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Abstract—The performance and usage of machine learning
based object detection in visual data has increased significantly in
the past decade. This technology can enable automated decision
making in various applications, extracting key information in
real time from a camera-based monitoring solution. However,
to ensure the resilience and dependability in a safety-critical
application, the intelligence provided by the monitoring solution
must be reliable. In this context, understanding the impact
of potential disturbances in the object detection performance
is important. This work conducts an integrity assessment of
maritime object detection under partial camera obstruction
events. A subset of the ShipSG dataset, which contains thousands
of annotated and segmented ship images from a harbor, and the
Faster-RCNN object detection algorithm, trained on the seven
different ship classes of the dataset, were used. The effect of
simulated obstructions, of various intensities and configurations,
on the false-positive, misclassification, false negative ratios, and
associated detection score distributions were investigated. The
outcome suggests that the use of a partial obstruction detection
step, and the consideration of that information, can mitigate the
consequences of faults in the object detection.

Index Terms—statistical analysis, object detection, integrity
monitoring, fault detection, information fusion, image processing.

I. INTRODUCTION

The advancement of the computer vision field, with sophis-
ticated image processing techniques and increasingly accurate
machine learning based solutions, has fostered the use of
cameras in sensor systems for various applications. With the
increased computational power capabilities enabled by modern
electronics, applications that require intensive image process-
ing in real-time, such as deep learning-based object detection,
are becoming a reality. As the state-of-the-art algorithms for
image processing are reaching, and sometimes surpassing, the
level of human visual pattern recognition [1], the use of camera
intelligence for automation in various applications will become
ubiquitous. However, as our reliance on these systems in-
creases, in particular for safety-critical applications such as au-
tonomous vehicles and monitoring of strategic infrastructure,
the integrity assessment of the information provided by the
cameras becomes indispensable. In this context, the concept
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of sensor integrity monitoring can be extended to encompass
not only the accuracy of the raw sensor measurements but also
the reliability of the intelligence extracted from them, obtained
with higher-level processing and additional models.

Intelligence can be seen as the ability to make the right
decisions at the right times. The goal of a reliable monitoring
solution, that might use cameras as a part of the system, is
essentially the provision of intelligence for a given application.
However, sensors can malfunction and are affected by external
factors. Therefore, it is important to understand how certain
scenarios could impact the intelligence derived from a sensor,
and to have methods to detect these events in case they have a
detrimental effect in the reliability of the information. Aligned
with this context, the present work focuses on a specific case
study scenario in the maritime domain, of a monitoring system
comprised of a single camera and a ship detection algorithm.
There are various events that could impair the intelligence pro-
vided by that system and a comprehensive integrity assessment
would have to consider most of those. This work proposes a
step towards that comprehensive integrity assessment, with the
investigation of the effects that partial camera obstruction have
on ship detection performance. That scenario occurs when
there is something in close proximity to the camera lens,
partially obstructing the view. Since that event is not part of
a normal operation and can have a detrimental impact on the
system, in this work, the partial camera obstruction will be
considered as a type of fault. To investigate the effects of
that phenomenon in object detection, simulated obstructions
of various configurations and intensities were added to the
bounding boxes of the ships from the ShipSG dataset [2]. The
Faster-RCNN algorithm, trained with that dataset, was used
and the impact of the obstructions in the detection results was
thoroughly analyzed.

II. BACKGROUND INFORMATION

A. Sensor Integrity Concept

The concept of integrity is used in various fields among the
engineering and computer science disciplines, often having a
different meaning depending on the context and application
[3]. Despite having different meanings, integrity is fundamen-
tally associated with trust. However, the metrics to quantify
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that trust level can vary depending on the application. On a
sensor level, the integrity can be defined by the confidence
level associated with an accuracy range for a measurement.
For navigation applications, the positional integrity is often
represented by a protection level, a bound for which the true
value of the position is guaranteed to be with a high confidence
level. For a system or a process, the integrity can be related
to the correct functioning, given by specific performance in-
dicators, or by complying with certain requirements and tests.
In either case, the typical approach for integrity monitoring is
through statistical analysis.

