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Abstract: This study presents what we believe is the first extensive assessment of the water
reflectance products from the German hyperspectral Environmental Mapping and Analysis
Program (EnMAP). We evaluate EnMAP’s standard normalized water leaving reflectance [ρ W]N
over 17 water sites in the first two years of the mission. The EnMAP [ρ W]N standard product is
generated by a dedicated water atmospheric correction (AC) called the Modular Inversion Program
(MIP). The quality of the [ρ W]N retrievals was assessed using in situ hyperspectral measurements
and Aerosol Robotic Network - Ocean Colour (AERONET-OC) multispectral measurements.
The results showed very good agreement between in situ hyperspectral match-ups and EnMAP [ρ
W]N, with an underestimation of EnMAP of −17.37% (bias, β) and an error (ϵ) of 23.75% at 418 –
797 nm. Two other AC processors were also investigated: the polynomial based algorithm applied
to MERIS (Polymer) and the atmospheric correction for OLI lite (Acolite). The intercomparison
exercise between the three AC methods applied to EnMAP data using the hyperspectral match-up
dataset showed better statistical metrics for MIP (ϵ = 23%, β = −17.37%) compared to Polymer
(ϵ = 42.20%, β = −2.43%) and Acolite (ϵ = 97%, β = 97%). The superior performance of MIP
was further confirmed by the validation results obtained with the multispectral match-up dataset;
MIP retrievals show good agreement with in situ measurements at the majority of study sites.
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Conversely, Polymer and Acolite retrievals tended to overestimate, especially in clearer waters as
the Lampedusa study site.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Spaceborne aquatic remote sensing, also called ocean colour, began in 1978 with the launch of
the multispectral Coastal Zone Color Scanner, and since then, dozens of missions have been
developed with significant technological improvements [1,2]. The latest development direction
taken by the ocean colour missions is the imaging spectroscopy or hyperspectral remote sensing.
However, for more than three decades, hyperspectral remote sensing has been used to monitor
inland and coastal waters with airborne and spaceborne hyperspectral sensors developed primarily
for terrestrial applications (e.g. Hyperion [3], Compact High-Resolution Imaging Spectrometer -
CHRIS [4]). The Hyperspectral Imager for the Coastal Ocean (HICO) onboard the International
Space Station (ISS) was the only dedicated aquatic hyperspectral mission, acquiring data at a
spectral resolution of approximately 5.7 nm and a spatial resolution of 90 m from 2009 to 2015.
Its data were used for a variety of aquatic studies [5–10].

One of the main advantages of hyperspectral remote sensing is that it provides measurements
over hundreds of narrow contiguous bands from the visible to the infrared, allowing existing
algorithms to be better adapted and new ones to be developed to explore the subtle optical spectral
differences between different water types [11]. Recognising the value of such technology, a new
generation of spaceborne sensors for terrestrial and aquatic applications has been developed
in recent years by national and international space agencies, apart from commercial missions.
Most recently, in February 2024, the National Aeronautics and Space Administration (NASA)
launched the Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE, [12]) with a spatial resolution
of 1 km, primarily for ocean remote sensing applications. Other hyperspectral missions, but
with higher spatial resolution and therefore more suitable for studies of inland and coastal
waters, include the Environmental Mapping and Analysis Program (EnMAP, [13,14]) from
the German Aerospace Center (DLR) in 2022, the PRecursore IperSpettrale della Missione
Applicativa (PRISMA, [15,16]) sensor from the Italian Space Agency (ASI) in 2019 and the
German Aerospace Center’s (DLR) Earth Sensing Imaging Spectrometer (DESIS, [17]) on
board the ISS in 2018. Recent studies have shown the potential of these new sensors for aquatic
applications [8,18–22]. These findings pave the the way for upcoming missions including the
Italian PRISMA Second Generation in 2025, NASA’s Surface Biology Geology (SBG, [23]) from
2027, and the ESA Copernicus Hyperspectral Imaging Mission for the Environment (CHIME,
[24]) planned for 2028.

The continuous spectral sampling of these sensors of spectral ranges that are normally avoided
by multispectral sensors enables the estimation and correction of atmospheric influences. However,
AC remains a critical step in aquatic remote sensing; particularly in the visible near-infrared
(VNIR) region, where atmospheric path reflectance can constitute up to 90% of the measured
top-of-radiance measured by sensors [25]. Water reflectance products are the input to most
water quality retrieval algorithms and to derive inherent and apparent optical properties, which
thus depend on the successful removal of atmospheric and (water) surface contributions [19].
Uncertainties in water reflectance products due to insufficient AC can hinder the application of
hyperspectral satellite data [8].

