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Towards learning-based trajectory tracking control for a planetary
exploration rover: Development and testing

Kristin Lakatos1, Niklas Baldauf2, and Alen Turnwald2

Abstract— Slip estimation and compensation are crucial fac-
tors for the success of ground-based planetary exploration mis-
sions. This work presents the development and implementation
of a test campaign for the systematic evaluation of trajectory
tracking controllers for a planetary exploration rover. The
performed tests focus on machine learning algorithms for wheel-
ground interaction. The control approaches are developed and
tested both in simulation and on a rover prototype in a space-
analog scenario. First results comparing the performance of the
classical tracking controllers and their learning-based exten-
sions are presented. The results imply that the use of machine
learning techniques can improve the tracking performance on
difficult terrain significantly.

I. INTRODUCTION

The exploration of foreign planets is a goal that both-
ers humankind since the beginning of its days. Nowadays,
manned and unmanned missions are launched in order to
explore the nearest celestial bodies. Due to the risks and
sometimes insuperable barriers of manned space missions,
robotic vehicles have been widely used for scouting and
research purposes, as exemplarily shown in the NASA Mars
missions [1], [2]. However, one of the pitfalls for ground-
based vehicles is the unknown terrain. The danger of unde-
sired slipping and skidding can culminate in getting stuck,
as e. g. the Spirit Rover experienced in May 2009 in loose,
soft terrain [3]. Thus, it is no surprise that the topic of
wheel-ground interaction is of great interest [4]–[6]. From
a control perspective, it can be divided into the question of
slip estimation and slip compensation. An overview of the
state of the art focusing on current and past space missions
can be found in [7] and the references therein. Still, this
problem is not yet solved, especially using conventional
methods of model-based slip estimation and compensation.
Thus, machine learning techniques have recently come to the
fore as potentially promising approaches.

The DeLeMIS project showcases AI methods that enable
a planetary rover to autonomously navigate in uncertain
terrain without intervention. The long-term goal is to increase
the autonomy of such systems, even with limited prior
information about the terrain properties. This presents several
challenges, particularly in motion control, as the rover’s
physical behavior and interactions with the environment are
complex and not entirely predictable through equations or
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Fig. 1: LRU driving on volcanic soil during a Mars-analog
campaign on Mt. Etna in 2022. ©DLR/Oprean

models. Therefore, learning methods allow for improvements
and thus hold significant promise. In this context, ”learning”
refers to the rover’s ability to gather more information about
itself and its environment, adjust the representation of this
knowledge accordingly, adapt its search for suitable actions,
and even reassess situations and actions based on newly
acquired knowledge. In this paper, the focus will primarily
be on presenting the fundamentals for testing and comparing
learning-based control algorithms from the DeLeMIS project.
An overview of the software modules developed in the course
of the project is given in Fig. 2.

Within this work, hardware tests are performed on the
Lightweight Rover Unit (LRU) at the Institute for Robotics
and Mechatronics of the German Aerospace Center, see
Fig. 1. The rover is a research prototype of a planetary
exploration rover, designed according to space concept stud-
ies [8], [9]. The platform design features high mobility and
versatility in rough terrain. For localization and mapping
purposes, it is equipped with a stereo vision system. The
software framework running on the rover provides a great
level of autonomy [10], which is one of the key requirements
for planetary exploration [1]. The rover was part of the
ROBEX and ARCHES missions on Mt. Etna in 2017 and
2022 [11]–[14], simulating autonomous Moon and Mars mis-
sions in a space-analog terrain [15]. During these missions,
the wheel-ground interaction was examined experimentally
based on a parametric slip model [16] in order to improve
wheel odometry measurements. However, the results show
that terrain properties can vary significantly. Thus, a statically
calibrated slip model still results in significant errors in
wheel odometry computations. To overcome the drawbacks



Fig. 2: High-level structure of the developed modules within
the DeLeMIS project (a detailed description can be found in
[22]). This work focuses on the learning-based control (LB-
control) part.

of model-based slip computations, we implement and test
an approach based on machine learning. The focus is on a
combination of model predictive control (MPC) and learning-
based extensions. A detailed overview of the possible vari-
ants of learning-based MPC methods is provided in [17] and
[18]. A concept which is closely related to our approach
was recently presented in [19]. However, our approach only
requires a small training data set and does not use a Gaussian
process. Other works like [20] or [21] focus on racetrack
scenarios and are conceptually iteration-based. In contrast,
our approach can also be used beyond lap-based scenarios.