Most sensor integrity monitoring schemes rely on applying
an estimation technique (E.g. Least Squares Estimator [4] or
Kalman Filter [5]) to one or multiple sensor measurements,
using a suitable model to make predictions with the estimator
and to characterize the error distribution. Next, a fault detec-
tion scheme based on the results from the estimation is used,
flagging erroneous measurements and triggering an integrity
alert if necessary. In this way, the integrity assessment can be
viewed as the process of detecting the faults under considera-
tion and providing a statistical measure for the confidence in
the assessment outcome.

A typical approach for fault detection is with statistical
testing. It requires:

• the use of an appropriate metric or parameter that can
indicate the fault;

• the choice of a suitable test, such as the Chi-Squared Test
[6] or the Generalized Likelihood Ratio Test (GLRT) [7];

• the calculation of a test statistic from the relevant metric;
• comparison with a threshold value that would dictate the

result of the test (if a fault is detected or not).
Assuming that the test statistic is a random variable and

that its distribution is conditioned on the existence or not of
a given fault, the metric used to form the statistic would be
an effective detector if there is a clear distinction between
the distribution in the no-fault (null hypothesis) and faulty
(alternative hypothesis) case. If those distributions are known
or can be estimated, for instance, through historical data, the
fault detection procedure with the aforementioned process is
straightforward.

With the fault detection approach, the idea of integrity
monitoring can be applied to any kind of sensor system.
However, it is important to note that that concept has been
mostly associated with Global Navigation Satellite System
(GNSS) measurements. Traditionally, the integrity monitoring
methods have been developed for navigation applications, led
by the critical positional integrity requirements for aerospace
applications [8]. That concept has been extensively researched
in that field but has not been sufficiently explored in other
areas. In this work, we propose using the term integrity
monitoring for a camera system, including faults from the
physical and software domains in the integrity analysis.

In this work, the system under consideration consists of an
optical camera and a ship detection algorithm. The proposed
integrity assessment will focus on the impact of a partial
camera obstruction fault on the object detection results.

B. Integrity Monitoring in Optical Cameras

There has been significant research in the field of sensor
integrity monitoring, but most of the techniques focus on
navigation systems. That traditional approach is not directly
applicable to assess the integrity of camera-based monitoring
systems, but the underlying concept of fault detection based
on statistical testing can be used. However, it is important to
note that in the computer vision and image analysis literature,
the concept of integrity might have a different meaning.

As discussed in [9], for the image processing community,
the concept of image integrity is often related to authentication,
meaning that the content of an image has not been altered
in a malicious or unintended way. The methods to assess
and ensure integrity are typically relying on the detection of
digital image artifacts and cryptographic signature protection
measures. In the context of a camera-based monitoring system,
these methods would be useful for detecting and preventing
image manipulation attacks, in case there is a security breach
on the access of the monitoring data. However, for detecting
physical anomalies, such as the ones derived from camera
tampering or changes in environmental conditions, different
techniques are required.

There have been several studies on camera tampering de-
tection [10], [11], with methods to identify obstruction or an
unintended change in the camera position. These methods,
usually based on edge detection [12], are employed for surveil-
lance cameras and require a static or known background plane,
being unsuitable for situations where the scenery is dynamic or
unknown. To deal with that scenario, methods such as soiling
detection and visibility restoration for cameras in autonomous
vehicles could be used [13]. The methods developed for visi-
bility enhancement and de-weathering techniques, capable of
improving the quality of images under bad weather conditions
[14], are another option. Additionally, an investigation of using
first and second-order image statistics to detect partial camera
obstruction was conducted in [15]. The results from that work
suggest that a metric such as the image skewness, a first-order
statistic calculated from the pixel value histogram, can be used
as an effective detector for partial camera obstruction.

The integrity assessment of a camera system could consider
many aspects, including the detection of various types of faults
such as:

• Physical defects in the camera, and, or, data communica-
tion pipeline;

• Image forgery and data integrity issues, including spuri-
ous image manipulation and data corruption;

• Camera tampering (sabotage), and adversarial environ-
mental conditions that could impair the quality of the
images and usability of the provided information.