This study focuses on the water reflectance products from EnMAP. Since April 2022, EnMAP
has provided data with a spatial resolution of 30 x 30 m and 224 spectral bands from 418 to 2445
nm. [14] confirmed the quality of the EnMAP normalised water leaving reflectance ([ρW ]N)
product during the commissioning phase. Here we take a closer look at EnMAP [ρW ]N and
evaluate it against hyperspectral and multispectral data sets from over 17 water sites and two
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years of mission. The study is divided into two main parts. In the first part, we look at the
individual performance of the standard EnMAP [ρW ]N products, evaluating all valid match-ups.
In the second part, common match-ups processed with the polynomial based algorithm applied
to MERIS (Polymer, [26,27]) and the Atmospheric Correction for OLI (Acolite, [19,28]) ACs are
evaluated and compared to official MIPs [29–31] processing.

2. Material and methods

2.1. In situ data and study sites

The in situ dataset contained multi- and hyperspectral data from 17 study sites (Fig. 1 and
Table 1). For these study sites, 50 time-synchronous EnMAP images were generated, which
46 images have high quality and four images from the commissioning phase are classified as
"low quality" by the ground segment; three at Lucinda Jetty Coastal Observatory (LJCO) and
one at Lake Constance (Table 1). These data were not removed as their uncertainties met the
mission requirements. The mission requirements defined by the EnMAP ground segment limit
the uncertainty (root mean square error, RMSE) outside strong atmospheric absorption regions
and for aerosol optical thickness (AOT) at 550 nm < 0.4 to: <0.04 for 400 nm<λ ≤ 450 nm;
<0.02 for 450 nm<λ ≤ 650 nm; <0.01 for 650 nm<λ ≤ 800 nm. For AOT at 550 nm > 0.4, the
corresponding requirement increases by 0.01.

Fig. 1. Location of the validation sites over a summer climatology image of Sentinel-3A
OLCI chlorophyll-a concentration [mg/m3]. Contains modified Copernicus Sentinel data
processed by NASA Ocean Biology Processing Group.

Hyperpectral in situ measurements were collected with different instruments: PANTHYR
(AAOT and Oostende), HYPERNETS (AAOT), Ocean Optics Sensor System (OOSS, Lake
Constance), Sea-Bird Hyper-PRO hyperspectral radiometers (Lampedusa), WISPstation (Lake
Trasimeno) and Sea-Bird hyperspectral ocean colour radiometers (HyperOCR, LJCO). Details
on the measurement systems can be found in: PANTHYR [32], HYPERNETS [33], Sea-Bird
Hyper-PRO [34], WISPstation [35,36], HyperOCR LJCO [37]. Nearly all measurements were
collected from above-water radiometry. Data were not corrected for bidirectional effects and
provided either as remote sensing reflectance (Rrs) and converted to water leaving reflectance
(ρW ) by multiplying by π, or directly as ρW . For Lampedusa, measurements were collected
from in-water radiometry and Rrs was derived at nadir, enabling directly to convert to [ρW ]N
by multiplying by π. To avoid confusion with nomenclature we adopt the term ρW for the
hyperspectral in situ measurements. Following [38,39] all hyperspectral in situ measurements
were spectrally resampled to the spectral response function as provided in the EnMAP metadata
[14].
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Table 1. List of study sites, location, type of in situ measurements and number of images (C:
Commissioning, O: Operational mission phase, LQ: Low Quality).