Our main contributions are the implementation of two
algorithms for slip-compensated trajectory tracking based
on machine learning algorithms, and the setup and im-
plementation of a test campaign which allows to evaluate
the performance of the approaches w. r. t. trajectory tracking
systematically. Hardware experiments are performed with a
real rover in an indoor testbed filled with a Moon-analog soil.
In this work, the setup of the test campaign is described in
detail. Moreover, first results are shown and discussed, while
an extensive publication of the results will follow.

The paper is organized as follows: The test scenario and
problem statement is described in Sec. II. Test environment
and procedures are sketched in Sec. III, while the used
controllers are shown in Sec. IV. Some selected results of
the test campaign are shown in Sec. V. A discussion of
the experimental setup and the results follows in Sec. VI.
Sec. VII concludes the paper.

II. SCENARIO DESCRIPTION

The goal of the test scenarios is to provide a reproducible
procedure to demonstrate and evaluate improvement poten-
tials of learning algorithms to the rover’s trajectory tracking
behavior. The scenarios are defined to be implemented in
a real test environment. At the same time, the investigated
control algorithms are kept as isolated as possible to ensure
precise analysis of the results in absence of external influ-
ences.

A. Trajectories

A set of standard trajectories at different levels of difficulty
was created considering the geometric specifics of the test fa-
cilities. The set consists of ellipsoid, figure-of-eight-shaped,
and a set of Lissajous curves of different orders. Moreover,
a GUI for the creation of custom trajectories is provided,
which allows the selection of an arbitrary number of way-
points, which are then connected by spline interpolation.
Additionally, different velocity profiles can be assigned to
each trajectory, particularly a constant and a sinusoid velocity
profile with a specified maximum translational velocity.

B. Problem statement

The fundamental task of the motion control subsystem is
to ensure that the rover adheres closely to the prescribed
trajectory, even when the terrain is only partially understood
or entirely unknown. Moreover, the objective is that the
performance of this subsystem improves over time through
iterative refinement. The continual enhancement serves as
an indicator of the system’s learning capabilities and its
ability to navigate more effectively in varying environments.
Thereby, the motion control subsystem operates on an in-
termediate level, situated between the planning layer and
the low-level motor control layer. Its primary function is
to translate the high-level trajectory instructions from the
planning layer into rover commands while accounting for
uncertainties and constraints. The low-level motor control
layer is then tasked with executing the commanded actions
by controlling the individual actuators.

In order to isolate the problem and evaluate targeted
algorithms within the framework of the project, several
assumptions are made for the motion control subsystem.
First, the rover relies on a ground truth positioning sys-
tem installed within the testing environment for a precise
self-localization. This system provides accurate positional
information without introducing biases or inaccuracies that
could affect the evaluation of learning algorithms. Second,
the trajectories provided to the motion control subsystem
are always assumed to be reachable with no obstacles. Note
that these assumptions are only made w. r. t. the setup of the
test campaign, to ensure comparability and significance of
the obtained data. None of the assumptions is necessary for
the learning-based algorithms tested within the campaign. A
discussion of the test setup follows also in Sec. VI.

III. TEST ENVIRONMENT AND TEST PROCESS

The testing of the algorithms is performed both in simu-
lation and on the real rover. In the following, the simulation
environment as well as equipment and process of the hard-
ware tests will be described.

A. Simulation

For an initial test of the developed modules, a simulation
environment shown in Fig. 3 is set up in Gazebo and ROS.
A model of the LRU and the testbed is integrated and the
behavior is compared with real measurement data from test
drives. The simulations and physics parameters are optimized



Fig. 3: The Gazebo simulation including the LRU in a
modeled landscape [22]. The simulation is designed such
that the same software packages can run in simulation and
on the rover.

in order to reproduce a driving behavior that is as similar
as possible without losing the fast simulation runtime. The
selected ROS architecture and distribution of the algorithms
into individual ROS nodes make it possible to run the same
modules in the simulation and on the real rover. This makes
it possible to carry out software in the loop (SIL) tests as a
preliminary preparation for hardware tests.

