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ABSTRACT This paper assesses the Vibration Correlation Technique’s (VCT) applicability within the context of
sandwich cylindrical shells through detailed numerical investigation. The study utilizes a sandwich shell from NASA’s
Shell Buckling Knockdown Factor project. Finite element models are implemented, incorporating initial mid-surface
and thickness imperfections to replicate NASA’s buckling test campaign. The numerical results are compared to the
experimental data, validating the nonlinear solution with an approximate deviation of 1 %. Subsequently, the VCT
experimental campaign is numerically conducted through free vibration analyses at different load levels, enabling a
comprehensive evaluation of VCT’s applicability. The results verified the effectiveness of the VCT, demonstrating a
deviation of less than 10 % when estimating the buckling load for load levels below 65 % of the nonlinear buckling load.
Overall, the findings confirm the non-destructive nature of the VCT when employed on such structures, supporting
future practical applications.
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1. Introduction
Cylindrical or conical shells are often found in the launch
vehicle primary structures due to their inherently opti-
mized strength-to-weight ratio. In such applications, the
design, driven by the operational load envelope, predomi-
nantly focuses on mitigating buckling failure (Degenhardt
et al., 2010). Due to the high imperfection-sensitive of
these structures, slight deviations from the ideal param-
eters related to geometry and boundary conditions, e.g.,
geometric shape and minor irregularities, result in a mea-
surable difference between the theoretical buckling load,
obtained by classical theory, and the corresponding exper-
imental one (Amabili, 2008; Degenhardt et al., 2010; Hoff
and Soong, 1965).

With this gap between the results and the loads, the
NASA SP-8007 guideline was established, proposing a
design factor, commonly known as the knockdown factor
(KDF), multiplied by the critical buckling load. This ap-
proach, even though it is nowadays considered overly con-
servative, provided successful shell design for several gen-
erations of space projects (Arbocz and Starnes Jr, 2002).
Recently, a second review of NASA SP-8007 was pub-
lished, offering alternative methods for improving KDF.
Advanced design criteria were proposed to consider each
particular structure imperfection characteristics. This ap-
proach ensures that the structural design is less conserva-
tive; however, the buckling test is still required (Hilburger,
2020). Due to its destructive nature, the buckling test
cannot be repeated under the same conditions without
affecting the integrity of the structure. Non-destructive
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tests ensure that the same structure can be used in other
tests, which is particularly relevant from a financial and
time-consuming point of view.

The vibration correlation technique (VCT) estimates
in situ buckling load based on a series of vibration tests
conducted at different load levels. The frequency modes
and their corresponding natural frequencies are deter-
mined for each vibration test. The buckling load is esti-
mated by establishing the relationship between the natural
frequency magnitudes and the corresponding applied load.
In the early 20th century, Sommerfeld correlated natural
frequency and applied load, when analyzing a cantilever
beam with a variable mass at its free end. As the variable
mass approached the buckling load, the first natural fre-
quency of the structure tended toward zero (Singer et al.,
2002). Subsequently, Massonnet (1940) expanded the
analysis to the analytical field by correlating the square
of the natural frequency (ω2) with the applied load (P)
for beams, plates, and rods. The author identified that
the relation between the variables was precisely linear if
the vibration mode was identical to the buckling mode,
establishing the relation

f 2 + p = 1 (1)

where the parameter f is the ratio between the natural
frequency of the loaded structure (ω̄mn) and the unloaded
structure (ωmn). The subscripts n and m represent the
number of circumferential waves and axial half-waves
for analysis in cylindrical structures, respectively. The
variable p represents the ratio between the applied load
(P) and the critical buckling load (PCR).

For structures sensitive to imperfections, the relation-
ship between the square of the natural frequency and the
applied load does not exhibit linear behavior as it ap-
proaches the critical buckling load (Lurie, 1952). There-
fore, the VCT applied to columns cannot be used for
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cylindrical shells and it is currently under development,
as indicated by Kalnins et al. (2015), Skukis et al. (2017),
Franzoni (2020), and Baciu et al. (2023).

