

Collaborative High Precision GNSS ITSNT 2024

Daniel Medina (daniel.ariasmedina@dlr.de)

Institute of Communications and Navigation, German Aerospace Center (DLR)

Overview on GNSS

GNSS is the main information source for Positioning, Navigation and Timing (PNT)

Challenge #1: Precision

The accuracy of standard *code*-based navigation is limited \rightarrow <10 meters positioning & poor attitude

Challenge #2: Robustness

Multipath and other local effects strongly degrade the performance → large errors, low availability

- The use of carrier phase observations is the key for high precision navigation
- Collaborative positioning may overcome the limitations on carrier phase obs.

Why Collaborative?

- GNSS is least performing when most needed: poor visibility, multipath, etc.
- GNSS chipsets are now integrated with communication ones
- With the advances on V2X technology:
 - (1) Broad and heterogeneous network of users
 - (2) Fast and low-latency communication

(3) Ranging capabilities

Collaborative approaches may be the right solution for precise & reliable navigation (the quest for autonomy)

In today's conversation...

- Basics of precise GNSS: estimation problems for RTK, PPP-RTK & limitations
- Understanding cooperation: architectures, advantages, limitations
- Cooperative RTK (C-RTK): the idea behind, performance evaluation
- Research & industry perspectives

Precise Positioning Reaching cm-level positioning accuracy

High Precision GNSS Techniques

DLR

Precise Point Positioning (PPP)

Real Time Kinematic (RTK)

High precision GNSS is all about correction data streams & Integer Ambiguity Resolution Nearby users are exposed to the same atmospheric (and sometimes local) effects

High Precision GNSS Techniques

DLR

Precise Point Positioning (PPP)

- Limited by convergence time
- "low observability" of nuisance parameters: iono, tropo, etc.
- Limited real-time usability due to delay on the corrections (*HAS)

Real Time Kinematic (RTK)

 Unfeasible to deploy a sufficiently dense network of base stations

High precision GNSS is all about correction data streams & Integer Ambiguity Resolution Nearby users are exposed to the same atmospheric (and sometimes local) effects

RTK Positioning Model

pivot

RTK is a differential positioning method \rightarrow code & carrier phase observations from the *j*th vehicle

and the base station are used

$$\Phi_{j}^{i} = \|\boldsymbol{p}^{i} - \boldsymbol{p}_{j}\| - I^{i} + T^{i} + c\left(-dt^{i} + dt_{j}\right) + \lambda N_{j}^{i} + \varepsilon_{j}^{r}$$

$$(-) \Phi_{b}^{i} = \|\boldsymbol{p}^{i} - \boldsymbol{p}_{b}\| - I^{i} + T^{i} + c\left(-dt^{i} + dt_{m}\right) + \lambda N_{b}^{i} + \varepsilon_{b}^{r}$$

$$\Phi_{j}^{r} = \|\boldsymbol{p}^{r} - \boldsymbol{p}_{j}\| - I^{r} + T^{r} + c\left(-dt^{r} + dt_{j}\right) + \lambda N_{j}^{r} + \varepsilon_{j}^{r}$$

$$(-) \Phi_{b}^{r} = \|\boldsymbol{p}^{r} - \boldsymbol{p}_{b}\| - I^{r} + T^{r} + c\left(-dt^{r} + dt_{m}\right) + \lambda N_{b}^{r} + \varepsilon_{b}^{r}$$

Set of observations

$$oldsymbol{y}_j = \left[oldsymbol{D} oldsymbol{D} oldsymbol{\phi}_j^{ op}, oldsymbol{D} oldsymbol{
ho}_j^{ op}
ight]^{ op}$$

$$oldsymbol{y}_j \sim \mathcal{N}\left(oldsymbol{A}oldsymbol{a}_j + oldsymbol{B}oldsymbol{b}_j, oldsymbol{\Sigma}_j
ight), \,\, oldsymbol{a}_j \in \mathbb{Z}^n, oldsymbol{b}_j \in \mathbb{R}^3$$

And... how to solve the mixed model?

RTK Positioning Model Estimation Process and Bounds

$$\frac{\|\hat{\mathbf{e}}\|_{\mathbf{\Sigma}_{j}}^{2}}{\|\hat{\mathbf{e}}\|_{\mathbf{\Sigma}_{j}}^{2}} + \min_{\mathbf{a}_{j} \in \mathbb{Z}^{n}} \left(\|\hat{\mathbf{a}}_{j} - \mathbf{a}_{j}\|_{\mathbf{P}_{\hat{\mathbf{a}}\hat{\mathbf{a}}}}^{2} + \min_{\mathbf{b}_{j} \in \mathbb{R}^{3}} \|\hat{\mathbf{b}}_{j}(\mathbf{a}) - \mathbf{b}_{j}\|_{\mathbf{P}_{\hat{\mathbf{b}}(\mathbf{a})}}^{2} \right)$$

Float solution

Integer Ambiguity Resolution (IAR)

Fixed solution

RTK Positioning Model Estimation Process and Bounds

! We have efficient estimators, but...

