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ABSTRACT

Lagrangian particle tracking (LPT, (Schroder & Schanz, 2023)) techniques such as Shake-The-Box (Schanz et al., 2016)
provide accurate flow measurements by following the movement of tracer particles within a flow. The technique
gives measured values of position, velocity and acceleration at the locations of the scattered particles as opposed to a
Eulerian grid like with window based techniques such as PIV. This is advantageous for e.g spatially highly resolved
flow statistics. Often it is also desirable to have access to a grid-structured representation of the data, especially for
the calculation of spatial gradients of flow field measures. While a simple interpolation onto a grid is possible, data
assimilation techniques using physics based regularization such as FlowFit2 (Gesemann et al., 2016) or VIC+ (Schneiders
& Scarano, 2016) and VIC# (Jeon et al., 2022) are frequently used nowadays. Through knowledge of the Navier-Stokes
equations a higher spatial resolution can be obtained than from interpolation alone (see e.g. Zhou et al. (2024)). We

present the new and highly efficient FlowFit3 approach and its evaluation on synthetic data.

1. Introduction

FlowFit3 is a new development within the existing FlowFit concept. Common to its predecessors is
the representation of the instantaneous flow field using a 3D uniform B-spline grid of weighting
coefficients. B-splines can be efficiently evaluated at arbitrary positions within the reconstructed
volume and provide easy access to spatial gradients. The FlowFit3 approach thoroughly changes the
way these coefficients are determined from the data. In this paper we will focus on the description of
the method and will conduct comparisons with prior FlowFit versions. A comprehensive evaluation
of the results obtained using FlowFit3 in comparison to other data assimilation techniques on
synthetic and real world data can be found in Zhou et al. (2024).

Just as with prior versions of FlowFit the incompressible Navier-Stokes equations are used as
underlying physics equations:
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Figure 1. FlowFit3 basis: (left): Example of a 2D staggered grid. (right:) Example of 1D B-spline basis functions and
interpolation. Lines at the bottom highlight the limited support

ks ks

‘e

< o <
jae]
e
c

<® O

<o ©
o
e
c

< o <
o T"O
c
i

il

e

L

ES

z

o

Fid

____________________________

Natural definition domain

with velocity #, acceleration @, kinematic pressure p and kinematic viscosity v. With LPT we
directly measure the material derivative so there is no need to expand it into its convective form.
By rearranging these equations one also obtains an equation for pressure which is used by some
variants of FlowFit:

Ap+V-((@-V)id) =0 3)

2. Method

We introduce two variants of FlowFit3, similar to the divl and div2 modes of FlowFit2. The first,
constraining the divergence of velocity (1) , will be called "linear" mode in the following as only
linear terms are involved in the physics constraint. No measured acceleration data is needed for
this mode. The second variant is the "nonlinear" mode using also the momentum equation (2) as an
additional constraint. This mode uses measured accelerations to improve the reconstruction and is
also able to recover pressure fields using (3). Both modes build on the same internal architecture so
we begin with an explanation of the simpler linear mode.

2.1. B-Spline representation

Just as in previous iterations of FlowFit a B-spline representation is used as basis for the data
assimilation. This takes the form of a grid of spline basis functions of e.g 3rd order, each with
compact support. One can then select scaling weights for each of the basis functions. The basis
functions overlap, but due to the compact support only a small amount of basis functions is nonzero
for a given point in the domain. In order to evaluate such a B-spline representation at a certain
point, one needs to evaluate the value of all local basis functions at this position and scale them by
their respective weighting coefficients. The sum now represents the evaluated value at that point.
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The basis functions itself are fixed for a given FlowFit grid so all that is needed during reconstruc-
tion is to compute appropriate weighting coefficients that best represent a given flow. Each of
the components of the velocity vector (u,v,w) is considered a separate field. A finished FlowFit
reconstruction corresponds to a grid of B-spline coefficients for each flow quantity which can be
evaluated at arbitrary points within the domain. This setup also allows for easy evaluation of spatial
gradients since the derivative of the spatial field can be obtained using the derivative of the basis
functions which can be computed beforehand. In the following we will use the term coefficients to
refer to the values of the B-spline coefficients themselves whereas the term field will be used for the
resulting continuous interpolation (e.g, pressure coefficients vs. pressure field).

