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Results Stability of parameters

Abstract

Predictions are accurate up to a few Lyapunov times on short Fig. 3 shows the stability of parameters for different runs, hence
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Minimal reservoir computing is a novel machine learning
technique for predicting complex systems. It simplifies the
classical reservoir computing approach by eliminating the need
for randomness. Instead of a random embedding, it embeds its
input into a high-dimensional space structurally. Additionally,
the reservoir is no longer a random graph, but a block-diagonal
matrix. The reservoir states are simply evolved linearly, and the
nonlinearity is pushed to the readout layer. The output is then a
linear combination of the reservoir states, determined by a
simple linear regression. In this work we simplify the initial
approach even further by utilizing a diagonal matrix as a
reservoir, effectively dropping the notion of it. In classical
reservoir computing the reservoir states bear no obvious
interpretation, as they are a representation of the reservoir at
the time. However, in this setup the reservoir states are
interpretable and represent nonlinear combinations of input
space. Using a small number of data points, it is possible to
fully capture the dynamics of the attractor in the short- and
long-term using this simple setup. In this work we show that the
weights of the linear regression can be utilized to derive
recursive equations of complex systems. We analyze the
stability of the discovered equations with regards to various
hyperparameters. In the end we test its applicability on
financial markets and study the modelling of interest rates
using this model.

Minimal reservoir computing

Minimal reservoir computers [1] are a new flavor of reservoir
computers with the goal of removing any randomness out of
the process.

Embedding of input data

W. is constructed in such a way, that each combination of the
input dimension u is fed into the reservoir separately. The

allowed coordinate combinations of the input are encoded in
the hyperparameter 7. w is a weights vector of length b

assigning each coordinate a specific weight.
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Reservoir and its reservoir states

The reservoir A is a block-diagonal matrix of ones with size b

scaled to a target spectral radius of p*. This way, each block J,

can be directly mapped to a feature.

J, 0 --. 0
0 J, - 0

0 0 - Jyppyts

The reservoir states r are evolved linearly, without any

nonlinear activation function.
r(t+1)=Ar(t)+ Wiy u(t)

Creating the prediction

~/

We use generalized reservoir states r, where we append the
states exponentiated to orders up to a nonlinearity degree n.
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Each dimension of the predicted state y is then a linear
combination of the generalized reservoir state r-

y(t+1) = Woye £(t + 1)

Training the readout

The readout matrix W, is trained the usual way by stacking
the reservoir states into a matrix and using ridge regression
with a regularization parameter g.

Wou = URT (RRT +81)
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time scales and accurately model the climate for long time
scales.

For some combinations of hyperparameters the short-term
prediction of the Lorenz system is correct for up to ten Lyapunov
times using only 500 training points [2].

Special parametrization b — 1, o* —

For a block size of b = 1 and a target spectral radius of ¢* = 0
the architecture simplifies drastically. The input matrix W,
becomes a binary matrix, and the reservoir A disappears.

The reservoir now has no memory and no abstract embedding.
The reservoir state now simply represents the nonlinear
combinations of the input dimensions. Using v = (z, y, 2) we
arrive at the following states.

(x +y+2)?

\(z+y+2)7)

We note that this parametrization makes this method similar to
a parametrization of next generation reservoir computing [3].
However, a detailed comparison is still required.
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Training

We perform a simple ridge regression on the generalized
reservoir states.

Results

We are able to predict the Lorenz system for up to five
Lyapunov times by simply regressing the exponentiated sums
of the coordinates against the next predicting state (Fig. 1).

n =2 n=23

Regularization parameter (3
Forecast horizon in Lyapunov times

B3 8 2 S
— A LO
Length of training data

Fig. 1: Short-term prediction performance for the Lorenz system (0—=10,

0=28, f=8/3) using At=0.01 for different choices of hyperparameters.

We performed each run ten times and reported the average.

Regarding the long-term climate of the predictions, we find
that if the short-term prediction is reasonable, the attractor is
usually reproduced.

Additionally, we do not need a “warm-up”/synchronization
phase as we, effectively, do not have a reservoir anymore.

Reconstructing the recursive equations

W .. shows how each exponentiated input coordinate is going
to be weighted for each output dimension. After the terms are
expanded, we arrive at an iterative set of equations describing
the system at hand. Each step corresponds to a time of At.

Ipn+1 = f(gn)

Fig. 2 shows the application of the iterative equations for a
library up to fifth order, and we can see the Lorenz attractor
being reproduced with the Lyapunov exponent and correlation
dimension being appropriately hit.

Fig. 2: Long-term prediction of the Lorenz
system trained on 500 training points with
hyperparameters (7., 1, f) = (3, 5, 0.01).
The iterated equations have a Lyapunov
exponent of 4 = 0.80 and a correlation
dimension of C' = 1.96.
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different positions on the attractor.

N =2 n=>3

Regularization parameter (3
Average normalized standard deviation of parameters [%)]

(@)
LO

Length of training data

Fig. 3: This figure shows the weighted average of the normalized
standard deviation across all parameters for a specific set of
hyperparameters. The average is weighted by the magnitude of the
parameter. The setup of Fig. 2 is used.

In Fig. 3, we reported the weighted average of the normalized
standard deviation, because the simple mean is large and
unstable across different hyperparameters.

This means that a lot of parameters with small numerical
values have a large standard deviation. However, the few
parameters with a large numerical value have a small relative
standard deviation and are therefore stable across runs.

Since Fig. 2 shows that the prediction works across a wide
range of hyperparameters, we may conclude that the exact
numerical value of some parameters does not matter for the
dynamic of the attractor and multiple parametrizations can
build the Lorenz attractor [4].

Yield curve modelling

We model the daily U.S. Treasury yield curve by fitting our
model to 250 days of data, the equivalent of one trading year.
This optimization is performed over a rolling window with @
step size of 20 trading days.

We then analyze the weights/terms of the resulting fit. The sum
of the absolute values of the linear terms is used as an indicator
of linear strength, while the sum of the absolute weights of the
nonlinear terms is used as an indicator of nonlinear strength.
Both values are normalized to have a mean of one.

For Fig. 4, we performed a grid search and selected the five
models with the best performance.

N

M l\l\

Norm. lin.
—_

N w

Norm. n.l.
—_

i
'”I"‘I !r l,. '

1l £ \ 1 1‘
\ ] l | AL ‘ i
| ‘ \J ¥
IR ’ ' “\ l Vi ' \
' ‘

| |
b M AN IVHUE
‘ ’ \/ IA C.A" | J
v \ v

| |
». u

] . '
. 1.-‘".;’ '

LAY K
Wy Rl ,.l 4,‘ /
l.'. T

Q AN D b A
NS AN RN RN
DR N NN

Fig. 4: Top figure: normalized sum of absolute values of linear terms.
Middle figure: normalized sum of absolute values of nonlinear terms.
Bottom figure: average mean squared error on the training set.
The legend encodes the hyperparameters of the model: (.., 1, f).
Light blue shades indicate times of crises. Vibrant colors indicate a
deviation from the mean of one and a half standard deviations.

During times of crisis, we observe that both the linear and
nonlinear relative strengths deviate from normal levels. This
observation is consistent with findings from [5-6], which noted
that such a relationship was only significant for the nonlinear
attributes of stock return time series.
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