Abbreviation Study Site Location in situ Measurement Number of
Images

AAOT Acqua Alta
Oceanographic Tower

45.31◦N, 12.51◦E Hyperspectral and
AERONET-OC

C: 2, O: 5

BB Bahia Blanca 39.14◦S, 61.72◦W AERONET-OC C: 9

BR Banana River 28.37◦N, 80.63◦W AERONET-OC O: 1

CB Chesapeake Bay 39.12◦N, 76.35◦W AERONET-OC C: 4

GP Galata Platform 43.04◦N, 28.19◦E AERONET-OC C: 1

IL Irbe Lighthouse 57.75◦N, 21.72◦E AERONET-OC C: 1

KO Kemigawa Offshore 35.61◦N, 140.02◦E AERONET-OC C: 1

LC Lake Constance 47.63◦N, 09.37◦E and
47.63◦N, 09.36◦E

Hyperspectral C: 1 (LQ: 1)

LT Lake Trasimeno 43.12◦N, 12.13◦E Hyperspectral C: 1

LAMP Lampedusa 35.49◦N, 12.47◦E Hyperspectral O: 1

LJCO Lucinda Jetty Coastal
Observatory

18.52◦S, 146.39◦E Hyperspectral and
AERONET-OC

C: 5 (LQ: 3),
O: 10

MVCO Martha’s Vineyard
Coastal Observatory

41.32◦N, 70.57◦W AERONET-OC C: 1

OO Oostende 51.25◦N, 02.92◦E Hyperspectral O: 1

SM San Marco 02.94◦S, 40.21◦E AERONET-OC O: 1

S7 Section-7 Platform 44.55◦N, 29.45◦E AERONET-OC C: 1

SG South Greenbay 44.60◦N, 87.95◦W AERONET-OC C: 1

SO Socheongcho 37.42◦N, 124.74◦E AERONET-OC C: 3

AERONET-OC measurements are collected by SeaPRISM autonomous radiometer systems
[40]. AERONET-OC level 1.5 (real time cloud screened) were used for validation as coincident
level 2 data with the EnMAP overpasses were not available. The AERONET-OC data were
accessed at [41]. The normalized water leaving radiance data corrected for bidirectional effects
based on the IOP approach [42] ([LW ]NIOP) were converted to normalized water leaving
reflectance [ρW ]N by multiplying by π and dividing by the mean extraterrestrial solar irradiance
[43]. For the validation we took the closest EnMAP wavelength to the original AERONET-OC
bands: 444.549 and 444.699 - 443 nm, 491.633 and 491.780 - 490 nm, 510.678 and 510.829
- 510 nm, 530.268 - 532 nm, 550.525 - 551 nm, 560.947 and 561.112 - 560 nm, 622.732 and
622.921 - 620 nm, 666.435 and 666.637 - 667 nm, 679.691 - 681 nm, 706.401 - 709 nm and,
778.333 - 779 nm. The two EnMAP bands correspond to a band configuration update during the
commissioning phase. For the validation of EnMAP aerosol optical thickness (AOT at 550 nm)
against in situ AOT, we used data from the AERONET-OC sites (AOT at 551 nm or 560 nm)
and one measurement from the EnMAP validation campaign at Lake Constance in 2022 during
EnMAP commissioning phase using a hand-held sun photometer device Microtops II.

2.2. EnMAP data and AC processors

EnMAP Level 1B, Level 1C, and Level 2A products (processing version V010400) were obtained
from the DLR Portal Earth Observation Center for the period spanning June 2022 to December
2023. Briefly, Level 1B data includes radiometric corrections and spectral characterization;
Level 1C is derived from the Level 1B product and geometrically corrected (orthorectified) and
re-sampled to a specified grid. Level 2A is derived from the L1C product and atmospherically
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corrected to generate surface reflectances separately for land and water applications. More details
on the EnMAP data processing levels can be found on the EnMAP website [44] and [14].

The EnMAP Level 2 [ρW ]N product is generated by a dedicated water atmospheric correction
called Modular Inversion Program (MIP) developed by EOMAP GmbH [29–31]. MIP is a physics-
based AC based on multilayer atmosphere-ocean radiative transfer modelling and designed for the
retrieval of water quality and bio-optical parameters from multi- and hyperspectral remote sensing
measurements. MIP consists of a set of modules (e.g. modeling of atmosphere, modeling of
water composition) in a continuous chain, connecting bio-physical parameters with the measured
satellite top-of-atmosphere radiance [30].