At its heart the data assimilation is accomplished by a gradient based optimization with a cost
function that incorporates measured data as well as additional constraints. The measured data
in the form of particles with positions and velocity values can simply be included by evaluating
the current velocity field at the particles locations and examining the velocity difference, which is
included as a term in the cost function. In order to move beyond simple interpolation knowledge of
the underlying flow physics is included into the optimization. Assuming an incompressible fluid
with constant density, the continuity equation transforms to a divergence constraint on the velocity
tield (1). Previous versions of FlowFit would incorporate such constraints as penalty terms into
the cost function. Such a soft constraint has several disadvantages as not only this term has to be
properly weighted with respect to the other cost function terms, the constraint is also not exactly
enforced.

2.2. Hard constraint on divergence

One key improvement of FlowFit3 over prior versions is to move the divergence constraint into
the design of the Ansatz instead. In this way the constraint is satisfied at any point in the domain
and the optimizer is able to more efficiently reach an optimal solution as it is restricted from even
considering infeasible solutions during intermediate steps. In the following we give a brief overview
of how this is accomplished. FlowFit3 now utilizes a staggered grid (Harlow & Welch, 1965) for the
velocity coefficients where the grids are shifted by half of the spacing. The shift is performed in the
direction of the individual velocity component (e.g. in y-direction for v). A visual example of the
resulting grid structure for the case of a 2D grid is given in figure 1. In a 3D grid the w component
is shifted similarly in the z-direction.

Such a staggered grid is useful to avoid the problem of even/odd decoupling when solving the
pressure Possion equation which will be a topic when discussing the nonlinear mode. For the
moment we will focus on the hard divergence constraint and how the staggered grid can be used
for this. Originally such a grid was introduced for the application of finite differences used in
the discretization of the spatial derivatives in the incompressible Navier-Stokes equations but the
concept applies to the use of uniform B-splines in a comparable way. The derivative of an (n+1)th
order uniform B-spline is an n-th order uniform B-spline on a grid shifted by half a spacing unit. The
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divergence of the velocity field requires the derivatives du/0z, dv/0dy and Ow/0z. If one constructs
the 3D B-spline for u as (4th, 3rd, 3rd) order for (x, y, z) respectively then Ou/0x is a B-spline with
(3rd, 3rd, 3rd) order. Moreover, since the derivative grid is shifted by half a spacing unit in the
x-direction its location is now back at a grid position co-located with pressure. The same applies for
the other staggered velocity components (e.g. (3rd, 4th, 3rd) order for v) giving a (3rd, 3rd, 3rd)
order uniform B-spline for the divergence. If we wish to force this divergence to be zero everywhere
the coefficients need to satisfy:

0= (uw+1/2,y,z - ux71/2,y,z) + (U:Jc,y+1/2,z - Ux,yfl/Q,z) + (ww,y,z+1/2 - w:p,y,zfl/Q)- (4)
Essentially the divergence of the coefficient grid needs to be zero, which then guarantees by
construction that the divergence field is exactly zero in the entire domain. If we can ensure that
the divergence of the coefficients is zero we successfully constrain divergence in the entire field.
Instead of simply removing divergence from the final result given by the optimizer we more closely
incorporate this constraint into the optimization procedure. For the gradient based optimization
techniques utilized, the optimizer is provided with a starting solution and the current gradient of
the cost function with respect to the state vector for each iteration step. Assuming for the moment
the use of simple gradient descent. If we provide a starting solution that is divergence free as initial
state and then subtract a scaled gradient for the descent this next state is no longer necessarily
divergence free. We can enforce this by requiring the gradient to be divergence free as well. If we
perform an orthogonal projection of the gradient into the divergence free subspace the optimizer is
never able to leave this subspace as any movement away from the initial solution is at most a linear
combination of vectors from within the subspace. This not only ensures that the final result must be
divergence free, but also that the optimizer is constrained in every intermediate step of the way
thus eliminating these unnecessary degrees of freedom. The optimizer is simply unable to explore
physically infeasible areas of the solution space. In the actual implementation we do not use simple
gradient descent but the quasi newton method L-BFGS (Liu & Nocedal, 1989). The above approach
is still valid since L-BFGS uses a linear combination of previous gradients for its step so it is still
unable to leave the divergence free subspace at any time.

