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Abstract— Implementation of Model Predictive Control
(MPC) on hardware with limited computational resources
remains a challenge. Especially for long-distance maneu-
vers that require small sampling times, the necessary hori-
zon lengths prevent its application on onboard computers.
In this paper, we propose a computationally efficient tube-
based shrinking horizon MPC that is scalable to long pre-
diction horizons. Using move blocking, we ensure that a
given number of decision inputs is efficiently used through-
out the maneuver. Next, a method to substantially reduce
the number of constraints is introduced. The approach is
demonstrated with a helicopter landing on an inclined plat-
form using a prediction horizon of 300 steps. The constraint
reduction decreases the computation time by an order of
magnitude with a slight increase in trajectory cost.

Index Terms— Predictive control for linear systems, com-
putational methods, autonomous systems, robotics.

I. INTRODUCTION

MODEL Predictive Control (MPC) is a popular control
method for handling systems subject to state and input

constraints [1], [2]. In regular MPC, a trajectory optimization
problem is solved over a fixed receding horizon at every time
step. In order to ensure closed-loop stability, the terminal
state is usually constrained to lie within an invariant terminal
set [3]. However, invariance of the terminal set may be
restrictive in certain applications [4]. For example, reaching
a certain position with a non-zero target velocity can not be
encoded as an invariant set. It is well known that finite-time
arrival to arbitrary terminal sets can be achieved by varying
the prediction horizon length [4]–[9]. Usually, the resulting
optimization is a mixed-integer program (MIP) where the
horizon length acts as the integer decision variable. Finite-time
completion and recursive feasibility require that the target is
reachable from the current state. As a result, large horizons
are often needed to achieve practically relevant regions of
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attraction (ROA). In [7], the required horizon length is reduced
by introducing intermediate waysets. By placing these sets
in a way that ensures the reachability from one wayset to
another, an unmanned aircraft is shown to maneuver to the
target region while avoiding obstacles. However, the resulting
MIPs need to be solved online which is usually prohibitively
expensive on onboard computers. Another strategy [8], [9],
often referred to as shrinking horizon MPC (SHMPC), treats
the horizon length as a parameter so the problem reduces to
a continuous program. Consequently, optimality with respect
to horizon length is sacrificed for computational tractability.
In the aforementioned approaches, the number of decision
variables and thus the computational load vary drastically with
horizon length. Since an onboard computer needs to be able to
handle the worst-case scenario, the maximal horizon is limited
by hardware capabilities. The approach by [6] allows to set
a maximal number of decision inputs, regardless of horizon
length, using move blocking [10], a scheme where inputs are
held constant over some number of steps to reduce the amount
of decision variables. The trajectory is then optimized over
feasible blocking strategies in a MIP.

A. Main Contribution and Structure of the Paper
In this paper, we present a computationally efficient and

robust SHMPC that is scalable to long prediction horizons. In
contrast to [6], we simplify the problem to a shrinking horizon
formulation in which the horizon length at a given time step is
known a priori. On this basis, we present a constructive method
to generate time-varying blocking strategies while efficiently
utilizing a given maximum number of decision inputs and
ensuring recursive feasibility. For long prediction horizons,
the number of constraints becomes another significant source
of complexity. We therefore reformulate the standard move
blocking optimization problem to enable the reduction of
constraints. An optimization-based approach is developed that
enables the approximation of the constraint set with sub-
stantially fewer halfspaces. The efficacy of our approach is
demonstrated on a helicopter landing example. The constraint
reduction is shown to decrease the computation time by an
order of magnitude.

The rest of this paper is structured as follows. Section II in-
troduces the control problem and reviews some preliminaries.
In Section III, the proposed SHMPC with move blocking is
presented. The constraint reduction is developed in Section IV.
Section V demonstrates the approach on a numerical example.
Section VI provides a conclusion and outlook.
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B. Notation
Given two sets S1, S2, set addition and difference are

defined as S1 ⊕ S2 = {a + b | a ∈ S1, b ∈ S2} and
S1 ⊖ S2 = {a | a⊕ S2 ⊆ S1}, respectively. Given matrices or
vectors A, we interpret AS as {As | s ∈ S}. We further denote
a block diagonal stacking by diag(A1, . . . , An), a vertical
concatenation by (A1, . . . , An) and the Kronecker product by
A1⊗A2. The n-dimensional identity matrix is denoted by In.
We interpret 0n×m and 1n×m as n × m-dimensional matrix
of zeros and ones, respectively. The set of natural numbers
ranging from l to u is written as Nu

l .