B. Test environment and equipment

The hardware test are performed with the LRU rover at
the DLR test facilities in Oberpfaffenhofen. The LRU was
built in 2015 at the Robotics and Mechatronics Center of the
German Aerospace Center. The research prototype features
driving speeds of up to 1.1m/s. The LRU has a total length
of 1140mm and a total width of 740mm, with 230mm
ground clearance. A pair of stereo cameras is mounted in a
height of 940mm on a pan-tilt unit and used for navigation
purposes. Additionally, the rover is equipped with a complex
science camera module. The four individual steering and
wheel propulsion actuators are mounted on two bogie axes
(front and rear), which are connected to the body via Serial
Elastic Actuators (SEA). This allows to control the body roll
angle to distribute vertical loads on the wheels or improve
tip-over stability in rough terrain, while profiting from the
passive damping properties of the SEAs. All actuators (bogie,
wheel propulsion and steering) utilize ILM38 drive trains
with 5Nm rated torque, which were designed for space
applications. In total, the weight of the rover is less than
40 kg. In order to support the autonomy requirements of a
planetary exploration mission, the computations of all rele-
vant software components are performed on board. There-
fore, the LRU comprises a 9th generation Core i7 mobile
processor (featuring efficient mechanisms for throttling CPU
power) for non-realtime software components. Additionally,
a NVIDIA Jetson TX is used for extensive on-board image
and navigation processing. The low-level control algorithms
are computed on a separate realtime computer, which is
currently an UP Squared with an Intel® AtomTM processor
and a realtime operating system.

The Planetary Exploration Lab (PEL) is an indoor

Fig. 4: LRU driving in the PEL during the test campaign.
The tracking markers are mounted on the rover’s neck.

Moon/Mars-analog testbed for rough-terrain rover systems.
It contains an area of the dimensions 10m × 5m which
can be filled with different types of soil, depending on
the test scenario. The current soil is the EAC-1A soil, a
certified Moon analog. The physical properties of the sand
are described in [23]. The slope of the rear part of the test
plane with a size of 3m × 5m can be set between 0 and
30 deg. To minimize potential dust exposure during driving
tests, the operators can work in a separated room containing
computers and other technical infrastructure.

The PEL is equipped with an ART tracking system con-
sisting of 10 cameras. In order to track the LRU, six marker
balls have been mounted at the rover’s neck (see Fig. 4).
The marker balls allow the tracking of a corresponding
frame with the ART tracking software DTrack2 with 60Hz.
The marker frame is finally calibrated w. r. t. the center of
geometry of the rover, such that the tracking system can be
used as ground truth position and configuration measurement
for the platform.

Following the autonomy paradigm of planetary exploration
missions, all relevant software components are designed to
run on the rover’s on-board computers. This also includes
learning-based controller modules. However, no online learn-
ing is envisaged on board. The software on the rover is split
into the low-level controllers running on a realtime computer
with 1 kHz, which is interfaced by the high-level controllers



Fig. 5: Overview of the DeLeMIS nodes and their interfaces.
The planner node receives a custom generated trajectory
as well as input the rover’s absolute position from the
tracking system as ROS tf (tf.art0.imu gt) and a ve-
locity signal from the self-localization (/ins estimate).
From this input, a combined odometry message as well
as a discretized trajectory topic is sent to the controller
node. The controller node receives telemetry data from the
low-level controller (/body angles, /bogie axles)
and sends a desired body velocity command via the
/controller interface topic.

and the self-localization and mapping pipeline running on
the main computer. The high-level controller software which
was tested in this work has interfaces to several parts of the
rover software stack, cf. Fig. 5.

On the rover, all processes, their dependencies, and real-
time process communication is handled by the middleware
Links and Nodes1 (LN), which was developed at DLR to cre-
ate and manage flexible distributed realtime systems, in par-
ticular embedded robotic systems. The higher-level software
components are using ROS melodic as middleware, with
custom interfaces to LN. Measurement data documenting the
test runs is logged via LN topics, which guarantee logging
of realtime and non-realtime topics in different sample rates
together with their respective timestamps.