Medina, D., Vilà-Valls, J., Chaumette, E., Vincent, F., & Closas, P. (2021). Cramér-Rao bound for a mixture of real-and integer-valued parameter vectors and its application to the linear regression model. Signal Processing

Cooperative Positioning Network of users helping each other

Collaborative Localization (with or without GNSS)

Type of collaboration

- Active inter-user ranging, exchange location information
- Passive broadcast of observations, non-location info

Architectures

- Centralized the solutions for all users are jointly estimated
- Distributed each user estimates their solution

Points of concern

- Intentional / unintentional interference: MP
- Respect of privacy

Existing literature

- Estimation for cooperative localization: works of Wymeersch, Win, Buehrer
- For GNSS: works of Caceres (GNSS+ranging), Minetto (measurement correlation), Calatrava (Massive Differentiation)

Collaborative-RTK (C-RTK) – Conceptual & Technical Idea

Collaborative-RTK (C-RTK) – Conceptual & Technical Idea

C-RTK – Positioning Problem

Conventional RTK

$$oldsymbol{y}_{j} \sim \mathcal{N}\left(oldsymbol{A}oldsymbol{a}_{j} + oldsymbol{B}oldsymbol{b}_{j}, oldsymbol{\Sigma}_{j}
ight)$$

Collaborative RTK

$$ilde{oldsymbol{y}} \sim \mathcal{N}\left(ilde{oldsymbol{A}} ilde{oldsymbol{a}} + ilde{oldsymbol{B}} ilde{oldsymbol{b}}, ilde{oldsymbol{\Sigma}}
ight), \; ilde{oldsymbol{a}} \in \mathbb{Z}^{n\cdot N}, ilde{oldsymbol{b}} \in \mathbb{R}^{3\cdot N}$$

"Extended" version of obs., unknowns, matrices

$$egin{aligned} ilde{m{y}} &= egin{bmatrix} m{D}m{D}m{\Phi}_1^ op, \dots, m{D}m{D}m{\Phi}_N^ op, m{D}m{D}m{
ho}_1^ op, \dots, m{D}m{D}m{
ho}_N^ op \end{bmatrix}^ op \ ilde{m{a}} &= egin{bmatrix} m{a}_1^ op, \dots, m{a}_N^ op \end{bmatrix}^ op, \ ilde{m{b}} &= m{b}_1^ op, \dots, m{b}_N^ op \end{bmatrix}^ op \end{aligned}$$

The importance of stochastic modeling

➤ The cross-correlations due to combining observations wrt. base station → fundamental information!

We can leverage on the existing CRBs and estimators for the mixed model problem

Monte Carlo Performance Analysis

Study Cases:

1) Open Sky

• N=6 vehicles, "fully connected network"

2) Urban Scenario

2 vehicles limited view + 4 open sky

Stochastic modelling

- Unweighted model, equal noise across users
- 1 to 100 ratio for phase/code std
- A range of precision levels is evaluated

Metrics:

Comparison of the positioning RMSE & IAR performance

Monte Carlo based Performance Analysis

C-RTK – Overview, Benefits, Limitations

- Regular RTK: involves base station to users communication
- C-RTK is a <u>centralized</u>, <u>passive collaboration architecture</u>
- ✓ Privacy preserving: users do not compromise their localization information
- ✓ Performance gain: greater availability and precision

? Can we live without base stations?

➤ A low-latency, 2-way communication

✗ Growing complexity with number of users

➤ Careful with: *i)* undetected faults affecting the overall estimation; *ii)* "byzantine" users: those purposely attacking the network

Industry and Research Perspectives

From industry & standards:

- Advancement on communication & ranging technologies
- Protocols for the exchange of GNSS-related messages
- Attractive solution for the largest GNSS market share

From research:

- Feasibility of base station-less RTK and regional PPP-RTK
- The role of Machine Learning: network-wide stochastic modeling, better IAR
- Robust estimation: detecting/dealing with non-Gaussian effects
- Relationship to robotics community: active SLAM, distributed perception, ...
- Cooperative localization is an attractive paradigm with lots to do (regarding GNSS) + solution to main issues for urban