We preprocessed EnMAP L1B with Polymer and EnMAP L1C data with Acolite AC to [ρW ]N
and ρW , respectively, to analyze and cross-compare the performances of the three processors.
Polymer (v4.16.1, [26,27]) is a spectral matching algorithm in which atmospheric and oceanic
signals are obtained simultaneously using the available VNIR spectrum and filtering out bands
near strong atmospheric absorption features. The atmospheric reflectance, including sun glint, is
modeled by a second-order polynomial, and for the water reflectance Polymer uses the bio-optical
model of [45]. Details on Polymer can be found in [26,27], and the latest Polymer version is
available on GitHub [46]. A first application of Polymer to simulated EnMAP data was presented
in [10]. The processing of EnMAP data with Polymer has been implemented in the publicly
available, alternative EnMAP Processing Tool (EnPT [47,48]) and its wrapper module ACwater
[49], within the EnMAP-Box QGIS plugin [50]. The EnPT module ACwater contains all needed
specifications and the technical framework required to apply the Polymer algorithm to EnMAP.

Acolite [28] is a stand-alone software based on the Dark Spectrum Fitting (DSF) algorithm
in which multiple dark targets in the image are chosen to construct a dark spectrum. This
representative dark spectrum is then used to estimate the atmospheric path reflectance according
to the best-fitting aerosol model. Acolite can be obtained at GitHub [51], and in this study,
we used the version 20231023.0 without and with the option of glint correction [19,28]. As
mentioned, the Polymer algorithm is implemented in the EnPT of the EnMAP box. The EnPT
processes EnMAP data from Level 1B to Level 2A, including radiometric, geometric, and
atmospheric corrections (using Polymer for water surfaces) and orthorectification. In contrast,
Acolite does not perform radiometric and geometric corrections, and thus its input data is Level
1C. Table 2 summarizes the main details of MIP, Polymer, and Acolite AC processors.

Table 2. Details of MIP, Polymer and Acolite AC processors.

Correction MIP Polymer Acolite

Adjacency Effects yes polynomial fitting -

Aerosol dark pixel approach polynomial fitting dark target approach

Gaseous O3 O3, NO2 O2, O3

Sun Glint yes yes yes

Water Vapour yes - yes

Bio-optical model yes yes -

BRDF correction yes yes no

2.3. Quality control

The hyperspectral validation was performed in the 420 – 800 nm spectral range, which is the
range covered by all in situ measurements; the multispectral validation from 444 to 800 nm. As
the Acolite results do not include the O2 band around 763 nm, this band was also excluded from
the MIP and Polymer retrievals in the AC intercomparison exercise. As uncertainties are not
provided for most of the in situ data, they are expected to be smaller than the mission requirements.
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For the relative comparison between the ACs, it can be expected that all processors are affected
to a similar extent by the instrument uncertainties [52]. To check for the high temporal variability
of the in situ measurements close to the EnMAP overpass time, we calculated the mean and
standard deviation at the ± 15 minute window when data were available. For three days at LJCO
the in situ reflectance showed high temporal variability and we opted to compare EnMAP data to
the mean in situ reflectance instead of using the closest measurement in time, as for all other in
situ matchups.

EnMAP retrievals were compared to the in situ measurements following the OLCI match-up
protocol [53] and using a 3 x 3-pixel box and a time window of± 01:15. Most of the measurements
were available within ± 15 minutes from the overpass (36 out of 50); 17 during the overpass.
EnMAP-MIP pixels were excluded from analysis when they were masked as cirrus, cloud, cloud
shadow, and haze flags. For Polymer, we found that the default flags did not always accurately
correspond to invalid match-ups, so we decided not to apply any flags and investigate this issue
further. For Acolite we applied the default recommended flags: NIR or SWIR threshold test,
CIRRUS threshold test, TOA threshold test, NEGATIVE surface reflectance test and EXTENT
test. Most of the pixels of the 3 x 3 pixel box were retained in the end, usually 7 to 9 pixels, for
the valid match-ups. The EnMAP spectrum represents the median of the pixel box after the
flagged and outlier pixels were removed. The number of valid match-ups of each AC processor is
provided in Table 3.

Table 3. Number of valid match-ups for each AC processor (left panel) and frequency distribution
(right panel) of reflectance levels the hyperspectral and multispectral in situ measurements (all

wavelengths). *Acolite with glint correction applied.

Table 2. Details of MIP, Polymer and Acolite AC processors.