The test runs were performed according to the following
procedure: After preparing the surface of PEL and starting
the tracking system and rover software stack, a trajectory
was selected and the planner node was started. Then, the
selected high-level controller node was started together with
the logging process. After completing the specified amount
of laps, a postprocessing pipeline was triggered containing
(among others) automated plotting of relevant data. Option-
ally, a training of the neural network was launched.

IV. ROVER CONTROL
In the following, the controllers used during the test

campaign will be described.

1https://gitlab.com/links_and_nodes/links_and_
nodes [Accessed 09.02.2024]
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Fig. 6: Concept overview of trajectory tracking controller
architecture [24]. The NLC provides the control input uuue
consisting of the commanded velocity v and yaw rate ω to
the rover system and receives the rover state xxx = [ξ η ψ]T

and the reference trajectory including the reference states xxxr
and velocities uuur. The optional learning-based MPC provides
the additional control input uuuc and receives the error state
x̃̃x̃x = [ξ̃ η̃ ψ̃]T , constraints and learning data if necessary.

A. Low-level control

The mobile platform features four wheels with individual
steering and propulsion. This creates the possibility to change
the location of the instantaneous center of rotation (ICR)
arbitrarily, i. e. the rover is able to turn on the spot as well
as perform car-like as well as crab-like motions according
to the situation. Therefore, the steering configuration as well
as the velocity of all wheels have to be controlled such that
the nonholonomic rolling-without-slipping constraints of the
wheels are satisfied and a unique ICR exists. In this work,
a desired velocity for the geometric center of the rover is
commanded in three planar directions (translational velocity
in local x- and y-direction and yaw rate) from the high-level
software components. This body velocity command is then
used to compute the corresponding desired velocities and
steering angles for the individual wheels by solving the rigid
body kinematics equations. Underlying motor controllers
follow the desired steering positions and wheel velocities,
respecting the hardware limits of the actuators as well as
the integrity of the steering configuration. Experience has
shown that the performance of the underlying controllers is
sufficiently fast for most trajectories, such that this simple
control strategy is robust and well-suited for motions in
rough terrain. However, the control strategy does not include
knowledge about wheel-ground interaction. Thus, higher-
level trajectory tracking algorithms building on the body-
velocity command interface have to compensate for slip
effects in order to improve tracking performance.

B. Trajectory tracking control

As an approach for the high-level trajectory tracking, a
controller architecture with the combination of a non-linear
Lyapunov controller (NLC) and a layered model predictive
controller is used. Details of the overall controller architec-
ture are described in [24] and illustrated in Fig. 6. The rover
state xxx = [ξ η ψ]T consists of the current longitudinal and
lateral position ξ and η, as well as the heading angle ψ,



expressed in a fixed initial frame. The reference state from
the provided trajectory is denoted by xxxr. The error state x̃xx
is given as

x̃xx =



ξ̃
η̃

ψ̃


 =




cosψ sinψ 0
− sinψ cosψ 0

0 0 1


 (xxx− xxxr) . (1)

The NLC provides the control input uuue consisting of the
commanded velocity ve and yaw rate ωe:

ve = −Kξ ξ̃ + vr cos ψ̃

ωe = −Kψ sin(ψ̃) + ωr −Kη vr η̃ .
(2)

Thereby, vr and ωr denote reference velocity and yaw rate of
the target trajectory, and Kξ, Kη , and Kψ are scalar design
parameters. By using the proposed non-linear controller (2)
depending on the error state x̃̃x̃x from (1), the system can
be linearized at the trajectory. From the perspective of the
overlaid MPC, a linear parameter-varying system (LPV) is
obtained:

˙̃xxx =



−Kξ ωr 0
−ωr 0 vr
0 −vrKη −vrKψ


 x̃̃x̃x+



1 0
0 0
0 1


uuuc . (3)

This design makes it possible to follow a trajectory with only
the NLC, but offers the possibility to improve the motion
behavior with an additional controller input uuuc. Specifically,
MPC can be used to consider constraints, for example on the
overall system inputs uuu = uuue+uuuc. Because of the simplicity
of (3), the optimization problem remains simple and fast to
solve. Details about the MPC including the formulation of
the optimization problem can be found in [24].

