s weaknesses, resulting in fruitless or even
harmful model updates. For example, the user can
be guided by precisely structuring the data collection
routine or providing instantaneous feedback on the
model’s performance during data collection. To this
aim, Woodward and Hargrove [15] designed a virtual
reality game to structure a multi-arm-position data
acquisition and provide instantaneous visual feedback
of the myocontrol performance. They showed that
guidance via serious games increases users autonomy
throughout the model adaptation process. Hahne et
al. [16] highlighted that the effectiveness of adaptive
myocontrol could be enhanced by overcoming the
typical separation between data acquisition and model
updates. They proposed a data acquisition protocol
in which the model was updated and evaluated online,
while users received instantaneous feedback about the
evolution of the model performance. This allowed
users to identify and address the model’s limitations
already during the data acquisition and achieve robust
myocontrol performance in a Fitt’s law test with few
model updates.

In this work, we focus on alleviating the negative
effect of limb position variations on the myocontrol
of a prosthetic hand. A detailed characterization of
this problem can be found in [17]. Proposed solutions
include designing sEMG features [18] or control models
[19] that are less sensitive to the limb position effect,
or acquiring training data in multiple arm positions.
Multi-position acquisition can be performed statically,
by repeating the target hand gestures in different
arm configurations [20], or dynamically, by executing
predefined arm movements [21, 22]. Multi-position
training proved to enhance myocontrol performance
compared to single-position training, and dynamic
protocols also reduce the time and effort needed
to complete the data acquisition [23]. None of
the multi-position acquisition protocols found in the
literature provides feedback guidance to the best of
our knowledge. Prosthesis users are typically required
to perform a movement routine without being fully
aware to which extent each arm position contributes
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to improving the myocontrol model. We argue that
identifying in realtime which arm configurations are
most critical for the model and signaling them to the
user would improve the data acquisition efficiency.

We propose a novel protocol to collect sEMG data
dynamically in multiple arm positions under automatic
feedback guidance. The protocol combines data
acquisition, online model building, and instantaneous
feedback about the usefulness of the recorded data.
We compare two variants of the novel feedback-aided
acquisition protocol to a standard one that does not
provide feedback guidance. All the protocols build
the model online and are based on the dynamic data
acquisition described in [23]. Both feedback-aided
protocols adopt the same feedback mechanism, but one
of them also implements automatic sample selection to
discard unnecessary training samples and reduce the
number of model updates.

2. Materials and Methods

This study evaluates the effects of using a feedback
signal to guide the acquisition of training data for
myoelectric controllers of prosthetic hands. The
performances of two feedback-aided data acquisition
procedures and one standard acquisition using no
feedback guidance were compared based on the
controllability of a prosthetic hand during a series of
realistic manipulation tasks.

2.1. Participants

Eighteen non-disabled persons (aged 26.3 ± 4.6
years, 16 men and 2 women) participated in the
experiment. Twelve participants had no prior
experience in myoelectric control, while six had already
used myoelectric prosthetic hands in previous user
studies. Every participant received an oral and written
description of the experiment and signed an informed
consent form. The study was conducted at the
German Aerospace Center (DLR) according to the
WMA Declaration of Helsinki and approved by DLR’s
internal committee for personal data protection.

2.2. Experimental Setup

The muscular activity of the forearm of the dominant
arm was measured using a Myo armband‡ by Thalmic
Labs placed about 5 cm below the elbow. The bracelet
comprised eight sensors, each recording an sEMG
signal at a sampling rate of 200 Hz. A standard quick-
release prosthetic connector fixed to a wrist/hand
orthotic splint made it possible to anchor the prosthesis
at the extremity of sound limbs. An i-LIMB Ultra

‡https://support.getmyo.com/hc/en-us/articles/
203398347-Getting-started-with-your-Myo-armband

Revolution prosthetic hand§ by Touch Bionics (now
Össur) allowed independent flexion/extension of the
five fingers and abduction/adduction of the thumb
through six motors under direct current control. The
devices communicated via a serial-port-over-Bluetooth
with a laptop used to run the myocontrol software. The
acoustic feedback was reproduced using the speakers of
the laptop. A custom software suite written in the C#
language provided the graphical interface to coordinate
the data acquisition, labeled and processed sEMG
data, generated the feedback signal, and implemented
realtime myocontrol.

The experiment took place in a domestic-
like laboratory environment. We arranged several
household objects on a table, two shelves, and on the
floor. We placed the table 40 cm next to the shelves,
and we regulated its height to match the waist level of
each participant. The shelves were 40 cm and 150 cm
high. The study was videotaped in order to measure
the participant’s performance after the experiment.
Figure 1A shows the experimental setup.

2.3. Incremental model building

The sEMG readings were preprocessed in realtime
upon collection. The measurement from each of the
8 channels was rectified, computing its absolute value,
and low-pass filtered using a second-order Butterworth
filter with a cutoff frequency of 1 Hz.

The data acquisition software labeled incoming
training samples with the activation commands for
the motors of the prosthetic hand’s fingers. Each
command consisted of a normalized velocity ranging
between 0 and 1, corresponding to extending or flexing
the finger with maximum speed. Since all the hand
gestures considered in this experiment could be realized
by controlling one subset of the fingers with the same
velocity command, the model had effectively 3 DoFs.

Training data was collected only for extreme
velocity command values, that is, for hand gestures
in which each finger was either fully extended or
fully flexed. Intermediate velocity commands were
excluded because they could lead to inaccuracies in the
recorded data due to the participants’ different reaction
times [24]. Previous works, such as [25, 23], showed
that regression models resulting from this training
procedure still yield effective s/p control.

To provide appropriate feedback guidance during
the data acquisition, it was necessary to incorporate
each training sample into the model quickly upon
collection. Therefore, we trained the s/p control model
using an instance of incremental ridge regression (iRR)
with random Fourier features (RFFs). iRR builds a

§https://www.ossur.com/en-us/prosthetics/arms/
i-limb-ultra
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regression model incrementally by computing rank-one
model updates when new training data is available.
The iRR formulation allowed us to update the model
and generate predictions with bounded time and space
complexity. RFFs is a nonlinear mapping of the input
space into a high-dimensional feature space obtained
by using sinusoidal basis functions that have randomly
sampled frequencies. By drawing those frequencies
from an adequate probability distribution and choosing
a sufficiently high mapping dimensionality, iRR with
RFF approximates ridge regression with a Gaussian
kernel [25]. Consequently, RFFs extend the capacity of
iRR to perform nonlinear regression while maintaining
the properties of incrementality and boundedness of
the model update. This is relevant in applications
that require online learning of nonlinear regression
models and has proven beneficial for s/p myocontrol
applications [25, 26, 27, 23]. A detailed description of
iRR-RFF can be found in [25]. The prediction function
of iRR-RFF is

ŷ = W · Φ(x) (1)

where x ∈ Rd is an input sample, Φ : Rd → RD is
a nonlinear RFF mapping, W is an M ×D matrix of
scalar weights, and ŷ ∈ RM is the computed prediction.
In this experiment, training pairs {x,y} consisted of
an sEMG measurement and the corresponding velocity
commands for the fingers’ motors. The input and
output dimensionality of the model were d = 8 and
M = 3. The regularization parameter λ of the ridge
regression was set to 1, while the bandwidth γ and
the dimensionality D of the RFF mapping were set
to 0.1 and 300, respectively. The model weights were
initialized to zero before the data acquisition, W =
0M,D.

2.4. Acoustic feedback and sample selection

The idea behind feedback-aided data acquisition is to
guide the participant with an appropriate feedback
signal in order to maximize the amount of informative
and non-redundant data collected in a fixed amount
of time. In an online learning problem, the
informativeness of a correctly-labeled training sample
{x,y} for the model can be evaluated based on the
prediction error

ep(y, ŷ) = ‖y − ŷ‖2 (2)

where ŷ is the prediction of the sample using the
model. A small prediction error indicates that the
model can accurately predict the label for that training
sample and, therefore, the sample might be redundant
for the model. A significant prediction error, instead,
indicates that the model fails to predict the right label
and may improve by integrating the sample. For the
sake of clarity, we omit the argument of the prediction
error in the remainder of the paper.

2.4.1. Feedback signal For our purposes, we designed
an acoustic feedback signal with a fixed tone and
variable volume. The volume of the signal ranged
between 0 and a maximum value V and varied
proportionally with the prediction error according to

f(ep) = max

{
0,min

{
ae2p +

V − aθ2u
θu

ep, V

}}
(3)

in which a was a scalar regulating the quadratic
relation between error and volume, and θu was a
threshold related to the prediction error. We set the
values of the parameters to V = 0.5, a = 70, and
θu = 0.05

√
3. The value of θu corresponded to 5 % of

the maximum theoretical value of the prediction error
in our experiment, which was predicting an open hand
gesture instead of a power grasp gesture.

2.4.2. Sample Selection We also used the prediction
error to discard possibly redundant training samples.
We defined a sample selection criterion to update the
model only with those training samples for which

ep ≥ θu (4)

where θu is the update threshold defined before.

2.5. Experimental protocol

Every participant tested all the data acquisition strate-
gies. We counterbalanced possible learning effects by
administering the strategies to the participants in ran-
domized order. We assigned each of the six permuta-
tions of the training conditions to one experienced and
two naive participants picked at random. After each
data acquisition, the resulting myocontrol model was
tested in a sequence of realtime manipulation tasks.
Participants repeated the sequence of tasks three times.
The first two repetitions of the sequence allowed the
participants to familiarize themselves with the pros-
thetic system and the myocontrol model, while the
third one was used to measure the myocontrol perfor-
mance. For this reason, we referred to the third repeti-
tion of the task sequence as a performance evaluation
session.

2.5.1. Data acquisition All the data acquisition
strategies required the participants to perform several
target hand gestures while moving their arm in the
reachable space. We selected three target hand
gestures: namely a power grasp, a resting hand,
and an index pointing. The selection was based on
their relevance in ADLs, according to the literature
[28]. The target hand gestures were acquired in the
order reported above in every data acquisition. Since
the myocontrol model was built incrementally, the
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(a) (b)

Figure 1. Experimental setup and arm motion during data
acquisition. (a) The prosthetic system comprised a Myo
armband by Thalmic Labs for sEMG reading, and an i-LIMB
Ultra Revolution prosthetic hand by Össur. The experimental
setup included common household objects placed onto one table
and two shelves. The speakers of the control laptop provided
acoustic feedback. (b) Participants wore the prosthetic system
throughout the data acquisition. Every data acquisition routine
required to perform several target hand gestures while moving
the arm in a predefined trajectory. The motion proceeded
from the circle to the square with the palm oriented downward
and continued in the opposite direction with the palm oriented
upward.

use of different orders would have possibly led to
incomparable models.

Before the experiment, participants were ex-
plained the data acquisition protocols and were asked
to practice them. Emphasis was put into enforcing
a consistent arm movement across participants and
strategies. Meanwhile, the volume of the speakers was
regulated so to ensure that the feedback was distinctly
audible. Nonetheless, the experimenter supervised the
data acquisition and provided direct guidance when
the participants performed the arm movement at the
wrong pace or ignored the acoustic feedback.

Participants donned the prosthetic system on the
dominant arm at the beginning of the experiment, and
no adjustment of the sensors was allowed after that.
Wearing the prosthesis during the data acquisition
reduced the differences between the training and
testing conditions caused by factors such as the
electrodes’ placement and the weight of the prosthetic
device.

No-Feedback Data Acquisition (NF-DA) The data
acquisition routine without feedback guidance adapted
the dynamic acquisition presented in our previous work
[23] to the setup of this study. Participants performed
each target hand gesture while moving their arm in
a predefined trajectory. During the procedure, they
did not receive any feedback. The model was built
online with each new training sample, as detailed
in section 2.3. The trajectory uniformly covered
the reachable space of the participant with a helical
movement, Figure 1B. The movement was performed

with constant speed from the level of the waist to the
level of the head with the palm oriented downward;
it continued in the opposite direction with the palm
oriented upward. This whole sequence was repeated
twice, without interruptions. The motion lasted 45 s
for each hand gesture and took 135 s in total. The
procedure is synthesized in Algorithm 1.

Feedback-Aided Data Acquisition (FA-DA) The data
acquisition routine with feedback guidance extended
NF-DA with the acoustic feedback detailed in
section 2.4.1. The acquisition software used the
incoming training samples to generate the acoustic
feedback and to build the myocontrol model in
realtime. Participants had to perform the desired grasp
and follow the usual arm trajectory while modulating
the arm’s velocity based on the feedback. They should
proceed with the same speed used during NF-DA when
the feedback was not audible and hover with the arm
in the areas where the feedback intensity increased.
Since the feedback was proportional to the prediction
error, this procedure led the participants to collect
more data in critical arm configurations. The model
incrementality prevented participants from slowing
down indefinitely in critical areas of the reachable
space. Training samples were continuously integrated
into the myocontrol model, which immediately reduced
the prediction error and, consequently, the volume
of the feedback signal. The acquisition of each
gesture lasted 45s. Differently from NF-DA, however,
participants were not expected to cover the whole
trajectory twice per gesture. The procedure is
synthesized in Algorithm 2.

Feedback-Aided Data Acquisition with Sample Selection
(FASS-DA) The data acquisition routine with feed-
back guidance and sample selection was obtained by
integrating FA-DA with the sample selection criterion
described in section 2.4.2. All the incoming training
samples were used to generate the acoustic feedback,
but only a limited number of non-redundant samples
were selected and used to build the myocontrol model
in realtime. Participants perceived no formal difference
between the two feedback-aided acquisition routines.
The procedure is synthesized in Algorithm 3.

2.5.2. Realistic myocontrol tasks After every data
acquisition, the resulting myocontrol model was tested
by engaging the participants in a series of five
manipulation tasks. The tasks were inspired by
realistic ADLs proposed in assessment protocols for
prosthetic control, such as ACMC [29] and SHAP [30].
The tasks are described in Table 1. In the case of
bimanual tasks, we assigned each action of the task
either to the prosthetic hand or the sound hand.
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Algorithm 1: No-Feedback Data Acquisi-
tion

Input: stream of sEMG samples x

init model to zero;
foreach hand gesture g do

while participant performs g do
acquire new sample x;
update model with {x, label(g)};

end

end

Algorithm 2: Feedback-Aided Data Acqui-
sition

Input: stream of sEMG samples x

init model to zero;
foreach hand gesture g do

while participant performs g do
acquire new sample x;
compute prediction error;
generate acoustic feedback;
update model with {x, label(g)};

end

end

Algorithm 3: Feedback-Aided Data Acqui-
sition with Sample Selection

Input: stream of sEMG samples x

init model to zero;
foreach hand gesture g do

while participant performs g do
acquire new sample x;
compute prediction error;
generate acoustic feedback;
if predictionerror > threshold then

update model with {x, label(g)};
end

end

end

The experimental protocol required the comple-
tion of all the tasks. If an object was dropped during a
manipulation task, the experimenter brought it back to
the place where it had been grasped, and the task con-
tinued from where it failed. The time needed to reset
the position of the object was excluded from the final
evaluation of performance. If repeated instabilities of
the prosthesis hindered the execution of one task, the
experimenter or the participant could suspend the task
and request an additional model update. On-demand
model updates were obtained with shorter versions of

the data acquisition procedure performed at the begin-
ning of the corresponding experimental session. Par-
ticipants were instructed to hold the malfunctioning
hand gesture while randomly moving the arm for 10 s
in the area where the task failed, possibly enforcing
movements of the shoulder, elbow, and forearm.

2.6. Performance evaluation

We evaluated the effectiveness of each data acquisition
procedure based on the duration of the third repetition
of the task sequence. We chose the task execution
time as an objective measure of performance because
it is at the base of many clinical assessment protocols
for the hand function and prosthetic control [31]. A
limitation of this metric is that, despite being related to
the hand functionality, it does not provide information
about the movements’ quality. Unlike more advanced
performance metrics, however, it does not require
constraining the experimental setup (e.g., assessing
performance in VR) and protocol (e.g., defining Fitt’s
law style tests), and it does not necessitate evaluation
from certified examiners [28].