Okubo and Whittier (1967) analyzed six spherical
shells to assess the relation described by Eq. 1 for the
first free natural frequency under pressure. The authors
identified that each structure would have a specific curve
for the VCT and associated this behavior with geometric
imperfections and residual stresses.

Subsequently, research conducted at the Technion’s
Laboratory of Space Structures, indicated that in rein-
forced cylindrical shells, the support conditions have a
greater influence, while imperfections have less impact on
buckling behavior compared to unreinforced cylindrical
shells. Additionally, the corresponding buckling and vi-
bration modes are similar for lower natural frequencies.
A curve fitting for the test data was suggested through the
following relationship

f q = A+Bp (2)

where A and B are adjustment constants and q is the ex-
ponent that represents the optimal value leading to the
extrapolation point exactly matching the experimental
buckling load.

Another parameterization relation was proposed by
Souza et al. (1983), where the authors reviewed some of
the VCT methodologies to determine the buckling load
of structures characterized by unstable equilibrium paths,
empirically proposing the parameterization of Eq. 1 for
lightly reinforced cylindrical shells in the form of

1− f 4 = (1− p)2 (3)

the instability is evaluated when the natural frequency of
the loaded structure approaches zero, where the relation-
ship is given by

(1− p)2 +
(
1+ξ

2)(1− f 4)= 1 (4)

the parameter ξ = 1− p0 represents the reduction in the
buckling load due to the initial imperfection, where p0 is
the load associated when the natural frequency approaches
zero. The parametric form in Eq. 3 ensures a linear rela-
tion for the data evaluated by the authors, deviations from
this behavior can be interpreted as changes in boundary
conditions during the test.

Arbelo et al. (2014) analyzed the VCT using Eq. 3 for
composite unstiffened cylindrical shells and obtained neg-
ative values for ξ 2, which do not have a physical meaning.
Therefore, the authors empirically proposed replacing the
parameterization 1− f 4 with 1− f 2. With this modifi-
cation, the expected behavior resembles a second-order
equation, and the value of ξ 2 represents the square of
the reduction in load-carrying capacity due to the initial
imperfection, as in Souza et al. (1983).

The new parameterization was validated for bench-
mark structures available in the literature and various
experimental campaigns, including Arbelo et al. (2015),
Kalnins et al. (2015), Skukis et al. (2016), Skukis et al.
(2017), Shahgholian-Ghahfarokhi and Rahimi (2018), La-
bans et al. (2019) and Franzoni (2020). According to Tian

et al. (2022), numerical VCT can be implemented by fol-
lowing the same steps as the experimental procedure. In
this study, the authors proposed an optimization design
to enhance the buckling load based on the implemented
approach. They conducted analyses on three cylindrical
shell structures: one with variable stiffness, one isotropic,
and one with a combination of various types of imperfec-
tions.

In Franzoni et al. (2018), the empirical parameter-
ization proposed by Arbelo et al. (2014) is analytically
demonstrated, confirming that (1− p)2 is related to(
1− f 2

)
by a second-order equation in which

(1− p)2 =
[
1−

(
1− f 2)]2

(5)

and the concept of the KDF factor is related to the min-
imum magnitude of (1− p)2 without the need to reach
the natural frequency equal to zero, i.e., the minimum
magnitude is achieved at the exact point of the buckling
load. The equivalent KDF for the VCT is proposed by
Eq. 6.

γVCT = 1−ξ (6)

Gliszczyński et al. (2022) analyzed the capability of
numerical VCT in conical shells with variations in the
imperfection parameter, geometry, and thickness using
the parameterization proposed by Arbelo et al. (2014).
The results obtained for the buckling load prediction were
conservative in 99.93 % of the 2826 predictions.

