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Abstract: In the advancing era of autonomous maritime navigation, the precision of Electronic Nautical 

Charts (ENCs) is critical. This study conceptualizes a framework to validate and rectify ENCs nearly in 

real-time, leveraging high-resolution 3D LiDAR, DGPS, and IMU data. The approach of this study includes 

a domain-specific point cloud filtering, object segmentation, classification in compliance with the S-101 

standard classes and a georeferencing strategy. By comparing identified objects against ENC data, this 

study pinpoints discrepancies and augments the ENCs with up-to-date object information. An evaluation 

through field tests is proposed, complemented by Traffic Sequence Charts and reference calibration via 

Realtime Kinematic GPS, ensuring practical relevance of our framework to real-world conditions. The 

contribution of this paper lies in offering a comprehensive solution for ENC refinement, thereby facilitating 

safer autonomous navigation by verifying that ENCs are reflective of current environmental conditions.  
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1. INTRODUCTION 

Electronic Nautical Charts (ENCs) serve as a long-standing 

tool in maritime navigation, ensuring the safe and efficient 

passage of vessels. However, as found by Karetnikov et al. 

(2017), the integrity of ENCs is frequently undermined by 

discrepancies between charted representations and actual 

conditions. These discrepancies include the misplacement or 

incorrect sizing of objects and the omission of crucial data, 

heightening the risk of vessel collisions. Confronted with 

narrow fairways, harbor areas, or locks, where the margin for 

error is exceedingly small, such inaccuracies become 

problematic. However, this issue gains particular significance 

within the context of Maritime Autonomous Surface Ships 

(MASS), as these vessels depend heavily on reliable ENCs for 

automated decision-making or berthing operations. Any 

inaccuracies result in an increased risk of accidents, especially 

when onboard sensor systems are insufficient or not available. 

In practice, the criticality of reliable ENCs becomes evident in 

the context of high precision navigation tasks. For instance, 

initial experiments with a highly automated vessel conducted 

by the German Aerospace Center (2022) faced challenges 

during a high accuracy lock entry when a 2-meter discrepancy 

between the lock's actual position and its charted location was 

revealed, resulting in a near-collision.  

This incident exemplifies the broader challenges in harbor 

navigation accuracy, necessitating systemic improvements. 

Illustrated by Figure 1, this issue compares the ENC of the 

Jarßum Harbor with a recent satellite image. Notable changes 

include a pontoon's lateral shift to the left compared to the 

ENCs. Furthermore, the representation of the loading crane is 

significantly oversimplified, being depicted as four pillars 

rather than two larger ones with each four mooring poles. 

Figure 1. Comparison between the actual conditions Jarßum Harbor 

in Emden (top) from Google Earth, contrasting the Electronic 

Nautical Charts (bottom) from Navionics ChartViewer.  

Continuous changes of port infrastructure demonstrate the 

dynamic nature of harbors and stress the necessity for ongoing 

review of ENCs to support the integrity of autonomous 

navigation systems.  

This paper proposes a framework designed to enhance the 

reliability of ENCs by identifying and rectifying inaccuracies 

in the mapping of objects and shorelines. We investigate 

methods for detecting harbor infrastructure, realigning 

inaccurately mapped objects with current charts, and reporting 

these adjustments in compliance with maritime regulations. By 

addressing these critical aspects, our research seeks to provide 

comprehensive and actionable solutions for ENC refinement. 

This paper prioritizes the safety concerns of shipping 

companies and vessel operators. By streamlining maritime 

operations, it addresses the operational efficiency sought by 

port authorities. Lastly, the paper is dedicated to upholding the 

data accuracy standards required by Hydrographic Offices. 



2. HIGH-PRECISION VERIFIED CHARTS 

Addressing navigation challenges for MASS requires a 

solution that verifies harbor infrastructure detection and 

positioning with high accuracy, robust against various 

environmental conditions and integrated seamlessly with 

ENCs. The International Hydrographic Organization (IHO, 

2021) acknowledges the necessity of adapting hydrographic 

standards to support autonomous maritime navigation. 