The divergence free projection is based on the Helmholtz-Hodge decomposition of a vector field
into an solenoidal (divergence free) part us, and an irrotational part ot

U = Usol + Uirrot = Usol + VO, ®)
with some yet to be determined potential field ¢. Taking the divergence of (5) gives a Poisson
equation for ¢ since V - tiso] = 0:

V= Ag. (6)
Once ¢ is known the divergence free part of @ can be determined:

Usol = U — V. (7)

We are solving (6) efficiently under homogeneous Dirichlet boundary conditions using a Discrete
Sine Transform. This process then forms an orthogonal projection of a vector field @ into the
divergence free subspace.
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2.3. Linear mode

By this approach the only needed term in the cost function is the velocity discrepancy between field
and particles, however a regularization term that penalizes high wavenumber oscillations of the
coefficients is still added just as in prior FlowFit versions. The cost function for the linear mode
FlowFit3 thus becomes:

costin(8) = = (||vele(3)])* + o ||hfpen(3)||*) (8)

N | —

with 5 as the optimizer state in form of the velocity coefficients, vel,, as the velocity discrepancy of
the particles to the field, hfpen as the high wavenumber penalization with a weighting term «. This
penalization is calculated just as in FlowFit2 as the L2 norm of the highpass-filtered version of the
coefficient field (Gesemann et al., 2016).

This variant of FlowFit3 provides a very efficient way to perform data assimilation but does not yet
use acceleration information in order to further improve assimilation quality or provide pressure
reconstruction as well. This is realized in a second mode we call nonlinear mode FlowFit3.

2.4. Nonlinear mode

If acceleration measurements are available we can use them to further improve reconstruction
quality as well as to recover pressure fields. The additional data allows for the use of the momentum
equation from the incompressible Navier-Stokes equations in addition to the continuity equation
used so far. Accelerations obtained from LPT measurements provide the material derivative of
velocity, the left side of the momentum equation:
Du ou
d=—=— +u-Vi=—-Vp+vAid 9
Dt ot b ®)
Just as the continuity equation requires zero velocity divergence, the divergence of the temporal
derivative of velocity must vanish as well.
ou

v.a_

V-(@—u-Vi)=0 (10)
After some transformations this leads to the Poisson equation for pressure:

Ap+V - (i -Vi)=0 (11)
The nonlinear source term can be further simplified as:

2 2 2

V-(ﬁ-v&)=(%) +(g—;) +(g—l§> +2(%%+%%+%%) (12)
and is the origin for the naming of this mode as nonlinear. Once the pressure field has been
determined one can calculate the acceleration field as needed using (9) in order to be able to
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Figure 2. Approach for allowing arbitrary boundary conditions even when solving the Poisson equation using an
efficient method implying homogeneous Dirichlet boundaries. The explicit source term variables are part of the
optimizer state and are thus adapted as needed.

calculate an acceleration error at the particle positions. Whereas prior FlowFit versions would
add an additional set of pressure coefficients to be optimized alongside the velocity the new
FlowFit3 approach does not include them in the state vector anymore. Pressure is calculated from
velocities by use of the pressure Poisson equation as needed which is solved efficiently using a FFT
based approach. We utilize a Discrete Sine Transform (DST) which implies homogeneous Dirichlet
boundary conditions. While this allows for a very efficient computation of the solution for the
Poisson equation it is not necessarily the correct boundary for a given reconstruction. To allow
for arbitrary boundary conditions while still using the DST we add an inner boundary layer to
the source term as shown in figure 2. Due to the support region of the B-Splines the nonlinear
term can only be computed from velocity in the interior region. By surrounding this region with
the additional boundary layer we retain the correct size in order to reuse the DST used for the
divergence free projection, now just with a different transfer function in Fourier space. By selecting
appropriate values for this layer of source terms we can enforce arbitrary boundary conditions for
the original problem. These explicit source term variables are simply included into the optimizer
state in order to obtain suitable values for a given reconstruction problem.

With this Ansatz pressure is no longer part of the state of the optimizer (except for boundary
conditions) but this approach introduces greater complexity in the implementation of the cost
function and especially its gradient. Instead of just backpropagating cost function gradients to the
pressure coefficients as in prior FlowFit versions they now need to be calculated further through
the pressure reconstruction all the way to the velocity coefficients instead. But again, just as with
the divergence constraint, the degrees of freedom for the optimizer are reduced since this way the
dependent relationship between velocity and pressure is encoded explicitly. The cost function for
the nonlinear mode is very similar to the linear mode (8):

L1 .
COStpontin(5) = 3 (Hvelerr(§)H2 +a thpen(s)”2 + 4 Haccerr(§)||2) (13)

now including an additional acceleration discrepancy term acc,, with a weighting factor between
velocity and acceleration errors 3. This factor can be determined from the data using the Trackfit
(Gesemann et al., 2016) approach.

