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A B S T R A C T

The increasing risk of Glacial Lake Outburst Floods (GLOFs) in the Eastern Himalaya is exacer-
bated by climate change-driven glacial ice mass loss, slowdown, and increasing infrastructure
projects in the high-altitude regions. To quantify the current risk of potential future disasters we
update the inventory of glacial lakes in Sikkim Himalaya, identify the most potentially dangerous
glacial lakes (PDGL) and model their peak discharge in different scenarios. The updated glacial
lake inventory includes 232 glacial lakes (of >0.01 km2) covering a cumulative area of
22.23 ± 0.10 km2. Our GLOF susceptibility mapping of all moraine-dammed glacial lakes using
an Analytic Hierarchy Process (AHP) reveals one lake as very high risk, eight as high risk, 22 as
medium risk, 56 as low risk, and 18 as very low risk. Further, we apply dam break flood simula-
tions for the seven most dangerous lakes. Results reveal highest peak discharges of 9504 m3 s−1

and 8421 m3 s−1 in extreme case scenarios from the Khanchung and South Lhonak lakes, respec-
tively. The lowest peak discharge of 622 m3 s−1 is estimated in a normal outburst event for
Yongdi lake, with every scenario at least 447 m3 s−1 discharge is reaching to Chungthang town.
We find that more than 10,000 people face direct threat of GLOF with potential large-scale infra-
structure damage (∼1900 settlement, 5 bridges and 2 hydropower plants). The updated glacial
lake dataset, GLOF susceptibility mapping, and modeling results demonstrate the urgent need to
install an early warning system and control breaching of highly dangerous lakes.

1. Introduction
Direct impacts of global climate change are evident from glacier ice mass loss (Hugonnet et al., 2021; Lee et al., 2021; Maurer et

al., 2019), slowing of ice flow due to thinning (Dehecq et al., 2019; Kaushik et al., 2022), formation of glacial lakes in high mountain-
ous regions (Zheng et al., 2021). High Mountain Asia (HMA) is experiencing a comparatively faster rate of warming (Lalande et al.,
2021) and concomitant glacier ice mass loss (Brun et al., 2017; Maurer et al., 2019). Retreating glaciers expose topographic depres-

* Corresponding author. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
E-mail address: kaushik.67@osu.edu (S. Kaushik).

https://doi.org/10.1016/j.rsase.2024.101286
Received 28 February 2024; Received in revised form 11 June 2024; Accepted 30 June 2024

https://www.sciencedirect.com/science/journal/23529385
https://www.elsevier.com/locate/rsase
mailto:kaushik.67@osu.edu
https://doi.org/10.1016/j.rsase.2024.101286
https://doi.org/10.1016/j.rsase.2024.101286
https://doi.org/10.1016/j.rsase.2024.101286
http://creativecommons.org/licenses/by/4.0/


Remote Sensing Applications: Society and Environment 36 (2024) 101286

2

S. Kaushik et al.

sions that form proglacial lakes dammed by ice above and moraines, which may be ice cored, below (Kaushik et al., 2020; Song et al.,
2017). Lake sizes may increase over time due to continued ice retreat, filling and coalescence with neighboring lakes. Thus, over the
past two decades, there has been a noticeable increase in the size of existing proglacial lakes and the creation of new lakes in moun-
tain ranges worldwide (Veh et al., 2020a; Zheng et al., 2021). Glacial lakes have received increasing scientific attention in the last two
decades due to their relationship with glacier and Glacial Lake Outburst Flood (GLOF) hazards (Taylor et al., 2023; Veh et al., 2020a;
Zheng et al., 2021). The presence of glacial lakes can also significantly alter the rate of glacier ice mass loss via calving (Pronk et al.,
2021; Thakuri et al., 2016). Moreover, several studies highlight the importance of these glacial lakes to water resources (Dan H.
Shugar et al., 2020). Among these factors, glacial lakes bear great significance in terms of GLOF, owing to its high carrying capabili-
ties which can cause destruction and threat to lives in their flow path (Kaushik et al., 2020; Zheng et al., 2021). However, predicting
GLOF events is complicated by the complex interaction of surface dynamics (e.g. mass movement, rockfall, landslide and seismic ac-
tivity), moraine dam characteristics (e.g. dam type, height-width ratio) and hydrometeorological factors (i.e., heavy precipitation,
avalanches) (Simon Keith Allen et al., 2019; Huggel et al., 2004; Kaushik et al., 2020; Worni et al., 2013). Thus, mapping and model-
ing potential GLOF events remain an active field of research (Dan H. Shugar et al., 2020; Taylor et al., 2023; Zheng et al., 2021).

GLOF events may result in downstream damage to infrastructure, and property as well as extensive loss of life (Aggarwal et al.,
2017; Huggel et al., 2004; Kaushik et al., 2020; Sattar et al., 2019). Several recent studies have made significant progress in the assess-
ment of the anticipated risks of GLOF hazards at regional (Veh et al., 2020a; Zheng et al., 2021) and global scales (Dan H. Shugar et
al., 2020; Taylor et al., 2023). Taylor et al. (2023) quantified GLOF hazards on a global scale, revealing that 15 million people are at
risk of GLOFs. They found that the HMA region is the most hazardous, with approximately 1 million people living within 10 km buffer
zone of glacial lakes. Zheng et al. (2021) describes the past, present and predicted GLOF risk in the HMA. Overall, the glacial lakes has
increased in number and area by 6.8 ± 0.1% and 5.9%, respectively, in the HMA between 1990 and 2015 (Zheng et al., 2021). They
find that the highest risk of GLOF is in the Eastern Himalaya compared to adjacent regions. Similarly, Veh et al. (2020a) demonstrated
the presence of the largest glacial lakes and highest GLOF risk in the Eastern Himalaya. For instance, the 100-y flood volume and dis-
charge are both more than three times greater than the next highest region. Despite the unequivocal GLOF risk in the Eastern Hi-
malaya, comprehensive regional studies focusing on magnitude estimation and its impact on downstream life and property are rare.
Many studies of the Sikkim Himalaya have focused on the quantification of potentially dangerous glacial lakes (PDGL) (Aggarwal et
al., 2017; Islam and Patel, 2022; Sharma et al., 2018; Shukla et al., 2018). Among the few studies focusing on the frequency and mag-
nitude of GLOF (Veh et al., 2020a), Sattar et al. (2019, 2021) modeled the current and future GLOF risk of the largest glacial lake in
Sikkim (i.e., South Lhonak Lake). No information, however, is currently available regarding GLOF magnitude from other PDGL in
Sikkim Himalaya. Here, we present a pragmatic approach to assessing the state of glacial lakes in terms of GLOF hazard and dam
break modeling (DAMBRK). To this end the objectives of present study are 1) to generate an up-to-date inventory of glacial lake in
Sikkim Himalaya, 2) a GLOF hazard assessment to identify PDGL, and 3) dam break modelling of PGDL to estimate the potential mag-
nitude of the outburst floods.