Building on this foundation, ensuring the integrity of maritime 

navigation becomes paramount, particularly considering 

MASS. To achieve this, a robust method for the near real-time 

verification of ENC accuracy is essential. By aligning 

geographical and structural conditions in the harbor with the 

ENCs, discrepancies can be detected, revealing data 

inaccuracies or object omissions. The system must be capable 

of incorporating and synchronizing data from at least one 

independent source, such as in-situ sensor measurements, to 

provide reference information against which comparisons can 

be made. Here, a mechanism to detect and report identified 

discrepancies is crucial, fostering collaboration between chart 

producers, maritime authorities, and vessel operators. By 

facilitating collaborative contributions from maritime 

stakeholders, collective expertise is leveraged. This 

framework ensures that maintaining and updating ENCs 

becomes a shared responsibility, significantly enhancing 

navigational safety. Furthermore, adherence to international 

maritime safety and navigation standards has to be assured to 

grant regulatory compliance and uphold of all safety protocols. 

These requirements, listed in Table 1, are derived from the 

critical need to address the potential risks posed by 

inaccuracies in ENCs, necessitating near real-time chart 

validation to enhance the reliability of maritime navigation. 

Table 1: Derived requirements for the proposed framework to 

verify ENC accuracy and report discrepancies to stakeholders. 

Requirement Description 

Accuracy 

Verification 

Able to assess and verify the accuracy 

of ENCs in nearly in real-time. 

Deficiency 

Detection 

Able to identify discrepancies and 

deficiencies in ENCs. 

Data  

Integration 

Seamless integration of data from 

official sources. 

Stakeholder 

Collaboration 

Framework for collaboration among 

maritime stakeholders. 

Regulatory 

Compliance 

Regulary conformity to international 

maritime standards. 

 

3. RELATED WORK 

While high accuracy ENCs are essential for the advancement 

of autonomous maritime navigation, Karetnikov et al. (2017) 

find that data inaccuracies within the ENCs might compromise 

their integrity. These limitations are further explored by 

Schmidt et al. (2018), who point out the safety risks for 

autonomous vessels from inadequate hazard depiction. While 

they propose the adoption of 2D object representations as a 

solution to increase the precision of charted objects at different 

scales, they fall short of presenting a viable implementation 

strategy, leaving a critical gap in practical application. 

Pirillo (1999) augmented ENCs with sensor data through a 

computerized hydrography system for near real-time 

environmental data assessment, adding water quality 

information to the ENCs. However, this approach primarily 

facilitates data collection rather than addressing the 

verification and refinement of ENCs. Similarly, Guan et al. 

(2010) developed a methodology for augmenting ENC data 

with static data sources, such as S-57, Military Vector Chart 

Format (MVCF) and Computer Aided Design (CAD) data. 

This method aids in creating specific ENC databases for 

navigational safety assessments in harbors and waterways yet 

bypasses the essential task of in-situ data verification. 

More elaborate methods rely on sensor equipment to detect 

objects in maritime environments. This is demonstrated by 

Haghbayan et al. (2018) by using a multi-sensor fusion 

approach for near real-time object detection and tracking. 

Integrating data from radar, Light Detection and Ranging 

(LiDAR), and cameras through a probabilistic data association 

method and employing a Convolutional Neural Network 

(CNN) for object classification, the accuracy of object 

localization could significantly be enhanced. Extending on 

these ideas, Thompson et al. (2019) utilize a 3D occupancy 

grid for mapping objects around an unmanned surface vehicle 

(USV), combining LiDAR data with a visibility horizon to 

map and classify objects for path planning. Significant 

progress has been made in detecting both dynamic and static 

objects. However, these methods lack a rigorous ground truth 

assessment and fail to cross-reference results with ENCs. 

Additionally, they do not provide identified objects to others. 