Recently, some research has been addressing cylin-
drical and conical sandwich shells within the context of
VCT, evaluating the technique through numerical models
that represent imperfections of these structures, such as
mid-surface and thickness imperfections. Additionally,
they have extended the analysis to experimental tests to
assess the convergence of results between the approaches,
as exemplified in Shahgholian-Ghahfarokhi et al. (2020)
and Zarei and Rahimi (2022).

Particularly, Shahgholian-Ghahfarokhi et al. (2020)
conducted a numerical and experimental approach to VCT,
where the results demonstrated a good correlation when
considering the nonlinear effects of mid-surface and thick-
ness imperfections. The correlation between the results
showed deviations below 5 %.

In the study by Zarei and Rahimi (2022), VCT pro-
vided reliable estimates for conical sandwich shells when
at least 65 % of the experimental buckling load is used
while indicating the inadequacy of using the linear param-
eterization proposed by Eq. 1 in this type of structure.

The VCT is a well-established technique in conven-
tional structures such as beams and plates. However, for
structures in cylindrical shells, particularly in the sand-
wich configuration, the technique is still under develop-
ment (Shahgholian-Ghahfarokhi et al., 2020). Whithin
this context, this paper proposes the evaluation of VCT
in a cylindrical sandwich shell through a numerical ap-
proach, considering a finite element model that addresses
the specificities of the real structure used as a reference.
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Table 1: The mechanical properties.

Properties IM7/MTM45 AS4/8552 Core

Elastic modulus (Msi) 20.662+613ε1, 1.250, n.d 9.4 ·106, 9.4 ·106, n.d 50 ·10−6, 38 ·10−6, 60 ·10−3

Shear modulus (ksi) 770, 770, 770 720, 720, 720 17.5 ·10−3, 29.5, 12
Poisson ratio’s 0.36, n.d, n.d 0.04, n.d, n.d 0.45, 0.0001, 0.0001
Density ρ (lbs2/in4) 110.327 ·10−6 147.6 ·10−6 6.729 ·10−6

Thickness (in) 0.005679 0.014 0.25

2. Methods

2.1 Structure
The analyzed model represents a sandwich cylindrical
shell with a honeycomb core of average radius R = 48 in,
length L = 100 in, average thickness 0.33 in, and slen-
derness ratio of 145. The inner and outer layers are lam-
inated composite material with a stacking sequence of
[45/−45/0/90/−45/45] using IM7/MTM45 material.
At the upper and lower ends of the cylinder, represented
by detail B in Fig. 1, there are two double pad-ups with
three thickness variations (t1, t2, t3) and a total length
of de 20 in. The pad-ups have a stacking sequence of
[45/−45/45]t1 , [−45/45]t2 , [45]t3 at the upper end and
[45/−45/45]t1 , [45/45]t2 , [45]t3 at the lower end, both
made of AS4/8552 material. The reference structure was
tested within the SBKF (Shell Buckling Knockdown Fac-
tor) described by Schultz et al. (2018). The mechanical
properties are shown in Table 1.

2.2 Numerical assessment
Two numerical models were developed for this study: a
linear model and a nonlinear model. The linear model con-
siders the perfect structure, while the nonlinear model in-
corporates middle surface imperfections (MSI) and thick-
ness irregularities (TI). The MSI and TI imperfections are
added to the numerical model using an inverse-weighted
algorithm devised by Castro et al. (2014). The script calcu-

Figure 1: Sandwich composite cylinder.

lates a disturbed nodal position (MSI) or a new thickness
magnitude (TI), based on the initial nodal positions or
element center of gravity positions of the perfect shell.
Moreover, the TI imperfections are assumed to be irregu-
larities generated by the core.

The numerical models utilize S4R finite elements,
with simple support boundary conditions (SS4) and multi-
ple point restrictions of the pin type applied to the central
control node. A mesh size convergence study is conducted
to ensure a deviation of less than 1 % for the chosen mesh
compared to the finest mesh. Since the most critical con-
ditions for buckling load occur for the first modes, the
first buckling mode is used as a reference to establish
the appropriate number of finite elements. The analyzed
range of finite elements around the diameter is between
50 and 1600 elements, considering multiple numbers. The
established criterion is met at 800 elements, as indicated
in Fig. 2.