2. Materials and methods
2.1. Study site

We focus on the small, state of Sikkim, India, located in Eastern Himalaya (Fig. 1). Covering an area of 7096 km2, Sikkim shares its
borders with Bhutan to the East, Nepal to the West, West Bengal to the South, and Tibet to the North. (Fig. 1). Geographically, Sikkim
is situated at the transboundary of Central and Eastern Himalaya. This complex climatological region sits at the triple junction of
three climate systems dominated by the Indian Summer Monsoon (ISM), with limited moisture from Westerlies and Easterlies. Long-
term climatic observations at Gangtok station exhibit a positive trend in minimum temperature (+0.036 °C) from 1961 to 2017
(Kumar et al., 2020). The small Himalayan state has an altitudinal range from ∼280 to 8586 m above sea level (masl), steep slope (>
43% area) and escarpments with rugged terrain. Sikkim hosts the world's third-highest peak, Kangchenjunga (8586 m), 446 glaciers
covering 505 km2 of area as per the Randolph Glacier Inventory (RGI) version 7 (RGI Consortium, 2023), and more than 200 glacial
lakes. Snow covers over 35–40% of the Sikkim year-round (Krishna, 2005). The motivation for studying GLOF in this region arises
from the presence of Chungthang town, with a population of ∼10,000, and the Teesta Stage III hydropower dam, located ∼70 km
downstream of many PDGL.

2.2. Satellite data
We utilize multisource remote sensing data for mapping glacial lake extent and GLOF hazard assessment. The dataset used for

mapping consists of 5 bands (B, G, R, NIR and SWIR) of Sentinel 2, a coherence layer derived using Sentinel 1 (SLC, IWS), Landsat 8
(L1TP, TIRS1), topographic layers (slope and elevation) obtained via Advanced Land Observing Satellite Digital Elevation Model
(ALOS DEM); and finally, Normalized Difference Water Index (NDWI) layer. Further details are provided in Table S1.

2.3. Meteorological data
We use time-series meteorological data (total precipitation, mean maximum temperature, and mean minimum temperature) ac-

quired at the Indian Meteorological Department's Automatic Weather Stations (AWSs) situated at Gangtok (1812 m asl) and Mangan
(1166 m asl) (Figs. 1 and 2). The Gangtok station has data available from 1990 to 2017 and Mangan station from 2001 to 2017.
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Fig. 1. Location map of Sikkim. The inset map shows the location Sikkim. The Glacial Lakes marked with red polygon (A: Changsang Lake, B: South Lhonak lake, C:
Yongdi Lake, D: Ponggu La Lake, E: Za La lake, F: Gurudongmar Lake, and G: Khanchung Lake) provides contextual information for Fig. 7. The yellow polygon (YV:
Yongdi Village, TV: Thangu Valley, CT: Chungthang town) provides contextual information for Section 3.2. The map also shows the location of hydropower plants and
Automatic Weather Stations (AWS). The Copernicus 30 m Digital Elevation Model (GLO-30) is utilized to show the elevation and deriving stream network. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

2.4. Other data
OpenStreetMap data (https://www.openstreetmap.org) is utilized to map settlement zones and quantify the infrastructure down-

stream from glacial lakes. However, OpenStreetMap found to have limited feature coverage in parts of ‘Third Pole' (T. Zhang et al.,
2023). Thereby, we also manually checked and supplemented the feature for the study region using google earth imagery. The glacial
lake boundaries of 1990 are adopted from Zheng et al. (2021) to estimate the rate of lake change from 1900 to 2000. For analysing the
terrestrial water storage (TWS) change, the monthly mascon solutions of the Center for Space Research (CSR) Gravity Recovery and
Climate Experiment (GRACE) TWS anomalies (TWSA) release 06 version 02 (Save et al., 2016) are used. The datasets are downloaded
from https://www2.csr.utexas.edu/grace/RL06_mascons.html. This study utilized the mascon solutions from April 2002 to June
2017 of GRCAE and June 2018 to May 2023 of GRCAE-FO (GFO) available at 0.25° × 0.25° grid resolution. The provided dataset has
applied all appropriate corrections by the agency. For analysing the long-term trend in TWSA, we employed a non-parametric Sea-
sonal-Trend decomposition procedure based on the Loess (STL) approach, as introduced by (Cleveland et al., 1990). This method al-
lowed us to break down the time series data into three components: long-term variability, seasonal variations, and residuals.