These endeavors underscore a prevalent issue: the lack of 

methods to actively scan the environments for the verification 

and supplementation of ENC data. Despite these limitations, 

we recognize that this data is in high demand and for the lack 

of alternatives used for autonomous collision avoidance and 

path planning applications, displayed by Blindheim et al. 

(2021). Representative studies, like Delobel (2018), show that 

unlike the maritime sector, the automotive and robotic fields 

have advanced in creating and refining environmental maps. 

Even more, Rife et al. (2010) have demonstrated how these 

maps can be used for collaborative navigation strategies. 

Tang et al. (2023) offer a contemporary perspective by 

constructing static environmental maps using 3D LiDAR, 

showcasing substantial performance improvements. However, 

stemming from the robotic domain, their work does not 

address the integration of data according to maritime 

standards. Marking a missed opportunity for ENC accuracy 

refinement, it highlights the need for a new approach. 

4. SYSTEM DESIGN FOR OBJECT IDENTIFICATION 

Verifying the accuracy of ENCs is crucial for guaranteeing the 

safety and efficiency of vessel operations. However, reflecting 

on the related works, it becomes clear that this has not been 

sufficiently achieved. Same is true for traditional mapping 

approaches, which utilize static chart data and manual surveys 

and acknowledge the necessity for accurate environmental 

information. Still, they frequently fall short in capturing fine 

details from marine environments. This becomes particularly 

clear when capturing three-dimensional objects within harbor 



areas, such as the crane in Figure 1, omitted from ENCs. In 

response to these limitations, this research proposes a 

conceptual approach leveraging a vessel-mounted 360-degree 

LiDAR scanner to enhance the utility and reliability of object 

identification for ENCs for autonomous maritime navigation. 

4.1 System Design 

As detailed by Wang et al. (2022), LiDAR scanners generate 

dense collections of three-dimensional data points, or point 

clouds, offering precise depth estimation that retains the three-

dimensional data commonly lost in camera-based techniques. 

Notably, LiDAR surpasses radar systems in resolution, 

offering a more detailed and accurate depiction of maritime 

environments. By providing the necessary accuracy and 

resolution for effective object segmentation and classification, 

LiDAR is the preferred choice for this application. 

As a consequence, we propose to employ a single 3D-LiDAR 

sensor strategically mounted on the bow of a vessel, allowing 

to scan the surrounding scene beyond a radius of 100 meters.  

To enhance the LiDAR's performance, the system incorporates 

a 6-axis 10Hz Inertial Measurement Unit (IMU) for precise 

orientation tracking and a Differential Global Positioning 

System (DGPS) receiver for accurate global positioning. This 

combination of sensors serves a dual purpose: while the 

LiDAR provides detailed spatial data about the environment, 

the IMU and DGPS receiver work in tandem to accurately 

determine the vessel's position and orientation, ensuring that 

detected objects can be precisely located and categorized.  

This integrated sensor system is designed to detect potential 

navigational hazards, enabling the immediate positioning and 

sizing of objects around the vessel. Leveraging detailed shape 

information extracted from LiDAR-generated point clouds, 

the system can identify maritime objects, including 

predetermined landmarks, buoys, pontoons, and shorelines. 

Identified objects are then matched against the ENC data. 

When discrepancies arise - such as objects not aligning within 

a predefined perimeter of their ENC counterparts or significant 

variances in size - the system flags these anomalies. Each 

identified discrepancy is meticulously cataloged in accordance 

to the IHO (2018) S-101 (as successor of S-57) standard, 

ensuring the information is readily accessible to maritime 

stakeholders. This process is illustrated in Figure 2, providing 

a visual overview of the system's operational workflow. 

4.2 Filtering 

Prior to processing, we filter the LiDAR data to correct for 

sensor inaccuracies and environmental effects. Filtering 

significantly improves data quality, especially in changing 

maritime settings, adaptively removing erroneous data points. 