II. PROBLEM STATEMENT AND PRELIMINARIES

Let xk ∈ Rn denote the state at time kτ with k ∈ N and
sample time τ . Consider the linear discrete-time system

xk+1 = Axk +Buk + wk, (1)

subject to state-input and terminal constraints

∀k ∈ NN0−1
0 : (uk, xk) ∈ F , xN0 ∈ XT , (2)

where u ∈ Rm is the input, wk ∈ W ⊆ Rl is an unknown
but bounded disturbance and N0 ∈ N+ is the number of time
steps within the maneuver. We assume a maximum number of
decision inputs N̄max (e.g. based on hardware capabilities).
We aim to compute finite-time trajectories with a number
of decision inputs N̄ ≤ N̄max, irrespective of N0. The cost
function to be minimized is of the form

J =

N−1∑
i=0

[xi, ui]
TH[xi, ui] + xT

NPxN , (3)

where H , P are positive definite matrices. We assume that (i)
the pair (A,B) is stabilizable and (ii) the sets F , XT , and
W are polytopes containing the origin. In the following, the
fundamentals of tube MPC and move blocking are discussed.

a) Tube MPC: In order to deal with uncertainties, tube-
based approaches [11], [12] provide a way to achieve stability
guarantees while keeping the resulting optimization compu-
tationally tractable. The concept is based on an ancillary
controller K that keeps the states of the uncertain system
within a tube centered around the states of a nominal system

zk+1 = Azk +Bvk. (4)

In [11], the tube size is constant and given by a Robust
Positively Invariant (RPI) set Z .

Definition 1 (Robust positively invariant (RPI) set): Let
AK = A − BK be such that xk+1 = AKxk is stable. A set
Z is robust positively invariant if AKZ ⊕W ⊆ Z .
The following proposition establishes that states starting in
this tube will in fact remain inside of it for all time under an
appropriate control law.

Proposition 1 (Proposition 1 in [11]): Let Z be a RPI set
for system (1). If x0 ∈ z0 ⊕ Z and we choose uk = vk −
K(xk − zk), then xk ∈ zk ⊕Z for all wk ∈ W and k ∈ N.
Based on Proposition 1, it is therefore possible to ensure
(2) despite the influence of w by performing the trajectory
optimization on the nominal system with tightened constraints

F̄ = F ⊖ (Z ×KZ), X̄T = XT ⊖Z. (5)

The nominal system then acts as a reference for the ancillary
controller K. By adding a constraint to assure that the mea-
sured state xk lies within the tube z0 ⊕ Z at the start of the
trajectory, we obtain the optimization problem P0(xk):

min
V,z0

N−1∑
i=0

(zi, vi)
TH(zi, vi) + zTNPzN

s.t. xk ∈ z0 ⊕Z, zN ∈ X̄T

zi+1 = Azi +Bvi, (zi, vi) ∈ F̄ , i ∈ NN−1
0 ,

(6)

where i denotes the prediction time step. With the optimal
solution at time k given as V ∗(k) = (v∗0(k), . . . , v

∗
N−1(k)),

z∗0(k), the control law is

uk = v∗0(k)−K(xk − z∗0(k)). (7)

b) Move blocking: The computational complexity of the
optimization problem is heavily influenced by the number of
decision variables. In regular MPC, this corresponds to the
number of decision inputs within the horizon. One strategy to
reduce complexity is to hold the inputs constant over a certain
number of steps using a blocking matrix.

Definition 2 (Blocking matrix): A blocking matrix M ∈
RN×N̄ is defined as

M = diag(1s1×1, . . . ,1sN̄×1) =: M(s),

where the blocking vector s = (s1, . . . , sN̄ ) stores the indi-
vidual blocking lengths si ∈ N+.
The matrix M relates the blocked decision input vector Ū :=
(ū0, . . . , ūN̄−1) to the original one by U = (M ⊗ Im)Ū . The
number of inputs within the optimization is therefore reduced
from Nm to N̄m. For example, a system with m = 1 and
N = 4 can be reduced to N̄ = 2 decision inputs via

u1

u2

u3

u4

 = M

[
ū1

ū2

]
with M =


1 0
1 0
1 0
0 1

 , s = (3, 1).

