VMAP-ENABLED MULTI-DISCIPLINARY COLLABORATION ON JET ENGINE DESIGN

Inter- and intra-operability of processes

Outline

- Brief introduction to jet engine design @ DLR
- Central Data Model (CDM)
- Integration of VMAP into CDM
- Use cases
- Suggested extensions to VMAP → full model storage
- Further challenges

Take home messages:

- 1. VMAP adds value to parametric modeling environments
- 2. VMAP needs full model storage suggestions, requirements?

Introduction Aircraft Engine Design

- Aircraft engine design is multi-disciplinary and iterative
 - ➤ Need for collaboration
 - ➤ Development of software framework **GTlab** (Gas Turbine Laboratory)
- Modern engines are highly optimized
 - ➤ Improvements are *incremental*
 - > Need for higher-fidelity methods

The Gas Turbine Laboratory GTlab Overview

- Framework for collaborative design
 - ✓ Coupling of tools
 - ✓ Standardized exchange of data
 - ✓ Workflow management
 - ✓ Support for multi-fidelity data

Engine Data Record

Performance Model

The Gas Turbine Laboratory GTlab Overview

- Framework for collaborative design
 - ✓ Coupling of tools
 - ✓ Standardized exchange of data
 - ✓ Workflow management
 - ✓ Support for multi-fidelity data

- Modular software infrastructure
 - Performance
 - Sketching
 - 2D Blade design

Engine Data Record

- ✓ ♠ ENGINE
 - ☐ FAN
 - **D** BOOSTER
 - □ HPC
 - COMBUSTOR
 - > □ LPT
 - > □ HPT

2D Geometry

The Gas Turbine Laboratory GTlab Overview

- Framework for collaborative design
 - ✓ Coupling of tools
 - ✓ Standardized exchange of data
 - ✓ Workflow management
 - ✓ Support for multi-fidelity data

- Modular software infrastructure
 - Performance
 - Sketching
 - 2D + 3D Blade design
 - CAD kernel

Engine Data Record

- COMBUSTOR
- > □ LPT
- > □ HPT

The Gas Turbine Laboratory GTlab **Central Data Model**

Parent-child hierarchy

- Multi-fidelity of components
 - ✓ Conceptual design
 - ✓ Preliminary design
 - ☑ Higher fidelity information

→ How to incorporate CSM?

- Choose FE data format (5)
- Integrate FE data into the data model
- Develop FE analysis processes

~	ఏ	EN	GIN	E							
	>		FAI	V							
	>	□	ВО	OST	ER						
	~	□	НР	C							
		~		Sta	ge D	efini	tion	S			
			>		Stag						
			>		Stag	•					
			>	0	_						
		~		Bla							
				_	IGV						
				=							
				<u> </u>							
				=							
				$\stackrel{\sim}{\approx}$							
				1							
					_	Blad	e Ro	w [Data		
				>	_	Prof					
				>		Disk					

Integration of VMAP data Idea

DLR

- VMAP files contain structural data for blades (and disks)
- VMAP files contain parent-child hierarchy, too

→ Attach VMAP file structure as a child to blade data record

Integration of VMAP data Execution

DLR

- Only file structure is appended (Indexing)
 - √ Expresses data affiliations clearly
- Data remains in VMAP file
 - ✓ Lightweight integration
- Individual nodes are made uniquely identifiable
 - ✓ Referencing
 - √ Searching