We complemented the task duration with subjec-
tive measures of the system’s controllability and task
difficulty collected in a questionnaire at the end of
the experiment. The controllability of the prosthetic
system resulting from each training condition was re-
ported on a visual analog scale (VAS) ranging from
“very easy to control” to “very difficult to control”.
Similarly, each task’s difficulty was quantified on a VAS
ranging from “very difficult” to “very easy”. We veri-
fied if any of the acquisition strategies resulted in better
controllability or faster task execution compared to the
others, which could indicate a more robust myocontrol
model and, therefore, better training data.

A Shapiro-Wilk test revealed that the task
duration and the results of the questionnaire were
not normally distributed across participants. For
this reason, we used a Friedman test to identify
differences in the average value of the statistics
of the three training conditions. When the test
indicated significant differences, we used repeated post-
hoc Wilcoxon signed-rank tests to compare pairs of
conditions. We set the significance level of all the
tests to α = 0.05, and we controlled the inflation of
the significance level during repeated pairwise tests by
operating a Bonferroni adjustment of the p-value [32].
In this paper, we reported unadjusted p-values (p) for
the Friedman tests and Bonferroni-adjusted p-values
(p̂) for the post-hoc pairwise tests.

3. Results

The performance of the myocontrol model was
measured by the duration of the tasks during the third
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Table 1. Detailed description of the tasks in each performance evaluation repetition.

Task Name Description

Pour water

A bottle and a jar are placed, respectively, on the lower shelf and
on the table. Grasp the bottlep, unscrew the caps, place the bottle
and the cap on the table. Take the jars, unscrew the lidp, and put
it on the table. Take the bottlep and pour the content into the jar.
Close the jarp and put it on the table. Take the bottlep, close its,
and bring it back to the lower shelf.

Serve food

A pot, a plate containing three tennis balls, and a spoon are laid on
the table. Use the spoonp to bring the balls from the plate to the
pan. Grab the pot by the handle  land tilt it by about 80 degrees,
scoop the balls from the pot to the plate using the spoonp.

Phone and
rolling ball

A telephone is on the table. Dialp a sequence of numbers on the
phone (1 to 9, 9 to 1, 0, “dial”) with an index pointing gesture. A
small ball is on the floor, and a target position is marked on the
floor about one meter away. Use the index pointing gesture to push
the ballp to the target position.

Pegboard
Three wooden shapes from one pegboard game are laid on the lower
shelf, while the base is laid on the higher shelf. Pickp each shape
and stack it to the corresponding peg.

Sweep the
floor

A hand broom and a dustpan are placed on the lower shelf, while a
bowl and some gravels are laid on the floor. Grab hand broomp and
dustpans, sweep the gravels onto the dustpan, empty the dustpan
in the bowl, and bring the hand broom and the dustpan back to the
lower shelf.

p prosthetic hand; s sound hand.

repetition of the task sequence, i.e., the performance
evaluation session. Figure 2A reports the duration
of the evaluation session corresponding to the three
data acquisition strategies. A Friedman test, followed
by pairwise post-hoc Wilcoxon tests, revealed that
the evaluation session in the FA-DA condition was
significantly faster than in the NF-DA condition
(average tasks sequence duration of 166.0 s versus 198 s,
W = 19.5, p̂ = 0.012). The average duration of
the task sequence in the FASS-DA condition, 183 s,
did not differ significantly from those of the other
conditions. Figure 2B and Figure 2C report the
performance of the twelve naive and six experienced
participants. For every training strategy, experienced
participants completed the evaluation session faster
than naive participants. Although not supported by
statistical evidence, both groups seemed to perform

better after FA-DA compared to NF-DA. The use of
feedback during data acquisition reduced the average
duration of the performance evaluation session by 15 %
for naive participants and by 19 % for experienced
participants. For both groups, the mean duration of
the tasks after FASS-DA was characterized by high
variability, and its average value was between those
of the other two conditions. Figure 2D describes the
performance of the participants during the individual
tasks. Friedman tests were performed for each task and
confirmed significant differences in completion time for
the third task (χ2(2) = 7.4, p = 0.024). Post-hoc
tests, however, failed to identify differences between
any pair of conditions, which could be caused by the
application of a conservative Bonferroni adjustment to
the p-value. Nonetheless, the average duration of every
task after FA-DA was slightly lower than after NF-DA.
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Figure 2. Duration of the tasks in the performance evaluation session. (a) Participants completed the evaluation session
significantly faster in the FA-DA condition compared to the NF-DA condition (p̂ Bonferroni-adjusted). The performance in the
FASS-DA condition did not differ significantly from those of the other conditions. The same could be observed by either considering
the twelve naive (b) or the six experienced (c) participants. (d) The average duration of each task in the FA-DA condition was
slightly lower than that measured after NF-DA, although multiple Friedman tests identified significant differences (p unadjusted)
only in the duration of the third task (dialing a phone number). In the paper, boxplots’ whiskers extend to the most extreme samples
within the first quartile −1.5 IQR and the third quartile +1.5 IQR.

The performances of FASS-DA remained equivalent to
those of the other strategies.

Figure 3 shows the duration of the three
repetitions of the task sequence for naive and
experienced participants. We referred to these
repetitions as the first and second familiarization
sessions (F1 and F2), and the performance evaluation
session (E). The participants tested the data collection
strategies in randomized orders so to counterbalance
possible transfer learning effects. Therefore, the results
displayed in the figure follow a chronological order
within each training condition but not across different
conditions. For all the training conditions, naive
participants completed the performance evaluation
session around 24 % faster than the first familiarization
session, Figure 3A. Friedman tests confirmed that the
reduction of the task completion time during the three
repetitions was significant in every training condition
(χ2(2) = 9.5, p = 0.009 for NF-DA; χ2(2) = 18.2,
p < 0.001 for FASS-DA; χ2(2) = 18, p < 0.001 for
FASS-DA). At the same time, the variability of the
results reduced during the familiarization process. The
IQR shrunk from 208-302.5 s to 181.5-229 s for NF-
DA, from 191.8-282 s to 163.8-197.5 s for FA-DA, and
from 152-327.3 s to 140.3-213.5 s for FASS-DA. These
results, taken together, indicate that a strong learning
effect took place for naive participants during the

Table 2. Median amount of training samples acquired and used
to build the myocontrol model

Acquisition
protocol

# training samples

NF-DA 27284.5 (IQR 25993-30696)a,b

FA-DA 28439.5 (IQR 25620-30440)a,b

FASS-DA
26879 (IQR 26654-32696)a

7228.5 (IQR 5345-8646)b

aacquired; bused.

familiarization process of each strategy. This learning
trend was not as evident among the six experienced
participants, Figure 3B. For them, the reduction of
the task sequence duration due to familiarization
was statistically significant only in the FASS-DA
condition (χ2(2) = 9.3, p = 0.009). Nonetheless, the
task execution time reduced by approximately 19 %
during the familiarization process for all the training
strategies.

Table 2 details the median number of training
samples acquired by each strategy and the number
of samples selected to train the myocontrol model.
The number of training samples comprised the data
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Figure 3. Effect of learning on the duration of the task
sequence. The three repetitions of the task sequence were
labeled F1, first familiarization, F2, second familiarization,
and E, performance evaluation session. (a) The twelve naive
participants showed a significant reduction in the average task
completion time due to familiarization (p unadjusted). (b) For
the six experienced participants, the familiarization with the
system significantly reduced the duration of the task session only
in the FASS-DA condition.

acquired during the initial acquisition and during
all the on-demand model updates requested by the
participants. All the strategies acquired a comparable
amount of training samples, about 28000, although
with some variations. The median number of acquired
training samples was approximately 27000 for NF-DA
and FASS-DA, and 28500 for FA-DA. The median
number of on-demand model updates was equal to 0.5
(IQR 0-2) for NF-DA, 1 (IQR 0-2) for FA-DA, and
0 (IQR 0-3) for FASS-DA. While NF-DA and FA-DA
used all the training samples to build the myocontrol
mode, FASS-DA only employed a median of ≈ 7000
samples, roughly corresponding to a quarter of the
acquired data.

Figure 4 shows the perceived difficulty of the
myocontrol tasks, assessed by the participants in the
final questionnaire, and converted into a percentage
from 0 % (“very easy”) to 100 % (“very difficult”). The
ratings seemed to split tasks into two groups. The
relative difficulty of pouring water, serving food, and
sweeping the floor was relatively low, around 20 %
on average. Precision tasks such as dialing a phone
number and completing a pegboard were given a higher
average difficulty, around 40 %. In particular, a
quarter of the participants found it extremely difficult
to dial phone numbers, as they reported a difficulty
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Figure 4. Perceived tasks difficulty. On average, participants
found more difficult those tasks that required to manipulate
small objects (completing the pegboard) or to precisely touch
small target areas (dialing a phone number). This result was
only partially supported by statistical evidence (p̂ Bonferroni-
adjusted).

level higher than 75 %, more than what was reported
for all the other tasks. A Friedman test confirmed
the existence of significant differences in the perceived
complexity of the tasks (χ2(4) = 23.1, p < 0.001).
Pairwise post-hoc tests, however, only confirmed that
the sweeping task was easier than the dialing task
(W = 9, p̂ = 0.004) and the pegboard task (W = 11,
p̂ = 0.0012).

The controllability of the prosthetic hand during
the myocontrol tasks, reported by the participants in
the questionnaire, was converted into a percentage
from 0 % (“very difficult to control”) to 100 % (“very
easy to control”). Overall, the use of feedback during
the data acquisition resulted in an improvement of
the controllability level of about 10% compared to
acquiring data without feedback (controllability level
of 60 % for NF-DA, 70 % for FA-DA, 71 % for FASS-
DA), Figure 5A. A Friedman test, however, did not
support this finding with statistical evidence (χ2(2) =
51, p = 0.19). Naive participants reported lower
controllability for every training condition, by about
22% on average, compared to experienced participants.
In any training condition, the average controllability
reported by naive participants was about 22 % lower
than that reported by experienced participants. The
ratings of naive participants were mixed. Although
the controllability level was slightly higher for the
feedback-aided acquisition strategies (controllability
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Figure 5. Perceived controllability of the prosthetic hand. (a) On average, participants found that the prosthetic system was easier
to control after each of the HL data acquisitions compared to the OL data acquisition. (b) The ratings reported by the twelve naive
participants were mixed and, on average, lower than those of the experienced participants. This caused the high variability observed
in the overall results and possibly explained the lack of statistical significance. (c) The six experienced participants consistently
reported that data acquisition routines with feedback resulted in better controllability of the prosthetic system.

level of 54 % for NF-DA and 62 % for FA-DA and
FASS-DA), the spread of the ratings was exceptionally
high, especially for the data acquisition without
feedback (interquartile range, IQR, equal to 28-71 %).
Experienced participants, conversely, reported sharper
improvements in controllability by following feedback-
aided training strategies. The average controllability
increased from 74 % for NF-DA to 84 % for FA-DA,
and 87 % for FASS-DA. The spread of these results was
lower than that observed in naive participants (IQR
equal to 56-88 % for NF-DA, 73-94 % for FA-DA, and
78-95 % for FASS-DA). However, this result was not
supported by statistical evidence, possibly due to the
limited amount of experienced participants.

4. Discussion and conclusions

We implemented a feedback-aided data acquisition and
model building protocol in which the myocontrol model
is trained online, while the participant receives instan-
taneous auditory feedback about the usefulness of the
recorded training samples. In the experiment, we have
compared two variants of the feedback-aided acquisi-
tion strategy to a traditional one, in which the user per-
forms the acquisition routine without automatic guid-
ance. Our results confirm that automatically guiding
the user during the data acquisition yields better my-
ocontrol, both objectively, enabling faster completion of

tasks and requiring less computation space and power,
and subjectively, increasing the perceived controllabil-
ity of the prosthesis reported in quantitative question-
naires.

Participants completed the sequence of manipula-
tion tasks significantly faster when using FA-DA com-
pared to NF-DA, Figure 2. The average task duration
after FA-DA was about 16 % shorter than after NF-
DA. The performance offered by FASS-DA was char-
acterized by higher variability and did not differ signif-
icantly from those of the other acquisition strategies.
Even though half of the participants performed equiv-
alently well with FASS-DA and FA-DA, the other half
showed considerably worse performance for FASS-DA.

This may indicate that the sample selection
criterion used in FASS-DA was too strict (the system
discarded all the training samples that determined a
prediction error below 5 % of the maximum prediction
error). By relaxing that criterion, the performance of
FASS-DA should tend to those of FA-DA, therefore,
at least, reducing the variability. Careful tuning of
the sample selection criterion should be considered for
future investigation.

Nonetheless, FASS-DA considerably reduced the
number of samples used to train the machine, of
about three-quarters of the total on average. This is
especially relevant for realtime applications where the
myocontrol model needs to be updated incrementally,
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requiring repeated model updates for batches of
incoming training samples. We then conclude that
FASS-DA can be used as a second choice over FA-DA,
only when less computational resources are available
to the machine learning system.

Feedback-aided acquisition improved myocontrol
performance both for the 6 experienced and 12 naive
participants (after a short familiarization with the
system), as it is apparent from Figure 2B and
Figure 2C. For experienced participants, in particular,
FA-DA reduced the average task duration by almost
20 % compared to NF-DA.

This suggests that even experienced myocontrol
users could benefit from automatic guidance to identify
the model’s weaknesses during data acquisition.
Figure 2D, finally, suggests that feedback-aided
data acquisition improved myocontrol performance
uniformly for each task.

As it was predictable, a quite evident learning
effect is present in all participants’ performance, from
the two familiarization phases to the experimental
one, Figure 3. Interestingly, this trend characterized
both naive and experienced participants, albeit less
so in the latter case. On the one hand, this means
that the effect of feedback can be observed after a
short familiarization with the system (by inexperienced
participants, that is). On the other hand, automatic
guidance during data acquisition retains its usefulness
over time, since it allows experienced users to identify
and address the flaws of the myocontrol system already
during the data acquisition.

During the familiarization, participants learn to
compensate distracting factors that are inherent in the
myocontrol of the prosthetic device, such as the latency
and the weight of the robotic hand, and the non-
intuitive control of the contraction strength (nonlinear
algorithms may not guarantee monotonic mappings of
muscle contraction to grip strength). This contributes
to reducing the variability of the results and, therefore,
helps observe the effects of interest, such as the
effect of different data acquisition procedures. We
observed that during the familiarization process,
the performance of naive participants decreased in
variability and seemed to tend to those of experienced
participants. However, the average duration of the
task session at the end of the familiarization process
remained slightly higher for naive participants. This
might indicate that their performance could have
further improved with a longer familiarization.

Data acquisition with feedback improved the
perceived controllability of the prosthesis by about
10 % on average, Figure 5. The average controllability
reported after FA-DA was similar to FASS-DA and
higher than NF-DA. However, this difference was not
statistically significant due to the large variability in

the results. Naive participants provided disparate
opinions regarding the system’s controllability, and a
gap of about 20 % divided the average controllability
reported by naives and experienced participants. More
focused questions could have been beneficial to reduce
this variance. Nonetheless, the improvement reported
by experienced participants exhibited a distinct trend
in favor of the acquisition strategies with feedback.

The tasks perceived as most difficult were dialing
a phone number and completing the pegboard game,
Figure 4. They involved touching small target areas
with the index finger’s tip and placing small objects
in positions difficult to reach. This required a
significative amount of arm movements to compensate
for the lack of an active wrist, which elicited the
limb position effect. Interestingly, the only task in
which the improvement between NF-DA and the other
strategies was statistically significant was dialing the
phone number, Figure 2D. This seems to indicate that
the proposed feedback guidance improved the model’s
robustness, especially in tasks mostly affected by the
limb position effect.