III. EFFICIENT MOVE BLOCKING FOR SHMPC
In this section, we present a time-varying move blocking

scheme for SHMPC that efficiently utilizes a given maximum
number of decision inputs, regardless of the horizon length.
We then prove finite-time completion and recursive feasibility.

A. Optimization Problem Formulation
With move blocking, we can ensure that the number of

decision inputs will not exceed a given bound N̄max by
choosing an appropriate blocking matrix at each time step. In
order to achieve robustness against disturbances, we combine
move blocking with the tube-based MPC formulation (6) to
arrive at P(xk,Mk):

min
V̄ ,z0

Nk−1∑
i=0

(zi, vi)
TH(zi, vi) + zTNk

PzNk
,

s.t. xk ∈ z0 ⊕Z, zNk
∈ X̄T ,

V = (v0, . . . , vNk−1) = (Mk ⊗ Im)V̄ ,

zi+1 = Azi +Bvi,

(zi, vi) ∈ F̄ , i ∈ NNk−1
0 ,

(8)
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where V̄ = (v̄0, . . . , v̄N̄ ) is the reduced input vector, Nk :=
N0 − k and the control is given by (7). Since the horizon Nk

shrinks at every time step, the blocking matrix Mk ∈ RNk×N̄

and the corresponding blocking vectors sk = (s1,k, . . . , sN̄,k)
are now time-varying. Optimal values are denoted by a star
as their superscript, e.g. V̄ ∗(k), z∗0(k). Note that while the
RPI set Z ensures invariance with respect to the trajectory
tracking error xk−z∗0(k), invariance of the nominal trajectory
zi is not required due to the use of shrinking horizons [4].
In the following, we outline a procedure to obtain blocking
matrices that ensure recursive feasibility and efficiently utilize
the available number of decision inputs.

B. Recursive Feasibility via Truncation

The move blocking scheme is built on the fact that, when
using shrinking horizons, a feasible solution at the next time
step is easily obtained by truncating the previous solution.

Proposition 2: Consider (1) controlled by (7). Let V ∗(k) =
(Mk ⊗ Im)V̄ ∗(k) denote the optimal input trajectory of
P(xk,Mk) for k ∈ NN0−1

0 . Let R = [0(Nk−1)×1, INk−1] ∈
R(Nk−1)×Nk denote a truncation matrix. If there exists an
input trajectory W such that

(Mk+1 ⊗ Im)W = (R⊗ Im)V ∗(k) = (v∗1 , . . . , v
∗
N−1), (9)

then V̄ (k + 1) = W and z0(k + 1) = z∗1(k) are a feasible
solution to P(xk+1,Mk+1).

Proof: We first show that the truncated input trajectory
(R ⊗ Im)V ∗(k) is feasible at k + 1. Based on Proposition
1, xk+1 ∈ z∗1(k) ⊕ Z . Thus, z0(k + 1) = z∗1(k) satisfies the
initial state constraint at k + 1. Since there is no disturbance
acting on the nominal system (4), truncating the previous input
trajectory V ∗(k) via (R⊗Im)V ∗(k) yields a feasible solution.
Therefore, if (9) holds, then P(xk+1,Mk+1) is feasible for
V̄ (k + 1) = W and z0(k + 1) = z∗1(k).
If such a W exists for a particular blocking matrix Mk+1, we
refer to Mk+1 as a feasible blocking matrix. A simple way to
construct a feasible blocking matrix is to choose W = V̄ ∗(k)
and then truncate the first row of Mk as follows:

(R⊗ Im)V ∗(k) = (R⊗ Im)(Mk ⊗ Im)V̄ ∗(k)

= (RMk ⊗ Im)V̄ ∗(k),
(10)

where we used (A ⊗ B)(C ⊗ D) = AC ⊗ BD for matrices
A,B,C,D of appropriate size. Thus, choosing Mk+1 = RMk

results in a feasible blocking matrix. However, repeatedly
truncating M eventually leads to zero columns, effectively
nullifying the corresponding reduced input. Consequently, the
available number of decision inputs is not fully utilized.