Bibliography

- Teunissen, Peter JG, and Oliver Montenbruck, eds. *Springer handbook of global navigation satellite systems*. Vol. 10. Cham, Switzerland: Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-42928-1
- 2. Medina, Daniel, et al. "Cramér-Rao bound for a mixture of real-and integer-valued parameter vectors and its application to the linear regression model." *Signal Processing* 179 (2021): 107792. https://doi.org/10.1016/j.sigpro.2020.107792
- 3. Wymeersch, Henk, Jaime Lien, and Moe Z. Win. "Cooperative localization in wireless networks." *Proceedings of the IEEE* 97.2 (2009): 427-450. https://doi.org/10.1109/jproc.2008.2008853
- 4. Shen, Yuan, Henk Wymeersch, and Moe Z. Win. "Fundamental limits of wideband localization—Part II: Cooperative networks." *IEEE Transactions on Information Theory* 56.10 (2010): 4981-5000. https://doi.org/10.1109/tit.2010.2059720
- 5. Buehrer, R. Michael, Henk Wymeersch, and Reza Monir Vaghefi. "Collaborative sensor network localization: Algorithms and practical issues." *Proceedings of the IEEE* 106.6 (2018): 1089-1114. https://doi.org/10.1109/jproc.2018.2829439
- 6. Penna, Federico, Mauricio A. Caceres, and Henk Wymeersch. "Cramér-Rao bound for hybrid GNSS-terrestrial cooperative positioning." *IEEE Communications Letters* 14.11 (2010): 1005-1007. https://doi.org/10.1109/lcomm.2010.091310.101060
- 7. Medina, Daniel, Lars Grundhöfer, and Niklas Hehenkamp. "Evaluation of estimators for hybrid GNSS-terrestrial localization in collaborative networks." 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2020. https://doi.org/10.1109/itsc45102.2020.9294750
- 8. Minetto, Alex, Maria Chiara Bello, and Fabio Dovis. "DGNSS cooperative positioning in mobile smart devices: A proof of concept." *IEEE Transactions on Vehicular Technology* 71.4 (2022): 3480-3494. https://doi.org/10.1109/tvt.2022.3148538
- 9. Minetto, Alex, Alessandro Gurrieri, and Fabio Dovis. "A cognitive particle filter for collaborative DGNSS positioning." *IEEE Access* 8 (2020): 194765-194779. https://doi.org/10.1109/access.2020.3033626
- 10. Calatrava, Helena, Daniel Medina, and Pau Closas. "Massive differencing of GNSS pseudorange measurements." 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS). IEEE, 2023. https://doi.org/10.1109/plans53410.2023.10139935
- 11. Medina, Daniel, et al. "A Collaborative RTK Approach to Precise Positioning for Vehicle Swarms in Urban Scenarios." 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS). IEEE, 2023. https://doi.org/10.1109/plans53410.2023.10139996

Impressum

Title: Collaborative High Precision GNSS

ITSNT 2024

Date: 2024-06-27

Author: Daniel Medina (daniel.ariasmedina@dlr.de)

Institut: Communications and Navigation

Credits: All pictures are "DLR (CC BY-NC-ND 3.0)",

unless otherwise stated

BACK UP SLIDES

General GNSS Receiver Architecture

RTK Processing

State estimate

$$\mathbf{x} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}, \ \mathbf{a} \in \mathbb{Z}^n, \ \mathbf{b} \in \mathbb{R}^3$$

Set of observations

$$\mathbf{y} = egin{bmatrix} oldsymbol{D}oldsymbol{\Phi} \ oldsymbol{D}oldsymbol{
ho} \end{bmatrix}, \ \mathbf{y} \in \mathbb{R}^{2n}$$

Careful with noise statistics

$$oldsymbol{\eta} \sim \mathcal{N}\Big(oldsymbol{0}_{2n,1}, egin{bmatrix} \mathbf{Q}_{\Phi} \ \mathbf{Q}_{n} \end{bmatrix}\Big)$$

Integer Ambiguity Resolution

Some basic integer solving

$$\hat{a} = \begin{bmatrix} 15.23 \\ -36.55 \\ 44.11 \end{bmatrix}$$

$$\mathbf{Q}_{\hat{a}} = \begin{vmatrix} 2 & 0.5 & 0.2 \\ 0.5 & 1.5 & 0.05 \\ 0.2 & 0.05 & 0.2 \end{vmatrix}$$

Integer ambiguity resolution becomes more complex with the number of observations

Basics on Integrity Monitoring for GNSS

Integrity monitoring measures the trust on the navigation estimates & provides timely warnings when an unacceptable fault occurs / system is unreliable

Navigational requirements

- Accuracy
- Continuity
- Availability

Integrity components

- Alert Limit
- Integrity Risk
- Time to Alert
- Protection Level

Reid, Tyler GR, et al. "Localization requirements for autonomous vehicles." *arXiv preprint arXiv:1906.01061* (2019).

State of the Art on Integrity Monitoring: the limitations

- Standard solutions are derived specifically for aviation purposes:
 - open sky assumption
 - very low number of faults (only due to satellite faults)
 - not applicable to landing / take-off maneuvers
- Typically, only code observations are used (or code-carrier smoothing)
- Only snapshot solutions are considered (no recursive estimation)
- Multi sensor integration and related challenges are not contemplated
- Availability of Integrity Support Message (ISM), meaning "perfect" stochastic modeling

The integrity
monitoring
community is hard to
access and even
harder to convince