Interactivity during the training and during the
use of the prosthesis lets the user develop more trust in
the prosthesis through the usage of a friendly interface,
dexterous but straightforward at the same time. In
[9], a partially satisfactory result appears, mainly due,
we speculate, to a suboptimally designed interaction
protocol. All in all, however, the benefits of feedback
guidance are not guaranteed to transfer to disabled
users, and this issue must be further investigated. We
have dealt with this problem already in Gigli et al. [23],
to which we refer the interested reader.

Our experiment focused on evaluating the effec-
tiveness of automatic feedback guidance in identify-
ing and counteracting the limb position effect. To be
used in everyday prosthetics, this methodology must
be adapted and validated against other sources of vari-
ability in the myoelectric signal, such as electrodes shift
and pressure changes within the socket due to the pros-
thesis weight. However, we notice that the proposed
feedback targets the model’s mispredictions regardless
of their cause. For this reason, we argue that this feed-
back may be used with limited adaptation in less con-
strained settings.

The proposed feedback uses the prediction error
to identify when the model’s predictions are negatively
affected by the limb position. This criterion assumes
that the user is able to perform and maintain the
correct gesture during the data acquisition. This
can be guaranteed for non-disabled users thanks to
proprioceptive and visual feedback of their hand
configuration, but not for amputees. A transradial
amputee, particularly a naive or distracted one (in
distracting conditions), might struggle to maintain
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a consistent muscular activation during the data
acquisition, triggering the acoustic feedback for arm
configurations where more data is not required.
That circumstance is potentially disruptive for the
acquisition algorithm since it may lead the user to
acquire more training samples while providing a wrong
muscular pattern or in arm configurations that do
not need to be reinforced with more data. Users
with higher amputation levels could struggle even
more since they might also have problems following
the proper arm trajectory. This problem might
be mitigated by inducing the user to perform more
consistent and repeatable muscular activations. One
could do so by exploiting bilateral mirrored training or
using the prosthetic hand as a proxy for the missing
limb during the data acquisition [33]. If this sort of
training proves ineffective, then the feedback should
be redesigned based on other metrics. Competences
ranging from psychology to human-machine interfaces
design, as well as focus groups and user studies, will be
required to solve this problem.

4.1. Conclusion

This work shows that providing automatic feedback
guidance during training data acquisition can improve
the robustness of myocontrol models to the limb
position effect. Data acquisition for myocontrol is often
conducted without providing feedback guidance to the
user, which may undermine the quality of the recorded
data. We implemented a novel data acquisition
protocol that collects myoelectric signals dynamically
in multiple arm positions while building the model
online and guiding the user with instantaneous acoustic
feedback. We designed the feedback to induce the user
to hover with the arm in the areas of the peripersonal
space characterized by poor intent detection, i.e., a
discrepancy between the model’s prediction and the
ground truth. In our experiment, data acquisition
strategies that guided the participant to identify and
acquire more training samples in problematic areas
of the input space yielded better performance, both
objective and subjective, and granted the participant
a better understanding of the system.
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G, Kaliki R R and Thakor N V 2018 “Limb position
tolerant pattern recognition for myoelectric prosthesis
control with adaptive sparse representations from
extreme learning” IEEE Transactions on Biomedical
Engineering 65 770–778

[20] Fougner A, Scheme E, Chan A D, Englehart K and
Stavdahl Ø 2011 “Resolving the limb position effect in
myoelectric pattern recognition” IEEE Transactions on
Neural Systems and Rehabilitation Engineering 19 644–
651

[21] Scheme E, Biron K and Englehart K 2011 “Improving
myoelectric pattern recognition positional robustness
using advanced training protocols” Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society (IEEE) pp 4828–4831

[22] Radmand A, Scheme E and Englehart K 2014 “On the
suitability of integrating accelerometry data with elec-
tromyography signals for resolving the effect of changes
in limb position during dynamic limb movement” JPO:
Journal of Prosthetics and Orthotics 26 185–193

[23] Gigli A, Gijsberts A and Castellini C 2020 “The merits
of dynamic data acquisition for realistic myocontrol”
Frontiers in Bioengineering and Biotechnology
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Abstract— Applications of simultaneous and proportional
control for upper-limb prostheses typically rely on supervised
machine learning to map muscle activations to prosthesis
movements. This scheme often poses problems for individuals
with limb differences, as they may not be able to reliably
reproduce the training activations required to construct a
natural motor mapping. We propose an unsupervised myocon-
trol paradigm that eliminates the need for labeled data by
mapping the most salient muscle synergies in arbitrary order
to a number of predefined prosthesis actions. The paradigm is
coadaptive, in the sense that while the user learns to control
the system via interaction, the system continually refines the
identification of the user’s muscular synergies. Our evaluation
consisted of eight subjects without limb-loss performing target
achievement control tasks of four actions of the hand and
wrist. The subjects achieved comparable performance using the
proposed unsupervised myocontrol paradigm and a supervised
benchmark method, despite reporting increased mental load
with the former.

I. INTRODUCTION

Simultaneous and proportional (SP) myocontrol represents
a promising methodology to control dexterous prosthetic
hands naturally and intuitively. In this paradigm, regression
models map muscular contractions directly to continuous
motor commands for the degrees of freedom (DoFs) of the
prosthesis [1]. The models are typically obtained via super-
vised machine learning, in which muscular data acquired
from the subject’s forearm is associated during a training
phase with the desired motor commands.

Producing accurately labeled data can be challenging,
especially for subjects with limb differences who stand
to gain the most from this technology. Their impairment
not only poses difficulties in precisely reproducing specific
muscular activations, but also makes it impossible to verify
whether the activations they produce actually correspond to
the desired motor commands. Standard labeling protocols,
therefore, resort to collecting labels using the contralateral
hand as guidance or by pairing the desired motor commands
with a visual stimulus [2]. These procedures typically require
supervision from trained clinicians, are time-consuming, and
are often perceived as mentally demanding by the target
users.

A form of myocontrol that can learn motor mappings
without labeled training data would be a desirable alterna-

1 Institute of Robotics and Mechatronics, German Aerospace Center
(DLR), 82234 Weßling, Germany. name.surname@dlr.de

2 Chair of Medical Robotics, Friedrich-Alexander University Erlangen-
Nuremberg, 91054 Erlangen, Germany
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tive to standard supervised myocontrol (SM). Existing ap-
proaches to such unsupervised myocontrol (UM) build upon
evidence that the human motor system produces movements
by jointly activating groups of muscles [3]. These muscle
synergies function as high-level motor commands that can
be combined to produce more fine-grained motor control.
Lin et al. [4] achieved quasi-unsupervised myocontrol of
the DoFs of the wrist through a principled calibration
protocol. First, they collected unlabeled calibration surface
electromyography (sEMG) by asking the subjects to selec-
tively move the desired DoFs of the wrist. Then, they used
a nonnegative matrix factorization (NMF) algorithm with
sparsity constraints to express the calibration sEMG as the
activity of minimally-overlapping muscle synergies. Finally,
they assigned muscle synergies to DoFs by observing which
synergy was most active while activating each DoF. The
work by Yeung et al. [5] extends the calibration procedure
described above, accounting for the evolution of muscle
synergies over time due to the subject’s familiarization with
the myocontrol system and the displacement of electrodes,
among other factors. They accommodate for those changes
by employing an adaptive version of NMF with sparsity
constraints and a forgetting mechanism that progressively
discounts the contribution of old input samples. The method
automatically triggers unsupervised model updates when
model degradation is detected during normal operation. Both
approaches allowed performance comparable to a SM bench-
mark in target-reaching tasks involving a cursor on a screen.

The semi-unsupervised calibration procedure used by the
previous works requires subjects to repeat the same muscular
activations in an open-loop. This is done so that an individual
synergy can be isolated and mapped to the DoF of the
prosthesis that physiologically corresponds to the muscular
activation. As mentioned, this can be unpractical for subjects
with limb differences, who may not be able to precisely and
repeatably control each DoF of their phantom limb. In these
cases, it would be preferable to control hand movements via
an abstract motor mapping, that is, by muscular activations
that may not be physiologically related to those movements.
In this manner, subjects could control their prosthesis using
the muscular patterns that they can elicit best.

Numerous works on motor learning have demonstrated the
human capacity to learn abstract motor mappings through
closed-loop interaction with a myocontrol system [6]. Ison
and Artemiadis [7] demonstrated that humans can learn non-
trivial motor mappings between the combined activity of
biomechanically independent muscles and the position of
a cursor on a screen. Their research also showed that the
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learned motor skills are retained over time and can generalize
to different myocontrol tasks, such as controlling the position
of a robot’s end-effector on a plane. Pistohl et al. [8] showed
that abstract motor mappings can be effectively used to con-
trol myoelectric hands. Their approach arbitrarily maps the
activity of a specific muscle to the control of an action of the
hand and relies on the subject to learn to use that mapping.
However, this motor learning may be complicated if the
muscles used in the motor mapping are biomechanically
coupled [9], as is the case in the human forearm. To control
myoelectric hands it may thus be advantageous to define
abstract motor mappings based on automatically extracted
muscle synergies rather than individual muscle activations.

In this work, we introduce a novel coadaptive UM
paradigm that integrates incremental extraction of muscle
synergies and adaptation to an abstract motor mapping that is
based on those synergies. The system adaptively decomposes
muscular control inputs into sparse muscle synergies using
a purposedly designed incremental NMF algorithm with
sparsity constraints and a forgetting mechanism to discount
the contribution of old input samples. Although derived
independently, our formulation is similar (but not equal)
to the NMF algorithm used by Yeung et al. [5], which
was published during our paper’s final redaction. In contrast
to their approach, this algorithm is used to implement an
abstract motor mapping between the synergies’ activations
and a set of desired actions of the hand or wrist that may
not be physiologically related to those activations. A virtual
hand on a monitor visualizes the model’s prediction in real-
time and closes the control loop with the subject. Subjects
are instructed to learn to perform the desired actions with
the virtual hand, starting from eliciting arbitrary muscular
contractions. This paradigm involves coadaptation between
subjects and myocontrol model. Subjects aim to elicit more
distinctive muscular patterns whilst the model incrementally
decomposes those patterns into sparse muscle synergies.
Conveniently, this paradigm does not require any initial
calibration of the myocontrol system, is easily understood by
the subjects, and encourages them to explore their muscular
space to identify distinctive muscular patterns for myocon-
trol. We compare the proposed UM paradigm to a state-of-
the-art SM in a series of target achievement control (TAC)
tests and via a questionnaire.

The remainder of this paper is organized as follows. In
section II, we describe our UM method and its experimental
evaluation. The corresponding results are then described in
section III. A discussion of the results follows in section IV
and the paper is concluded in section V.

II. MATERIALS AND METHODS

A. Coadaptive unsupervised myocontrol paradigm

We present a UM paradigm that adaptively extracts sparse
muscle synergies, implements an abstract motor mapping
based on those synergies, and leverages closed-loop adap-
tation to that mapping. Figure 1 provides an overview of
this paradigm. The resulting myocontrol model uses the
activation of the detected muscle synergies to control an

Adaptive extraction of 

sparse muscle synergies

Abstract motor mapping

sEMG

Motor command

Muscular encoding �

Fig. 1: Proposed unsupervised myocontrol paradigm (UM). While
the subjects learn to control the artificial hand by interacting with
the system, their muscular activity is adaptively decomposed in
sparse muscle synergies. The activation levels of these synergies
are used to activate a predefined set of hand actions based on an
abstract motor mapping. The detected control action is fed back
to the user via a skin-colored hand on a monitor. During the TAC
tasks, the subject has to match the target action of the hand shown
in gray on the monitor.

arbitrary set of actions of the hand and wrist simultaneously
and proportionally.

Incremental extraction of sparse muscle synergies: Be-
cause the subjects’ adaptation to the myocontrol model
causes changes in their muscular synergies, we require a
factorization algorithm that can incrementally extract and
update the decomposition of the input signals. To this end,
we formulate incremental sparse nonnegative matrix factor-
ization (ISNMF) with forgetting, which is an incremental
version of NMF with additional sparsity constraints and a
mechanism to discount the contribution of old input samples.

Standard NMF decomposes a nonnegative data matrix V
of s n-dimensional samples as V ≈WH , where factors W
and H are restricted to be nonnegative. The n×r matrix W
contains the basis vectors, whereas the r×s encoding matrix
H contains for each sample the activations of the bases as
to reconstruct V as accurately as possible.

This problem can be solved incrementally by updating
the bases and encoding matrices when new data becomes
available. At the m-th update, the old data matrix V =[
V 1 · · · V m−1

]
is extended with the new data samples

V m, and the encoding matrix H =
[
H1 · · · Hm−1

]
is ex-

tended with randomly initialized encoding coefficients Hm.
The basis matrix Wm and the new encoding coefficients
Hm can then be found by minimizing the objective function

Fm =
1

2

m∑

j=1

µm−j
∥∥V j −WmHj

∥∥2
F

+ γ

m∑

j=1

µm−j
∥∥Hj

∥∥
1

+
β

2
∥Wm∥2F , (1)

where µ ∈ (0, 1] is a forgetting factor that exponentially
discounts old input samples, and β ≥ 0 and γ ≥ 0 determine
the regularization strength for the encoding and the basis
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matrices. With ∥·∥F and ∥·∥1 we denote the Frobenius
and the elementwise L1 norms. Furthermore, we assume
that the former encoding blocks H1 to Hm−1 would not
change much and therefore do not optimize these. This
approximation constrains the number of parameters that need
to be optimized at each update and has other computational
benefits [10, 11].

The problem can be solved incrementally following the
procedure in algorithm 1 based on multiplicative updates,
analogous to the derivation presented in other related
work [10, 11]. Model updates are performed in constant
time and memory by storing the model state into constant-
sized history matrices instead of retaining old data samples.
Encodings of new data samples in the updated synergy space
can be obtained by repeatedly applying the rule on line 17.
Among the algorithm’s hyperparameters, r represents the
desired number of NMF components, while the tolerance
ϵ > 0 and the maximum number of iterations tmax > 0 are
used for the stopping condition of the iterative optimization.
The elements of W 1 and Hm are initialized randomly
to max(0,N (V̄ m, 1)), with V̄ m being the average value
of the new data samples and N representing the normal
distribution. Subscripts ij indicate the element at the i-th
row and the j-th column of the corresponding matrix.

Algorithm 1: ISNMF
Input: stream S of n-dim nonnegative samples
Parameters: r, β, γ, µ, ϵ, tmax

1 m← 0
2 A← [0]n×r

3 B ← [0]r×r

4 while true do
5 m← m + 1
6 V m ← n× k matrix with k new samples from S
7 if m = 1 then
8 Wm ← n× r strictly positive random matrix
9 else

10 Wm ←Wm−1

11 end
12 Hm ← r × k strictly positive random matrix
13 e0 ← ∥V m −WmHm∥2F
14 t← 0
15 repeat
16 t← t + 1

17 Hm
ij ←Hm

ij

(Wm⊺V m)
ij

(Wm⊺WmHm)
ij
+γ sgn(Hm

ij)

18 Wm
ij ←Wm

ij

(µA+V mHm⊺)
ij

(µWmB+WmHmHm⊺+βWm)ij

19 et ← ∥V m −WmHm∥2F
20 until |et − et−1|/e0 < ϵ or t > tmax

21 A← µA + V mHm⊺

22 B ← µB + HmHm⊺

23 end

Adaptive abstract motor mapping: The proposed UM
system periodically computes the encoding of a new mus-

cular input and regards its components as primitive motor
commands. These components are normalized to the range
[0, 1] by dividing them by their historical 95-th percentile
computed incrementally and bounded above by 1. Each of
the resulting control signals is associated with one of a
predefined set of hand actions, where the order depends on
the random initialization of W 1 and the subsequent incre-
mental updates. We refer to this association as an abstract
motor mapping, because it is not based on a physiological
correspondence between muscle activity and action of the
hand. Since multiple control signals may be nonzero at the
same time, this allows simultaneous and proportional control
of the hand.