C. Recursively Feasible Interval Splits

In this section, we expand the previous strategy to enable
the efficient usage of the available decision inputs. Our goal
is to design a function Γ(Mk) that only behaves like RMk

when s1,k > 1, i.e. when RMk does not lead to a reduction
of effective decision inputs. However, when s1,k = 1 and the
horizon length is larger than the maximum number of available
decision inputs N̄max, we split an existing blocking interval

 

   

 

 

 

  
 

 

Fig. 1. An example of (12) with s = (1, 3, 1). The blocking vector s′
corresponds to the blocking matrix RMG. Since j = 1, σ1 is empty.

instead of truncating it. The number of effective decision
inputs thus remains N̄max instead of reducing to N̄max − 1.
Specifically, let

Γ(Mk) =

{
Ψ(Mk) if s1,k = 1, Nk > N̄max

RMk otherwise
, (11)

where

Ψ(Mk) = split(RMkG), G = [0(N̄−1)×1, IN̄−1]
T . (12)

An example of (12) is shown in Fig. 1. The function Ψ(Mk)
first truncates Mk using R. Since s1,k = 1, removing the first
row results in a matrix with only zeros in the first column. This
column is removed using G, leading to a blocking matrix with
N̄−1 columns. The result is then split using the function split,
which we define in the following. Recalling Definition 2, M
can be represented using its blocking vector s via M = M(s).
Our proposed splitting procedure can be written as:

split(M) = M(σ), σ = (σ1, σ2, σ3) (13)

where σ1 = (s1, . . . , sj−1), σ2 = (sj − i, i), and σ3 =

(sj+1, . . . , sN̄ ) with i ∈ Nsj−1
1 and j ∈ NN̄

1 s.t. sj > 1. The
index j is restricted to columns with sj > 1 since a column
with sj = 1 can not be split further. Note that for j = 1
and j = N̄ , the vectors σ1 and σ3 are empty, respectively.
The following Proposition establishes that split(M) results in
a feasible blocking matrix.

Proposition 3: For a feasible blocking matrix M ∈ RN×N̄ ,
the blocking matrix split(M) ∈ RN×N̄+1 defined in (13) is
feasible.

Proof: By conjoining columns j and j +1 of split(M),
the original blocking matrix M can be recovered. Therefore,
M = split(M)Dj with Dj = diag(Ij−1, (1, 1), IN̄−j). Since
M is feasible, Proposition 2 states that there exists a feasible
input trajectory (M ⊗ Im)V̄ so that

(M ⊗ Im)V̄ = (split(M)Dj ⊗ Im)V̄

= (split(M)⊗ Im)(Dj ⊗ Im)V̄ .
(14)

It follows that (Dj ⊗ Im)V̄ can be chosen as a feasible input
trajectory for split(M), thus it is a feasible blocking matrix.

Proving recursive feasibility and finite time completion is now
straightforward.

Theorem 1: Consider (1) controlled by (7), wherein v∗0(k)
and z∗0(k) are part of the optimal solution to P(xk,Γ(Mk−1)).
Suppose that a solution to P(x0,M0) exists for some M0 with
an initial horizon length N0. Then
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1) P(xk,Γ(Mk−1)) is feasible for all k ∈ NN0−1
1 ;

2) xN0 ∈ XT .
Proof: Suppose that Mk−1 is feasible for some k ∈

NN0−1
1 . If Mk = Γ(Mk−1) is feasible, item 1) holds by

induction since the base case is true by assumption. For the
case Nk−1 > N̄ and s1,k−1 = 1 of (11), we first need
to show that M ′

k := RMkG in (13) is feasible in order
for Proposition 3 to be applicable. Since the first column of
RMk−1 consists of zeros, we can add a zero column to M ′

k−1

to obtain RMk−1 = [0(Nk−1−1)×1,M
′
k−1] = M ′

k−1G
T . As

(10) shows that is RMk−1 feasible, we obtain

(RMk−1 ⊗ Im)V̄ ∗(k − 1)

= (M ′
k−1G

T ⊗ Im)V̄ ∗(k − 1)

= (M ′
k−1 ⊗ Im)(GT ⊗ Im)V̄ ∗(k − 1),

(15)

i.e. M ′
k is feasible with W = (GT ⊗ Im)V̄ ∗(k− 1) according

to Proposition 2. By Proposition 3, split(M ′
k−1) is then also

feasible. For all other cases, we have Mk = RMk−1 which is
again shown to be feasible in (10). Γ(Mk−1) is thus feasible
any k ∈ NN0−1

1 . Item 2) follows directly: At time step
k = N0, since P(xk,Γ(Mk−1)) is feasible for all k ∈ NN0−1

1 ,
Proposition 1 guarantees that xN0

∈ z∗1(N0 − 1) ⊕ Z ∈ XT .