We employ statistical outlier removal and perform noise 

reduction using a bilateral filter, maintaining edge integrity, as 

detailed in Qi (2020). Also, we specifically target undesired 

measurements from the boat and water, latter being a common 

challenge in analyzing maritime environments. 

Traditional methods, such as applying a simple height 

constraint, may inadvertently discard valuable data points. 

Based on Wang et al. (2022), we advocate for the use of Cloth 

Simulation Filtering (CSF), to distinguish between waves and  

Figure 2: UML-Chart of the processing pipeline. Only LiDAR data 

undergo preprocessing (filtering and segmentation), dimension 

estimation, and object identification based on S-101 standard 

categories. Supplementing DGPS and IMU data, identified objects 

are georeferenced for comparison with charted objects. Identified 

objects not found or significantly deviating from the ENCs are 

reported via a data base in compliance with S-101 standard. 

elevated structures. Wang's findings suggest CSF allows for a 

more nuanced analysis of harbor infrastructure by handling 

wave reflections, where methods like Random Sample 

Consensus might struggle due to the variable height of LiDAR 

returns. Integrating these advanced filtering techniques, our 

proposed approach seeks to elevate the relevance of the 

remaining data points. Although discarding data points might 

be unintuitive at first, increased data reliability is crucial for 

object identification.  

4.3 Segmentation 

After filtering the LiDAR data, the point cloud becomes more 

structured and can be divided into smaller, more manageable 

segments, each representing distinct objects or features from 

the scanned environment, as in Thompson (2019). This 

segmentation is a crucial step as it converts disordered point 

cloud data into an organized format that can be better analyzed 

and understood. The primary goal of the segmentation is to 

accurately identify and isolate individual objects, such as 

anchored ships, landmasses and aids to navigation (AtoN), 

within the harbor environment. 

However, object segmentation is particularly challenging 

since objects not only vary significantly in size, shape, and 

reflectivity, but as a result of the inherent complexity and 

dynamic nature of harbors. Within this context, we 

recommend the Mean Shift Clustering (MSC) algorithm for 

efficient point cloud data segmentation, as endorsed by 

S101 Data Objects: 
landmasses, buoys, 

navigation aids, docks 

and quay walls, bridges 

and overhead structures, 

mooring facilities, critical 

infrastructure (e.g. locks), 

etc. 

object not found 

or heavy deviation object found 

Electronic Nautical Charts comparison 

bounding box estimation object identification 

segmentation 

filtering 

receiving  

LiDAR data 
receiving DGPS 

and IMU data 

object localization 

reporting of object 



Cariou (2022). By not requiring pre-defined parameters, MSC 

adapts seamlessly to data structure and density. Prioritizing 

density over proximity, Mean Shift effectively segments 

individual navigational elements, without the computational 

complexity of deep learning methods. The segmentation of 

point clouds is enhanced by accumulating and merging scans 

from multiple time points and perspectives. This approach 

improves the differentiation of distinct features such as large 

ships and harbor walls. However, it's important to verify the 

temporal consistency of accumulated point clouds to 

effectively filter out dynamic objects. Inconsistent 

measurements should be assigned lower weights or discarded, 

ensuring that the final dataset is reliable and representative of 

the static environment. 

4.4 Bounding Box Estimation 

After segmenting the point cloud, a geometric analysis of each 

segment can be conducted to estimate the dimensions and 

global positions of objects. This analysis is essential for 

identifying potential navigational hazards by accurately 

locating close objects. A bounding box is constructed around 

each segment, with the geometric center of the cuboid serving 

as the object's center. This method ensures accurate 

positioning for comparison with ENC features as it accounts 

for abstract reconstructions, e.g. S-101 maps buoys as points. 

4.5 Object Identification 

To classify objects from segmented point cloud data, we utilize 

and modify the classification framework developed by 

Yoshioka (2017) for maritime domain. In this framework, 

multiple weak classifiers are used to encode point cloud 

characteristics. Each of these classifiers is simple yet targets 

specific, subtle features of objects. By combining several such 

classifiers, the system gains robustness and efficiency, 

generating a detailed feature vector that captures essential 

characteristics of each object cluster.  