There are also various integrity issues that can be assessed in
an object detection process, such as misclassification, detecting
objects that do not exist (false positive), low accuracy on the
bounding box of an object, and completely failing to detect an
existing object (false negative). These scenarios can be seen
as faults from the object detection results. Since analyzing

475
Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on July 15,2024 at 08:50:59 UTC from IEEE Xplore.  Restrictions apply. 



all potential issues would be impractical, this work chooses
to focus on the effects of partial camera obstruction on ship
detection faults.

C. Object Occlusion

There have been several studies on strategies and algorithms
to handle object occlusion [16]. Most deep convolutional
neural network (DCNN) architectures for object detection are
not robust to handle partially occluded objects [17]. However,
there are specific models trained to consider and recognize
occlusions, such as the Multi-Level Coding network proposed
in [18], which implements the concept of amodal instance seg-
mentation, and the Partial Completion Network mask proposed
in [19] that can infer the contour of the occluded part of the
object.

Although the effect of a partial camera obstruction can be
the same as an object occlusion, these two phenomena are
different in nature. Object occlusion is a normal situation that
occurs due to the dynamic nature of a scene and the relative
viewpoint of the camera in relation to the objects of interest.
The partial camera obstruction is a physical anomaly, mostly
of static nature, of something obstructing the camera in close
proximity to the lens. It might require an intervention to fix
the problem, removing the misplaced object that might be
causing the obstruction, or cleaning the lens from dirt, smudge,
or even paint in case of a targeted attack. The former is a
common part of a normal operation, and the latter can be
viewed as a type of physical fault that requires correction. The
usage of specific strategies that can deal with object occlusion
could mitigate the effects of partial obstruction. However,
these two phenomena should be treated differently. Since the
obstructions are typically static and close to the lens, they
are much easier to detect. Also, that detection is important
since it might require corrective action. Conversely, the object
occlusion does not and it is a normal aspect of the camera
operation.

D. Maritime Object Detection

Deep learning methods can be used for rapid and automatic
detection of ships from port surveillance and onboard vessel
cameras. That process is particularly interesting to improve
the safety and security of maritime applications and infrastruc-
tures. Since deep-learning-based object recognition algorithms
are a type of supervised machine learning problem, datasets for
training are needed. The images available in general-purpose
benchmarks datasets such as COCO [20] or PASCAL VOC
[21], do not suit the task of ship detection as it is intended
in the proposed work. Real-world situations require robust
reference images with precise bounding box annotations, that
should also include the ship class. Among the works in the
literature that deal with ship detection on video monitoring
cameras, available datasets are the Singapore Maritime Dataset
[22], Seaships7000 [23] and the dataset presented by Chen et
al. [24]. However, these datasets lack a variety of ship classes
in their annotations. Other works evaluate existing object
detection methods on their private ship detection datasets [25],

[26], making the experimental validation of their methods not
possible. The ShipSG dataset [2] is a public dataset for ship
detection that contains seven ship classes and two different
views of a port location, allowing the statistical analysis
of simulated partial camera obstruction of the different ship
classes applied in a real-world maritime situation.

III. METHODOLOGY

A. Dataset for Ship Detection

The ship detection dataset selected for this work has been
the ShipSG dataset [2], which is publicly available 1. ShipSG
consists of 3505 images and ship annotations of two different
views of the Fischereihafen-Doppelschleuse, part of the port
of Bremerhaven, Germany. The images were acquired during
Autumn 2020 in daylight hours with sunny, cloudy, windy and
rainy weather conditions. The annotations of ShipSG contain
11625 annotated ship instances, which proportion is shown in
Table I, divided in seven ship classes:

• Cargo: All types of cargo ships.
• Law Enforcement: Police and coast guard ships.
• Passenger/Pleasure: Ferries, pleasure and sail crafts.
• Special 1: Crane vessels, dredgers and fishing boats.
• Special 2: Research and survey ships, search and rescue

ships and pilot vessels.
• Tanker: All types of tankers.
• Tug: All types of tugboats.

Class Annotated Proportion

Cargo 1300 11.18%
Law Enforcement 3748 32.24%
Passenger/Pleasure 626 5.38%

Special 1 1002 8.62%
Special 2 2630 22.62%

Tanker 1412 12.15%
Tug 907 7.80%

All classes 11625 100%

TABLE I: Number of ships annotated per class in ShipSG.