Considering the stability of the results, computational
cost, and the convergence criterion, 850 finite elements
around the diameter are chosen for this study. In total,
there are 240,264 S4R elements and 241,116 nodes, with
an approximate average size of 0.35 in, corresponding to
a deviation of 0.5 %.

With the defined mesh, the analysis is performed to de-
termine the buckling load through direct loading modeling.
A uniform and unitary static load is applied to the center
of the structure for the linear numerical model. In prac-
tice, buckling occurs according to the first modes, so the
solution for the first 5 eigenvalues is obtained. The Lanc-
zos method is used for solving the eigenvalue problem.
Similarly, in the free vibration condition, the perturbation
is added in a linear form. The results obtained for the first
mode of free vibration and buckling are shown in Fig. 3(a)

Figure 2: Mesh convergence for linear numerical model.
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Figure 3: First free vibration and buckling modes.

Figure 4: First free vibration modes for the imperfect
structure.

and (b), respectively.
Evaluating the mentioned figures, there is no similar-

ity between the first buckling and vibration modes. The
first vibration mode is governed by m = 6 circumferential
waves and n = 1 axial half wave, while for the buckling
mode, the number of circumferential waves is n = 1. The
buckling load for the linear case is Plin = 940,845 lb,
which represents a deviation of 11.3 % compared to the
nonlinear buckling load of the reference model Pre f =
845,000 lb (Schultz et al., 2018).

The nonlinear solution to buckling is obtained through
the Newton-Rapshon method with artificial damping for
controlling forced displacement. The artificial damping
is added based on the specified dissipation energy, which
represents a fraction of the strain energy. The damping
coefficient is automatically calculated by the solver. The
properties of the numerical model are listed in Table 2.

The nonlinear buckling load is PNL = 840,643 lb,
which represents a deviation of 0.5 % and 1.0 % from
the nonlinear buckling load of the numerical model and
the buckling load obtained in the experimental test avail-
able by Schultz et al. (2018), respectively. The quantified
deviations may be associated with imperfection readings
and the approximations made in the implemented numeri-
cal model, such as the simple support boundary conditions
(SS4).

The vibration modes of the loaded structure are ob-
tained by including an additional vibration step in the
nonlinear solution for desired load levels. Once more, the
first five vibration modes are requested. In Fig. 4(a), (b),
and (c), the first free vibration modes for the imperfect
structure are shown in the unloaded condition, nonlinear
buckling increment, and first stable post-buckling incre-
ment, respectively.

The buckling and vibration modes under the analyzed
conditions do not show similarity. Additionally, the natu-
ral frequency of the structure does not reach zero magni-
tudes, which reinforces the need for the application of a

Table 2: The properties of the numerical model.

Parameters Values

Nonlinear algorithm Newton-Rapshon
Element type S4R
Elements around circumference 850
Specify dissipated energy fraction 1 ·10−6

Min. increment 1 ·10−7

Max. increment 1 ·10−2

Max. number of increments 600

method that does not require this condition to be met. Ex-
tensive research conducted analyzing the various impacts
of design parameters of cylindrical shells, as demonstrated
in Baciu et al. (2023) and Jeon et al. (2023), indicates,
based on the experimental and numerical results obtained,
the lack of necessity for a frequency magnitude equal to
zero.

3. Results
To evaluate the VCT, it is necessary to define the max-
imum load level used for estimating the buckling load.
In experimental tests, it has been suggested that 60 % of
PCR (Skukis et al., 2017; Shahgholian-Ghahfarokhi and
Rahimi, 2018) serves as a safe percentage for the test to
occur within the elastic range. Nevertheless, as this is a
numerical study, a broader range of the load-displacement
curve can be exploited. Thus, the displacement steps
were divided into 10 sub-intervals ranging from 9.8 %
to 87.6 % of PCR; moreover, both the deviation of the
VCT prediction δVCT and the maximum load level con-
sidered for such prediction PMAX in Fig. 5 refer to the
nonlinear buckling load PNL. All deviations fall within
the negative range, indicating that all VCT estimations
are conservative, thereby demonstrating its capability as a
non-destructive technique.