Subsequently, Yoshioka use the Real AdaBoost algorithm 

(RAB) to compute all probability scores for each cluster, rating 

its alignment each of the S-101 object classes. Notably, the 

RAB algorithm enhances classification accuracy by iteratively 

refining its approach, correcting previous errors, and adjusting 

the influence of each classifier based on their performance. By 

training the classifier on labeled examples of objects such as 

buoys, beacons, vessels, and landmasses, the network learns to 

accurately classify unseen segments of point cloud data.  

We recommend the dataset from Jin (2022) for training our 

classifiers, driven by its relevance to the maritime domain and 

its integration of LiDAR with GNSS for enhanced object 

detection. Jin also demonstrate the effectiveness of the dataset 

in identifying and tracking applications based on maritime 

environment perception, making it a suitable choice for our 

application. This dataset, proven in both simulative and real-

world settings, ensures our object classifier reliable 

performance in diverse harbor scenarios.  

While machine learning (ML) algorithms achieve impressive 

results on object identification tasks, the application to the 

dynamic and irregular maritime domain can result in crucial 

misclassifications. Hence, the use of ML must be carefully 

balanced with the need for reliability in safety-critical 

decision-making processes. It is crucial to confirm that the 

deployment of ML does not compromise the dependability of 

the object identification as safety is the top priority. 

4.6 Object Localization 

To put the data from the LiDAR into global context, the DGPS 

and IMU data are integrated, allowing for an absolute 

positioning of the retrieved objects. Building on Thompson 

(2019), this process involves transforming the objects relative 

positions, as determined by LiDAR, into a global coordinate 

system for accurate georeferencing and integration with ENCs. 

Illustrated in Figure 3, the procedure harmonizes data from the 

LiDAR's local coordinate system 𝐿 and the DGPS receiver's 

local coordinate system 𝐺. The position of the center of the 

bounding box in LiDAR coordinates, 𝑝𝐿 , is given by 

                           𝑝𝐿 = (

𝑟 ∗ cos(φ) ∗ sin(θ)

𝑟 ∗ cos(φ) ∗ cos(θ)

𝑟 ∗ sin(φ)
)          (1) 

with 𝑟 being the radial distance from LiDAR to the geometric 

center of an object’s bounding box 𝑂𝐶, φ the elevation angle 

and θ the azimuth in the east-north-up (ENU) coordinate 

system. This transformation aligns the LiDAR data within a 

three-dimensional space, facilitating subsequent adjustments. 

Next, the system accounts for the spatial displacement between 

the LiDAR and DGPS systems, given by only a shift vector  

𝑑 = (𝑑𝑥, 𝑑𝑦, 𝑑𝑧), as the relative orientation was calibrated 

when installing the sensors. The transformed position, 𝑝𝐿
′ , 

yields: 

                                         𝑝𝐿
′ = 𝑝𝐿 + 𝑑                         (2) 

This formula adjusts the LiDAR coordinates to align with the 

DGPS coordinate system 𝐺, ensuring that each object's 

position is accurately reflected in the local vessel context. 

For global positioning, we combine the adjusted object’s 

position with the ship's DGPS location, 𝑝𝐺, to ascertain the 

object's global position, 𝑝𝐺𝑙𝑜𝑏𝑎𝑙 . However, here we have to 

account for the rotational divergence of the DGPS from the 

global coordinate system using the orientation angles (𝛼, 𝛽, 𝛾). 