The ground truth annotations of ShipSG contain ship masks
for instance segmentation tasks. However, we only considered
the surrounding bounding box of the ships for this work. Fig.
1 shows examples of each of the seven classes.

B. Ship Detection Algorithm

In order to extract the position of the ship within the images,
an object detector that provides the surrounding bounding box
of the ship is needed. For this work, the well-established and
robust Faster-RCNN algorithm for object detection has been
selected [27]. Faster-RCNN is a two-stage algorithm. In the
first stage, with the region proposal network [27], multiple
object candidates are proposed. In the second stage, the region
of interest pooling extracts features from each candidate and

1https://www.dlr.de/mi/shipsg, accessed on 05 of July, 2023.
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Fig. 1. Examples extracted from ShipSG that show the seven ship classes.
(a) Cargo, (b) Tug, (c) Special 1, (d) Tanker, (e) Law Enforcement, (f)
Passenger/Pleasure, (g) Special 2

performs the classification of the object and the regression of
the bounding box.

To train Faster-RCNN for ship detection on ShipSG, we
divided the dataset into two sets of images—training (80%)
and validation (20%), with similar class distribution. The input
image size in both cases was 1333 × 800 pixels, and the
backbone selected was ResNeXt-101 [28]. The training was
performed with a batch size of 2 during 11 epochs. The
MMdetection framework from OpenMMLab [29] was used
for this implementation. The mean Average Precision (mAP),
of all classes, of Faster-RCNN for bounding box detection on
ShipSG after validation has been 0.826.

C. Metrics and Data Acquisition Process

A selection of 200 images, containing 672 ship annotations,
from the validation set of the ShipSG dataset was processed
by inferring with our custom Faster-RCNN detector, with and
without synthetically generated partial obstructions. The statis-
tics for the true positives, false positives, misclassifications and
false negatives were calculated from the results.

Several possible events could cause a partial camera ob-
struction. Weather conditions leading to particulates of rain
or frost sticking to the lens, that could be mixed with oil,
dust and smoke debris; or winds carrying objects that would
obstruct the camera view are among the possibilities. Due
to the variety of these events, it is difficult to predict a
preferred shape and color for these obstructions. For that
reason, the synthetic obstructions were configured with a
range of positions (relative to each ship bounding box in the
image), colors, and obstruction rates (a percentage of the ship
bounding box being covered). Examples of these variations
are given in Fig. 2. A total of 176 obstruction configurations
were analyzed for each ship, with the following parametric
variations:

• Position: starting at the left, right, center, top and bottom
of the ship bounding box.

• Obstruction percentage: the area of the added obstruction
relative to the ship bounding box, ranging from 20% to
90%, in 10% increments.

• Color: with two shades of black (centered at mean
brightness levels of 30 and 60), one gray (at 120), and
two bright shades (at 180 and 210). To simulate a more
natural-looking texture, instead of using homogeneous
colors, the obstruction area was filled with Gaussian noise
centered in one of the five mean brightness levels. Next,
a median filter was applied to that mask to blur the color.

Fig. 2. Examples of a ship with different synthetic partial obstruction profiles.
(a) No obstruction; (b) 30% bright obstruction at the bottom; (c) 30% dark
obstruction at the center; (d) 60% gray obstruction at the right.

The object detection algorithm yields, for each image, a list
of coordinates that defines bounding boxes and a detection
score, with the indexes in that list representing the class for
the detected object. To obtain the metrics of interest for the
integrity assessment the following algorithmic processing was
conducted:

• For each image, the ground truth for the bounding boxes
and classes of the ships contained in the image were
stored in a list.

• The image is processed with each one of the 176 obstruc-
tion configurations (including the no-obstruction case),
yielding a new image for each configuration with a partial
obstruction in every ship contained in the image.

• Each new image is processed with the ship detection
algorithm and the results are compared with the ground
truth in the following manner:

• For each ship, the closest bounding box with the highest
score from the detection results is selected.

• If the centroid from that selected result is inside the
ground truth ship boundaries and the class of the ship
matches, a true positive is computed. If the centroid
matches but the class does not, a misclassification is
computed, and if the centroid is outside, that is a case
of false negative, as there are no instances in the results
that match that ship.