Adaptation to the motor mapping: The control loop is
closed by rendering the predicted action on a virtual hand
on a screen in real-time. Subjects are induced to learn the
abstract motor mapping implemented by the myocontrol
model through simple instructions. First, they are told which
basic actions the virtual hand can perform. Second, they are
informed that those actions can be controlled by performing
possibly different actions with their own (phantom) limb.
Finally, they are asked to identify which actions of their
hand precisely control the basic actions of the virtual hand,
starting by performing random actions and observing the
virtual hand’s reaction. The proposed myocontrol paradigm
is coadaptive because subjects and myocontrol model syner-
gistically try to generate distinctive muscular commands and
adaptively discriminate sparse muscle synergies from them.

B. Experiment: evaluation of unsupervised myocontrol

We compared the proposed unsupervised myocontrol ap-
proach to a state-of-the-art supervised one in a series of TAC
tests.

Participants: Eight non-disabled subjects participated in
the experiment. The study was conducted at the German
Aerospace Center according to the WMA Declaration of
Helsinki and approved by the Institution’s internal committee
for personal data protection.

Experiment setup: One Myo armband by Thalmic Labs
provided 200 Hz 8-channels sEMG measurements of the
forearm muscles of the subjects’ right arm. Limbs move-
ments were restricted by padding the hand with two thick
gloves and securing the limb to an orthotic splint of the
hand and wrist. Moreover, subjects were asked to lay their
elbow on a table before them and to avoid rotating their wrist
during the experiment. A monitor displayed a skin-colored
virtual hand that showed the myocontrol model’s prediction
in real-time and a gray hand that provided reference actions
during the experiment. The experimental setup can be seen
in Figure 1.

Data processing and myoelectric control: The stream of
sEMG measurements was band-pass filtered online using a
second-order Butterworth filter with cutoff frequencies of
10 Hz and 90 Hz. Then, the envelope of each channel was
computed as the root mean square of the signal over the last
200 ms and used as input signal for both tested myocontrol
paradigms.
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Four basic actions of the hand and wrist were selected for
myocontrol in this experiment. They were a power grasp, a
pointing with the index finger, a wrist flexion, and a wrist
extension. The number of basic actions corresponded with
the maximum number of distinct muscle synergies that could
be extracted reliably from the sEMG data measured with our
setup. The actions were chosen based on their relevance in
activities of daily living and because they are challenging in
realistic myocontrol settings.

Based on preliminary tests, the hyperparameters of the
ISNMF algorithm were set to r = 4, β = γ = 30, µ =
0.95, ϵ = 1e − 5, and tmax = 200. The synergy model was
updated at fu = 0.2 Hz using the k samples available from
the previous update. New encodings were computed at fp =
20 Hz and used to predict the desired action.

We compared UM to an existing supervised SM approach
that uses ridge regression with random Fourier features
(RFFRR). This approach, based on nonlinear regression,
provided state-of-the-art performance in a variety of SP
myocontrol applications including prosthetic control [12].
The interested reader is referred to [12] for details about
the method. We set the bandwidth and dimensionality of the
RFF mapping respectively to 1 and 300, the regularization
parameter of the regressor to 1, and the prediction frequency
to fp = 20 Hz.

C. Experiment protocol

All subjects tested both UM and SM, in randomized
order, performing two types of exercises. The first type was
aimed at updating the myocontrol models, and denoted as
coadaptation round for UM or calibration round for SM.
The second type consisted of TAC tasks aimed at testing the
models. For each condition, three coadaptation or calibration
rounds were alternated with three TAC tests involving basic
actions to allow subjects to reach comparable familiarization
with the system; two TAC tests involving combinations of
basic actions concluded the sequence of exercises. In the
following, we will refer to the coadaptation (for UM) or
calibration (for SM) rounds as C, to the TAC tests on basic
actions as TB, and to the TAC tests on combined actions
as TC. The sequence of exercises performed by the subjects
for both UM and SM was, therefore: C1, TB1, C2, TB2, C3,
TB3, TC1, TC2.

The unsupervised model was randomly initialized at the
beginning of the experiment and progressively updated
throughout the following coadaptation rounds. They con-
sisted of 300 s long sessions allocated for the UM model
to update the abstract motor mapping and for the subject to
adapt to it. The supervised model was initialized to provide
null predictions and updated in the subsequent calibration
rounds. In each calibration round, labeled training data was
obtained while asking subjects to hold each basic action and
a resting hand gesture for 5 s. The model could be updated
with more training data for the actions that were deemed not
controllable.

In the TAC tasks, the myocontrolled virtual hand had to
be matched with the target action displayed by the reference

virtual hand. A task would be considered successful if
the subject managed to keep the predicted DoFs within a
euclidean distance of d ≤ 0.15 from the target action for
at least a continuous 1 s before the 10 s maximum task
duration. During the TAC tests, the automatic updates of the
unsupervised model were suspended for better comparability
with the supervised strategy. The same TAC tests were
performed for both conditions. The TAC tests involving
basic actions included 16 tasks, corresponding to the four
basic actions presented at two intensity levels, 50 % and
100 %, and repeated twice in random order. Those involving
combined actions included eight tasks, corresponding to the
four possible combinations of basic actions of the hand and
the wrist, repeated twice in random order.

D. Performance evaluation

The performances achieved by UM and SM in the TAC
tests were compared based on standard metrics. Success rate
(SR) is the percentage of successful tasks in one TAC, time to
complete the task (TCT) is the time to successfully complete
one task, number of overshoots (NO) is the number of times
the predicted actions approached the target and then moved
away from it, mean error in target (MET) is the average
euclidean distance between predicted and target action after
reaching the target for the first time, and path efficiency (PE)
is the ratio between the length of the optimal path and the
predicted path from the rest action to the target action.

Moreover, subjects self-assessed performance of the my-
ocontrol models at the end of each TAC in terms of mental
effort, physical effort, and frustration. The ratings were
reported on visual analog scales (VASs) ranging from ”low”,
corresponding to 0 %, to ”high”, corresponding to 100 %.
Subjects also assessed their satisfaction with the coadaptation
rounds of UM in terms of mental effort, physical effort, and
frustration level in the same questionnaire. As this is an initial
study on the proposed UM paradigm with a limited number
of subjects, we lack the statistical power for meaningful
significance tests and instead report the individual data points
when possible.

III. EXPERIMENTAL RESULTS

Figure 2(a) shows the success rate achieved during each
TAC test. Subjects reached comparable success rates around
50 % with UM and SM in all TAC tests involving basic
actions. Controlling combined hand actions proved consid-
erably more difficult, especially with SM. Only one subject
managed to complete about 10 % of the combined actions
with SM, while approximately half the subjects obtained suc-
cess rates between 10 % to 50 % with UM. This discrepancy
may have to do with the fact that the linear ISNMF method
interpolates more predictably than RFFRR in parts of the
input space that were unseen during the training phase. The
comparison between UM and SM is not investigated further
due to the very lacking performance of the latter.

Figure 2(b-e) focuses on the tasks on basic actions that
were completed successfully and characterizes how quickly
and accurately they were executed. Trends of the median
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Fig. 2: Myocontrol performance in the TAC tests. (a) Success rate achieved during the TAC tests. (b-e) Performance achieved in tasks
on basic actions that were completed successfully. Each of the points displayed within the boxplots represents the average of a statistic
achieved by one subject during the tasks of the corresponding TAC.

Fig. 3: Self-assessed myocontrol performance. Mental and physical
demand, and frustration with the myocontrol model during the last
TAC on basic actions, TB3.

value and the spread of every metric suggest that subjects
familiarized themselves with SM during the first TAC test
and reached comparable performance to UM during the fol-
lowing ones. Presumably, a similar familiarization effect was
not observed for UM because subjects had gained proficiency
with the system already during the first coadaptation phase.
During the last TAC test on basic actions, TB3, subjects
completed the tasks in about 3.5 s with either myocontrol
paradigm. On average, each target action was overshot two
times with SM and one time with UM, indicating that the
latter allowed slightly better control while approaching the
target action. Nevertheless, the magnitude of the overshoots
was small for both approaches. The median value of the
MET, around 0.012 for SM and 0.08 for UM, was only
about 5 % of the maximum possible MET. A median path
efficiency around 40 % for SM and 50 % for UM, indicates
that target actions were reached with comparably efficient
movements. The small difference in path efficiency reflects
the slightly more frequent overshoots with SM.

Despite performing equivalently well with either my-
ocontrol paradigm, subjects deemed UM more mentally

Fig. 4: Questionnaire unsupervised coadaptation rounds. Mental
and physical demand, and frustration level related to the calibration
rounds of SM and the coadaptation rounds of UM.

challenging, as shown in Figure 3. Most subjects reported
mental loads between 10 % and 30 % for SM and between
30 % and 60 % for UM. Nonetheless, the level of physical
effort and frustration with the myocontrol system were more
comparable for the two approaches.

Figure 4 characterizes the coadaptation rounds of UM
in terms of mental demand, physical demand, and overall
frustration level, as compared to the standard calibration
procedure used for SM. Most subjects found coadaptation
rounds considerably more mentally challenging than cali-
bration rounds. The physical demand and frustration levels
were also slightly higher for the coadaptive procedure. These
results could be explained by the subjects having to learn
new abstract motor mappings, the longer duration of the
calibration procedure, or the model adaptation not fully
meeting the subjects’ expectations.

IV. DISCUSSION

The results of our experiment show that subjects can learn
abstract motor mappings controlled by sparse muscle syner-
gies extracted online. By the end of the first coadaptation
round, most subjects had managed to control all the basic
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actions of the virtual hand independently. This indicates that
the ISNMF algorithm adaptively identified a set of muscle
synergies in the input signals that were distinctive enough
to control the virtual hand’s basic actions precisely. It also
confirms that subjects quickly learned the abstract motor
mapping implemented by the myocontrol algorithm, i.e., they
identified which actions of their restricted hand controlled the
desired actions of the virtual hand.

We note that our coadaptive UM paradigm induced sub-
jects to autonomously, and perhaps subconsciously, explore
their own muscular space. This could be especially beneficial
for individuals with limb differences, allowing them to inde-
pendently discover muscular activations that they can elicit
comfortably and repeatably enough for use in myoelectric
control. In future work, we hope to experimentally confirm
these benefits for individuals with limb differences.

Some subjects complained about not being able to control
one of the virtual actions independently of the others, despite
trying numerous control inputs. This is reflected in the non-
decreasing frustration about the coadaptation phase reported
in the questionnaire (Figure 4). We argue that this problem
relates to adopting a unique set of hyperparameters for the
ISNMF algorithm for all the subjects. Although they had
been optimized on preliminary tests, stronger regularization
and forgetting could have been helpful for some subjects.
Future investigation will include strategies to automatically
tune those hyperparameters during the experiment based on
codependencies between the extracted muscle synergies.

Our experiment also shows that abstract motor mappings
based on adaptively extracted muscle synergies enable fully
unsupervised SP myocontrol of artificial hands. The ap-
proach performed equivalently well as state of the art SM
with a physiologically-inspired motor mapping (Figure 2),
and the two paradigms generated comparable frustration
levels in the subjects (Figure 3). Nonetheless, the mental
effort required for UM was higher than for SM (Figure 3).
Presumably, this is because all subjects were non-disabled;
they had to learn the abstract motor mappings used in UM
while they were already familiar with the physiologically-
inspired mapping used in SM. We would expect to see higher
levels of mental effort for subjects with limb differences
when using SM.

V. CONCLUSIONS

To avoid the need for labeled training data for simultane-
ous and proportional myocontrol, we proposed an unsuper-
vised and coadaptive myocontrol paradigm. Our myocon-
trol system incrementally refines the recognition of sparse
muscle synergies from sEMG measurements and maps them
arbitrarily to a set of hand actions. At the same time,

the user interacts with the system in a closed-loop and
learns to control this abstract motor mapping by producing
more distinctive muscular patterns. In a series of TAC tests
with eight non-disabled subjects, this unsupervised myocon-
trol paradigm performed as well as a supervised reference
method in terms of task success rate, completion time, and
path efficiency, despite coming at a higher self-reported
mental load. This demonstrates the capacity of humans to
learn to control abstract motor mappings based on adaptively
extracted muscle synergies and supports the feasibility of
using the proposed UM paradigm for prosthetic control.
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Abstract
Objective. Unsupervised myocontrol methods aim to create control models for myoelectric
prostheses while avoiding the complications of acquiring reliable, regular, and sufficient labeled
training data. A limitation of current unsupervised methods is that they fix the number of
controlled prosthetic functions a priori, thus requiring an initial assessment of the user’s motor
skills and neglecting the development of novel motor skills over time. Approach.We developed a
progressive unsupervised myocontrol (PUM) paradigm in which the user and the control model
coadaptively identify distinct muscle synergies, which are then used to control arbitrarily
associated myocontrol functions, each corresponding to a hand or wrist movement. The
interaction starts with learning a single function and the user may request additional functions
after mastering the available ones, which aligns the evolution of their motor skills with an
increment in system complexity. We conducted a multi-session user study to evaluate PUM and
compare it against a state-of-the-art non-progressive unsupervised alternative. Two participants
with congenital upper-limb differences tested PUM, while ten non-disabled control participants
tested either PUM or the non-progressive baseline. All participants engaged in myoelectric control
of a virtual hand and wrist.Main results. PUM enabled autonomous learning of three myocontrol
functions for participants with limb differences, and of all four available functions for
non-disabled subjects, using both existing or newly identified muscle synergies. Participants with
limb differences achieved similar success rates to non-disabled ones on myocontrol tests, but faced
greater difficulties in internalizing new motor skills and exhibited slightly inferior movement
quality. The performance was comparable with either PUM or the non-progressive baseline for the
group of non-disabled participants. Significance. The PUM paradigm enables users to
autonomously learn to operate the myocontrol system, adapts to the users’ varied preexisting
motor skills, and supports the further development of those skills throughout practice.

1. Introduction

Myoelectric prosthetic hands can restore or enhance
independence for individuals with limb differences,
enabling them to perform various activities of daily
living [1, 2]. Machine learning-based myocontrol
approaches offer intuitive control of advanced pros-
theses [3] and are currently available in commercial
systems [4, 5]. Classification techniques enable con-
trol over multiple grasp types by defining an asso-
ciation between muscular activity and the desired

grasp [6, 7], while regressionmethods establish a con-
tinuous mapping between the user’s muscle activa-
tions and motor commands for the degrees of free-
dom (DoFs) of the prosthesis [8, 9]. These techniques
typically learn the myocontrol model in a supervised
way, meaning that surface electromyography (sEMG)
measurements of the forearm’s muscles are associated
with prescribed motor commands during a calibra-
tion phase.

Supervised myocontrol relies on the assumptions
that the distribution of the control signal remains

© 2023 The Author(s). Published by IOP Publishing Ltd
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consistent between training and testing conditions,
and that training samples are accurately labeled [10].
However, meeting these assumptions in a realistic set-
ting poses methodological challenges. The character-
istics of sEMG signals can change over time due to
factors like muscle fatigue, limb position, and elec-
trode displacement [11, 12]. Common approaches to
reduce this distribution shift involve capturing more
of the signal variability in the training data [13, 14]
or iteratively recalibrating the system with additional
data over time [15, 16]. These methods come there-
fore at the cost of an increased burden on users by
prolonging the data acquisition process. Additionally,
accurately labeling samples can be difficult for indi-
viduals with limited residual muscle control, such as
those with limb differences. Extensive preprosthetic
user training is often required to generate muscle sig-
nals that are sufficiently distinguishable, stable, and
repeatable for myocontrol. This typically includes
mental practice, emulation of specific gestures using
the phantom limb, and sEMG visualization using
biofeedback [17, 18]. However, such training can be
demanding and requires supervision from healthcare
professionals. The requirement for expert guidance
typically confines preprosthetic training to clinical
facilities, which increases the associated costs, lim-
its the user’s exposure to training, and potentially
slows down the adoption of the myocontrol techno-
logy [18].