Correction MIP Polymer Acolite

Adjacency Effects yes polynomial fitting -

Aerosol dark pixel approach polynomial fitting dark target approach

Gaseous O3 O3, NO2 O2, O3

Sun Glint yes yes yes

Water Vapour yes - yes

Bio-optical model yes yes -

BRDF correction yes yes no
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AC Processor Hyperspectral Multispectral

MIP 22 24

Polymer 21 20

Acolite 11 (3*) 17 (8*)

Table 3. Number of valid match-ups for each AC processor (left panel) and frequency
distribution (right panel) of reflectance levels the hyperspectral and multispectral in
situ measurements (all wavelengths). *Acolite with glint correction applied.
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2.4. Performance metrics

Given the distribution of our match-up datasets (Table 3), we followed [52] and use two main
metrics representing the overall error (ϵ , %) and bias (β, %) of the EnMAP reflectance retrievals.
These metrics were calculated using log10 transformed data and then converted back to linear
space [52]. We also analysed the spectral shape of EnMAP using the spectral angle mapper
(SAM, θ◦) to determine the similarity between an EnMAP and an in situ reference spectrum.
The ϵ , bias β and SAM are calculated as follows:

ϵ = 100 × sign(Z) × (10 |Z | − 1) where Z = median
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xi
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where x indicates the measured in situ data and y the estimated satellite data for each match-up i.
To facilitate comparison with other studies, we also calculated the slope, intercept, and

coefficient of determination (R2) of the linear regression, the RMSE and the median absolute
percentage error (MdAPE) using all values:

RMSE =

⌜⎷
1
n

n∑︂
i=1

(xi − yi)2 (4)

MdAPE = median
(︃
|yi − xi |

|xi |

)︃
× 100% (5)

The Pearson correlation coefficient between EnMAP-MIP [ρW ]N ϵ and β of hyperspectral
match-ups and EnMAP AOT, across off-nadir angle and solar zenith angle was used as an
indicator of the relationship between EnMAP data quality and AOT, observation and illumination
geometry.

3. Results and discussion

3.1. EnMAP-MIP

The assessment of EnMAP-MIP performance is illustrated in the scatterplots for match-ups to
hyper- and multispectral in situ data in Fig. 2 and Table 4. A total of 22 high quality match-ups
from 21 images are used for the hyperspectral validation; seven from the commissioning phase
and 15 from the operational mission phase. The standard EnMAP [ρW ]N product is highly
correlated to in situ measurements, yet it exhibits a tendency to underestimate in situ ρW by
approximately 17%, indicating an overcorrection of the atmospheric path reflectance. The overall
error of about of 24% falls below the stipulated threshold of 30% uncertainty in ρW to ensure the
data’s utility as defined by the Global Climate Observing System (GCOS) for lakes [54]. The
multispectral analysis confirm the findings obtained with the hyperspectral dataset, albeit with
slightly improved performance metrics. It confirms, that differences between matchup products
provided as [ρW ]N or as ρW are marginal for our comparisons because of the strict time window
for matchups and [ρW ]N reflecting light conditions at 12:00 local time and EnMAP overpass
within 24 minutes around 11:00 local time being close to this.

Fig. 2. Scatterplot of EnMAP-MIP [ρW ]N for hyperspectral (N=22) and multispectral
match-ups (N=24). Only valid satellite data (> 0) at the specific bands are considered in the
comparison.
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Table 4. Statistics of MIP for the two datasets: hyperspectral
and multispectral (both mission phases).

Dataset ϵ (%) β (%) RMSE MdAPE (%)

Hyperspectral 23.75 −17.37 0.01 21.12

Multispectral 19.40 −13.09 0.01 16.32

Figure 3 shows the spectral comparison of EnMAP and in situ hyperspectral data for unique
match-ups of MIP. The common match-ups between MIP, Polymer, and Acolite are provided in
the next section. Overall, we observe very good agreement between EnMAP and in situ spectra
for the different water sites and reflectance magnitudes. The highest disagreement was observed
at Oostende, a region with typical turbid and very turbid waters [28]. The underestimation of MIP
at Oostende might be improved by the next EnMAP processor version that should fix the issue of
the different water types in the MIP processor, as now all products are retrieved using the clear
water option. Three low-quality images of LJCO were acquired on dates (July 08, August 15, and
August 16, 2022) when in situ reflectance exhibited high temporal variability (highlighted by the
shaded green region). As previously mentioned, on these days, we compared the EnMAP data to
the mean of the 15-minute window (indicated by the dashed green line). In the red-NIR region,
there are still atmospheric absorption features that are not completely removed, in particular the
O2 band around 760 nm. Overall, spectral noise, specially at shorter wavelengths, is observed in
the EnMAP-MIP product and it is mostly due to an insufficient sampling in the convolution to
compute water look-up-tables in MIP. This issue was recently fixed and will be present in the
next EnMAP processor version. This band-to-band spectral variations are also observed in the
PRISMA data by [19,22] and CHRIS-PROBA by [55], possibly a result of inter-band calibration
issues.