IV. CONSTRAINT REDUCTION

For move blocking, the feasibility of the state trajectory
between two blocked inputs is ensured by encoding that
every state within the interval satisfies the constraints. A key
observation is that this kind of formulation leads to highly
redundant constraints and thus increases the complexity of the
problem unnecessarily. In this section, we reformulate P to
allow for constraint reduction and then present an approach to
efficiently approximate the constraint sets. This facilitates the
scalability of our SHMPC with respect to horizon length.

A. Transition Matrix Formulation

Let ξ0(i) = (zi, v̄i) ∈ F̄ denote the state-input pair at the
start of a blocking interval si,k (k is dropped in the following
for brevity). The following auxiliary system describes the
trajectories evolving within this interval:

ξj+1(i) = Aξj(i), A =

[
A B

0m×n Im

]
. (16)

With Ã(si) = Asi and B̃(si) =
∑si−1

j=0 AjB, we then have
zi+si = Ã(si)zi+ B̃(si)vi. Therefore, (8) can be equivalently
stated as P̃(xk, sk):

min
z̃0,V̄

N̄−1∑
i=0

(z̃i, v̄i)
T H̃(si)(z̃i, v̄i) + z̃TN̄P z̃N̄

s.t. z̃0 ∈ xk ⊕Z, z̃N̄ ∈ XT

z̃i+1 = Ã(si)z̃i + B̃(si)v̄i,

(z̃i, v̄i) ∈ F̃(si), i ∈ NN̄−1
0 .

(17)

7F !
~A!1 7F !

A ~A!2 7F

~F (si)

-1

-0.5

0

0.5

-1

1

-1
0 0

1 1

Fig. 2. Left: An example of (18) with si = 3. Red circles denote initial
states. Right: F̃ (blue) and F̃t (dashed) of a randomly generated set
from Example 1 for si = 30.

where H̃(si) =
∑si−1

j=0 (Aj)THAj and

F̃(si) =

si−1⋂
j=0

A−jF̄ , (18)

which describes the state-input pairs that remain in F̄ for si−1
steps. Note that at time step si, the state is constrained by
F̃(si+1). An example of (18) is shown on the left side of Fig.
2. Note that trajectories starting in F̃ do not leave F̄ within
si − 1 steps. For polytopic sets, (18) is computed by stacking
the matrices defining the halfspaces of A−jF̄ , in which case
we arrive at the same constraint matrices as in (8). However,
this representation allows us to remove redundant halfspaces
and thus lower the complexity of P̃. Still, for large interval
lengths si, even a non-redundant halfspace representation of
F̃(si) is often still complex. In the next section, we introduce
an approach to drastically reduce the constraints with only
marginal loss of constraint set volume.

B. Constraint Set Approximation

To further reduce F̃(si) = {x |Fx ≤ f}, we construct
a polytopic approximation F̃t(si) = {x |Ftx ≤ ft} with
fewer halfspaces. In order to ensure that all state-input pairs
within F̃t(si) also do not leave the original constraint set
F̄(si) within si − 1 steps, the approximation needs to be a
subset of F̃(si). In other words, F̃t(si) must be an inner-
approximation of F̃(si), which of course may shrink the
ROA. We therefore try to maximize the volume of F̃t(si)
while enforcing F̃t(si) ⊆ F̃(si) via optimization. To encode
set containment within a linear program (LP), we use a
generalized version of Farkas lemma:

Lemma 1 (Theorem 1 of [13]): Let X = x̄ + XHx, Y =
ȳ + YHy , where Hx = {x ∈ Rnx |Hxx ≤ hx} and Hy =
{y ∈ Rny |Hyy ≤ hy}, where qx, qy are the number of rows
of Hx and Hy , respectively. Then X ⊆ Y if ∃Γ ∈ Rny×nx ,
∃β ∈ Rny and ∃Λ ∈ Rqy×qx

+ such that

X = Y Γ, ȳ − x̄ = Y β,ΛHx = HyΓ, Λhx ≤ hy +Hyβ.
Proof: See Theorem 1 of [13] for a proof.

The following LP uses a special case of Lemma 1 with Y = I
and ȳ = 0 to find an optimal scaling vector σ ∈ Rn+m

+ with
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X = diag(σ) and translation x̄ ∈ Rn+m for F̃t(si):

min
x̄,Λ,σ

||σ||1

s.t. ΛFt = Fdiag(σ), Λft ≤ f − Fx̄,

Λ ≥ 0, σ > 0.