2.5. Glacial lake mapping and GLOF hazard assessment
We prepared an inventory of glacial lakes using a Deep Convolutional Neural Network (DCNN; GLNet) as described in Kaushik et

al. (Kaushik et al., 2022). GLNet is trained over different sites across the Himalayan region, integrating capabilities of multisource re-
mote sensing data and DCNN. Overall, this lightweight model demonstrated stability for mapping smaller glacial lakes (>0.1 km2).
The results obtained using GLNet are visually inspected for errors of omission or commission. The area error associated with glacial
lake mapping using remote sensing data is approximately ±0.5 subject to the quality of imagery. The error of individual lake is esti-
mated using method proposed by (Hanshaw and Bookhagen, 2014; Xin Wang et al., 2020) using equations (1)–(3).

Error (1𝜎) =
P × G

2
× 0.6872 (1)

E =
Error (1𝜎)

A
× 100% (2)

https://www.openstreetmap.org)i/
https://www2.csr.utexas.edu/grace/RL06_mascons.html
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Fig. 2. (A) Long-term variability in climate data observed at Gangtok Automatic Weather Station (AWS) at Annual and seasonal scale from 1990 to 2017 (B) Climatic
variability observed at Mangan AWS at Annual and seasonal scale from 2000 to 2012.
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E
T
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 n
i=1

a
2

i
(3)

Where, P = perimeter of glacial lake, G = spatial resolution of satellite image used, 0.6872 = revised coefficient used within 1σ,
E = relative error of individual glacial lake, A = total area of glacial lake, ET = error estimated for the entire study area, i = num-
ber of lakes, a = area error estimated for single lake.

Here we use the resulting glacial lake inventory for the Sikkim Himalaya to assess and classify glacial lakes in terms of GLOF haz-
ard. Past GLOF hazards in the Himalaya are mostly associated with moraine-dammed glacial lakes (Lalande et al., 2021; Veh et al.,
2019). Thus, we focus on such glacial lakes (105 in Sikkim Himalaya) to assess GLOF hazards. A multiple criteria evaluation analysis
is employed using AHP (Figs. 3 and 4). The most crucial step in GLOF hazard assessment is selection of assessment parameters. Our se-
lection of assessment parameters is dependent on scientific investigations by previous studies and applicability over large region (T.
Zhang et al., 2022; Zheng et al., 2021). There is general consensus within scientific community regarding four most important factors
(1: Lake area, 2: Watershed area of upstream lake, 3: downstream slope, 4: slope above lake) for identification of potential dangerous
lakes at large scale (Simon Keith Allen et al., 2019; T. Zhang et al., 2022; Zheng et al., 2021). In addition we incorporated two more
factors (Shape Index and rate of lake change) based on the previous observations that most of GLOF event in Himalaya are closely as-
sociated with rapidly growing moraine dammed glacial lakes which are of usually elongated shapes compared to newly formed circu-
lar lakes (Peng et al., 2023; Xue Wang et al., 2024; Zheng et al., 2021).
1) Lake area is calculated to estimate potential maximum GLOF flood magnitude.
2) The mean slope angle of the land above the lake provides the topographic potential of ice and/or rock falling (i.e., ice and/or

rock avalanches) into lake, with a slope >30° indicating a high possibility of avalanches to the lake.

Fig. 3. Pairwise comparison matrix of factors affecting Glacial Lake Outburst Flood (GLOF).

Fig. 4. Weight computation of each factor using Analytical Hierarchical Process (AHP).



Remote Sensing Applications: Society and Environment 36 (2024) 101286

6

S. Kaushik et al.

3) Total watershed area of the upstream lake is used to incorporate the contribution of precipitation and glacier melt runoff toward
the lake and trigger overflow.

4) The downstream slope is generally considered an important factor for lake dam stability and potential outburst flood. This
factor is computed as a downstream slope averaged over distance of each lake in three different buffer zones as per lake area (A)
(A≥0.1 km2, 900m; 0.1>A≥0.05 km2, 600m; 0.05>A≥0.01 km2, 300m).

5) The rate of lake surface area changes between 1990 and 2020, which provides a measure of long-term stability.
6) The shape index (SI) indicates origin of a lake; More circular glacial lakes with well-defined basin are formed by ancient glacier

carving (usually known as cirque lakes). On the other hand, ellipsoidal-shape lakes can be closely associated with supraglacial
and proglacial lakes, formed by direct glacier terminus melting and adapting to its form. The range of SI varies between 0 and 1,
where 1 represent perfect circular shape of lake and 0 indicate more irregular shape. The more irregular shape can also be
associated with the lake stability. The SI is calculated as (SI = ρi/2 πai).
The weights of each of these factors are computed using Analytic Hierarchy Processes AHP (Fig. 3) after normalizing each factor

by their range of values. The lakes are then classified by their weighted sum into five levels of GLOF hazard (very high, high, medium,
very low, low) using the natural breaks (Jenks) method (Zheng et al., 2021).

2.6. GLOF modelling
In order to understand the detailed impact of GLOF at the study region we have applied GLOF modelling techniques. The combina-

tion of models used in this study allows us to evaluate the GLOF hazard potential for every lake found in our study area. Increased re-
currence of floods due to the global increase in frequency of extreme precipitation (Snowfall/Rainfall) events present a challenge for
hydrological models used to simulate GLOF (Mishra and Rafiq 2017; Rafiq and Mishra 2018). Hence different models for example,
Simplified Dam Breach Model (SMPDBK) and Snow Melt Runoff Model (SRM) were used to quantify these impacts the output from
one model served as in put to the second.