The statistical metrics (ϵ , β, RMSE, and MdAPE) per wavelength range are illustrated in Fig. 4
and detailed in Table 5. The analysis is confined to the range up to 700 nm to avoid the NIR
region having multiple atmospheric absorption features. Across the spectral range, the ϵ , RMSE,
and MdAPE decline from violet-blue to red, with ϵ values between 451–700 nm meeting the 30%
requirement of ρW for lakes. Similarly, β shows a decreasing trend towards longer wavelengths,
indicating reduced overcorrection of the atmospheric effects. The uncertainty requirements set by
EnMAP Ground Segment are also met. However, the strict uncertainty requirement of 5% in the
blue of dedicated ocean color missions for non-optically complex waters [56] was not achieved.

Table 5. Statistics of EnMAP-MIP [ρW ]N for two
wavelength ranges (all hyperspectral match-ups).

Wavelength Range ϵ (%) β (%) RMSE MdAPE (%)

418 - 450 nm 35.08 −28.20 0.015 30.15

451 - 700 nm 19.70 −16.93 0.009 17.05

The ϵ and β of EnMAP-MIP [ρW ]N show a significant correlation with EnMAP AOT (Fig. 5).
In particular, ϵ show a positive correlation, indicating an increase in errors with higher AOT
values. Conversely, β shows a negative correlation, suggesting a tendency for EnMAP [ρW ]N to
be more underestimated as AOT increases. The comparison between EnMAP AOT retrievals and
in situ AOT measurements revealed significant uncertainties associated with EnMAP AOT. These
uncertainties may have implications for the estimation of the EnMAP MIP [ρW ]N , particularly
with respect to AOT values or the choice of aerosol model used in the atmospheric correction
process. No relationship was found between the EnMAP-MIP [ρW ]N quality metrics and along
nadir and zenith angles.
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Fig. 3. Comparison of EnMAP-MIP and in situ hyperspectral ρW for selected match-ups.
The median EnMAP spectra of the 3 x 3 pixel box are shown in red, with the corresponding
standard deviation in grey bars (very small). The closest in situ measurement in time from
the overpass is shown in orange, the mean and standard deviation of the ± 15 min window
from the overpass in green (LJCO and Lake Trasimeno). Additional spectra are shown in
Fig. 7.

Fig. 4. Spectra of ϵ , β, RMSE and MdAPE for EnMAP-MIP [ρW ]N for hyperspectral
match-ups during the operational mission phase. The grey shaded area represents the
required uncertainty (RMSE) outside of strong atmospheric absorption regions and for AOT
at 550 nm lower than 0.4.
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Fig. 5. Scatterplots of EnMAP AOT and in situ AOT (left), EnMAP-MIP [ρW ]N overall ϵ
(center) and β (right) against EnMAP AOT.

3.2. Intercomparison

Here we intercompare the performance of the three AC: MIP, Polymer and Acolite. The common
hyperspectral dataset contains only 11 match-ups from four study sites (without the glint correction
applied in Acolite): four at AAOT, two at Lake Constance, one at Lampedusa and four at LJCO.
The selection is slightly biased to the more clear waters. The common multispectral dataset
contains 14 match-ups from nine study sites: one at AAOT, four at Bahia Blanca, one at Banana
River, two at Cheasepeake Bay, one at Kemigawa Offshore, one at San Marco Platform, one at
Socheongcho, one at South Greenbay and two at LJCO. A summary of processors performances
is illustrated in Fig. 6 and Table 6. The MIP AC gives the best results in terms of errors, followed
by Polymer and Acolite. The overall bias of Polymer is close to 0, while MIP and Acolite show
a clear tendency of under- and overestimation, respectively. The scatterplots of Polymer and
Acolite including all high quality match-ups for each processor can be found in the Supplement 1.

Table 6. Statistics of MIP, Polymer and Acolite for the two common
datasets: hyperspectral and multispectral (both mission phases).