Unsupervised myocontrol is a desirable alternat-
ive to supervisedmyocontrol, as it eliminates the need
for hard-to-obtain labeled training data. Existing
unsupervised myocontrol approaches derive low-
dimensional approximations of the muscular input,
corresponding to distinct muscle coactivation pat-
terns, and employ them as control commands for
the kinematic or kinetic variables of interest [19–
22]. This is based on the neuromotor control prin-
ciple that the human nervous system efficiently real-
izes movement by recruiting and coordinating non-
redundant muscle synergies [23–25]. In this con-
text, the nervous system treats the activations of each
muscle synergy as high-level motor commands that
can be combined to generate the muscular activ-
ity necessary to accomplish the desired movement.
This also entails that information about the syn-
ergies’ structure and coactivation is encoded into
multichannel sEMG measurements of the muscular
activity [24].

Nonnegative matrix factorization (NMF)
algorithms are commonly utilized to extract muscle
synergies from sEMG signals. The advantage of this
specific factorization is that it decomposes signals
into linear nonnegative combinations of nonnegat-
ive components, which mirrors the central nervous
system’s approach of combining nonnegative antag-
onistic muscle activations [24–26]. In addition, using
these components as control inputs for prosthetic

devices enables users to naturally control multiple
prosthetic functions at once and adjust their intensity
proportionally. However, standard NMF solutions
can be ill-posed, and they therefore need particular
training procedures or formulations to enforce the
identification of minimally overlapping components
that could serve as reasonable proxies for muscle syn-
ergies [19, 26].

Jiang et al [19] proposed a minimally supervised
approach for simultaneous and proportional (SP)
myocontrol of a virtual cursor using muscle syner-
gies related to wrist movements. To identify these
synergies, they developed a DoF-wise calibration of
the myocontrol system, which involved concatenat-
ing partial NMF models trained on sEMG data of
antagonistic movement pairs, taking advantage of the
distinct muscle activation patterns each pair gen-
erated. This method reduced supervision compared
to traditional approaches, but still required users to
perform specific movements in a predefined order,
potentially posing challenges for individuals with
limb differences.

Building on this work, Lin et al [20] developed
an extension that imposed sparsity constraints on
NMF to allow for a more flexible calibration pro-
cedure. During this calibration, participants were
allowed to perform random wrist movements, enga-
ging multiple DoFs of the wrist simultaneously.
The sparse NMF formulation encouraged the extrac-
tion of minimally overlapping components, which
were then manually associated with the control of
the desired cursor directions. This manual associ-
ation was performed to ensure an intuitive cor-
respondence between muscle synergies and cursor
directions but required direct supervision during
the process. Moreover, their calibration procedure
explicitly excluded finger movements, which could
hinder the identification of potentially more effect-
ive muscle commands and could prove challenging
for individuals who struggle to isolate wrist and hand
movements.

Yeung et al [21] designed an adaptive version
of the paradigm by Lin et al [20], in which the
factorization model was automatically updated dur-
ing operation to account for changes in muscle syn-
ergies caused by the nonstationarity of sEMG and
the user’s adaptation to the myocontrol system. The
same quasi-unsupervised calibration procedure was
followed to build amyocontrol model for a prosthetic
wrist, which involved performing specific actions in
anunstructuredmanner andmanually defining a bio-
mimetic motor mapping between muscle synergies
and wrist actions. The myocontrol system automat-
ically updated the factorization model when it detec-
ted model degradation, characterized by increased
coactivation of antagonistic muscle synergies. Model
updates were made possible by adopting an incre-
mental NMF approach with sparsity constraints and
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a forgetting mechanism to gradually reduce the influ-
ence of older data. Even though this incrementalNMF
formulation allowed for fully unsupervised model
updates, the paradigm still relied on a partially super-
vised and constrained calibration procedure to create
a biomimetic motor mapping for myocontrol in the
first place.

Other approaches have also attempted to reduce
the amount of supervision necessary for defining
biomimetic motor mappings. This includes meth-
ods that identify relationships between muscular
activity and kinematic variables in a shared latent
space [27, 28], or those leveraging musculoskeletal
models to estimate forearm muscle forces directly
from electromyographic recordings [29]. However,
these strategies still require a loosely supervised cal-
ibration phase, involving synchronized acquisition of
sEMG and ground truth data for the estimated kin-
ematic variable.

As an alternative to biomimetic mappings,
abstract motor mappings can be adopted to imple-
ment fully unsupervised myocontrol. This type of
mapping, commonly used in supervised myocontrol
approaches, links muscle activations to hand gestures
without requiring a direct physiological relationship
between them [30, 31]. Research shows that humans
can learn such arbitrary mappings, including muscle
synergy-based ones, through closed-loop interaction
with a myocontrol system, making them a viable
approach for prosthetic control [24, 32]. Abstract
motor mappings based on muscle synergies provide
flexibility and robustness, enabling users to control
complex hand actions with comfortable, reliable, and
stable muscle activations [22, 33], while also being
more resistant to variations inmyoelectric signals due
to the muscle synergies’ focus on underlying muscle
coactivation structures [24].

Gigli et al [22] used abstract motor mappings
to devise a fully unsupervised coadaptive simul-
taneous and proportional myocontrol paradigm for
hand and wrist actions. Similarly to the method
from Yeung et al [21], this also originated as an
adaptive extension of the work of Lin et al [20].
However, this approach completely eliminated the
need for initialmodel calibration and allowed users to
identify viable muscle inputs autonomously. This was
achieved through a combination of adaptive NMF, an
abstract motor mapping, and a straightforward inter-
action strategy. An adaptive sparse NMF formula-
tion was devised to extract muscle synergies from the
user’s sEMG in realtime. An abstract motor mapping
was established by arbitrarily associating the extrac-
ted muscle synergies with predefined hand actions
of the myocontrolled hand. As users interacted with
the system and discovered action-triggering muscle

patterns, the synergies were continuously refined for
enhanced control. This approach provided an adapt-
ive and low-dimensional visualization of the muscle
space, enabling users to discover complex muscle
coactivation patterns, including those difficult to dis-
cern with standard biofeedback methods. Moreover,
the approach demonstrated performance comparable
to state-of-the-art supervised adaptive myocontrol
approaches.

A limitation of all existing unsupervised myocon-
trol paradigms that rely on NMF, is that the num-
ber of components for sEMG factorization must
be set to match the preexisting number of inde-
pendent muscle synergies that the user can gener-
ate. Specifically, allowing toomanyNMF components
might lead the factorization model to identify com-
ponents unrelated to physiological muscle synergies,
potentially resulting in unintended activations of the
myocontrolled hand. Determining how many inde-
pendent and stable muscle synergies the user can eli-
cit is challenging. First, the amount of sensors used
by the sEMGmeasurement system limits the number
of detectable synergies [34]. Second, the individual’s
preexisting motor capacities can significantly impact
the number of synergies elicited [25, 35]. Lastly, the
number of distinct synergies may increase over time
as the individual progressively familiarizes themselves
with more motor tasks [25, 36]. In practice, determ-
ining the number of independent muscle synergies
often requires extensive collaboration between the
user and a clinician,makingmore autonomousmeth-
ods for identifying and refining available synergies
desirable.

An alternative approach is to use a progressive
learning strategy for myocontrol functions, where
users begin with a single function and gradually
‘unlock’ additional functions as they master exist-
ing ones. This method mirrors the progressive nature
of human motor development, which involves the
ongoing expansion and refinement of motor func-
tions [25, 37, 38]. Throughout an individual’s life,
innate reflexes are integrated with newly acquired
rudimentary motor skills, which are then refined and
combined to form more advanced and specialized
skills. This progression is connected to the develop-
ment of muscle synergies, as new motor skills are
achieved by adapting preexisting muscle synergies
to meet the demands of tasks and efficiency [25,
38]. Moreover, the challenge point framework theory
suggests that a progressive motor learning approach
would support the acquisition of new motor func-
tions. In fact, adapting the task difficulty to an indi-
vidual’s current skill level has proven helpful to reg-
ulate the learning workload and ultimately accelerate
motor learning [39–41].
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A sequential NMF formulation could be
employed to implement a progressive motor learning
procedure [42, 43]. This algorithm learns the factor-
ization model by adding one component at a time,
ensuring the stability of existing components when
new ones are introduced. However, existing sequen-
tial NMF methods are not suitable for incremental
settings as they are based on iterative warm reinitial-
ization of progressively larger models and retraining
on historical data to preserve the continuity of the
existing components. Simply discarding the histor-
ical data when attempting online sequential NMF is
unlikely to be successful, as the lack of context may
lead to a loss of continuity in the existing compon-
ents. Therefore, there is a need for an online factoriz-
ation method that maintains component continuity
without requiring the storage of historical data.

In this work, we introduce progressive unsu-
pervised myocontrol (PUM), a fully unsupervised
and coadaptive paradigm inspired by the progress-
ive nature of human motor learning. PUM enables
users to autonomously learn to control the functions
of a myocontrolled hand one at a time. These func-
tions are implemented through an abstract mapping
between the users’ muscle synergies and the desired
actions of the hand and wrist. Users refine muscle
synergies for myocontrol autonomously while famil-
iarizing themselves with the system and request to
unlock new functions as they become proficient with
the existing ones. The result is a coevolving and coad-
aptive interaction dynamics between the user and
the system. To achieve this, we extend the adaptive
NMF from [22] with an algorithmic procedure to
increase the number of components while preserving
the existing ones without explicitly storing historical
data. Moreover, we adjust the loss function to reduce
the overlap between the identified components and to
improve their stability over time.

In a multi-session user study, we evaluate how
effectively PUM enables users and the myocontrol
system to synergistically learn a control model in
a completely unsupervised manner. We specifically
investigate the performance of individuals with limb
differences (LD), who stand to benefit the most from
an unsupervised myocontrol paradigm, in compar-
ison to non-disabled (ND) participants, who repres-
ent the best-case scenario for myocontrol due to their
more extensive motor skills. Moreover, we exam-
ine how PUM compares to a non-progressive unsu-
pervised myocontrol (UM) paradigm, based on that
of [22], which serves as a baseline for identifying
potential advantages and limitations of our approach.
Our assessments and comparisons are based on the
workload associated with the progressive learning of
motor skills, as well as the evolution and retention of
myocontrol performance in a series of target achieve-
ment control (TAC) tests involving a virtual hand.

The paper is structured as follows. In section 2, we
detail the methods employed for the PUM paradigm.

Section 3 presents the study’s findings, followed by
a discussion of their implications in section 4. The
appendix includes mathematical derivations of the
factorization algorithm utilized in the myocontrol
paradigms.

2. Methods

In this section, we introduce the PUM paradigm
and discuss its relation to the non-progressive UM
paradigm adapted from Gigli et al [22]. We then
outline a multi-session study where we assess the
effectiveness of PUM in enabling participants to pro-
gressively learn, refine, and retain control of a vir-
tual hand’s functions, and compare its performance
to that of UM.

2.1. PUM
The PUM paradigm is inspired by the way humans
progressively develop theirmotor skills when learning
new tasks. The system factorizes muscular inputs into
muscle synergies and arbitrarily maps them to func-
tions of the myocontrolled virtual hand, while users
learn the motor mapping by interacting with the sys-
tem. Upon user request, the system adapts the num-
ber of synergies to accommodate an increasing num-
ber of functions, while aiming forminimal disruption
to previously learned synergies. A schematic overview
of the control paradigm is presented in figure 1.

2.1.1. Progressive incremental sEMG factorization
We introduce progressive incremental sparse nonneg-
ative matrix factorization (P-ISNMF), an algorithm
that adaptively computes an NMFmodel and enables
online identification of additional components while
preserving existing ones without model retraining.
It builds upon incremental sparse nonnegative mat-
rix factorization (ISNMF) [22], an adaptive NMF
variant with sparsity constraints and a forgetting
mechanism to discount outdated information. In
addition to incorporating a progressive mechanism,
our proposed approach features an improved object-
ive function that results in sparser and more stable
components.

NMF approximates a nonnegative matrix V of
size n× s as the product of nonnegative factorsW of
size n× r and H of size r× s, that is, V≈WH [44].
When the columns of V represent a series of s n-
dimensional data samples, the columns of W repres-
ent a set of r basis vectors and those of H a series
of s r-dimensional encoding coefficients that indic-
ate the relative contribution of the bases to each data
sample. In the context of myoelectric control, where
data samples correspond to positive envelopes of the
myoelectric signal, the bases and encoding coeffi-
cients can be loosely interpreted as muscle synergies
and their activations.
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Figure 1. Schematics for the progressive unsupervised myocontrol (PUM) paradigm.While the user interacts with the system to learn
myocontrol functions, the factorization model refines the identified muscle synergies by conducting periodic unsupervised model
updates. Myoelectric control is achieved by factorizing muscle activity into muscle synergies and arbitrarily mapping the
encoding coefficients to predefined myocontrol functions, obtaining motor commands for the orange myocontrolled hand. Users
progressively unlock more myocontrol functions on demand. This scheme evolves to accommodate user skill evolution and allows
the user and system to coadaptively refine control over new motor functions. A gray virtual hand serves as a reference during
performance evaluation, presenting the users with functions to replicate in realtime with the myocontrolled hand.

Algorithm 1. ISNMF. © 2022 IEEE. Reprinted, with per-
mission, from [22].

Input stream S of n-dim nonnegative samples
Parameter r, β, γ, µ, ϵ, tmax

1m← 0
2 A0← [0]n×r

3 B0← [0]r×r

4 while true do
5 m←m+ 1
6 Vm← n× kmatrix with k new samples from S
7 If m= 1 then
8 Wm← n× r positive random matrix
9 else
10 Wm←Wm−1

11 end
12 Hm

m← r× k positive random matrix
13 e0←∥Vm−WmHm

m∥2F
14 t← 0
15 repeat
16 t← t+ 1

17 Wm←Wm ◦ µAm−1+VmH
m⊺
m

µWmBm−1+WmHm
mH

m⊺
m +

µ(1−µm)
1−µ

βWm

18 Wm←max(Wm, ϵ)

19 Hm
m← Hm

m ◦ Wm⊺
Vm

Wm⊺WmHm
m+γ(Hm

m)
−0.5

20 Hm
m←max(Hm

m, ϵ)

21 et←∥Vm−WmHm
m∥2F

22 until |et− et−1|/e0 < ϵ or t> tmax

23 Am← µAm−1 +VmH
m⊺
m

24 Bm← µBm−1 +Hm
mH

m⊺
m

25 end

ISNMF [22] is an incremental solution to the
NMF problem that updates the factorization model
with new data while discounting the contribution of
previous data, without the need for storing it. We
present a refined version of this algorithm that fea-
tures an improved objective function for a sparser
factorization and increased stability, and we provide
a complete derivation in the appendix. In the fol-
lowing, we employ block notation for matrices, with

subscripts identifying specific matrix blocks and
superscripts representing thematrix status at particu-
lar updates. For instance, V j denotes the data samples
received during the jth update,Wm indicates the bases
values at the mth update, and Hm

j corresponds to
the encoding coefficients computed during the mth
update for the block of data samples collected at the
jth incremental update (with m⩾ j for obvious reas-
ons). Furthermore, all product, division, or power
operators applied to matrices in the update rules are
understood to be elementwise. At themth update, the
algorithm refines the factorization model by minim-
izing the following objective function that incorpor-
ates new data and discounts past contributions

Fm =
m∑

j=1

µm−j

(
1

2

∥∥∥Vj−WmHm
j

∥∥∥
2

F
+

β

2
∥Wm∥2F

+ 2γ
∥∥∥Hm

j

∥∥∥
0.5

0.5

)
. (1)

The forgetting factor µ ∈ (0,1] diminishes the influ-
ence of old data exponentially via µm−j, ensuring the
model adapts without excessive reliance on historical
data. ∥·∥F and ∥·∥0.5 denote the Frobenius and the ele-
mentwise L0.5 norms respectively. The scalars β ⩾ 0
and γ ⩾ 0 determine the regularization strength for
the bases and encoding matrices.