The Modified Single Flow model uses D8 algorithm to estimate flow direction from each cell to one of its eight neighboring cells
toward the direction of steepest descent (O'Callaghan and Mark, 1984). When a gauge station is not available, we utilize the SRM
model to quantify the river discharge (no-breach flow) for the study area. The input data for SRM include monthly snow cover area
from Moderate Resolution Imaging Spectroradiometer (MODIS) data (MOD10CM), Temperature and the Lapse Rate was derived by
using the methodology adopted by (Rafiq et al., 2019; Romshoo et al., 2018) (Table 1). The simulation result (non-breach flow) from
SRM is used an input to SMPDBK. SMPDBK is a flood forecasting model for dam failure, developed by the National Weather Service
(NWS) (http://www.rivermechanics.net./). This model is capable of providing firsthand information (peak discharge) on down-
stream flooding due to a dam break using the minimal amount of data (Table 2) compared to more sophisticated dam break models
(Kaushik et al., 2020; Rafiq et al., 2019). Detailed information regarding the models used, along with an example of the river profile
and cross-section (Fig. S2), is provided in the supplementary material. The SMPDBK method proved to be pragmatic approach where
reconnaissance level results are adequate, and sparsely available data and time to prepare the simulation. Global warming has re-

Table 1
Input parameters required by Snow Melt Runoff Model.

Input Parameter Source

Snow cover Area MODIS/Terra snow cover daily product (MOD10CM)
Precipitation (RS GP) Integrated Multi-satellite Retrievals for GPM (IMERG)
Temperature and Lapse rate Romshoo et al. (2018)
Basin Area and Elevation (RS A/GE) Google Earth and SRTM DEM
Degree day coefficient Romshoo et al. (2018)

Table 2
Input parameters required by the Simplified Dam Breach Model (SMPDBK) model and its source.

Input Parameters Source

Dam Breach Elevation (HDE) Quantified using visual Interpretation
Final Breach Elevation (BME) Quantified using visual Interpretation (subtraction of average depth with highest elevation)
Volume of Reservoir (VOL) Empirical relation given by (G. Zhang et al., 2023)
Surface Area of Reservoir (SA) Glacial lake surface mapping using GLNet
Final Breach Width (BW) computed using given equation.

Bw = 0.1803K0(Vw)0.32(hb)0.19 (4) (Froehlich, 1995)

Time of Dam Failure (TFM) computed using given equation.
(Tf ) in h = 0.00254 (Vw)0.53 (hb)−0.9 (5) (Froehlich, 1995)

Non-Breach Flow (QO) Snow Melt Runoff Model
Distance to PT of Interest

(DISTTN)
Estimated distance between Lake outlets and Chungthang town.

Dead Storage Equiv. Mann. N
(CMS)

The "0″ value shows Dead Storage when assuming complete drainage from the dam. In the study region, Manning's N ranges
from 0.03 to 0.055.

River cross sections Mapped using google earth
River profile Mapped using google earth

http://www.rivermechanics.net./
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sulted in a >50% increase in extreme precipitation events in northeastern India since 1990 (Mishra 2019; Mishra et al., 2019). GLOF
simulations in the subject areas were carried out for two scenarios: Normal Event (NE) and Extreme Event (NEx). The possible non-
breach flow (flow due to heavy precipitation before a GLOF event) from the heavy precipitation events have been incorporated in the
extreme event scenario (NEx) using the discharge from SRM. We have also quantified the likely impacts of the snow melt contribu-
tion, which can contribute towards the discharge, and incorporated them in the scenario NEx (Rafiq et al., 2019). In this study we
have used multiple models including SRM and SMPDBK, for estimation of peak discharge, 1D unsteady flow model developed by
Fread was used for the estimation of discharge at the selected locations (which mostly are the populated areas), peak flood depth and
the travel time at these downstream locations. The input parameters required by these models (Tables 1 and 2), were obtained from
the satellite data, Ancillary data/already published and the data obtained from other models. Overall workflow of adopted methodol-
ogy is shown in Fig. 5.

2.7. Statistical analyses of climate data
Trend analysis is performed on the AWS data located at Gangtok (1822 m. asl) and Mangan (∼1166 m. asl). The non-parametric

Man-Kendall and Sen's slope tests were applied to estimate the trend in climate data. The Mann-Kendell test relies on basic assump-
tion that there is no significant trend (H0) within the time-series data. Thereby, the rejection of null hypothesis (H0) specifies a signifi-
cant trend within time-series data. Positive Zs values reflect an increasing trend within a data series whereas a negative value of Zs
shows a decreasing trend. The statistical analysis is implemented at a 95% confidence interval. The Mann-Kendell test is suitable as it
does not require normally distributed dataset and reduces the error introduced by non-uniformity within time-series data (Mishra et
al., 2014). Therefore, this statistical test has wide applicability in trend analysis over long-term hydrological and climatological
datasets, especially for noisy data with non-linear trends (Kumar et al., 2020; Mishra et al., 2014).

Fig. 5. Overall workflow of the adopted methodology.
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3. Results
3.1. Glacial lake inventory and GLOF hazard assessment

Our study identifies 232 glacial lakes in the Sikkim Himalaya covering an area of 22.23 ± 0.10 km2. Results are restricted to
glacial lakes of ≥0.1 km2 in size and within a buffer zone (10 km) of the glacier margin (Fig. 6). The error assessment reveals absolute
area error of approximately ±0.10 km2 and average relative error ±8.9% in the study region. The relative error of lakes varies
within 1.8%–20.7%, our analysis reveals significant power exponential relationship between relative error and lake size (Fig. 7). Our
GLOF hazard assessment for the Sikkim Himalaya identifies 18 glacial lakes with a very low level of GLOF hazard, 56 glacial lakes
(∼50%) with a low hazard, 22 glacial lakes with a medium GLOF hazard, and eight glacial lakes with a high GLOF hazard in the (Fig.
8 and Table 3). Only one glacial lake is identified as having a very high GLOF hazard. To quantify the sensitivity of the weighting
scheme in the GLOF hazard assessment, these results are compared to those obtained from an equal weighting scheme (Table 3). The
equal weighting scheme method identifies 4 glacial lakes at very high risk and 21 at high risk of GLOF. However, the present work
highlights that the AHP method provides an edge to the other method as it allows the expert to rank the factors based on his prior ex-
pertise. Such expert knowledge is processed for reducing the subjectivity, if any, and compute objective weights. Moreover, the his-
torical GLOF event shows that a few factors (e.g., size of lake, topographic movement and rapid expansion of glacial lakes) play a
more critical role in triggering GLOF events (Zhang et al., 2023). Thereby, giving equal importance to all factors may not reveal the
actual picture of GLOF hazard in the region.