C. Learning-based control

Due to the linearization of the system and unknowns such
as slip effects, model uncertainties have to be considered.
Therefore, a learning-based component using a deep neural
network (DNN) is added to the MPC to compensate for
the expected model error. In the proposed concept, state
prediction over the prediction horizon is approximated using
the DNN, based on various input features γγγk. This extends
the LPV system dynamic from (3) with an error prediction
to

x̃xxk+1 = AAAd x̃xxk +BBBd uuuc,k +NN(γγγk) , (4)

with the discretized system matrices AAAd ∈ R3×3 and BBBd ∈
R3×2. It is important to note that the MPC state prediction,
including the error prediction by the DNN, is applied and
optimized over the entire prediction horizon. This means that
the DNN is directly integrated into the MPC problem and the
associated consideration of the constraints. For this purpose,
various DNN architectures were tested. A Long Short Term
Memory LSTM network with 4 hidden layers and an average
of 25 neurons per layer turned out to be particularly suitable
(the exact architecture and results will be published in a
further work). In this work, the focus lies on testing the
improvement effects and comparing them with the classic
control approaches. Thereby, the respective algorithms are

first verified in simulation. Then, test results from the real
rover are compared with the results from the benchmark
test. In the next section, the first test results of the classical
controllers are shown and compared, followed by a preview
of the results of the learning-based methods.

V. TEST RESULTS AND FINDINGS

At the beginning, a test cycle is presented in detail for
reference. The data includes the commanded and measured
velocities, the global positions, and the deviation from the
trajectory. Afterwards, individual test cases and configu-
rations are compared with regard to their deviation from
the specified trajectory. In all experiments, parameters of
the NLC controller are chosen according to the stability
design guidelines referenced in [24]. The obtained values
are Kξ = 0.044731, Kη = 3.5293, and Kψ = 1.2583.

Fig. 7 shows a test ride of a deformed (drawn) eight with
the presented MPC without constraints. The two upper left
plots show the commanded velocities vx and vy of the high-
level controller (NLC or MPC), the commanded velocities
of the low-level controller to the wheels and the estimated
velocities from the rover odometry. The plots verify the
correct implementation and function of the software modules
in the overall system. It can be seen that the rover is
able to follow the specified trajectory. The maximum lateral
deviation is 0.4m at the starting position, which can be
explained with the time delay between starting the trajectory
generator and the controller node. In the further course of
the run, the maximum tracking error is 0.11m. It must be
highlighted that the commanded velocities cannot always
be properly implemented by the low-level controller, as the
commanded wheel velocities are set to zero when the steering
configuration is not consistent. This can be observed in the
LRU odometry measurements in the upper left plot.

In Fig. 8, two test drives under identical conditions are
compared. In both cases, the same trajectory with a constant
speed of 0.3m/s is commanded. The slope of the rear part
of the testbed is 15 deg, a minimum of 3 laps are completed.
Fig. 8 (a) depicts a ride with the presented NLC, while
Fig. 8 (b) represents the ride with the MPC. The x- and
y-directions and deviations refer to the global frame of the
tracking system and planner. Under the assumption that the
respective coordinate systems have the same origin, they
are equal to ξ and η. It is evident from the comparison
that both the deviation in the x- and y-directions from
the reference trajectory is significantly improved by using
the MPC. The improvement in the tracking performance
is particularly noticeable during the incline, see Fig. 8 (a)
starting from 60 s and from 120 s. In the test ride with the
MPC, the deviation is significant only at the beginning of
the test due to the specified reference point on the trajectory,
but it reduces to a maximum of 0.083m in the y-direction
and 0.28m in the x-direction in the following laps. With the
NLC, there is a maximum lateral deviation of 0.43m and
1.19m in the x-direction during the run. Note that it is not
appropriate to compare the high deviation at the beginning
of a run. The different initial errors originate in the not exact
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same start positions of the rover and the different start times
w. r. t. the reference trajectory during the test runs.

The results indicate that the NLC is capable of following
the trajectory well but encounters issues, particularly with
higher deviations and inclines. On the other hand, the MPC
performs well and reduces lateral deviation to a few cen-
timeters. However, there is still potential for improvement
in the MPC, especially in predicting the error in the rover’s
direction of travel. Here, the approach described in Sec. IV-C
is expected to achieve an improvement.