One could obtain the required cost function gradient with respect to the state required for the
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optimizer using automatic differentiation on an implementation of (13). Our implementation uses a
handwritten backpropagation approach for efficiency reasons. The initial two terms also present
in the cost function for the linear mode in (8) are fairly straightforward to handle since they either
directly or almost directly operate on the velocity coefficients. The acceleration term is more complex
so we will discuss its gradient in more detail. The cost term for the acceleration is:

N

1 2
5 E Haﬁtted|pos:particlepos[i] — Qparticle]i] ’
i

, (14)

a sum of acceleration errors over all particles. A gradient of sums is the sum of its gradients so
in the following we look at the cost contribution of just a single particle within the sum with its
measured acceleration a, and the fitted acceleration d; at its position:

1 1
Co = 51y = @y|* = 5l (15)

We can only affect this by modifying the fitted acceleration:

oC, Oay 0da,,
7, —err(a—d,f a—c_if)—err (16)

Which can be related to the velocity coefficient field u}, by chaining the Jacobians of the intermediate

operations:
oC, 0C, ody OAd ddy ovVp . " _,
= th =v— = vAU — 17
96, 06, 0hd on " 9Ag VT gAg SNee Gr=vAU- VP (17)
OAU . . i oVp . ) )
The term 57, S known from the B-spline construction but AT must still be determined. Using the
U u

nonlinear term (12) as /N and the Poisson solver including the mapping to the B-Spline coefficients
as P we obtain:

Ap = N(Vi) and p, = P(Ap). (18)

We can then express the missing term in terms of known operations after some chain rule wrangling
of the derivatives:

OVp OVp 9P ON Vi

= 1
OAu  Op, OAp OVu OAuU (19)
Substituting into (17):
oC,  0C, L oVp OP ON 8Vﬁ)8Aﬁ 20)
o, Ody Opr 0Ap OVU AU’ Ouy,’
followed by simplification of some 1, i}, terms and substituting (16) one finally obtains:
oC, _ 0Au _ OVp OP ON 0Vu
= err——V (21)

iy o, . ope 0Ap VG 0y
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the desired gradient of the acceleration cost function with respect to the optimizer state in form of
the velocity coefficients. One essentially multiplies this from left to right as vector Jacobi products
(v]p) starting from the calculated acceleration error value at the particle location err. The Jacobi
matrices in (21) are not supposed to be actually created as one can implement the result of the v]p
directly. These adjoints generally can be obtained for a similar computational cost as the respective
operations in the forward pass. This is especially the case for the Poisson solver step P as it is
self-adjoint. At that stage of the backpropagation one would also extract the gradient for the source
term used for the pressure boundary. As the value of the source term is jointly optimized together
with the velocity coefficients one needs to scale its gradient to a similar norm as the gradient for the
velocity coefficients.

3. Evaluation

To compare the new FlowFit3 variants to the prior versions we use synthetic data based on a
subvolume of the isotropic turbulence data set from the Johns Hopkins Turbulence Database (Yeung
et al., 2012) just as in the original FlowFit2 publication (Gesemann et al., 2016). Synthetic particle
data is generated simply by sampling the database at random positions in the domain. Four
different particle densities are investigated resulting in a mean inter particle distance of approx. 7.5
to 3.75 Kolmogorov length scales. We compare the performance of FlowFit3 with results obtained
using the FlowFit2 approach on the same data. Figure 3 shows a comparison of reconstruction
quality in a slice of the vorticity field for a particle sampling at 6 Kolmogorov length scales. The
FlowFit2 div1 version, using only velocity information, yields the lowest quality of reconstruction.
Interestingly, the linear version of FlowFit3 shows visibly better results, despite depending on the
same restricted data. The div2 variant of FlowFit2, additionally utilizing acceleration data, markedly
improves on its divl counterpart, producing results quite alike to FlowFit3 linear, albeit with a
slightly better rendition of the gradient. The FlowFit3 nonlinear mode yields a further increase of
perceived sharpness.

This can also be seen in a visualization of isosurfaces of the Q-criterion of the same reconstructions
in figure 4. Again the nonlinear mode FlowFit3 provides a slight improvement over FlowFit2 div2
whereas a significant gain can be observed for the linear mode versus the div1 result.