Dataset AC ϵ (%) β (%) RMSE MdAPE (%)

Hyperspectral
MIP 23.03 −17.37 0.01 21.80

Polymer 42.20 −2.43 0.01 36.12

Acolite 97.01 97.01 0.02 123.24

Multispectral
MIP 18.83 −12.57 0.01 17.13

Polymer 65.42 −8.91 0.02 56.22

Acolite 76.90 76.90 0.02 64.83

A comparison of all three processors in terms of spectral similarity is presented in Fig. 7.
Overall, all three ACs compare well with the in situ measurements. The spectral noise seen
in Fig. 3 is also observed here regardless the AC applied and this issue also needs further
investigation, specially for Polymer. The most similar spectral shapes are retrieved by MIP; in
seven out of the nine match-ups shown here. The best agreements of MIP are found at Lake
Constance, an oligo- to meso-trophic lake [57], and LJCO, located in the coastal waters of the
Great Barrier Reef with high concentration of sediment and colored dissolved organic matter
[58–60]. Polymer and Acolite exhibited their highest agreement at LJCO. However, they also
display weaker spectral similarity in the clearer waters of AAOT and Lampedusa.

In the case of Polymer, the overestimation is concentrated in the 418 - 600 nm range. On
two occasions when the in situ spectra at AAOT transitioned to more productive waters, the
Polymer [ρW ]N retrievals show considerable improvement, as observed at Lake Trasimeno too
(Fig. 8). However, the analysis of the AERONET-OC dataset reveals that this overestimation is
not restricted solely to clear waters. Multispectral match-ups of Polymer show good agreement

https://doi.org/10.6084/m9.figshare.26117704
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Fig. 6. Top: scatterplots of MIP, Polymer and Acolite [ρW ]N for coincident hyperspectral
match-ups (N=11). Bottom: scatterplots of MIP, Polymer and Acolite for coincident [ρW ]N
multispectral match-ups (N=14). Only valid satellite data (> 0) at the specific bands are
considered in the comparison. Additional scatterplots of Polymer and Acolite (with and
without glint correction) with all valid match-ups for each processor can be found in the
Supplement 1.

Fig. 7. Comparison between [ρW ]N of MIP (orange), Polymer (dark green) and Acolite
(light green) and in situ (blue). The lower the SAM value, stronger is the spectral similarity
between in situ and satellite retrieved [ρW ]N .

https://doi.org/10.6084/m9.figshare.26117704
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in turbid waters, such as at Bahia Blanca, but inferior performance at sites like Socheongcho,
characterized by clearer waters. These results are consistent with the match-up comparisons
from the hyperspectral dataset. Nevertheless, the retrievals of Polymer in inland and coastal sites
such as Banana River, Chesapeake Bay, and Green Bay also show inferior performance. One
reason for the poorer results may be our decision not to use any flag information provided by
Polymer. A closer examination of the bitmask information show instances where the same flag
"6144" (indicating inconsistent results and excessive differences at 412 nm between retrieved
and modeled water reflectance) correctly identified a bad match-up as at the Lampedusa site
but erroneously flagged reliable match-ups at LJCO or Lake Trasimeno. Employing these flags
would have limited our analysis to only a few match-ups.

Fig. 8. Comparison of EnMAP-Polymer [ρW ]N (red) and in situ ρW (blue) for selected
match-ups.

Overall, Acolite shows an overestimation along the spectrum, probably resulting from residual
sun glint or the inaccurate estimation of the aerosol model used in the AC as observed by [19]
in their study of AAOT Acolite applied to PRISMA data. We also tested Acolite with the glint
correction applied; it reduced the number of high quality hyperspectral match-ups from 11 to
three match-ups (two at AAOT and one at Oostende). Considering the common hyperspectral
match-ups, this number reduced from 11 to two match-ups only (two at AAOT). Applying the
glint correction indeed improves the overestimation (see Supplement 1), as reported by [19] for
PRISMA and by [61] for S2-MSI, but also flagged out reliable match-ups as at Lake Constance,
LJCO, and Bahia Blanca (Fig. 9). Acolite is recognized to work especially well in productive
waters and turbid where it is the main intended use [28,61], as confirmed by our results.