The new objective function improves the one
from the original method [22] by also scaling the reg-
ularizer of the bases with the exponential forgetting
factor. The motivation for this change is to ensure
that all three terms are balanced identically, regardless
of the number of block updates5. Furthermore, the
new objective function replaces L1 regularization for

5 Note that the scaling factor s(m) =
∑m

j=1µ
m−j starts at s(1) = 1

and converges to lim
m→∞

s(m) = 1
1−µ

.
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the encoding coefficients H with a sparser L0.5 regu-
larizer. A preliminary empirical validation confirmed
that both modifications had the desired effect on sta-
bility and sparsity.

An incremental solution to this problem based on
multiplicative updates is given in algorithm 1. The
derivation of the incremental algorithm, found in the
appendix, relies on the assumption that the model
undergoes small changes in each update, meaning
that old encodings remain practically unchanged
when new data arrives. As a result, they no longer
have to be optimized and past data samples and
encoding coefficients can be aggregated into fixed-
size history matrices rather than being stored expli-
citly. This, in turn, leads to a significant reduction
in the computational and memory complexities of
an incremental update, which are now constant in
the number of updates [45, 46]. The hyperparameter
r specifies the number of NMF components and is
chosen to be lower than the data dimension. The
tolerance ϵ> 0 and the maximum number of iter-
ations tmax > 0 establish the stopping condition for
the iterative minimization of the objective function
within each model update. The elements of W1 and
Hm

m are initialized to strictly positive random values
sampled from max(0,N (V̄

m
,1)), where N denotes

the normal distribution and V̄
m
represents the his-

torical average value of the data samples computed
online.

Algorithm 2. Adding one component to the ISNMF
model.

input r,W, A, B

1 w̃← n× 1 positive random vector
2W← [W|w̃]
3 ã← [0]n×1

4 A← [A|ã]
5 b̃← [0]r×1

6 B←
[
B b̃
b̃
⊺

0

]

7 r← r+ 1

The P-ISNMF method extends ISNMF to enable
increasing the number of components r progressively
without disrupting existing ones, while avoiding the
need to store and retrain the model on past data.
It achieves this by appropriately expanding the his-
tory matrices, which subsequently inform the model
updates. The foundation of this method is the obser-
vation that the bases W , encoding coefficients H,
and history matrices A and B encode component-
specific information in designated columns and rows.
Specifically,W and A keep information about the rth
component in their rth columns, H in its rth row,
and B in both its rth row and column. Building on
this observation, components can be introduced by
extending W with strictly positive random values,
sampled from the previously described distribution
max(0,N (V̄

m
,1)). A similar extension of the old

data encoding matrix H is possible but practically
unnecessary as the incremental update rules only
involve new data encodings, which are initialized at
the appropriate size at the beginning of each update
(line 12 in algorithm 1). Accordingly, historymatrices
A and B are augmented through zero padding to
accommodate the lack of historical information for
the new component, ensuring that the data related to
existing components remain unaffected. This proced-
ure is outlined in algorithm 2.

After incorporating the additional components,
the model update process resumes, utilizing the his-
tory matrices to maintain the stability of existing
components, as shown in algorithm 1. Despite not
providing theoretical guarantees that this method
preserves the stability of existing components, extens-
ive preliminary analyses conducted on synthetic data
have confirmed this.

2.1.2. Motor mapping and learning
Muscular input signals are periodically encoded into
the synergy space using the rule in line 19 of algorithm
1 and subsequently used for position control of the
virtual hand. The process involves establishing an
abstract motor mapping that assigns the available
muscle synergies, in the order of extraction, to pre-
defined myocontrol functions. The mapping is arbit-
rary because the muscle synergy extraction process
depends on the subject’s physiology, the movements
they performed, and the random initialization of
bases and encodings. The encoding coefficients are
scaled to consistent magnitudes by dividing them
by their historical 95th percentile computed incre-
mentally and then clipping them within the range
[0,1]. These scaled coefficients are interpreted as the
activation values for their corresponding functions.
Specifically, since myocontrol functions are intended
to be hand and wrist actions, the activation of each
function is translated into the position command that
realizes the corresponding action. A full activation
executes the action completely, while a zero activa-
tion brings the hand to a rest position. Finally, given
the graded nature of the coefficients and the possibil-
ity of activating multiple coefficients simultaneously,
our system supports SP myocontrol.

Subjects learn to control the virtual hand one
function at a time by practicing with the myocon-
trol system without expert supervision. Initially, sub-
jects are introduced to the set of basic functions
that the hand can perform and are informed that
these functions may be controlled by muscular activ-
ations that are not necessarily physiologically related.
During practice, subjects learn to control each func-
tion by isolating the associated muscle synergy. Once
they feel confident in their command over a function,
they can request unlocking another one and continue
practicing, ensuring that they retain control over the
previously learned functions. This procedure defines
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a coevolving and coadapting myocontrol paradigm.
Coevolving refers to progressively increasing the
number of myocontrol functions to mirror the devel-
opment of the user’s skills. Coadaptive refers to a
synergistic adaptation process where the user pro-
duces increasingly distinctive muscle synergies while
the system optimizes the sparsity of the identified
synergies.

2.1.3. Comparison to UM
We compare the PUM paradigm with its non-
progressive counterpart based on the ISNMF
algorithm detailed in algorithm 1. The difference
is that in UM all basic functions are learned simul-
taneously rather than sequentially.

2.2. Experiment
We designed a multi-session user study to com-
pare the realtime performance of myocontrol models
obtained with PUM and UM, to track their evolution
over time, and to assess the retention of performance
after a period of non-use of the myocontrol system.

2.2.1. Participants
Ten ND subjects and two subjects with a unilat-
eral upper-limb differences participated in the study.
The ND participants, aged 27 to 33, had no previ-
ous experience with unsupervised myocontrol. Half
of the NDparticipants tested PUM, and the other half
tested UM. The participants with limb differences are
denoted LD1 and LD2 in this paper. LD1, 35 years old,
had a trans-radial congenital difference in the right
arm. They could activate only two distinct muscle
groups before the experiment, corresponding to fore-
arm extensors and flexors. They were not a pros-
thetic user and had limited experience with myoelec-
tric hands, having tested them for a fewmonths at the
ages of 5 and 20. LD2, 22 years old, had a transcarpal
congenital difference in the left hand. They could per-
form visible wrist flexion, extension, and adduction at
the time of the experiment. Theywere not a prosthesis
user and had no experience with myoelectric control.
Both LD participants tested PUM, because insightful
comparisons between the two paradigms with only
two LD subjects would have been unattainable. The
studywas conducted following theWMADeclaration
of Helsinki and approved by the Ethics committee of
Friedrich-Alexander Universität (No. 22-275-S). All
participants gave written informed consent to parti-
cipate in the study.

2.2.2. Experimental Setup
AMyo armband by Thalmic Labs provided 200Hz, 8-
channel sEMGmeasurements of the forearmmuscles
on the subjects’ dominant or different arm. The
sEMG armband was positioned over the widest part
of the forearm with the first sensor aligning with the
brachioradialis muscle. This placement was done as

precisely as possible to minimize electrode displace-
ment across subjects and sessions. ND subjects and
LD2 wore a resting hand orthotic splint and suit-
able padding to restrict hand or wrist movements
and were instructed to avoid wrist rotations dur-
ing the experiment. This requirement aimed at pro-
moting isometric muscle contractions and has been
found effective in making the sEMG of ND sub-
jects more similar to that of individuals with upper-
limb differences [47]. As indicated in figure 1, a
monitor displayed an orange virtual hand visualizing
the predictions of the myocontrol model and a gray
hand serving as a reference during the experiment.
Our experimental setup mirrored that of [22], who
compared a state-of-the-art supervised myocontrol
approach with an unsupervised myocontrol method
analogous to our baseline paradigm, UM. This design
was intended to facilitate an indirect comparison of
the merits of our PUM paradigm with those of a
standard supervised one.

2.2.3. Myoelectric control
The sEMG measurements were band-pass filtered
online and in realtime using a second-order
Butterworth filter with cutoff frequencies at 10Hz
and 90Hz. The root mean square envelope of each
channel was then computed over the last 300ms and
utilized as input for both myocontrol paradigms. The
factorization algorithm used by both PUM and UM
had hyperparameters of r= 4, β = γ = 32, µ= 0.8,
ϵ= 1 · 10−5, and tmax = 200. The factorizationmodel
was updated at 0.2Hz, while muscular encodings
were computed at 20Hz, normalized within the [0,1]
range, low-pass filtered online and in realtime with a
fourth-order Butterworth filter with a 2Hz cutoff fre-
quency, and used as motor controls for the myocon-
trol functions arbitrarily associated to them.

Drawing from the work of Gigli et al [22], we lim-
ited the maximum number of myocontrol functions
to four, as learning more functions with our setup
would prove excessively demanding, even forND sub-
jects. For this study, we represented the four con-
trol functions with a power grasp, index finger point-
ing, wrist flexion, and wrist extension. This selec-
tion facilitates the evaluation ofmyocontrol perform-
ance on both individual and combined functions, as
combinations of hand and wrist actions are usually
more discernible than those of two hand actions, for
example. Throughout this paper, we refer to these
functions and their combinations as ‘basic’ and ‘com-
bined’, respectively. Since our system implements
position control, the myocontrolled hand automatic-
ally returns to a rest configuration when none of the
functions is activated. Importantly, different control
functions could be chosen without actually influen-
cing the user’s control strategy or the model perform-
ance. This is because our abstract motor mapping
does not require a physiological association between
muscle synergies and controlled functions.
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Table 1. Structure of the multisession experiment. The experiment consists of five sessions held on distinct days. This table outlines the
temporal organization and the specific exercises featured in each session.

TRNF TAC Time since
(retention) (retention) Coadaptation TRNF TAC previous session

S1 — — x x x —
S2 — — x x x 24 h–72 h
S3 x x x x x 24 h–72 h
S4 — — x x x 24 h–72 h
S5 x x x x x 7–10 d

2.2.4. Experimental protocol
The experiment, detailed in table 1, included five
sessions across different days. The initial four sessions
were scheduled at least 24 h apart from each other
and completed within two weeks, while the fifth
session occurred about one week after the fourth.
Each session included a coadaptation phase in which
the system and participant synergistically refined the
myocontrol model, along with two tests to assess
myocontrol performance. One test was conducted
without visual feedback and is referred to as target
reaching with no feedback (TRNF), while the other
featured visual feedback and is referred to as target
achievement control (TAC). The myocontrol model
was randomly initialized at the beginning of the first
session and updated in later sessions to account for
the participant’s motor skills evolution and for the
sEMG armband repositioning.

During the coadaptation phase, participants
learned to control the four basic myocontrol func-
tions while the myocontrol model was refined. This
phase lasted 3 to 15min but could be terminated early
upon proficiently controlling all four basic functions.
In the PUM paradigm, basic functions were learned
progressively, with participants requesting to unlock
a new function when confident in their control of the
existing ones. To maintain consistency across par-
ticipants, the experimenter verified that each func-
tion could be controlled stably and independently
before unlocking the next one. The functions were
always unlocked in the same order: power grasp,
index pointing, wrist flexion and wrist extension. The
chosen order held no specific significance and could
in principle be tailored to different requirements or
preferences. If the participant did not unlock all func-
tions within the coadaptation phase duration, the
subsequent myocontrol tests would only focus on the
functions that the subject had unlocked so far.

In certain situations, the sparsity constraint in P-
ISNMFmay drive a component to zero if it is not con-
sidered essential for the reconstruction of new or his-
torical data. Newly introduced components are par-
ticularly susceptible to this effect, as there is only a
small amount of data available to reliably determine
their added value to the model. Once the basis of a
component has shrunk to zero, it becomes locked in
this deactivated state due to the multiplicative update

rule, and the corresponding myocontrol function is
permanently inhibited. For this reason, this problem
is referred to as zero-locking [48]. To counteract this
zero-locking issue, we set the bases’ lower limit to
a small positive threshold, as shown on line 18 and
line 20 of algorithm 1. Even with this thresholding
mechanism, however, new components remain prone
to re-suppression because their contribution to the
data reconstruction is limited due to their small mag-
nitude. Consequently, during the experiment, bases
suspected to be zero-locked were reset to their initial
values. This adjustment was made when a participant
reported that a new function was consistently inact-
ive or initiated by the experimenter if such inactivity
remained unreported for over one minute.

In the TRNF test, the gray virtual hand displayed a
sequence of reference functions and participants had
tomimic those gestures without receiving visual feed-
back from the orange hand. The reference functions
included only the basic functions unlocked so far and
were presented in a randomized sequence repeated
three times. This test assessed the participant’s intern-
alization of motor skills by focusing on feedforward
control and eliminating reliance on visual feedback
for instantaneous error compensation.

In the TAC test, participants controlled the orange
hand to match reference functions displayed by the
gray hand, using visual feedback. The reference func-
tions were presented three times in random order.
These included basic functions at full and half-
activation levels, and combined functions pairing
one hand action with one wrist action both at half-
activation levels. Therefore, our tests assessed pro-
portional control of up to four distinct functions
and simultaneous control of two functions. This test
design reflects the typical functional capabilities of
modern myocontrol solutions, as simultaneous con-
trol of three functions has only been achieved in a
few studies with more advanced setups for measur-
ing muscle signals [49, 50]. A task was deemed suc-
cessful if the myocontrol error stayed continuously
below a threshold d⩽ 0.18 for at least 2s before the
maximum task duration of 10s. This error was com-
puted as the maximum component of the element-
wise absolute difference between the predicted func-
tion and the target function. Since the system’s pre-
dictions represent position commands between 0 and
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1, an error threshold below 0.18 means that we tol-
erate a deviation of up to 18% of the full activation
range between the predicted and target functions.

Retention of myocontrol performance was evalu-
ated at the beginning of the third and fifth sessions by
administering TRNF and TAC tests using the model
from the previous sessions, without conducting a pre-
liminary coadaptation phase. These tests, referred to
as s3r and s5r, assessed short and long-term reten-
tion respectively. By comparing short-term retention,
where sensor replacement is arguably the main cause
of performance degradation, with long-term reten-
tion, we aimed to understand to which extent per-
formance degradation over time is caused by a loss
of motor skill.

2.2.5. Performance evaluation
The workload during the coadaptation exercise rep-
resented the effort made to learn and refine motor
skills based on muscle synergies by interacting
with the myocontrol system. Participants reported
their workload using the NASA-TLX questionnaire
[51], which assessed mental, physical, and temporal
demands, as well as perceived performance, effort,
and frustration on visual analog scales ranging from
very low, 0%, to very high, 100%. The overall work-
load was calculated as a weighted sum of these six
dimensions, with participant-specific weighting coef-
ficients determined through a pairwise comparison
process [51].

Myocontrol performance in TRNF and TAC tests
was assessed in terms of overall success and by eval-
uating the movement quality achieved during the
gross and fine parts of the movement. The distinction
between gross and fine movement serves to partition
the task execution before and after the target function
was first approached by themyocontrolled hand [52].
The overall performance was measured based on the
myocontrol error in the TRNF tests, and the success
rate and the completion time for TAC tests. For both
test types, the gross movement was characterized in
terms of duration and path efficiency, while the fine
movement was characterized by the mean and stand-
ard deviation of the myocontrol error. The success
rate was determined as the proportion of successful
TAC tasks to the total attempted tasks, and the task
completion time recorded the duration of success-
ful tasks. Path efficiency denoted the ratio between
the minimum required distance and the actual dis-
tance traveled along each independent DoF of the
controlled hand to reach the target hand configur-
ation. Importantly, all TAC metrics were calculated
solely based on successful tasks, with the exception of
the success rate itself.