Reducing the particle density to a mean spacing of approx. 7.5 length scales highlights the benefit
of including acceleration data using the momentum equation as shown in figure 5. Both FlowFit
variants using accelerations are much less affected by the decrease of particle density than the
variants using only velocity. The FlowFit2 div1 result has degraded significantly. Linear mode
FlowFit3 now shows less detail than the nonlinear variant but still presents a relatively smooth
solution without the noise visible for divl FlowFit2.

A quantitative comparison of rms-errors of the Q-value compared to the ground truth is presented
in figure 6 for a range of particle densities. The results match the visual interpretations of the prior
figures with FlowFit3 nonlinear as an improvement over FlowFit2 div1l. As the particle distance
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Figure 3. Slices of vorticity field reconstructed using the different methods for a particle density with a mean spacing of
approx. 6 Kolmogorov length scales
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FlowFit3 linear °0<_>77

Figure 4. Isosurfaces of Q-criterion at 400 1/s” reconstructed using the different methods for a particle density with a
mean spacing of approx. 6 Kolmogorov length scales
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FlowFit3 nonlinear<_>7;

Figure 5. Isosurfaces of Q-criterion at 400 1/s” reconstructed using the different methods for a particle density with a
mean spacing of approx. 7.5 Kolmogorov length scales



21st LISBON Laser Symposium 2024

—eo— FF3 linear

—e— FF3 nonlinear
400 | e~ FF2divl
—e— FF2 div2

300 |

200

T

RMS error of Q [1/5?]

T

100

4 ) 6 7

Mean particle distance / Kolmogorov length scale

Figure 6. RMS error of the reconstructed Q field for the different methods at various particle densities
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Figure 7. Pressure reconstruction error for the two methods for a particle density with a mean spacing of approx. 6
Kolmogorov length scales

increases the difference between the variants with and without use of the momentum equation
increases. Remarkable is the comparatively low error of the FlowFit3 linear mode which almost
approaches the performance of the prior FlowFit2 div2 version.

A brief evaluation of the reconstructed pressures shows the handling of arbitrary boundary condi-
tions in FlowFit3 nonlinar mode is successful. Figure 7 shows the error of reconstructed pressure in
a slice through the volume. The FlowFit2 div2 result shows a slight gradient in the error field which
is not present in the FlowFit3 nonlinear case.

The architectural changes to the FlowFit internals in the handling of the divergence constraint
appear to be highly successful in guiding the optimizer towards a physically correct solution. Such
performance makes the linear mode very attractive for the processing of a large amount of snapshots
as it is very efficient. On a reasonably modern CPU, a typical measurement domain can usually
be reconstructed in less than 10 seconds, while the nonlinear mode requires around one order of
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magnitude more processing resources. However, compared to other data assimilation methods,
even this mode is highly competitive in terms of computational cost, as reported in Zhou et al.
(2024). Some aspects of the nonlinear mode are still under development so we still expect some
improvements to the above results.

4. Conclusion and future work

Based on the initial testing presented above the new FlowFit3 approach is a successful development
that outperforms its predecessor in data quality and reconstruction time. The linear mode provides
very fast reconstruction times which will be of interest for large data sets. The nonlinear mode
results in even higher fidelity reconstructions and also allows for pressure reconstructions. For a
more detailed evaluation of the FlowFit3 variants see Zhou et al. (2024).

For the current implementation of FlowFit3 only a limited number of parameters needs to be
selected. A key value that needs to be adjusted is the penalization of higher wave numbers a.
This parameter directly controls the smoothness of the solution and as such can be easily adjusted
based on visual examination. A current topic for further development is to better determine this
regularization based on physical properties. Different regions of a flow field likely require different
strengths of this regularization which could be determined from Flow structure sizes obtained from
two-point correlations. Currently the high-pass filter used for the penalty operates directly on the
coefficient field. In principle this would still allow for spatially varying regularization since the
coefficients directly correspond to regions in physical space. However it would be beneficial to
instead define the penalization in world space in order to more precisely allow for spatially varying
anisotropic curvature penalization.

Currently FlowFit conducts an independent reconstruction of individual time steps in an sequential
measurement. This can be an advantage as no time resolved data is required but leaves some room
for further improvement. The use of virtual particles to enhance temporal consistency has already
shown some benefit (Ehlers et al., 2020) but future work will also consider more explicitly linking
FlowFit reconstructions across multiple timesteps for a joint optimization.
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