In addition to determining PMAX , according to the
methodology proposed by Arbelo et al. (2014), a mini-
mum of three points for the relationship between (1− p)2

and
(
1− f 2

)
is necessary for appropriate VCT predic-

tions. However, the use of more points indicates better
convergence between numerical and experimental results
(Gliszczyński et al., 2022). Therefore, in this evaluation,
10 sub-intervals are again adopted for the prediction of
the buckling load. The prediction curve is described by
a second-order nonlinear interpolation, and the evaluated
conditions for PMAX = 65 %, 75 %, 85 %, 98 %, as illus-
trated in Fig. 6. Maintaining the conservative behavior
for the 10 analyzed sub-intervals, the VCT demonstrates
its capacity to be a truly non-destructive technique. The
values of applied and predicted loads, free fundamental
frequencies, associated deviations, and equivalent KDFs
by VCT are presented in Table 3.

The KDF obtained by Schultz et al. (2018), consider-
ing the NASA SP-8007 methodology for a similar struc-
ture to the one evaluated in this study, is γ = 0.61. While
the VCT in the most conservative condition, i.e., with
65 %PNL, yields an equivalent KDF γVCT equal to 0.80 for
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Figure 5: VCT deviation analysis according to the applied
load.

Figure 6: VCT application to 65 %, 75 %, 85 % and 98 %
of PNL.

a highly reliable numerical model. The deviation between
these values is 31 %, which can be justified by the differ-
ent tools implemented in their respective analyses. The
value of γ was empirically established based on the results
obtained from experimental tests conducted between the
1930s and 1960s. The second published revision of NASA
SP-8007 (Hilburger, 2020) already considers design ap-
proaches that lead to less conservative KDF results based
on high-fidelity numerical modeling.

4. Conclusions
The VCT based on the parametrization proposed in Arbelo
et al. (2014) demonstrated satisfactory and conservative
results, with deviations below 10 % when applying 65 %
of the nonlinear buckling load for an equivalent KDF of
γVCT = 0.80 under these conditions. This demonstrates
its capability as a non-destructive technique in sandwich
cylindrical shells, showcasing its potential for future prac-
tical applications. In comparison to the KDF obtained
from the NASA guideline of 0.61, there is a deviation
of 31 %, which is attributed to the tools used. The VCT
considers specific characteristics of the structure and in-
herently considers the effects of the imperfections and
deviations of a given numerical model (test stand in case
experimental results are evaluated), whereas the NASA

Table 3: VCT results for the models analyzed in the first
frequency natural vibration.

PMAX PVCT Frequency δVCT
γVCT(lb) (lb) (Hz) (%)

65% PNL 762,063 107.47 9.35 0.80
75% PNL 773,874 103.97 7.94 0.81
85% PNL 789,560 99.15 6.08 0.83
98% PNL 818,951 88.56 2.58 0.87

SP-8007 guideline relies on extensive experimental results
from the 1930s to 1960s to determine the KDF. The impact
of imperfections is verified by observing the differences in
behavior between the modes and frequencies of the perfect
and imperfect structure. The minimum value of (1− p)2

obtained is not associated with a zero magnitude of the
natural frequency of the structure. Furthermore, the vibra-
tion and buckling modes for the structure were not similar
under the evaluated conditions, emphasizing the need for
a methodology not relying on these characteristics.

It is suggested that the deviations observed in the ob-
tained values are primarily associated with the implemen-
tation of imperfections, boundary conditions, and loading
conditions. Specifically, the imperfections were indirectly
implemented based on data obtained from IE and MSI
images. The simple support condition (SS4) is a conser-
vative approximation to simplify the fixing apparatus of
the testing machine.
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