In Fig. 9, some initial results of the learning-based error
prediction during an open-loop test drive with the real rover
in the PEL are presented2. It can be observed that the DNN
is partially able to predict the errors of the internal MPC
states x̃. In addition, it can be seen that all major errors are
predicted correctly in both the x- and y-directions. However,
the magnitude of the error is not yet exactly accurate and
should be further improved in the future, e.g. through more
training and a better DNN architecture. We want to highlight
that only the data obtained from approx. 3 laps with the rover
in the PEL was used as training data for the model, the size
of the dataset was 4 MB. The offline training of the DNN
lasted only around 3 minutes on the Rover hardware. A more

2In this context, open loop means that the neural network performs
predictions during the run, but these predictions are not fed back to the
control loop.

detailed analysis and results of the learning-based approach,
especially of the closed loop results and behavior at unknown
and not trained trajectories, will be provided in a subsequent
work.

VI. DISCUSSION
The goal of this work is the implementation and examina-

tion of different control approaches for a wheeled mobile
robot in the context of a planetary exploration mission.
However, the experiments are conducted in a terrestrial setup,
which poses the question of relevance of the results w. r. t.
the goal scenario.

The first relevant aspect is the test site and the rover
hardware. As mentioned before, the soil is a certified Moon-
analog, while the variable slope and the possibility to shape
the surface in PEL manually create the opportunity to
test wheel-ground interaction effects in a realistic setting.
Even more realistic results are expected to be obtained in
future experiments using the new DLR Moon-Mars Test
Site, which was inaugurated in Sept. 2023 [25]. The LRU
is a terrestrial prototype of a planetary exploration rover,
and many components are not space-qualified. However,
the drive trains for wheel propulsion and steering as well
as the design of the wheel geometry is strongly based on
existing planetary exploration missions [26]. Concerning the
software, it must be mentioned that the rover’s on-board
computers possess significantly more computational power
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than existing solutions in real space missions, and thus the
requirements for the software are different. On the other
hand, time is not a crucial factor in real space mission
(whereas the dangers arising from undesired slip effects
might be), such that it should be possible to run selected
software components in reduced rates. We believe that the
overall software architecture is generally feasible for space
vehicles due to the fact that all relevant software components
run on the rover directly, besides the training of the neural
network. However, this is part of future work and should also
be possible on-board, given the fact that the training does not
have to run at a specified time or in a specified rate.

Another difference w. r. t. real space applications is the
usage of a tracking system for determination of the rover’s
position and orientation within the planner and controller
software. This choice was made for two reasons: First, it
enables analyzing the results only w. r. t. the performance of
the control software, without interfering with a potentially
drifting self-localization. Second, in the confined space of
the PEL, drift of the self-localization could easily lead to
aborted test runs, as the rover hits the boundary of the
sand box. Both factors are irrelevant during a space mission,
where the rover navigates locally, avoiding obstacles in its
surrounding. If a ground-truth measurement is needed, e. g.
for initial training while filtering out drift effects of the pose
estimation, it could be possible to measure the rover pose
exactly by referring to the known position of the lander in a
real mission. The other assumption that was made was that
the desired trajectory is feasible without obstacles. We want
to point out that we decided to use a static trajectory planner
in the test setup. This choice together with the feasibility
assumption guarantees that the obtained data for different
controllers driving the same trajectory can be compared in a
meaningful way. However, in a real mission, trajectories are
generated piecewise by a local trajectory planner, avoiding

impassable obstacles.
Finally, it is a well-known fact that wheel-ground interac-

tion effects depend not only on terrain properties, but also on
contact pressure and geometry of the wheels. Thus, model-
based approaches are either inherently inaccurate or compu-
tationally expensive. We believe that approaches which rely
on machine learning techniques are more likely to be ap-
plicable under previously unknown circumstances as model-
based approaches. The preliminary results shown in this work
justify the approach w. r. t. future space applications.

VII. CONCLUSIONS

In this work, we propose a test setup which allows the
qualitative and quantitative comparison of the performance
of tracking controllers in a Moon-analog setting. A test
campaign is conducted which examines among others the
possibility to estimate and predict effects of unmodeled
wheel-ground interaction by using machine learning tech-
niques. First results of the experiments imply that the pro-
posed controller setup, which is extended by a deep neural
network component for slip estimation and compensation,
is well-suited for trajectory tacking of wheeled vehicles in
previously unknown terrain. An extensive review of further
results will be subject of a follow-up publication.
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