(19)

Since X is invertible by design, we can recover our inner-
approximation as [13]

F̃∗
t (si) = {x |Ftdiag(σ

∗)−1x ≤ ft + Ftdiag(σ
∗)−1x̄∗},

(20)
where the star denotes optimal values. The template F̃t(si)
can be any non-degenerate polytope of appropriate dimension.
However, the choice of F̃t(si) substantially influences the
tightness and constraint reduction of the resulting approxi-
mation. In the following, we propose a useful heuristic to
construct a F̃t(si) that approximates the shape of F̃(si)
efficiently. In particular, we use the structure of (18), but only
consider a subset of the steps from 0 to si − 1:

F̃t(si) :=
⋂
j∈π

A−jF̄ , π ⊆ Nsi−1
0 . (21)

Remark 1: With the selection of π, a trade-off between
volume and constraint reduction can be achieved. The more
steps there are in π, the more halfspaces F̃t(si) contains
and the closer it gets to the shape of F̃(si). We found that
π = {0, ⌊ si−1

2 ⌋, si − 1}, where ⌊·⌋ rounds a decimal to the
nearest integer towards zero, often yields good results, even
for large si.

Example 1: To assess the quality of the approximation in
Remark 1, we generate random 100 second-order systems of
the form (1) with W = {0}, discretized with a sampling time
of 0.05 seconds and constraint sets F = X × U . The state
constraint set X is the convex hull of 62 random points while
the input set U = {u | ||u||∞ < 1} remains unchanged. All
randomly generated coefficients are sampled from a uniform
distribution and lie in the interval [−1, 1]. The results are
shown in Fig. 3. The volume ratio between F̃(si) and F̃t(si)
shrinks with larger si, which is expected since the number of
intersection operations in (21) is the same, regardless of si.
As a result, the number of halfspaces of F̃(si) increases with
si, while the complexity of F̃t(si) stays relatively constant.
Consequently, as shown in the right plot of Fig. 3, the relative
constraint reduction grows as si increases. Note that even
for large si, the constraint reduction retains over 96% of
the volume of F̃(si) on average. Meanwhile, constraints are
reduced by 80% with respect to the minimal representation and
by over 94% with respect to the non-reduced representation.

A particular set from this study for si = 30 is shown on the
right side of Fig. 2. It can be seen that a lot of halfspaces stem
from the coupled state-input constraints on the edges of F̃(si).
Our constraint reduction approach is able to approximate this
shape efficiently.

V. NUMERICAL EXAMPLE

In this section, we showcase our approach with a 2-
dimensional unmanned helicopter landing on an inclined sur-
face. Though helicopter dynamics are highly nonlinear, it can

1 5 10 15 20 25 30

si

0.96

0.98

1

V
r
=
V

0

1 5 10 15 20 25 30

si

0

0.2

0.4

0.6

0.8

1

q r
=
q

qr=qmin

qr=q0

Fig. 3. Ratios of volumes V and number of halfspaces q between F̃
and F̃∗

t . Subscripts r, min and 0 correspond to the approximation, the
minimal and the non-reduced representation of F̃ , respectively.

be shown that with some approximations, position becomes
a differentially flat output [14]. We assume that there exists
a sufficiently fast attitude controller so that we may consider
the jerk (i.e. the 3rd derivative of position) as our input. The
planning model can then be described as two independent
integrator chains with x = (px, vx, ax, pz, vz, az) where p, v
and a denote position, velocity and acceleration, respectively.
Discretizing the dynamics with a sampling time of τ = 0.02
seconds yields A = diag(Ax, Az), B = diag(Bx, Bz) and
w = (wx, wz), where

Ai =

1 τ τ2/2
0 1 τ
0 0 1

Bi =

τ3/6τ2/2
τ

 , wi =

τ2/2τ
0

 w̄i

for i = {x, z}. Attitude tracking errors, model uncertainties
as well as other disturbances appear as unknown accelerations
||w̄i||∞ ≤ 0.2. The constraints F are given by

pz ≥ 0, (−4,−10) ≤ (vx, vz) ≤ (15, 5), −0.3vx − vz ≤ 2

||[ax, az, ux, uz]||∞ ≤ (4, 5, 3, 10), tan(a)px − pz ≤ −1

where a = 25◦ denotes the incline angle of the platform. The
target set is given by