These metrics were averaged across tasks for
each combination of subject, session, and paradigm.
Statistical tests were conducted on data from ND
subjects to assess significant differences in work-
load and performance across sessions and between

paradigms. Mixed ANOVA with the session as a
within-subject factor and the myocontrol paradigm
as a between-subject factor was used, and multiple
post-hoc t-tests were performed when necessary to
identify significant differences between sessions. The
Benjamini–Hochberg method was applied to control
the false discovery rate due to multiple comparis-
ons [53]. These tests were chosen because the assump-
tions of normality and homoscedasticity were verified
for the tested data subsets. The two LD subjects were
analyzed individually without statistical tests, com-
paring their performances to those of other subjects.

3. Results

The results of the study are organized and presented
reflecting the experimental protocol. We first report
the participants’ workload during the coadaptation
phase, we then analyze the myocontrol performance
for both TRNF and TAC tests, and we finally evaluate
the retention of the learned motor skills. Throughout
the section, our focus is on comparing the perform-
ance of LD and ND participants using PUM, as well
as comparing the performance that ND participants
achieved with the two myocontrol paradigms, UM
and PUM.

Figure 2 displays the participants’ workload dur-
ing the coadaptation phase, as reported in the NASA-
TLX questionnaire. LD and ND participants repor-
ted similar overall weightedworkloads of around 50%
in the first session, as shown in figure 2(a). The
workload of ND participants was comparable for the
two myocontrol paradigms and decreased signific-
antly to 30% by the third session. A mixed ANOVA
confirmed that the reported workload was signific-
antly affected by the session number (F4,32, p< 0.001)
but not by the control paradigm. Subsequent pair-
wise t-tests detected significant differences in work-
load between the initial two sessions and the sub-
sequent ones, as depicted in figure 2(b). Conversely,
LD participants maintained a consistently high work-
load, which may indicate that their adaptation to
the myocontrol system was ongoing throughout the
experiment. Figures 2(c) and (g) show that theirmen-
tal demand and effort levels remained around 60%
even in the final session.

The duration of each coadaptation phase appears
to relate to the reported workload. This connection
is expected due to the study design, as participants
could request the termination of this phase when they
felt in control of all the available myocontrol func-
tions. ND subjects typically completed the coadapt-
ation exercise in about 800s initially, with this dur-
ation reducing to about 300s for UM and 210s for
PUM by the last session. LD 2 always used 900s, the
maximum allowed time, while LD 1 took 900s until
the third session and then progressively less, reaching
around 750s in the final one.
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Figure 2. Coadaptation phase workload, assessed using the NASA TLX questionnaire.(a) Overall weighted workload per participant
and session. (b) Corrected p-values for statistical tests comparing overall workload between sessions for ND participants. (c)–(h)
Scores for the six TLX dimensions in the final session. Each data point represents the value of the statistic for a participant in a
session, with markers identifying participants. ND participants’ data points are grouped by myocontrol paradigm and the mean
value within each group is denoted by a circle. LD participants are displayed in a separate column.

The number of tasks in each TRNF and TAC
test varied depending on the myocontrol paradigm,
with UM consistently allowing control of four func-
tions, and PUM potentially fewer than four. All ND
participants who tested PUM achieved control of all
four functions in the first session, except one, marked
with a square symbol, who unlocked the last func-
tion in the second session. Both LD participants were
evaluated on three functions in every session. LD1,
represented by a hexagon, unlocked three functions
within the first session but only learned to control
the third one by the end of the third session. This
achievement was particularly remarkable because this
participant could only control two muscle synergies
before the experiment, and they autonomously isol-
ated a previously unknown muscle synergy using
PUM. To allow further familiarization with the newly
learned skill and in light of the significant achieve-
ment already made, the experimenters decided not to
enable the fourth function. LD2, marked with a cross,
initially achieved limited control of three functions
and reached proficiency in the third session. Despite
managing to unlock the fourth function, the parti-
cipant was unable to activate it because the factoriza-
tion algorithm did not identify additional activation
patterns in the muscular signal and repeatedly set the
magnitude of the fourth model component to zero.
Consequently,myocontrol performancewas not eval-
uated for the fourth function.

The performance in TRNF tests, as seen in
figure 3(a), indicates that LD participants performed
poorly when deprived of visual feedback, obtaining
mean errors above 0.4 and fine mean errors above
0.3 throughout the entire experiment. Conversely,
ND participants performed well in the absence

of visual feedback using both control paradigms
across all sessions, achieving a final mean error
of about 0.2. For them, a mixed ANOVA test
revealed significant changes in mean error across
sessions (F6,48 = 6.08, p= 0.002) but not between
control paradigms, and pairwise t-tests detected sig-
nificantly lower mean errors in sessions three to five
compared to the first one, as reported in figure 3(b).
Finally, the PUM paradigm enabled ND participants
to approach the target more quickly and efficiently
than UM, as indicated by the significantly lower gross
motion time (by 0.6s, p= 0.003) and higher gross
path efficiency (by 0.1, p= 0.004) in figures 3(b)
and (c).

Figure 4(a) presents the success rate achieved in
the TAC test. In the first session, ND participants
succeeded in approximately half the tasks, whereas
LD participants achieved less than 25% success rate
due to only being able to control two out of three
functions. The performance of both groups reached
equivalent success rates of 60% in the final session.
Further analysis revealed that all participants con-
trolled basic functions considerably better than com-
bined functions, with success rates of 80% and 25%
in the final session. The supplementary materials
offer a visual breakdown of these success rates for
basic and combined functions. The success rates of
ND participants were comparable for both myocon-
trol paradigms and increased significantly across ses-
sions. A mixed ANOVA test confirmed that the suc-
cess rate changed significantly across sessions (F6,48 =
6.88, p< 0.001), but was not influenced by the
myocontrol paradigm. Pairwise t-tests, summarized
in figure 4(b), indicated that the success rate increased
significantly between the first and third sessions and
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Figure 3. Performance in the myocontrol test without visual feedback (TRNF). (a) Mean myocontrol error per participant and
session. (b) Corrected p-values for statistical tests comparing mean errors between sessions for ND participants. (c)–(f)
Movement quality metrics during the gross and fine portions of the task in the final session. Markers represent the mean value of
a statistic for a participant across all trials in a session. ND participants were evaluated on four myocontrol functions while LD
participants on three. The ND participant marked with a square symbol had three actions assessed in the first session and four in
subsequent sessions. Short and long-term retention exercises are highlighted with a yellow background. Asterisks indicate
statistically significant differences between group means (∗: p< 0.05, ∗∗: p< 0.01, ∗∗∗: p< 0.001).

Figure 4. Performance in the myocontrol test with visual feedback (TAC). (a) Success rate per participant and session. (b) Corrected
p-values for statistical tests comparing mean success rates between sessions for ND participants. (c)–(h) Movement quality
metrics during the gross and fine portions of successful tasks in the final session. The same considerations regarding the graphical
conventions and the number of myocontrol functions assessed mentioned in the previous figures apply here as well.

remained stable afterward. The success rate of LD
participants also improved over time, although less
uniformly. It remained below 25% during the first
two sessions, markedly improved to above 50% in the
third session when the participants learned to control
the third function, and reached the level of ND parti-
cipants in the final session.

Figures 4(c)–(g) focus on the successful TAC
tasks in the final session. LD participants achieved
a comparatively lower movement quality than ND

participants, requiring between 0.5s and 1s longer
to complete the TAC tasks. This seemed to stem
primarily from uncertainty in reaching the target
hand configuration, rather than from inadequate
control stability in the target’s vicinity. Indeed,
they demonstrated similar fine motion time and
error as ND participants, but longer gross motion
time or much lower gross path efficiency. ND par-
ticipants attained similar movement quality with
both myocontrol paradigms. They completed the
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successful tasks with either paradigm in approxim-
ately 4s. They executed the gross part of the move-
ment significantly faster with PUM (gross motion
time was about 0.4s lower, p< 0.001) while demon-
strating similar motion time and myocontrol error
in the fine part of the movement with both control
paradigms.

The evolution of movement quality across ses-
sions, visually detailed in the supplementary mater-
ials, offers further insights into participants’ motor
skill development. Although subjects both with and
without limb differences experienced increased suc-
cess rates, only the latter group demonstrated con-
current improvement in movement quality. In fact,
LD participants displayed fluctuations in movement
quality across sessions, indicating slower motor skill
development.

Upon examining the failed TAC tasks in the last
session, it became apparent that the main cause of
failure was the difficulty to maintain the controlled
hand near the target configuration. Even though par-
ticipants reached the target configuration in at least
80% of failed tasks, they could not sustain it, resulting
in average configuration errors substantially above
the TAC success threshold of 0.18 (0.3 for ND par-
ticipants and 0.45 for LD participants). A thorough
visualization of performance during failed TAC tasks
can be found in the supplementary materials.

Short and long-term motor skill retention were
assessed by comparing performance differences
between sessions s2 and s3r, and between s4 and s5r,
respectively. Retention sessions are highlighted in yel-
low in figures 3(a) and 4(a). For these assessments, the
mean error from the TRNF test and the success rate
from the TAC test served as performance metrics. LD
participants displayed comparable retention trends
with and without visual feedback. Participant LD 2,
marked with a cross, exhibited consistent motor skill
retention in both the short and long term, while LD
1, marked with a hexagon, maintained performance
in the short term but not in the long-term retention
test. This participant reported having forgotten how
to control the motor skill they most recently acquired
but recovered it during the subsequent coadapta-
tion session. For ND participants, mixed ANOVA
results revealed that neither TRNF nor TAC perform-
ances were significantly affected by the myocontrol
paradigm or its interaction with the session num-
ber. Therefore, performance retention was analyzed
using pooled data from both myocontrol paradigms.
In TRNF tests, no significant performance degrada-
tion was observed during retention sessions. For the
TAC, while a decrease in the average pooled success
rate was observable in the short-term retention, this
was not statistically significant. However, a statistic-
ally significant decline was observed in the long term
(by about 20%, p= 0.03), as reported in figure 4(b).
Performance levels were restored however by the sub-
sequent model update.

4. Discussion and conclusions

We discuss the performance of PUM for individu-
als with limb differences and compare it to the non-
progressiveUMparadigmon a group of non-disabled
participants. Our evaluation takes into account the
workload experienced by participants while learning
myocontrol skills, as well as the subsequent evolution
and retention of myocontrol performance.

4.1. Evaluating PUM for users with LD
The study primarily evaluates the experiences of par-
ticipants with limb differences with PUM and com-
pares them to those of ND subjects. Understanding
the experience of LD participants with PUM enables
us to better identify their unique needs and challenges
in adopting the technology. Meanwhile, ND parti-
cipants serve as a best-case scenario for myocontrol
in light of their wider range of motor skills.

Using the PUM paradigm, participants demon-
strated proficient proportional control of multiple
myocontrol functions, with LD participants con-
trolling three functions and ND participants man-
aging four. By the final session, LD participants
achieved success rates similar to those of ND sub-
jects in TACt tests, albeit with a comparatively lower
movement quality. The average success rates were
around 80% for tasks involving basic functions and
25% for those requiring combinations of two basic
functions. The success rate for basic functions indic-
ates a satisfactory level of performance and is consist-
ent with findings from other studies on SP myocon-
trol [22, 49, 54]. While all participants were also able
to control combinations of two functions, the corres-
ponding success rates were considerably lower than
those achieved on basic functions and below those
reported in studies with similar experimental proto-
cols [49]. This underlines a current limitation of our
approach and identifies an area for future research. In
any case, it should be noted that comparisons between
studies on realtime myoelectric control are generally
challenging due to differences in experimental setups,
subjects characteristics, and tests being performed. A
more detailed discussion about such comparisonswill
follow in section 4.2.

The internalization process of the learned
myocontrol functions differed between the two sub-
ject groups. LD participants exhibited a consist-
ently high workload during the coadaptation phase
and a strong reliance on visual feedback during
the tests, suggesting that they were continuously
learning and adapting to the system. Conversely,
ND participants adapted at a faster pace, report-
ing decreased workloads across sessions and show-
ing better control without visual feedback in TRNF
tests.

The long-term retention of newly acquired motor
skills also varied among participants. LD 1 reportedly
forgot how to control themost recently learnedmotor
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skill, although this ability was regained during sub-
sequent coadaptation. In contrast, LD 2 exhibited no
performance degradation, indicating good skill reten-
tion. Given the empirical evidence that LD individu-
als often require extended practice to learn newmotor
skills, even under expert guidance [55], it appears
reasonable to speculate that LD 1 could have bet-
ter internalized the new motor skill if allowed more
practice sessions. Among ND subjects, the average
TAC success rate during short-term retention tests
exhibited a decrease that was not statistically signific-
ant. However, the performance degradationwasmore
pronounced and reached statistical significance in the
long-term retention tests. This result seems consistent
with our expectation that confounding factors such
as sensor displacement cause a minor degradation in
both short- and long-term tests, whereas skill forget-
ting causes degradation that increases with time.

A noteworthy result of our study is that PUM
not only enables LD users to autonomously learn
myocontrol functions but also supports them in dis-
covering previously unexpressed motor skills. For
instance, LD 1, who could only control two muscle
groups in their affected limb before the experi-
ment, managed to identify a novel muscle synergy
and learned to control three myocontrol functions
in complete autonomy. We attribute this successful
outcome largely to the unique design of the PUM
paradigm. One key feature of this design is introdu-
cing one new function at a time. This helps maintain-
ing the complexity of the motor learning process at
a more manageable level, preventing the user from
getting overwhelmed or frustrated. At the same time,
this process continuously balances the learning diffi-
culty with the user’s evolving skill level, supporting
the user to explore their muscular space and to dis-
cover new muscle synergies for control. Another dis-
tinct feature of PUM is to provide a rich yet intuitive
biofeedback of the muscular activity. The paradigm
associates each function of the myocontrolled hand
to one distinct muscle synergy, effectively translating
complex coactivation patterns intomore understand-
able hand movements. In contrast, traditional sEMG
biofeedback systems often provide separate feedback
for each sEMG channel [56, 57], and this can be chal-
lenging to interpret for multi-channel systems [58].

The satisfactory realtime myocontrol perform-
ance of the two LD participants in basic func-
tions and the fact that one of them discovered a
new muscle synergy underline the practical value of
the proposed PUM approach. These achievements
gain further significance when considering that PUM
does not demand preliminary assessment of the
user’s motor skills or professionally guided prepros-
thetic signal training used in traditional myocon-
trol approaches [17, 18]. Normally, a healthcare
professional must assess how many distinct muscle

activations the user can elicit to set up the number
of myocontrol functions accordingly. In addition, the
user often needs coaching to learn to generate muscle
signals that are reliable and stable enough to initially
calibrate the myocontrol system. Conversely, PUM
only requires a brief instructional overview of the sys-
tem. Then, it encapsulates motor skills assessment
and signal training in an unsupervised coadaptive
and coevolving learning process, thereby supporting
a more autonomous engagement with myoelectric
control. While learning new myocontrol functions,
the user gradually generatesmore distinctmuscle syn-
ergies and the system simultaneously improves the
sparsity of the factorizationmodel.Moreover, the sys-
tem allows the user to unlock additional functions
upon mastering the existing ones, which effectively
tailors the number of functions to the user’s current
motor skills and reflects the progressive development
of those skills through practice.