Fig. 6. Glacial Lake dataset generated over the Sikkim Himalaya. The stream network is extracted from the STRM 30 m DEM using the hydrological modeling software
in ArcGIS.

Fig. 7. Relationship between estimated relative error and size of glacial lakes in the study region.
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Fig. 8. Glacial Lake Outburst Flood hazard assessment in Sikkim Himalaya. The glacial lakes shown in the insets (A: Changsang Lake, B: South Lhonak lake, C: Yongdi
Lake, D: Ponggu La Lake, E: Za La lake, F: Gurudongmar Lake, and G: Khanchung Lake) are modeled using dam break modelling to estimate the potential magnitude
of GLOF.

Table 3
A sensitivity analysis for different weighting schemes.

Hazard level Equal Weighting Scheme AHP

Very low 16 18
Low 38 56
Medium 26 22
High 21 8
Very high 4 1

3.2. Climatic consideration
The Gangtok weather station has measured an increasing trend of annual mean maximum (0.03 °C yr−1) and mean minimum

(0.04 °C yr−1) temperatures, but no significant trend in total annual precipitation (Table 4). For our seasonal analysis, each year is
subdivided into four seasons, i.e., winter (December–March), pre-monsoon (April–June), monsoon (July–September) and post-
monsoon (October–November). The winter mean maximum and mean minimum temperatures show the fastest rate of increase
(0.06 °C yr−1) (Table 4). Mean minimum temperature increased in all seasons; at a rate of 0.04 °C yr−1 during pre-monsoon, 0.03 °C
yr−1 during monsoon, and 0.04 °C yr−1 during post-monsoon seasons. A significant trend in precipitation is observed only for the win-
ter season decreasing at a rate of 4.43 mm yr−1 (Table 4). In contrast, the Mangan weather station (Table 5) shows no significant
trends in annual mean maximum and mean minimum temperatures. However, the mean maximum temperatures decreased by
−0.20 °C yr−1 during the pre-monsoon season, indicating an increased rate of warming with altitude.

3.3. GLOF modelling
For GLOF simulations, we used modelling approaches to estimate the peak discharge for a catastrophic burst at the seven most vul-

nerable glacial lakes in the study region. Simulations are carried out for two possible scenarios keeping in view the impacts on the
precipitation over the subject area. Moreover, we perform one dimensional routing along the flow channel to the final point of inter-
action (i.e., Chungthang town). The simulations estimate a peak discharge of 7804 m3 s−1 for a normal out-burst (NE), decreasing to
5418 m3 s−1 by Chungthang town. In the case of an extreme event, the peak discharge reaches 9504 m3 s−1 at the lake, decreasing to

Table 4
Statistical analysis of climate data recorded at Gangtok station.

Mean max. Temperature (1990–2017) Mean min. Temperature (1990–2017) Precipitation (1990–2017)

Zs Qs Trend Zs Qs Trend Zs Qs Trend

Annual 3.20 0.031 Increasing 3.93 0.043 Increasing −11.82 −1.44 No trend
Winter 3.09 0.06 Increasing 3.46 0.06 Increasing −2.35 −4.43 Decreasing
Pre-monsoon 0.75 0.01 No trend 2.53 0.04 Increasing 0.33 1.73 No trend
Monsoon 1.27 0.01 No trend 4.50 0.031 Increasing −1.26 −5.47 No trend
Post-monsoon 0.81 0.017 No trend 2.45 0.039 Increasing −0.85 −2.65 No trend

Note: Zs = Mann–Kendall Z statistic; Qs = Sen's slope; All statistical test is performed on 95% confidence interval.
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Table 5
Statistical analysis of climate data recorded at Mangan station.

Mean max. Temperature (2001–2017) Mean min. Temperature (2001–2017) Precipitation (2001–2017)

Zs Qs Trend Zs Qs Trend Zs Qs Trend

Annual −1.77 −0.18 No trend −0.82 −0.07 No trend 0.123 9.81 No trend
Winter −1.11 −0.15 No trend −0.90 −0.04 No trend −0.70 −4.20 No trend
Pre-monsoon −2.06 −0.20 Decreasing −1.36 −0.16 No trend 0.70 16.92 No trend
Monsoon −1.48 −0.19 No trend −1.32 −0.10 No trend 4.18 0.20 No trend
Post-monsoon −1.75 −0.26 No trend −1.03 −0.124 No trend −0.04 −0.15 No trend

Note: Zs = Mann–Kendall Z statistic; Qs = Sen's slope; All statistical test is performed on 95% confidence interval.

6303 m3 s−1 at the point of interaction (i.e., Chungthang town) (Fig. 9G). Similarly, peak discharges and outflow hydrographs are ob-
served for South Lhonak lake, with peak discharges of 6751 m3 s−1 at the lake and 4535 m3 s−1 downstream. The extreme event sce-
nario results in peak discharges of at 8751 m3 s−1 and 5506 m3 s−1 at the lake and point of interaction, respectively (Fig. 9B).