XT = R(a){x | bl + g ≤ x ≤ bu + g},
bl = −(0.8,−1, 1, 0.9, 0.4, 4), bu = (0.8, 2.2, 1, 0, 0.4, 4)

where R(a) = R(a)⊗ I3, R(a) denotes the two-dimensional
rotation matrix for an angle a and g = (05×1, 9.81)(I6 −
RT (a)). We design the ancillary controller K via LQR with
cost matrices Q = diag(5I4, 10I2), R = (0.1, 1). The RPI
set Z is computed with the method of [15] with α = 10−6.
Similar to [16], we compute the RPI set using zonotopes,
which provide some computational advantages but do not
alter the theoretical properties of the RPI set. We simulate
three different versions of P̃ with varying constraint sets
F̃(si). MPC-0 denotes P̃ with the full representation of
F̃(si), which is equivalent to solving P. Similarly, MPC-min
and MPC-a represent P̃ with the minimal representation of
the constraint set and with its low-complexity approximation
F̃t(si), respectively. To penalize deviation from a setpoint
xr = (−0.7, 1.4, 0.2,−0.4,−4.1,−0.9), we consider

N̄−1∑
i=0

(zi−xr, vi)
T H̃(si)(zi−xr, vi)+(zN̄ −xr)

TP (zN̄ −xr)
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TABLE I
TRAJECTORY COSTS AND COMPUTATION TIMES

open-loop closed-loop
J/Jfull tc (s) J/Jfull tc (s)

MPC-0 1.027 0.105 1.002 0.102
MPC-min 1.027 0.041 1.002 0.037
MPC-a 1.027 0.004 1.004 0.005
MPC-full 1 1.541 1 2.389
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Fig. 4. Closed-loop simulation results of a helicopter landing. For MPC-
a, the attitude and center of mass are plotted every second with the
initial condition marked in red. The blue region denotes the projection of
the target set. MPC-0 and MPC-min lie on top of each other.

as our cost function with H = diag(Q,R) and P as the
corresponding solution to the discrete-time Riccati equation.
The initial horizon length is set to N0 = 300 with a maximum
number of decision inputs N̄max = 10 and initial blocking
matrix M0 = 130×1 ⊗ IN̄ . When applying Ψ(Mk) using
Proposition 3, we choose j∗ = argmaxj sj and i = sj∗/2, i.e.
we split the largest blocking interval through the middle. When
sj∗ is odd, we round i to the nearest integer towards infinity.
If there exist multiple possible j∗, we choose the largest one.

Since the number of blocked inputs is highest at the initial
condition, we first compute the trajectory costs J and com-
putation times tc for nominal open-loop trajectories planned
at k = 0. We benchmark MPC-0, MPC-min and MPC-a with
a non-blocked SHMPC denoted by MPC-full. The averaged
results of 50 randomly generated feasible initial conditions are
shown in the open-loop column of Tab. I. Afterwards, the MPC
algorithms are simulated in closed-loop. Their trajectories are
shown in Fig. 4 and their costs and computation times are
reported in the closed-loop column of Tab. I. Overall, the
costs of blocked trajectories are only slightly larger than non-
blocked costs. As expected, costs for MPC-min and MPC-
0 are equal since in MPC-min, only redundant halfspaces
are removed. Though MPC-a uses approximative constraint
sets, its cost differs marginally from MPC-min and MPC-0
while reducing computation times by orders of magnitude.
Note also that the cost ratio in closed-loop is smaller than in
open-loop. This showcases the efficacy of utilizing free inputs
to split blocking intervals and recovering some optimality
when getting closer to the target. All computations are run
in MATLAB on a laptop with an Intel Core i7-11850H using
the solver osqp [17].

VI. CONCLUSION AND OUTLOOK

In this paper, we proposed a shrinking horizon Model Pre-
dictive Control approach with move blocking that is scalable to
large prediction horizons. A function is designed that generates
blocking matrices which ensure recursive feasibility while
efficiently utilizing the available number of decision inputs.
Furthermore, the optimal control problem is reformulated
in a way that enables the reduction of the constraint set
complexity. A low-complexity inner approximation is then
obtained thorugh optimization. The computational efficiency
of the approach is demonstrated with a helicopter landing. In
the future, we plan to confirm the computational efficiency in
hardware experiments and extend the approach to continuous
systems.
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