It seems logical to speculate that certain user’s
characteristics may influence the number of myocon-
trol functions they would be able to control. One
such characteristic is the proximity of the limb dif-
ference. Transhumeral limb differences, for example,
are associated with a lower amount of residual mus-
culature compared to more distal ones, which poten-
tially reduces the range of muscle synergies that can
be generated with the residual limb [34]. Yet, it has
been found that some individuals with transhumeral
amputations who still experience phantom hand
movements can elicit muscle signals with their resid-
ual musculature consistent with those movements
[59, 60]. This unexpected ability, attributed to a
preserved phantom limb neural representation and
spontaneous neuronal reorganization or reinnerva-
tion, suggests that the potential for myoelectric con-
trol may not solely depend on the residual mus-
culature. Regardless, the functional restoration of
more proximal limb differences would involve con-
trol over an extended set of DoFs, possibly complicat-
ing the motor mapping. In conclusion, the influence
of the limb difference proximity on the controllable
myocontrol functions is not obvious and merits fur-
ther research.

Another aspect that may influence the learning
experience with unsupervised myocontrol paradigms
such as PUM is the person’s previous exposure to
myoelectric control. Users with previous experience
controlling a myoelectric prosthesis, or even a vir-
tual hand, might rapidly gain control over new func-
tions by drawing on their already refined repertoire of
motor skills. In contrast, people without myocontrol
experience might display more varied learning pro-
gressions. One contributing factor to this variability
is that inexperienced users must not only learn new
motor functions but also develop fundamental com-
petences for myocontrol. These competences include,
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among others, modulating muscular contractions,
actively relaxing muscles, and coordinating muscu-
lar activity with visual feedback of the controlled
hand [61]. Even though none of the participants in
our study voiced confusion pertaining these com-
petences, it is reasonable to assume that some effort
has gone into their development. Exactly delineating
these two learning processes, however, is not possible
in our experiment given that, during the coadapta-
tion phases, participants were implicitly familiariz-
ing themselves with myocontrol while concurrently
learning new myocontrol functions.

People new to myocontrol may also face chal-
lenges determined by the nature of their limb dif-
ferences. It appears plausible that amputees, draw-
ing from their past experience with motor control on
their now-absent limb, could have an advantage in
identifying distinct muscle synergies. On the other
hand, individuals with congenital limb differences
might struggle more with this task, as they may need
to concurrently form a new mental representation
of the missing limb. As this aspect was not directly
investigated in our study, we recommend it as an area
for further exploration.

4.2. Comparing PUM to UM
We continue our evaluation by examining the per-
formance of the PUM paradigm and its non-
progressive counterpart, UM, focusing on ND parti-
cipants. Participants with limb differences were not
included in this comparison because none of them
tested the UM paradigm. The main objectives of
this comparison are to determine if PUM distrib-
utes workload more effectively than UM, leading to
a lower initial workload, and to verify if the mod-
els learned with both approaches achieve equivalent
performance.

Contrary to our expectations, ND participants
reported similar workloads for both paradigms. This
outcome might have been influenced by limiting the
maximum number of myocontrol functions to four,
which appeared to be the practical limit of functions
learnable with our setup according to preliminary
tests and a previous study [22]. This limit, however,
may have unintentionally oversimplified the motor
learning task for ND participants, allowing them to
learn all functions more easily than expected. The
benefits of PUM in reducing the learning workload
could have been more pronounced by enabling an
increased number of functions. This argument seems
to be supported by previous studies showing that ND
participants often elicit five or more different muscle
synergies during grasping [35]. Moreover, conduct-
ing the workload assessment at the end of each ses-
sion could have led to underestimating the diffi-
culties experienced during the initial stages of learn-
ing with UM. In fact, participants managed to learn

all functions at the beginning of the first coadaptation
session using UM and first reported their workload in
a questionnaire at the end of that session, potentially
overlooking the challenges faced earlier.

PUM allowed ND subjects to reach equival-
ent myocontrol performance to its non-progressive
counterpart either with or without visual feed-
back. Regardless of learning myocontrol functions
progressively or simultaneously, participants also
demonstrated a similar evolution and retention of
performance. While it is difficult to compare our res-
ults with those of other studies because of the differ-
ent experimental designs, we may attempt some use-
ful comparisons. Our study design shares similarities
with that ofGigli et al [22], where analogous TAC tests
were used to compare a standard supervisedmyocon-
trol approach to an unsupervisedmyocontrolmethod
that was equivalent to our baseline UM. The results of
that study revealed that ND users achieved equivalent
success rates with both methods. Although speculat-
ive, this equivalence appears to suggest that our pro-
gressive myocontrol approach, PUM, might perform
comparably to a state-of-the-art supervised one, as
both displayed equivalent performance to two similar
unsupervised approaches. This line of comparison is
further substantiated by the work of Nowak et al [49],
who also used similarly designed TAC tests to evalu-
ate another supervised myocontrol approach. A per-
son with limb differences reportedly achieved success
rates on basic actions similar to those observed in our
study. While the success rates they observed for com-
bined functions were higher, this might be attributed
to using amore advanced high-density sEMG system.
These comparisons provide preliminary indications
that our PUM approach could perform similarly to
supervised ones, even for users with limb differences.
Nonetheless, these indications should be treated with
caution until a direct comparison, possibly using a
more advanced setup than the current one, is made
through further research.

The results of this comparison indicate that both
the PUM and UM paradigms resulted in equivalent
learning workloads and myocontrol performance for
ND participants. Speculation on how these results
would translate to LD subjects could better define
advantages and limitations of our PUMapproach.We
argue that the learning workload for each myocon-
trol paradigm depends on the relation between an
individual’s current motor skills and the number of
functions they need to learn. In line with our findings
for ND participants, we expect that both paradigms
demand comparable learning workloads as long as
the number of functions is similar to the number
of distinct muscle synergies the person can elicit.
Conversely, we contend that PUM might prove espe-
cially beneficial when the number of functions to be
learned considerably exceeds the number of available
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muscle synergies. In this scenario, PUM could limit
the learning workload by allowing the discovery of
new muscle synergies one at a time. As opposed
to that, an unsupervised myocontrol paradigm that
requires simultaneous identification of multiple new
synergies would be obviously more challenging for
the user. In this case, moreover, the factorization
algorithm could approximate a single muscle synergy
generated by the user asmultiple redundant compon-
ents, thus activating several functions at once. This
redundancy could skew the visual feedback from the
myocontrolled hand, limit the understanding of the
control model, and ultimately, impede learning. In
terms of myocontrol performance, we expect both
control paradigms to yield the same performance
also for LD users, provided that the same number of
myocontrol functions had been already learned. This
is because the difference between UM and PUM lies
in the learning process, not in their implementation
of myocontrol. While informed by preliminary tests,
these speculations need further validation through
future studies that directly compare PUMandUMon
LD subjects.

4.3. Limitations and remarks
Due to challenges in recruiting participants with
limb differences, only two individuals with congen-
ital limb differences participated in the study. This
implied that, although a qualitative analysis of their
experiences provided insights into the effectiveness
of PUM, those insights lacked statistical signific-
ance. Moreover, both limb-different participants had
to be assigned the PUM paradigm. This decision
was made to ensure a more comprehensive assess-
ment of PUM’s characteristics, as assigning the par-
ticipants to different paradigms would have not yiel-
dedmeaningful insights, due to their varied physiolo-
gical characteristics and preexisting motor capacit-
ies. However, since no LD participants tested the UM
paradigm, our study cannot confirm whether PUM
can effectively distribute and limit the workload com-
pared to UM. Despite our hypothesis that PUM may
prove beneficial under certain conditions, discussed
in section 4.2, further research is warranted to con-
firm this speculation.

The performance of LD participants was evalu-
ated on three functions instead of four, reflecting their
progress during the experiment. LD 1 notably learned
to control three myocontrol functions by discover-
ing a new muscle synergy that was different from
the two synergies they had controlled throughout
their life. However, this new function was not learned
until the end of the third session. To give LD 1 suf-
ficient time to consolidate the newly learned abil-
ity and avoid potential confusion that could affect

long-term retention, the experimenters decided not
to introduce an additional fourth function at this
stage. LD 2 learned three myocontrol functions early
in the experiment, unlocked the remaining one at the
beginning of the third session, but never managed to
activate it as the corresponding basis remained con-
sistently zero-locked. Nevertheless, we argue that LD
participants might have autonomously learned addi-
tional functions if the experiment had lasted longer
and included more sessions. This possibility aligns
not only with the experience of LD 1, who iden-
tified a previously unknown muscle synergy when
given enough time, but also with the findings of [55]
where an LD subject gained progressive mastery of
novel functions across multiple supervised experi-
mental sessions extending over many months. Yet,
practical system designs should offer users the flex-
ibility to manage their learning pace. Users should
not only be enabled to start practicing new functions,
but also to suspend or withdraw from practice when
desired.

PUM employs P-ISNMF to progressively increase
the number of components in the factorizationmodel
without compromising the stability of the existing
ones. This prevents users from needing to repeatedly
relearn myocontrol functions when new compon-
ents are introduced, thereby maintaining perform-
ance efficiency. Although we do not provide theor-
etical guarantees for the stability of existing com-
ponents, practical evidence from our experiment
suggests that incorporating new components does
not adversely impact the performance of previ-
ously learned myocontrol functions. This evidence
also aligns with the results of preliminary tests
on synthetic sEMG data. These tests assessed the
ability of NMF, ISNMF, and P-ISNMF to recon-
struct physiologically plausible muscle synergies that
were used to generate the synthetic data. The tests
showed that P-ISNMF introduces and learns com-
ponents progressively without disrupting existing
ones, and that it performs comparably to other NMF
variants in identifying and reconstructing muscle
synergies.

5. Conclusion

We developed a PUM paradigm to address the
limitations of an existing unsupervised myocontrol
approach [22]. Unlike the previous approach, PUM
does not require a preliminary assessment of the
user’s motor capacities to set up the number of
myocontrol functions of the system, and also accom-
modates for the evolution of new motor skills over
time. This is achieved through a user-driven interact-
ive process in which additional myocontrol functions
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are introduced progressively and refined in an unsu-
pervised way as the user gains proficiency with the
system.

We tested the effectiveness of PUM in a multi-
session experiment with both congenital LD parti-
cipants and ND ones, and compared it to a non-
progressive counterpart based on [22]. All par-
ticipants successfully learned to control multiple
myocontrol functions simultaneously and propor-
tionally. LD participants completed the myocontrol
tasks with comparable success rates to ND parti-
cipants, despite showing a marginally lower move-
ment quality and requiring a greater learning effort.
Remarkably, one LD participant even learned a pre-
viously unexpressed muscle synergy and used it for
myocontrol in complete autonomy. Finally, NDparti-
cipants achieved similar performancewith both PUM
and its non-progressive baseline, which had already
proved comparable to a supervised adaptive state-of-
the-art myocontrol system.

Ultimately, the PUM paradigm represents a sig-
nificant advancement in adaptive unsupervised myo-
electric control, as it offers a user-friendly and flex-
ible system that supports autonomous learning of
myocontrol functions. By catering to users with
diverse motor abilities, the coevolving system not
only supports but also promotes the development and
enhancement of motor skills for myocontrol, ulti-
mately enabling effective control of dexterous pros-
thetic devices.
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Appendix. Derivation of the multiplicative
update rules

This appendix details the derivation of the multiplic-
ative update rules on line 17 and line 19 of algorithm
1, which are used to incrementally update the NMF
factorization model with the data received during the
mth update.

The incremental formulation of NMF is rendered
here using superscripts and subscripts for matrices.
Superscripts indicate the value of bases and encod-
ingmatrices at a specific update, while subscripts spe-
cify blocks in the data and encoding matrices. For
example, V j indicates the data samples received dur-
ing the jth update, Wm represents the bases values
at the mth update, Hm

j denotes the encoding coef-
ficients computed during the mth update for the
data samples received during the jth update. Specific
subsets of blocks are indicated using a colon, as
in Hm

1:j = [Hm
1 · · ·Hm

j ], while omitting the subscript
implies the inclusion of all matrix blocks up to the
current update, for example Hm = [Hm

1 · · ·Hm
m] at the

mth update. Since a data block Vm is never altered
by the algorithm, that is Vm

m = Vj
m ∀j ⩾m, we omit

the superscript notation for matrix V= [V1 · · ·Vm].
The multiplicative update rules use the elementwise
product, division, and power operations, which are
denoted by the circle operator, the fraction symbol,
and the power operator respectively. When super-
scripts are applied to scalars, they indicate a standard
power operation.

The rules correspond to performing alternating
gradient descent minimization of the loss function in
equation (1) with respect to the basesW and encod-
ing coefficients H with step sizes set so to guaran-
tee nonnegative updates. Both rules are calculated
based on the assumption that the factorizationmodel
undergoes only minimal changes in each update.
Specifically, it follows that the updated encodings for
previous data blocks

Hm
1:m−1 ≈Hm−1 (2)

and the solution can therefore be approximated by
only calculating the encodings Hm

m corresponding to
the new data block Vm at update m. Since the pre-
vious encodings Hm

1:m−1 remain unchanged, they no
longer influence the gradient of the loss function
in each update, meaning that in our approximation
∂Fm

∂Hm = ∂Fm

∂Hm
m
.

The multiplicative update rule for the encoding
coefficientsH in line 19 is derived from gradient des-
cent minimization

16

139



J. Neural Eng. 20 (2023) 066016 A Gigli et al

Hm
m←Hm

m−ΛH ◦
∂Fm

∂Hm
m

=Hm
m−ΛH ◦

(
−Wm⊺Vm +Wm⊺WmHm

m + γ (Hm
m)

−0.5
)

by simply setting the step size to

ΛH =
Hm

m

Wm⊺WmHm
m + γ (Hm

m)
−0.5 .

The multiplicative update rule for the model’s basesW in line 17 also derives from gradient descent min-
imization

Wm←Wm−ΛW ◦ ∂Fm

∂Wm

=Wm−ΛW ◦


−

m∑

j=1

µm−j
(
VjH

m⊺
j +WmHm

j H
m⊺
j +βWm

)



by setting the step size to

ΛW =
Wm

∑m
j=1µ

m−jWmHm
j H

m⊺
j +βWm

and simplifying the formulas as follows

Wm←Wm ◦
∑m

j=1µ
m−jVjH

m⊺
j∑m

j=1µ
m−jWmHm

j H
m⊺
j +

∑m
j=1µ

m−jβWm

=Wm ◦
∑m

j=1µ
m−jVjH

m⊺
j

Wm∑m
j=1µ

m−jHm
j H

m⊺
j + 1−µm

1−µ βWm

=Wm ◦
∑m−1

j=1 µm−jVjH
m⊺
j +VmH

m⊺
m

Wm∑m−1
j=1 µm−jHm

j H
m⊺
j +WmHm

mH
m⊺
m + 1−µm

1−µ βWm

=Wm ◦
µ
∑m−1

j=1 µm−1−jVjH
m⊺
j +VmH

m⊺
m

Wmµ
∑m−1

j=1 µm−1−jHm
j H

m⊺
j +WmHm

mH
m⊺
m + 1−µm

1−µ βWm

≈Wm ◦
µ
∑m−1

j=1 µm−1−jVjH
m−1⊺
j +VmH

m⊺
m

Wmµ
∑m−1

j=1 µm−1−jHm−1
j Hm−1⊺

j +WmHm
mH

m⊺
m + 1−µm

1−µ βWm
(3)

=Wm ◦ µAm−1 +VmH
m⊺
m

WmµBm−1 +WmHm
mH

m⊺
m + 1−µm

1−µ βWm
, (4)

where the approximation of equation (3) is pos-
sible under the assumption equation (2). The his-
tory matrices Am−1 :=

∑m−1
j=1 µm−1−jVjH

m−1⊺
j and

Bm :=
∑m−1

j=1 µm−1−jHm−1
j Hm−1⊺

j introduced in
equation (4) are used to store information about
the past data samples and the corresponding coef-
ficients. They can be recursively computed at the
end of each update as Am = µAm−1 +VmH

m⊺ and
Bm = µBm−1 +Hm

mH
m
m
⊺, where the recursion is com-

pleted by setting A0 and B0 to zero matrices of sizes
n× r and r× r respectively. This removes the need

to explicitly store past data, thereby enabling incre-
mental model updates and maintaining the compu-
tational complexity of each update constant.
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