• After this computation, if the selected detection result
centroid matches the ground truth bounding box, that
result is removed. That avoids duplicate counting and
enables the computation of false positives.

This process is repeated for each ship in each image, and
after all ships in an image are processed, if there are remaining
instances in the detection results, those are counted as false
positives.

Note that a typical method to evaluate a detection result
is with the Intersection over Union (IoU) of the detected
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bounds with the ground truth. An accurate detection would
have an IoU close to one. However, when the object is partially
obstructed that metric is degraded. Even in the case of correct
detection, as the obstructed area is often not considered in the
detected bounds, the IoU can be low. For that reason, instead of
using that parameter to classify true positives, false negatives,
and misclassifications, the centroid match method was used.

IV. RESULTS AND ANALYSIS

The graphs in Fig. 3 and Fig. 4 show the relationship
between the obstruction intensity and the considered stats
(namely, true positives, false positives, false negatives, and
misclassifications).

Fig. 3. Relationship between the occurrence of the evaluated stats of interest
and the obstruction rate, given as a percentage of the ship bounding box being
occluded.

Fig. 4. Distribution of the detection scores for the evaluated metrics of interest
as a function of the obstruction rate.

When the obstruction intensity raises, the occurrence of
correct detections falls, almost in a linear relationship, while,
simultaneously, the rate of false negatives rises. The occur-
rence of false positives and misclassification peaks around the
50% and 60% obstruction rate. As the occlusion covers most

of the ship, the detector fails to recognize any object and those
rates fall, giving rise to the false negative count.

The analysis of the distribution of the detection score in
Fig. 4 fosters some interesting conclusions. Under normal
conditions, the correct detection scores are very close to
1, and most of the occurrences of lower scores would be
identified as misclassification and false positive cases. But, as
the obstruction rate rises, that correct score distribution mean
lowers and its variance raises. At around the 60% obstruction
rate, the correct scores have a distribution that resembles the
misclassification in the normal case. If there is an undetected
partial obstruction of that magnitude, a correct detection could
easily be mistaken as a misclassification. Therefore, it is
advantageous to include a partial camera obstruction detector
in combination with the object detection, as that kind of
inference mistake could be prevented.

A. Impact of Partial Camera Obstruction Faults in Ship De-
tection Metrics

The F1 score, given by equation 1, is an important per-
formance metric used to evaluate classification results. It
considers the precision and recall, affected by the true positive
(TP), false positive (FP) and false negative (FN) rates.

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(1)

The graph in Fig. 5 shows the influence of the obstruction
intensity in that score for the most representative ship classes.
The score was calculated considering that misclassifications
are also false positives, summing up both metrics, and av-
eraging out the variations due to the obstruction position
and color to display the mean F1 score for each obstruction
percentage. The highest scores are for the Law Enforcement
ships, which is the class that has the highest representation in
the dataset, peaking at about 0.96 for the no-fault case. The
average score, considering all ship classes, falls almost linearly
from around 0.9 to 0.1, as the obstruction intensity raises. The
only exception to that score degradation trend is for the cargo
ship class, which remains close to 0.5 for the obstruction range
from 40 % to 90 %. The explanation for that anomaly would
require further investigation.

The F1 score results suggests that the reliability of the ship
detection information is sharply degraded in the presence of
obstructions. Considering an application that relies on that in-
formation for decision support, such as in a harbor monitoring
scenario, it is important to know the confidence level of the
ship detection. Although that confidence is correlated with the
detection score, as have been shown, that score distribution is
affected by these obstructions. Assuming that it is possible
to detect partial camera obstructions, and that its intensity
(the obstruction percentage) can be estimated from an object
instance segmentation step, the F1 score curves could be used
to assess the integrity of the information provided by the object
detection. Since a harbor could have dozens of surveillance
cameras, sometimes positioned in difficult to reach locations,
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Fig. 5. Mean object detection F1 Score for the main classes of ships as a
function of the obstruction ratio.

it might be unpractical to deploy resources to clean the lenses
or to remove objects whenever an obstruction is detected.
Therefore, having a metric to indicate the degradation of the
intelligence provided by a camera under these scenarios is
useful. Additionally, in a multi-sensor monitoring system, this
integrity metric would be helpful to resolve conflicts, giving
priority to the information of sensors with a higher score.