Simulated peak discharge at Za La Lake is 4972 m3 s−1, gradually decreasing downstream to 3115 m3 s−1 at Chungthang town. Za
La lake is situated right above Gurudongmar lake, so an extreme event (Nex) outburst event in Za La lake also triggers a GLOF from
Gurudongmar lake in our simulations, resulting in a significantly higher peak discharge of 8421 m3 s−1 at the lake, decreasing to
5773 m3 s−1 at the nearest settlement (i.e., Yongdi village), and to of 4656 m3 s−1 at Chungthang town (Fig. 9E). The simulated peak
discharge for Gurudongmar lake is 4449 m3 s−1 (NE) and 6149 m3 s−1 (NEx) decreasing downstream to 2818 m3 s−1 and 6319 m3 s−1,

respectively (Fig. 9F). The situation at Gurudongmar lake is noteworthy because it is surrounded by two other lakes (Za La Lake and
Ponggu La Lake: Fig. 1) that pose a potential risk of multiple, cascading failures. Incorporation of non-breach flow from Za La Lake
and Ponggu La Lake in the case of an extreme event may result in a massive, ∼20,000 m3 s−1 peak discharge from these three lakes.
These lakes could potentially impact other glacial lakes downstream, setting off a cascade of GLOF along their flow direction.

Changsang lake, located at the terminus of Changsang glacier, has estimated peak discharges of 3084 m3 s−1 (NE) and
6084 m3 s−1 (NEx), decreasing to 1891 m3 s−1 and 3098 m3 s−1 respectively at Chungthang town (Fig. 9A). For Ponggu La Lake, the
simulated peak discharge is 4607 m3 s−1 at lake site under the NE scenario, gradually decreasing to 2254 m3 s−1 at Chungthang town.
For the extreme (NEx) scenario, the peak discharge increases up to 31.4% (6056 m3 s−1), decreasing to 4213 m3 s−1 at Yongdi village
and Thangu valley, and 2909 m3 s−1 at Chungthang town (Fig. 9D). Of all seven lakes, the lowest simulated peak discharge was for
Yongdi Lake (622 m3 s−1) in case of normal outburst event, decreasing to 447 m3 s−1 at Chungthang town. For the extreme scenario,
these model estimates peak discharges of 1572 m3 s−1 at the lake, 1279 m3 s−1 at Yongdi village, and 899 m3 s−1 at Chungthang town
(Fig. 9C).

4. Discussion
4.1. Increasing risk of GLOF in a warming climate

The generated dataset of glacial lake boundaries in the present study proved to be more accurate and updated over existing glacial
lake datasets generated by (Chen et al., 2021; Zheng et al., 2021). The results of the present study are comparable to Chen et al.
(2021) which reports the presence of 234 glacial lakes covering 23.36 km2 (Table 6). A visual comparison of the glacial lake bound-
aries mapped in the present study with existing glacial lake datasets (Chen et al., 2021; Zheng et al., 2021) is provided in Fig. 10. The
slight variation in the number and areal extent is mainly ascribed to the coarse resolution of the Landsat OLI sensor used for mapping
glacial lakes. Whereas our result is restricted to lakes within a 10 km buffer zone of the glacier margin and those with a surface area or
≥0.1 km2, Zheng et al. (2021) mapped all high altitudinal glacial lakes, resulting in a higher number and extent (Table 6). These re-
cent studies highlighted the higher rate of lake areal enlargement and the doubled risk of GLOF compared to adjacent regions (Veh et
al., 2020a; Zheng et al., 2021). Glacial lake expansion in the region is primarily attributed to atmospheric warming and glacier ice
mass loss (G. Zhang et al., 2023), which is consistent with the increasing trend in maximum temperature (−0.031 °C yr−1, Table 3)
and decreasing trend in winter precipitation (−4.43 mm yr−1) we observe. A similar observation is reported by Kumar et al. (2020),
the climatic data recorded at Gangtok station during 1961–2017 reveals increasing trend in minimum (−0.036 °C yr−1) and maximum
temperature (−0.027 °C yr−1). Additionally, the long-term analysis of GRACE and GFO data revealed statistically significant decreas-
ing trend at the rate of 0.21 cm month−1 water equivalent of mass loss in the region. Fig. 11 shows that rate of mass loss is higher in
the glaciated regions indicating higher rate of atmospheric warming in the upper reaches (Mountain Research Initiative EDW
Working Group, 2015).

The assessment of GLOF hazards is complex, involving many different parameters of the lake size and shape, its dam characteris-
tics, the parent glacier, topographic potential, tectonic movement, heavy precipitation, and population hotspot in the downstream re-
gion. Several researchers have recently demonstrated models and several classification methods to identify PDGL (Aggarwal et al.,
2017; Islam and Patel, 2022; Khanal et al., 2015). These studies emphasize the scientific evaluation of GLOF parameters (T. Zhang et
al., 2022) and their applicability over large geographical regions using automated approaches (Simon Keith Allen et al., 2019; Zheng
et al., 2021). The approach adopted in the present work is based on the findings of previous studies and has applicability over large
geographical regions. However, we have added two more parameters (i.e., rate of lake changes and shape index) for GLOF hazard as-
sessment which provides critical information about lake stability. Higher rates of lake change, and shape index values close to zero,
indicating ellipsoidal shape, are associated with proglacial lakes.
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Fig. 9. Outflow hydrographs for the seven most vulnerable glacial lakes in Sikkim exhibiting peak discharges for two different scenarios (NE and NEx). The contextual
information of simulated lakes (A: Changsang Lake, B: South Lhonak lake, C: Yongdi Lake, D: Ponggu La Lake, E: Za La lake, F: Gurudongmar Lake, and G: Khanchung
Lake) are provided in Fig. 1.
◀

Table 6
Comparison of glacial lake (area and number) reported in the present study with recently published datasets.

Lake dataset Data used Numbers of lakes Total lake area (km2)

Zheng et al. (2021) Landsat ETM+ ∼2015 338 29.63
Chen et al. (2021) Landsat OLI ∼2017 234 23.36
Present study Sentinel-2 2020 231 22.23 ± 0.10

Fig. 10. Comparison of generated glacier lake dataset of Sikkim Himalaya with existing datasets (e.g., Chen et al., 2021; Zheng et al., 2021). The present study provides
a generally more accurate mapping of lake extent.