These angles denote the DGPS's orientation in relation to the 

global system. Orientation adjustment involves the rotational 

matrix 𝑅 = 𝑅𝛾 ∗ 𝑅𝛽 ∗ 𝑅𝛼, where each matrix represents a 

rotation around each respective axis: 

                                𝑝𝐺𝑙𝑜𝑏𝑎𝑙 = 𝑅 ∗ 𝑝𝐿
′ + 𝑝𝐺                                (3) 

Figure 3: Illustration of the coordinate systems used for 

reconstructing the georeferenced position of the identified object’s 

center point 𝑂𝐶. This involves the transformation from coordinate 

system from the LiDAR (𝐿) to the DGPS coordinate system (𝐺). 
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Error propagation is also considered, where the total global 

error, 𝐸𝐺 , is the sum of all absolute errors in positioning 

adjusted for the deviation in the orientation. Previous field 

tests gave error results below 0,6𝑚. The upper limit for 

deviation in object positioning is given by the absolute error in 

the DGPS position (±0,4𝑚), the position of the LiDAR returns 

(±0,1𝑚), and the object localization (±0,1𝑚). Additionally, 

the angular deviation (±1.0°) compounds over the distance 

from DGPS to the object center (e.g. 50m), yielding: 

        |𝐸𝐷𝐺𝑃𝑆| + |𝐸𝐿| + |𝐸𝐿𝑅| + tan(𝛼𝑑𝑒𝑣) ∗ 𝑑 < 1,5 𝑚          (4) 

4.7 Comparison between the detected and charted objects 

After accurately determining the positions of objects using 

sensor data, objects are compared to those charted within the 

ENCs. As outlined in 4.6, translating the identified objects to 

the coordinate system utilized by the ENCs allows for precise 

matching. Additionally, verifying that the classification of 

each detected object aligns with the categories defined in the 

ENCs is necessary to enable accurate matching of the observed 

data with charted information.  

Employing spatial analysis to the point cloud data, the 

dimensions and exact locations of detected objects are 

compared with their ENC counterparts. This comparison 

allows for the identification of discrepancies. Objects that do 

not align with the ENC data or that are present in reality but 

not charted, are carefully recorded. While these are the most 

important deviations to consider, we also record discrepancies 

in class and in shape. In each step the comparison is performed 

by defining maximum deviation thresholds that are based on 

the accuracy of our sensor system, while also considering the 

distance towards the object and the probability score of the 

classifier. This step is crucial for maintaining the integrity and 

accuracy of ENCs, while also considering system limitations, 

bridging the gap between observed maritime conditions and 

charted representations. By checking and refining the in-situ 

conditions and comparing to ENCs, this proactive 

identification and recording of discrepancies ensures that 

ENCs remain a reliable tool for safe and efficient harbor 

navigation. 

Discrepancies foreseen to pose a potential navigational risk are 

documented in a structured format compliant with the S-101 

standard. Findings are reported through a dedicated data base, 

designed to ensure near real-time updates and accessibility to 

various maritime stakeholders. This data base acts as a 

centralized platform for disseminating the supplemented 

ENCs, promoting collaborative efforts to address navigational 

hazards. 

This methodical and algorithm-based process guarantees that 

ENCs are continuously verified and updated to reflect the 

current maritime conditions accurately. Implementing a data 

base that adheres to maritime regulations, such as the S-100 

series by the IHO, ensures that updates to ENCs are 

standardized, making them universally interpretable by 

maritime navigation systems worldwide. This structured 

approach helps to minimize the risk of navigational errors and 

enhances maritime safety by providing accurate and up-to-date 

chart data to all maritime stakeholders. 

5. EVALUATION 

To assess the effectiveness and reliability of the proposed ENC 

refinement framework, a comprehensive evaluation process is 

essential. This chapter details our approach to systematically 

assess the framework's performance through field tests and 

metric-based evaluations, ensuring practical validity and 

alignment with maritime safety and accuracy requirements. 

5.1 Field Tests with a Test Vessel 

For practical evaluation, we equip a test vessel with a high-

resolution 3D LiDAR, DGPS, and IMU and navigates 

predefined routes. Damm et al. (2022) advocate for Traffic 

Sequence Charts (TSCs) as a tool to standardize test 

procedures, ensuring all navigational challenges, from static 

obstacles to dynamic maritime changes, are accounted for. We 

adopt the TSCs to the maritime domain to design various 

maritime scenarios under controlled conditions and allow for 

reproducibility. The TSCs dictate the sequence of maneuvers, 

obstacle engagement, and navigation tasks, providing a 

structured framework for data collection and analysis. 