The analysis of the detection score distribution can be used
to predict if a instance of object detection represents a true
positive, false positive or misclassification. As seen in the box-
plots from Fig. 4, there is a correlation between the object
detection score and these three cases. The distribution of the
score for each scenario is different. Since the score values are
always between 0 and 1, the Beta distribution is appropriate to
model that data. The two parameters of the distribution, α and
β, can be estimated from the expectation E[X] and variance
V[X] of the data according to equation 2.

α =
E[X](1− E[X])

V[X]
− 1

β = α
1− E[X]

E[X]

(2)

(3)

The Beta distribution of the detection score was estimated
for each scenario, considering each ship class, obstruction
intensity and stat of interest (true positive, false positive and
misclassification). These distributions were validated using the
Kolmogorov-Smirnov (KS) test for goodness of fit [30], which
confirmed a good match with the the actual detection score
data for most scenarios. The only exception was for the scores
of true positives in the normal case (without any obstruction),
which are highly concentrated and close to 1. Next, having a
reference distribution for each scenario, a two-sample KS-test
could be used to detect misclassification and false positive
faults from a new detection score. However, since those
distributions are affected by the obstruction intensity that
information has to be considered. To illustrate that dependency,
the KS-test results were calculated.

Fig. 6. Two-sample Kolmogorov-Smirnov test for a range of detection score
values in comparison with the estimated Beta distributions for the various
cases under analysis, considering the Law Enforcement ship class detection
results.

The graph in Fig. 6 shows, for the Law Enforcement ship
class, the p-value from the KS-tests conducted from a range
of scores, from 0 to 1, in comparison to the estimated Beta
distributions for the true positive, misclassification and false
positive cases. Note that the threshold values for the score
that enables the distinction between the three cases change
drastically according to the obstruction intensity. Since the
variance from the score associated with each case rises with
that intensity, the detectability through a threshold value for
that test lowers. The exception is for the false positive case, as
previously discussed and seen in the bar plot in Fig. 3, which
has the highest incidence in intermediate obstructions. It is
possible to confirm that by analyzing the score range in which
the KS-test p-values are large, indicating that any of those
scores could be statistically associated with the estimated Beta
distribution for that case. One possible outcome of this analysis
is for the detection of misclassifications using this method. The
integration of the obstruction information is advantageous in
that case, as it would mitigate mistakes in the misclassification
detection when the obstruction intensity is around 40%. There
is an overlap between the misclassification p-value curve for
the normal case and the true positive curve in the 40% rate.
Therefore, if the detection threshold from the normal case is
used when there is in fact a 40% obstruction, a true positive
could be mistaken as a misclassification.

V. DISCUSSION AND CONCLUSION

The ShipSG dataset was used with the Faster-RCNN object
detection algorithm, trained with the seven classes of ships
contained in the dataset, to analyze the effects of simulated
partial camera obstruction on the ship detection results. This
work discusses an integrity assessment based on fault detec-
tion, considering the partial obstructions as a type of physical
fault, and its impact on fault rates from the ship detection
process. The presented results highlight how the incorporation
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of the detection of that physical fault can mitigate errors in
the ship detection analysis. The considered camera with object
detection results can be viewed in the context of a multi-
sensor system, in which the reliability of the information
provided by each element must be accounted for. That can
be accomplished through an integrity assessment process,
that indicates the presence of faulty states with a certain
confidence level. In this context, the detection of a partial
camera obstruction, a false positive and a misclassification
from the object detector can be seen as integrity tests. As
suggested and discussed by the obtained results, fusing the
integrity information from tests that are able to detect these
faults can potentially reduce the incorrect detection of misclas-
sification faults under partial camera obstruction. Additionally,
the degradation of the ship detection performance with the
intensity of the partial obstruction was characterized. In a
multi-sensor system where conflicting information between
redundant sources is a possibility, the detection of faults and
the characterization of their effects could be used to calculate
a dynamically allocated weight for each information source,
solving conflicts by selecting the sources with the highest
weights. The presented work is a step towards a comprehensive
integrity monitoring solution for multi-sensor systems used for
safety-critical maritime applications.
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