Our results exhibit the presence of 31 potentially dangerous glacial lakes (22; moderate, 8; high, and 1; very high). These findings
are consistent with previous studies of the Sikkim Himalaya (Aggarwal et al., 2017; Islam and Patel, 2022). Aggarwal et al. (2017)
identified 21 lakes susceptible to outburst flood in Sikkim. Similarly, Islam et al. (2022) investigated the presence of 27 potentially
dangerous glacial lakes (17; moderate, 5; high, 5; low) in the Chhombo Chhu Watershed, Sikkim Himalaya. Minor discrepancies in
the results can be attributed to the scale of lake mapping, factors included for GLOF hazard assessment, classification categories and
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Fig. 11. Spatial distribution of (a) GRACE and GRACE-FO, (b) slope derived through long-term trend analysis, (c) area covered by glacier, (d) temporal distribution
of GRACE TWSA, seasonal and residual components, and (e) long-term trend (linear trend and inter-annual variability) during April 2002–May2023.

study region. While Aggarwal et al. (2017) focused on glacial and high altitude lakes, this study focuses on moraine-dammed glacial
lakes only. Moreover, Aggarwal et al. (2017) used 16 parameters for GLOF hazard assessment, whereas we adopted a widely accepted
conceptual model (Simon Keith Allen et al., 2019; Zheng et al., 2021) for GLOF assessment, with the addition of the rate of lake
change and shape index. Zheng et al. (2021) made the notable contribution of estimating the GLOF risk of the entire ‘third pole’ re-
gion. That analysis found that, among the seven glacial lakes modeled here, four are classified as very high GLOF risk (Ponggu La
Lake, Za La lake, Khangchung Lake and Yongdi Lake; Gurudongmar lake in missing from the analysis), one identified as a highly dan-
gerous lake (Zheng et al., 2021). However, Zheng et al. (2021) classified South Lhonak lake as low risk lake, which our analysis classi-
fies as high risk. The South Lhonak lake has a lake volume of 65.8 × 106 m3 and a maximum depth of 131 m (Sharma et al., 2018)
and has been identified as one of the most dangerous glacial lake in the Sikkim Himalaya (Aggarwal et al., 2017; Islam and Patel,
2022; Sattar et al., 2019, 2021).

4.2. GLOF drivers and anticipated risk
A GLOF can be triggered by numerous factors, involving dam stability, overtopping, an extreme climate event such as heavy rain-

fall, seismic activity, avalanches and/or combination of these factors (Sattar et al., 2021; D. H. Shugar et al., 2021; Worni et al.,
2013). In the recent past, the Indian Himalaya has witnessed the Kedarnath GLOF event induced by heavy rainfall (S. K. Allen et al.,
2016; Rafiq et al., 2019) and the Chamoli disaster caused by avalanche (D. H. Shugar et al., 2021). The potential risk of GLOF event in
Sikkim Himalaya due to heavy rainfall, tectonic activity induced avalanches and/or a combination of these factors are equally high.
Sikkim is a highly active seismic zone (IV) that has experienced 10 strong earthquakes of magnitude varying between 6.1 and 8.0 dur-
ing 1990–2023 (https://earthquakelist.org/india/sikkim/). Most concerning were the 4.9 magnitude earthquake on Sept 19, 1991,
and 6.9 magnitude on Sept 18, 2011, with epicenters located in the vicinity of the South Lhonak lake (Sattar et al., 2021). Addition-
ally, the topographic potential near the lake (slope >30°), increasing rate of lake formation, and expansion contribute significantly to
the anticipated GLOF event in the study region. Recent studies highlight that there is at least twice the risk of GLOF in the Eastern Hi-
malaya compared to its adjacent regions (Veh et al., 2020b; Zheng et al., 2021). In view of these observations, several researchers

https://earthquakelist.org/india/sikkim/
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have modeled present and future GLOF scenarios (Rinzin et al., 2023; Sattar et al., 2019, 2021). However, most of the studies carried
out in the Sikkim Himalaya are either limited to the identification of PGDL or modelling only one lake (i.e., South Lhonak). The pre-
sent work adopts a comprehensive approach by extending the analysis from identification of PDGL to modelling the magnitude of out-
burst flood from seven PDG (Fig. 9).

We estimate a GLOF peak discharges for South Lhonak lake (6751 m3 s−1 at the lake, 4535 m3 s−1 at Chungthang town), very simi-
lar to those estimated by Sattar et al. (2019) (6064 m3 s−1 and 3828 m3 s−1, respectively). Unlike Sattar et al. (2019), our approach to
simulating GLOFs does not include physical and natural barriers that can significantly reduce the flow energy and lower downstream
peak discharges. We present the first simulations of GLOF peak discharges for the other six glacial lakes (A: Changsang Lake, C:
Yongdi Lake, D: Ponggu La Lake, E: Za La lake, F: Gurudongmar Lake, and G: Khanchung Lake; Fig. 9). The results highlight the signif-
icant and increasing risk for high magnitude floods from this understudied part of the Sikkim Himalaya. An outburst flood from Khan-
hchung lake would likely be high destructive to settlements downstream (Fig. 12 and Fig. S3). GLOF simulations show that popula-
tion and infrastructure (∼120 settlements) are under direct threat, and this risk can exacerbate in the case of extreme events (Fig. 13
and Fig. S3). The estimated peak outflow discharge is significantly higher than what we have witnessed in the past. For example, the
Uttarakhand, India flash flood estimated peak discharge was 1699 m3 s−1 which resulted in over 6000 deaths (Rafiq et al., 2019).
Similarly, Dig Tsho lake located in Bhutan Himalaya experienced a peak discharge of 1562 m3 s−1 which impacted 30 km down-
stream of the lake (Gurung et al., 2017).