Fig. 9. Comparison of EnMAP-Acolite [ρW ] and in situ ρW (blue) for selected match-ups.
Top: with (orange) and without glint (red) correction. Bottom: without glint correction

Although for MIP there have been several updates to the processor since the commissioning
phase, in the case of Polymer and Acolite this study shows their first application to EnMAP data.

https://doi.org/10.6084/m9.figshare.26117704
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To clarify the differences between these processors, more tests are need including performance
testing and optimisation of settings which was not done here and it is a limitation of our study.
For example, it should be investigated whether excluding the blue spectral region (410-440 nm)
from Polymer’s spectral bands could improve the observed overestimation. In the case of Acolite
we used all the default flags, but avoiding the use of some flags may provide useful information
about the processor or sensor. For example, most of the flagged pixels in Acolite were due to
negative reflectance, and avoiding this flag when processing the images would have shown in
which part of the wavelength spectrum these negative values occur.

The spectra of ϵ , β, RMSE and MdAPE for common hyperspectral match-ups to all the AC
results show largest uncertainties associated with wavelengths < 450 nm (Fig. 10 and Table 7)
which are decreasing towards the red, except for Acolite. Also for the hyperspectral PRISMA
Rrs product higher errors in the blue and in the red spectral regions was reported by [22]. The
differences in β between MIP and Polymer are higher < 500 nm, improving at longer wavelengths
when Polymer [ρW ]N is about 10% underestimated, while MIP [ρW ]N 16%. Regarding the
required uncertainty as defined by EnMAP ground segment, this was only achieved by MIP
water reflectance product. However, the uncertainty requirements by dedicated ocean colour
missions in not-optically complex waters of 5% in the blue [56] was not achieved by any of the
AC processors. Nevertheless, these waters neither fall in the mission objectives of EnMAP nor
have been evaluated by the match-up results in this study.

Fig. 10. Spectra of ϵ , β, RMSE and MdAPE for MIP, Polymer and Acolite for coincident
hyperspectral match-ups during the operational mission phase (N=7). The grey shaded
area represents the required uncertainty (RMSE) outside of strong atmospheric absorption
regions as defined by the EnMAP Ground Segment and for AOT at 550 nm lower than 0.4.
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Table 7. Statistics of MIP, Polymer and Acolite for two wavelength ranges using
the common hyperspectral dataset (both mission phases).

Wavelength Range AC ϵ (%) β (%) RMSE MdAPE (%)

418 - 450 nm
MIP 26.87 −15.84 0.01 21.99

Polymer 118.78 105.24 0.03 97.97

Acolite 68.85 68.85 0.02 67.23

451 - 700 nm
MIP 19.68 −17.01 0.01 18.45

Polymer 37.45 −9.53 0.01 30.35

Acolite 79.34 79.34 0.02 87.56

4. Conclusion

This study assessed for the first time the quality of EnMAP [ρW ]N products. A total of
50 cloud-free EnMAP images acquired between June 2022 and December 2023 at 17 sites
encompassing inland, coastal, and open ocean waters were used. Near coincident hyperspectral
and multispectral measurements were also integrated into the investigation. Three AC processors
have been evaluated: the standard EnMAP AC processor MIP, Polymer and Acolite. The results
confirm that the EnMAP Level 1 product is accurately corrected for atmospheric and surface
effects to retrieve the surface reflectance information over different water sites. The best results
were obtained for the MIP AC and demonstrated the robustness of the standard EnMAP [ρW ]N
products. Polymer shows a significant overestimation for wavelengths < 600 nm, while Acolite
shows an overall overestimation of the reflectance spectrum, with improved results when the
glint correction is applied. Spectral noise was observed in the all three reflectance products
regardless of the atmospheric correction method applied at our study sites. A larger match-up
dataset in near-future will allow this study to be extended and the performance of EnMAP
[ρW ]N to be characterised by different optical water types. Further evaluation, might also benefit
cross-comparing the EnMAP reflectance products to other satellite missions such as DESIS,
PRISMA, and S2-MSI. The in situ data from various projects and study sites equipped with
autonomous hyper- and multispectral radiometers played a crucial role in this study. Funding
agencies are encouraged to continue supporting the advancement of this technology and the
expansion of the instrument network, taking into consideration the dynamic characteristics
of most aquatic ecosystems and the upcoming hyperspectral missions. Ultimately, thís study
confirms the great potential of EnMAP hyperspectral data for aquatic studies and improving the
knowledge on inland and coastal waters.
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