Integration of VMAP data Accessing data automatically

Workflow execution: data is not loaded into the framework

 Dedicated API & reference-counting mechanism to access data

Integration of VMAP data Accessing data manually

Manual inspection: data is loaded into the framework on demand

Selective, responsive data viewer

 Outperforms official HDF Viewer

Н5				HDF5 Viewer	(MYELEMENTS)	×			
MYELEMENTS - /VMAP/GEOMETRY/3/ELEMENTS/									
	myIdentifier	myElementType	myCoordinateSystem	myMaterialType	mySectionType	myConnectivity			
0	316066	2	1	0	0	(4082, 3231, 1431, 1581, 4084, 1347, 1346, 1345, 1344, 1343			
1	316067	2	1	0	0	(7927, 8094, 1829, 1583, 8093, 1342, 1341, 1340, 1339, 1338			
2	316068	2	1	0	0	(7929, 8094, 7927, 1583, 8198, 8093, 7928, 1337, 1339, 1340			
3	316069	2	1	0	0	(3867, 4010, 1829, 1583, 4009, 1336, 1335, 1334, 1333, 1338			
4	316070	2	1	0	0	(4010, 3867, 3869, 1583, 4009, 3868, 5746, 1333, 1334, 1332			
5	316071	2	1	0	0	(3905, 3889, 8040, 1580, 3908, 1331, 1330, 1329, 1328, 1327			
6	316072	2	1	0	0	(1643, 1348, 2209, 1351, 1326, 1325, 1324, 1323, 1322, 1321			
7	316073	2	1	0	0	(1803, 4010, 1832, 1583, 1320, 1319, 1318, 1317, 1333, 1316			
8	316074	2	1	0	0	(8094, 8106, 1440, 1583, 8108, 1315, 1314, 1339, 1313, 1312			
9	316075	2	1	0	0	(8094, 7929, 8106, 1583, 8198, 8107, 8108, 1339, 1337, 1313			
	<fetch more=""></fetch>								
7731	323797	2	1	0	0	(1554, 3120, 1370, 3021, 636, 10702, 10703, 564, 3141, 11256			
7732	323798	2	1	0	0	(1723, 2705, 1785, 2885, 13361, 11198, 12471, 12354, 2928, 12763			
7733	323799	2	1	0	0	(1736, 1747, 8080, 1826, 11304, 11483, 11482, 13315, 12011, 9789			
7734	323800	2	1	0	0	(1382, 1828, 1372, 3023, 11692, 290, 11693, 12115, 10924, 11056			
7735	323801	2	1	0	0	(1484, 3917, 3920, 1438, 12416, 3919, 9331, 9332, 10334, 9159			
7736	323802	2	1	0	0	(1382, 1830, 1424, 1372, 9546, 9545, 9547, 11693, 293, 13124			
7737	323803	2	1	0	0	(1382, 3025, 1424, 1390, 13895, 10399, 9547, 9550, 13096, 9548			
7738	323804	2	1	0	0	(1424, 3025, 1382, 1372, 10399, 13895, 9547, 13124, 13794, 11693			
7739	323805	2	1	0	0	(1424, 4043, 3863, 4052, 13666, 5733, 10484, 10477, 4053, 4054			
	323806	2	1	0	0	(2577, 1788, 2575, 2707, 10492, 10491, 2576, 2746, 13064, 2809			

Integration of VMAP data Accessing data visually

Visual inspection: prototype

 Customized implementation based on VTK

Exemplary Workflow 1Blade mesh

Exemplary Workflow 1 Blade mesh, disk design

Exemplary Workflow 1 Blade mesh, disk design, hot-to-cold

Exemplary Workflow 2 Static FSI

Suggested Extension to VMAP: CONDITIONS Principle

Suggested Extension to VMAP: CONDITIONS Detailed Example

Suggested Extension to VMAP: CONDITIONSList

Suggested Extension to VMAP: CONDITIONS Goal

Complete storage of model + results for elementary CSM problems, e.g.:

- Cantilever beam
- Truss system
- Plate with hole
- Brick heatflow: source, conduction, convection

- Static thermo-mechanics
- Transient thermo-mechanics
- Modal mechanics

Further challenges

- Intra-process challenges:
 - VMAP full model storage
 - VMAP converters to/from different formats
 (Permas-VMAP converter: github.com/BT-DLR/PermasVmap)
- Inter-process challenges:
 - VMAP & CGNS: standardized fluid structure interface?
- Data management:
 - Versioning of HDF5 data
 - Cloud, remote processing
 - ➤ Data Management System, future HDF5 features

References

GTlab:

- Architecture and Methodology: Reitenbach et al, <u>AIAA 2020-0867</u>
- Data Provenance Models: Reitenbach et al, <u>J. Eng. Gas Turbines Power, 2020</u>
- Open source release: coming soon

- Integration of VMAP/HDF5 in GTlab:
 - Part A, Implementation: Bröcker et al, <u>AIAA 2024-0482</u>
 - Part B, 8 detailed Use Cases: Kunc et al, <u>AIAA 2024-0383</u>

Orlando, FL

Take home messages:

- 1. VMAP adds value to parametric modeling environments
- 2. VMAP needs full model storage suggestions, requirements?