Our study also highlights the burgeoning GLOF hotspot of the area of Ponggu La, Za La and Gurudongmar Lakes (Fig. 8). Their
close proximity to each other increases the threat of a cascading, destructive GLOF event. For example, we have incorporated the out-
flow of Gurudongmar Lake while simulating the extreme event scenario for Za La Lake which resulted in peak discharge of
8421 m3 s−1. The incorporation of outflow from Gurudongmar lake almost doubles the magnitude of the flood in comparison to the
normal case scenario. The GLOF event triggered by hydrometeorological factors (e.g., heavy rainfall) and mass movement (e.g., snow
and debris avalanches) may result in a devastating flood involving exceedingly large volumes of water from all three lakes, which
have major carrying capacities. Resultant floods could impact hundreds of kilometers down flow, causing loss of life and property at
large scales. The outflow hydrographs from other glacial lakes also exhibits a similar potential GLOF event (Fig. 9). Even the outburst
event from the smallest lake (C: Yongdi Lake; Figs. 1 and 9) might cause a flash flood with a peak discharge of 506 m3 s−1 reaching to
Yongdi village located approximately 8 km downstream of the lake with approximately 110 settlements (Fig. 12). The high possibility
of a debris flow alongside the GLOF event may exacerbate the hazard by adding to the flood height because the slope at various loca-
tions downstream is well above the threshold where dry, unconsolidated debris can mobilize. Hence these GLOFs can generate cata-
strophic flash floods that inundate most of the Sikkim, devastating the population and infrastructure downstream. Overall, our results
indicate potential GLOF events that directly threaten populations of ∼10,000 and critical infrastructure totaling 1900 settlements, 5

Fig. 12. Major settlement zones under direct threat of potential glacial lake outburst flood. The Magnitude of flood is depicted for Khangchung Lake. The location
of settlement zones is shown in Fig. 1. Image source; Google Earth (Image © 2023 Maxar Technologies).
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Fig. 13. Modeled flood extent in Thangu Valley (TV) under normal and extreme scenarios from Khanchung Lake. The location TV is shown in Fig. 1. Image source:
Google Earth (Image © 2023 Maxar Technologies).

bridges and 2 hydropower plants. The current is that such increasing GLOF risk in high mountain regions is further aggravated by un-
precedented infrastructural development activities into the highly vulnerable regions (Kaushik et al., 2020).

4.3. Mitigation strategies
The threat of GLOFs in this region necessitates immediate mitigation strategies that require the combined efforts of the local com-

munity, the scientific community, and local administration. Here we restrict our discussion to the measures that can be taken as a part
of scientific community. In the pre-GLOF phase, a near real-time glacial lake mapping and monitoring system is required which can
facilitate regular glacial lake monitoring at unprecedented scale. There is excellent potential in deep learning models for automated
glacial lake mapping (Kaushik et al., 2022; Wang et al., 2022; S. Wang et al., 2022). Also needed is the rapid and accurate identifica-
tion of potentially dangerous lakes. Both the current study and the automated approaches introduced by (Simon Keith Allen et al.,
2019) could be employed for this purpose. Finally, the installation of an early warning system at the most dangerous lake site is
needed (W. Wang et al., 2022). Such systems are expensive and difficult to maintain and are impractical for high numbers of PDGL.
However, we recommend the installation of early warning systems at the GLOF hotspots with enormous volumes of water and/or
proximity to human settlement. Further, in cases of extreme GLOF threat, activities to reduce PDGL volume using control engineering
methods are needed. For example, 1) controlled breaching of the dam, 2) construction of a dam outlet, 3) pumping and 4) tunnel con-
struction through dam. Strategic combinations of these efforts will help mitigate the devastating impact of GLOFs and promote sus-
tainable development in the region.

5. Conclusion
The loss of glacier ice and associated formation and expansion of glacial lakes is unequivocal. The increasing number and extent of

glacial lakes threaten downstream communities and infrastructure. The impending threat of GLOFs in Sikkim, located in the Eastern
Himalaya, is a serious concern that necessitates a pragmatic and comprehensive solution. The objective of this study was to evaluate
the state of glacial lakes in the region in terms of GLOF hazard and employ dam break modeling, particularly the DAMBRK model, to
project potential GLOF scenarios. By coupling this analysis with the recent inventory of glacial lakes in the Sikkim Himalaya, we
aimed to assess GLOF hazards and identify PDGLs, as well as to conduct dam break modeling on high-risk GLOF-prone lakes to esti-
mate the magnitude of a potential outburst flood. This multi-faceted approach is essential for the management and mitigation of
GLOF hazards in the region. Our results highlight the increasing risk of GLOF in the Sikkim Himalaya where every simulated scenario
for each lake demonstrates an outflow of high volumes of water reaching Chungthang town. The smallest simulated lake shows a dis-



Remote Sensing Applications: Society and Environment 36 (2024) 101286

16

S. Kaushik et al.

charge of 447 m3 s−1, whereas the extreme case scenario from Khangchung lake suggests a 6303 m3 s−1 discharge reaching to
Chungthang town. The results showed direct exposure of >10,000 people and infrastructure (∼1900 settlements and 5 bridges). The
data generated from this study will not only provide vital insights into the state of glacial lakes and the risks they pose but also em-
power local authorities and communities to take pragmatic approach to reduce the potential impact of GLOFs. Additionally, this re-
search can contribute to the development of early warning systems, disaster preparedness plans, and infrastructure improvements
aimed at minimizing the damage and reducing the risk to human life in the occurrence loss a GLOF. As climate change continues to
accelerate, and glaciers in the Himalayan region continue to recede, the threat of GLOFs is expected to increase. Therefore, ongoing
monitoring and proactive risk assessment will be essential to safeguard the lives and livelihoods of the thousands of people living in
the region. By combining advanced modeling techniques with up-to-date inventory data, this study offers a practical and invaluable
foundation for addressing this pressing issue and striving for a safer, more resilient future for Sikkim and its inhabitants.
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