Additionally, we advocate for a dual strategy to accurately 

establish a ground truth, integrating both highly accurate 

Realtime Kinematic (RTK) GPS measurements and official 

ENC data. This process verifies that the system's detection and 

positioning capabilities are within the required error margins. 

Simultaneously, comparing sensor-derived data with official 

ENCs serves a twofold purpose: firstly, it benchmarks the 

system's performance against the established references 

provided by the hydrographical office. Secondly, it identifies 

discrepancies within ENCs themselves, spotlighting areas 

where updates or refinements are necessary. By incorporating 

regulatory considerations into the evaluation framework, the 

research aligns with established maritime safety protocols, 

ensuring that the findings and proposed system enhancements 

are both scientifically valid and practically applicable. 

5.2 Evaluation Metrics 

To effectively evaluate the performance of the proposed sensor 

system, precise test metrics are essential. These metrics reflect 

on the system's capabilities under varied conditions, while also 

relating to the derived system requirements, allowing a 

comprehensive assessment of the system's efficacy. The focus 

lies on object detection, aiming for a high reliability to 

guarantee that all significant maritime objects are correctly 

identified and can be matched against the ENCs.  

Additionally, the accuracy of object positioning is analyzed, 

with LiDAR sensors anticipated to offer high accuracy. The 

total deviation of the object positioning is expected to remain 

below one and a half meters according to Equation (4). This 

assessment is crucial for pinpointing and rectifying 

inaccuracies in ENCs, directly catering to the needs for object 

verification and deficiency detection. High precision in object 

positioning significantly enhances the reliability and validity 

of the ENC refinement process and warrants rigorous 

verification. 

Similarly, classification accuracy and robustness in identifying 

objects are essential for correctly incorporating relevant 

information into the ENCs. 



However, these test metrics should not only reflect the 

system’s performance in ideal conditions but also consider the 

challenges posed by dynamic maritime environments and 

adverse weather conditions. By carefully analyzing these 

metrics during field tests, a basis for evaluating the system's 

performance can be established. This approach ensures that the 

developed solution meets the set requirements and contributes 

to enhancing the safety and efficiency of maritime navigation. 

Incorporating RTK GPS calibrations and ENC data into the 

ground truth assessment further supports the demand for 

regulatory compliance, guaranteeing that reported objects are 

aligned with international maritime standards. 

6. CONCLUSION 

This work underscores the need for verifying the accuracy and 

reliability of ENCs to enable and support the future MASS 

projects. We propose a systematic approach, integrating high 

resolution 3D LiDAR, DGPS, and IMU data, alongside the 

strategic application of TSCs for structured field testing. 

Thereby we create a framework for ENC verification, 

deficiency detection, and chart refinement. The incorporation 

of both RTK GPS calibration and official ENC data for ground 

truth establishment ensures robust evaluation of navigational 

discrepancies nearly in real-time. This work not only 

highlights the potential for significant improvements in 

maritime safety but also emphasizes the importance of 

stakeholder collaboration and regulatory compliance in the 

advancement of navigational systems. The findings of this 

study advocate for the integration of sensor data with ENCs, 

paving the way for improved accuracy, reliability, and 

autonomous maritime navigation. 

This research should be used as a foundation for further 

development and real-world application in maritime safety 

systems, particularly in automating and refining the process of 

ENC verification and updating. However, its effectiveness is 

contingent on the precision and reliability of the sensor 

equipment and the environmental conditions under which data 

collection occurs. The approach might face limitations in 

extremely adverse weather conditions or in highly dynamic 

maritime environments where the rapid movement of objects 

poses challenges to detection and classification. Future work 

should focus testing and validating the proposed concept in 

practice to provide further insights into the topic. 
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